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Motivation

Assumption of a two-body system in which the central body 
acts gravitationally as a point mass.

In many practical situations, a satellite experiences 
significant perturbations (accelerations).

These perturbations are sufficient to cause predictions of 
the position of the satellite based on a Keplerian approach 
to be in significant error in a brief time.



The Effect of Earth Oblateness



The Effect of Earth Oblateness
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STK: Different Propagators
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Non-Keplerian Motion

Dominant perturbations

Earth’s gravity field

Atmospheric drag

Third-body perturbations

Solar radiation pressure
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Different Perturbations and Importance ?

In low-earth orbit (LEO) ?

In geostationary orbit (GEO) ?



Montenbruck and Gill, Satellite 

orbits, Springer, 2000

Fortescue et al., Spacecraft 

systems engineering, 2003

Satellite dependent !
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Orders of Magnitude
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Sun and moon
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The Earth is not a Sphere…
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Mathematical Modeling
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Legendre Polynomials

First introduced in 1782 by Legendre
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Legendre Polynomials Are Orthogonal
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Let’s Use Them
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Summing Up…
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Geometric Method: First Term
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Geometric Method: Second Term
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Geometric Method: Third Term
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Geometric Method: MacCullagh’s Formula
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3 ...

2

Gm G
U A B C I

r r

     

Some of the simplest assumptions are 

- the ellipsoidal Earth (oblate spheroid) with uniform 

density (a=b>c). 

- triaxial ellipsoid (a>b>c).
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Geometric Method: Difficult to Go Further…
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Summing up…
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Spherical Trigonometry



 latitude sat

 longitude sat

′ latitude Earth
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Addition Theorem for Spherical Harmonics
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Depends only on the satellite (r,, )

Depends only on the Earth (′, ′): spherical harmonics
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Normalization: End Result
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Very Important Remark

Many different expressions exist in the literature:

 V=±V

 Pl
m=(-1)mPlm

 Normalized or non-normalized coefficients

 Latitude or colatitude (sin or cos)

 …

Be always aware of the conventions/definitions used !
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Spherical Harmonics 

A set of functions used to represent functions on the surface 

of the sphere. They are a higher-dimensional analogy of 

Fourier series. 

Our objective !

So any object that looks « kind-

of-spherical » can be 

decomposed into an infinite sum 

of basic functions, as long as 

you multiply each basic function 

by the right coefficient
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Fourier Series 

A Fourier series is an expansion of a periodic function in 

terms of an infinite sum of sines and cosines.

Fourier series make use of the orthogonality of sine and 

cosine functions.

A square wave defined using 4 Fourier terms

https://www.youtube.com/watch?v=LznjC4Lo7lE



29

Spherical Harmonics 

The degree « n » is the total number of waves. The order 

« m » is the number of waves in longitude. The number of 

waves in latitude is thus « n – m ». 
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Zonal Harmonics (m=0)

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

Each boundary is a root of the Legendre polynomial.
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Zonal Harmonics (m=0)

The zonal coefficients are independent of longitude 

(symmetry with respect to the rotation axis).
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EGM96

0,1 ?
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First Zonal Harmonic: J2,0 or J2

3

2 2,0

2.1.(2.2+1)
= 0.4841 10 0.001082

2
J C    

It represents the Earth’s equatorial bulge and quantifies the 

major effects of oblateness on orbits.

It is almost a thousand times as large as any of the other 

coefficients.
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First Zonal Harmonic: J2,0 or J2
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Calculation of the Rotational Flattening

𝑅𝑒 − 𝑅𝑝

𝑅
=

5Ω2𝑅3

4𝐺𝑀

Equilibrium of a rotating self gravitating fluidlike body 

(uniform density)

http://farside.ph.utexas.edu/teaching

/336k/Newton/node109.html

𝑅𝑒 − 𝑅𝑝

𝑅
=

5 7.27 × 10−5 2 6.37 × 106 3

4 6.67 × 10−11 5.97 × 1024
= 0.0043

𝑅𝑒 − 𝑅𝑝
𝑅

= 0.0043 × 6.37 × 106= 27𝑘𝑚 𝑣𝑠 21𝑘𝑚

R is the mean radius
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First Zonal Harmonic of Other Planets

Planet 2J

Mercury

Venus

Earth

Moon

Jupiter

Saturn

60e-6

4.46e-6

1.08e-3

2.03e-4

1.47e-2

1.63e-2

𝑅𝑒 − 𝑅𝑝
𝑅

=
5Ω2𝑅3

4𝐺𝑀
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Sectorial Harmonics (l=m)

The sectorial coefficients represent bands of longitude.

The polynomials Pl,l are zero only at the poles.

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.
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Sectorial Harmonics (l=m)
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Tesseral Harmonics (lm0)

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.
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Tesseral Harmonics (lm0)
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Determination of Gravitational Coefficients

Because the internal distribution of the Earth is not known, 

the coefficients cannot be calculated from their definition. 

They are determined experimentally; e.g, using satellite 

tracking.

Satellite-to-satellite tracking: GRACE 

employs microwave ranging system 

to measure changes in the  distance 

between two identical satellites as 

they circle Earth. The ranging system 

detects changes as small as 10 

microns over a distance of 220 km.
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Gravitational Coefficients: GRACE

EGM-2008 has been publicly released:

 Extensive use of GRACE twin satellites.

 4.6 million terms in the spherical expansion (130317 in EGM-96)

 Geoid with a resolution approaching 10 km (5’x5’).
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Resulting Force
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Spherical Earth
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Gravitational force acts through the Earth’s center.
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Oblate Earth: J2
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STK: Gravity Models (HPOP) 
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Atmospheric Drag

Atmospheric forces represent the largest nonconservative 

perturbations acting on low-altitude satellites.

The drag is directly opposite to the velocity of the satellite, 

hence decelerating the satellite.

The lift force can be neglected in most cases.
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STK – Atmospheric Models (HPOP) 
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STK – Solar Activity (HPOP) 
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Mathematical Modeling

21

2

r
sat D r

r

A
C v

m v
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v
r

[1.5-3]

Knowledge 

of attitude

Velocity with respect 

to the atmosphere

Atmospheric 

density

All these parameters are difficult to estimate !

r   v v ω r

Inertial 

velocity

Earth’s angular 

velocity

The atmosphere co-rotates 

with the Earth.



51

Atmospheric Density

The gross behavior of the atmospheric density is well 

established, but it is still this factor which makes the 

determination of satellite lifetimes so uncertain. 

There exist several models (e.g., Jacchia-Roberts, Harris-

Priester).

Dependence on temperature, molecular weight, altitude, 

solar activity, etc.
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Solar Activity
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Atmospheric Density using CHAMP

An accelerometer measures the non-gravitational accelerations in 

three components, of which the along-track component mainly 

represents the atmospheric drag. 

By subtracting modeled accelerations for SRP and Earth Albedo, 

the drag acceleration is isolated and is proportional to the 

atmospheric density. 
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CHAMP Density at 410 kms
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Further Reading
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Harris-Priester (120-2000km)

Static model (e.g., no variation with the 27-day solar 

rotation).

Interpolation determines the density at a particular time.

Simple, computationally efficient and fairly accurate.
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Atmospheric Bulge

The high atmosphere bulges toward a point in the sky some 

15º to 30º east of the sun (density peak at 2pm local solar 

time).

The observed accelerations of Vanguard satellite (1958) 

indicated that the air density at 665 km is about 10 times as 

great when perigee passage occur one hour after noon as 

when it occurs during the night !
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Harris-Priester (120-2000km)



59

Harris-Priester (120-2000km)

Height above the Earth’s 

reference ellipsoid

Account for diurnal density bulge due to solar radiation

Angle between 

satellite position 

vector and the apex 

of the diurnal bulge
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Interpolation Between Altitudes

Mean solar activity
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Atmospheric Bulge Position

Sun declination Sun right 

ascension

Lag

Unit vector toward 

the apex of the 

diurnal bulge in 

ECI coordinates

Spacecraft 

position (ECI)
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Third-Body Perturbations

For an Earth-orbiting satellite, the Sun and the Moon 

should be modeled for accurate predictions.

Their effects become noticeable when the effects of drag 

begin to diminish. 
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Mathematical Modeling (Sun Example)
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STK: Third-Body Gravity (HPOP) 
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Solar Radiation Pressure

It produces a nonconservative perturbation on the 

spacecraft, which depends upon the distance from the sun. 

It is usually very difficult to determine precisely.

It is NOT related to solar wind, which is a continuous stream 

of particles emanating from the sun. 

800km is regarded as a transition altitude between drag and 

SRP.

Solar radiation 

(photons)

Solar wind 

(particles)
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Mathematical Modeling

The reflectivity cR is a value between 0 and 2:
- 0: translucent to incoming radiation.

- 1: all radiation is absorbed (black body).

- 2: all radiation is reflected.

The incident area exposed to the sun must be known. 

The normals to the surfaces are assumed to point in the 

direction of the sun (e.g., solar arrays).

SR /SR R sc sunp c A F e

2
6 2

SR

1350 W/m
p 4.51 10 N/m

3 8 m/se

  
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Mathematical Modeling: Eclipses

Use of shadow functions:

Dual cone

Cylindrical

SR 0F
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STK: Solar Radiation Pressure (HPOP) 
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STK: Shadow Models (HPOP) 
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STK: Central Body Pressure (HPOP) 
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S3L Propagator



Gaëtan Kerschen

Space Structures & 

Systems Lab (S3L)

Astrodynamics 
(AERO0024)

5. Dominant Perturbations


