5. Dominant Perturbations

Gaëtan Kerschen

Space Structures \& Systems Lab (S3L)

Motivation

Assumption of a two-body system in which the central body acts gravitationally as a point mass.

In many practical situations, a satellite experiences significant perturbations (accelerations).

These perturbations are sufficient to cause predictions of the position of the satellite based on a Keplerian approach to be in significant error in a brief time.

The Effect of Earth Oblateness

The Effect of Earth Oblateness

STK: Different Propagators

Non-Keplerian Motion

Dominant perturbations

Earth's gravity field
Atmospheric drag
Third-body perturbations
Solar radiation pressure

Different Perturbations and Importance?

In low-earth orbit (LEO) ?

In geostationary orbit (GEO) ?

Satellite dependent !

Montenbruck and Gill, Satellite orbits, Springer, 2000

Fortescue et al., Spacecraft systems engineering, 2003

Orders of Magnitude

400 kms

Oblateness
Drag

1000 kms

Oblateness
Sun and moon

36000 kms

Oblateness
Sun and moon

SRP

The Earth is not a Sphere...

Mathematical Modeling

$$
\begin{aligned}
& \text { Satellite } \\
& \text { unit mass } \\
& r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& r^{\prime}=\sqrt{\xi^{2}+\eta^{2}+\zeta^{2}} \\
& \mathrm{U}=-\mathrm{V} \text {, potential, } \ddot{\mathbf{r}}=\nabla U \\
& \mathrm{~V} \text {, potential energy } \\
& \left.\rho=\sqrt{r^{2}+r^{\prime 2}-2 r^{\prime} r \cos \Lambda}\right\} \quad U=G \int_{\text {body }}, \\
& \text { dm } \\
& \overline{r \sqrt{1-2 \alpha \cos \Lambda+\alpha^{2}}} \\
& \cos \Lambda=\frac{\mathbf{r} \cdot \mathbf{r}^{\prime}}{r \cdot r^{\prime}} \quad \alpha=\frac{r^{\prime}}{r}<1
\end{aligned}
$$

Legendre Polynomials

First introduced in 1782 by Legendre

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

n	$P_{n}(x)$
0	
1	$\frac{1}{2}\left(3 x^{2}-1\right)$
2	$\frac{1}{2}\left(5 x^{3}-3 x\right)$
3	$\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$
4	

$$
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}
$$

Legendre Polynomials Are Orthogonal

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0 \quad \text { if } n \neq m
$$

Let's Use Them

$$
\begin{aligned}
& U=G \int_{\text {body }} \frac{d m}{r \sqrt{1-2 \alpha \cos \Lambda+\alpha^{2}}}, \\
& \sqrt{\square} \frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} \\
& U=\frac{G}{r} \int_{\text {body }} \sum_{l=0}^{\infty} \alpha^{l} P_{l}[\cos (\Lambda)] d m
\end{aligned}
$$

Summing Up...

$$
U=\frac{G}{r} \int_{b o d y} \sum_{l=0}^{\infty} \alpha^{l} P_{l}[\cos (\Lambda)] d m
$$

Geometric method (intuitive feel for gravity and inertia)

$$
U=U_{0}+U_{1}+U_{2}+\ldots
$$

Spherical-harmonic expansion

Experiments

Theory

Geometric Method: First Term

$$
U_{0}=\frac{G}{r} \int d m=\frac{\mu}{r}
$$

Two-body potential

Geometric Method: Second Term

$$
\begin{aligned}
U_{1} & =\frac{G}{r} \int \cos (\Lambda) \alpha d m=\frac{G}{r} \int \frac{x \xi+y \eta+z \zeta}{r^{2}} d m \\
& =\frac{G}{r^{3}}\left(x \int \xi d m+y \int \eta d m+z \int \zeta d m\right)=0
\end{aligned}
$$

Center of mass at the origin of the coordinate frame

Geometric Method: Third Term

$$
\begin{aligned}
\begin{aligned}
& U_{2}= \\
& \frac{G}{r} \int \frac{\alpha^{2}}{2}\left(3 \cos ^{2} \Lambda-1\right) d m \\
&=\frac{G}{2 r^{3}} \int 2 r^{\prime 2} d m-\frac{G}{2 r^{3}} \int 3 r^{\prime 2} \sin ^{2} \Lambda d m \\
&=\frac{G}{2 r^{3}}(A+B+C-3 I) \\
& \int 2 r^{\prime 2} d m=\int\left(\eta^{2}+\zeta^{2}\right) d m+\int\left(\xi^{2}+\zeta^{2}\right) d m+\int\left(\eta^{2}+\xi^{2}\right) d m \\
&=A+B+C \quad \text { Moments of inertia } \\
& \int r^{\prime 2} \sin ^{2} \Lambda d m=I \quad \text { Polar moment of ineria }
\end{aligned}
\end{aligned}
$$

Geometric Method: MacCullagh's Formula

$$
U=\frac{G m_{\oplus}}{r}+\frac{G}{2 r^{3}}(A+B+C-3 I)+\ldots
$$

Some of the simplest assumptions are

- the ellipsoidal Earth (oblate spheroid) with uniform density ($a=b>c$).
- triaxial ellipsoid ($a>b>c$).

Geometric Method: Difficult to Go Further...

Summing up...

$$
U=\frac{G}{r} \int_{b o d y} \sum_{l=0}^{\infty} \alpha^{l} P_{l}[\cos (\Lambda)] d m
$$

Geometric method (intuitive feel for gravity and inertia)
 $U=U_{0}+U_{1}+U_{2}+\ldots$

Spherical-harmonic expansion

Experiments
Theory

Spherical Trigonometry

$\phi \rightarrow$ latitude sat
$\lambda \rightarrow$ longitude sat
$\phi^{\prime} \rightarrow$ latitude Earth
$\lambda^{\prime} \rightarrow$ longitude Earth

$$
\cos \Lambda=\cos \left(90-\phi^{\prime}\right) \cos (90-\phi)+\sin \left(90-\phi^{\prime}\right) \sin (90-\phi) \cos \left(\lambda-\lambda^{\prime}\right)
$$

Addition Theorem for Spherical Harmonics

If $\cos \Lambda=\cos \left(90-\phi^{\prime}\right) \cos (90-\phi)+\sin \left(90-\phi^{\prime}\right) \sin (90-\phi) \cos \left(\lambda-\lambda^{\prime}\right)$
Then,
$P_{l}(\cos \Lambda)=\sum_{m=0}^{l}\left(2-\delta_{0 m}\right) \frac{(l-m)!}{(l+m)!} P_{l m}(\sin \phi) P_{l m}\left(\sin \phi^{\prime}\right) \cos \left(m\left(\lambda-\lambda^{\prime}\right)\right)$
where $P_{l m}(u)=\left(1-u^{2}\right)^{m / 2} \frac{d}{d u^{m}} P_{n}(u)$
Associated Legendre polynomial of degree I and order m

$$
\begin{array}{r}
U=\frac{G}{r} \int_{\text {body }} \sum_{l=0}^{\infty} \alpha^{l} P_{l}(\cos \Lambda) d m=\frac{G}{r} \int_{b o d y} \sum_{l=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{l} P_{l}(\cos \Lambda) d m \\
+ \\
P_{l}(\cos \Lambda)=\sum_{m=0}^{l}\left(2-\delta_{0 m}\right) \frac{(l-m)!}{(l+m)!} P_{l m}(\sin \phi) P_{l m}\left(\sin \phi^{\prime}\right) \cos \left(m\left(\lambda-\lambda^{\prime}\right)\right) \\
\\
\left(\cos m \lambda \cos m \lambda^{\prime}+\sin m \lambda \sin m \lambda^{\prime}\right)
\end{array}
$$

\square
Depends only on the satellite (r, ϕ, λ)

$$
U=\frac{G M_{\oplus}}{r}\left\{\sum_{l=0}^{\infty} \sum_{m=0}^{l}\left(\frac{R_{\oplus}}{r}\right)^{l} P_{l m}(\sin \phi)\left(C_{l m} \cos m \lambda+S_{l m} \sin m \lambda\right)\right\}
$$

Depends only on the Earth ($\phi^{\prime}, \lambda^{\prime}$): spherical harmonics

$$
\begin{aligned}
& C_{l m}=\frac{\left(2-\delta_{0 m}\right)}{M_{\oplus}} \frac{(l-m)!}{(l+m)!} \int\left(\frac{r^{\prime}}{R_{\oplus}}\right)^{l} P_{l m}\left(\sin \phi^{\prime}\right) \cos m \lambda^{\prime} d m \\
& S_{l m}=\frac{\left(2-\delta_{0 m}\right)}{M_{\oplus}} \frac{(l-m)!}{(l+m)!} \int\left(\frac{r^{\prime}}{R_{\oplus}}\right)^{l} P_{l m}\left(\sin \phi^{\prime}\right) \sin m \lambda^{\prime} d m
\end{aligned}
$$

Normalization: End Result

$$
U=\frac{G M_{\oplus}}{r}\left\{\sum_{l=0}^{\infty} \sum_{m=0}^{l}\left(\frac{R_{\oplus}}{r}\right)^{l} \bar{P}_{l m}(\sin \phi)\left(\bar{C}_{l m} \cos m \lambda+\bar{S}_{l m} \sin m \lambda\right)\right\}
$$

$$
\begin{gathered}
\left\{\begin{array}{l}
\bar{C}_{l m} \\
\bar{S}_{l m}
\end{array}\right\}=\sqrt{\frac{(l+m)!}{\left(2-\delta_{0 m}\right)(2 n+1)(l-m)!}}\left\{\begin{array}{l}
C_{l m} \\
S_{l m}
\end{array}\right\} \\
\bar{P}_{l m}=\sqrt{\frac{\left(2-\delta_{0 m}\right)(2 n+1)(l-m)!}{(l+m)!}} P_{l m}
\end{gathered}
$$

Very Important Remark

Many different expressions exist in the literature:

$$
\begin{aligned}
& \Rightarrow \mathrm{V}= \pm \mathrm{V} \\
& \Rightarrow \mathrm{P}_{1}^{\mathrm{m}}=(-1)^{\mathrm{m}} \mathrm{P}_{\mathrm{lm}}
\end{aligned}
$$

\Rightarrow Normalized or non-normalized coefficients
\Rightarrow Latitude or colatitude ($\sin \phi$ or $\cos \phi$)

Be always aware of the conventions/definitions used!

Spherical Harmonics

A set of functions used to represent functions on the surface of the sphere. They are a higher-dimensional analogy of Fourier series.

So any object that looks « kind-of-spherical » can be decomposed into an infinite sum of basic functions, as long as you multiply each basic function by the right coefficient

Our objective !

Fourier Series

A Fourier series is an expansion of a periodic function in terms of an infinite sum of sines and cosines.

Fourier series make use of the orthogonality of sine and cosine functions.

https://www.youtube.com/watch?v=LznjC4Lo7IE

A square wave defined using 4 Fourier terms

Spherical Harmonics

The degree « n » is the total number of waves. The order « m » is the number of waves in longitude. The number of waves in latitude is thus « $n-m$ ».

Zonal Harmonics (m=0)

Each boundary is a root of the Legendre polynomial.

Figure 8-4. Zonal Harmonics. J_{2} accounts for most of the Earth's gravitational departure from a perfect sphere. This band (and others) reflects the Earth's oblateness. The shading indicates regions of additional mass. The third harmonic appears similar to the J_{2} from the top but is reversed for the bottom view.

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

Zonal Harmonics (m=0)

The zonal coefficients are independent of longitude (symmetry with respect to the rotation axis).

$$
U=\frac{\mu}{r}\left\{1+\sum_{l=2}^{\infty} \sum_{m=0}^{l}\left(\frac{R_{\oplus}}{r}\right)^{l} \bar{P}_{l m}\left[\sin \phi_{s a t}\right]\left[\bar{C}_{l, m} \cos \left(m \lambda_{s a t}\right)+\bar{S}_{l, m} \sin \left(m \lambda_{s a t}\right)\right]\right\}
$$

$$
\sum \begin{aligned}
& J_{l}=-C_{l, 0} \\
& S_{l, 0}=0 \text { (definition) }
\end{aligned}
$$

$$
U=\frac{\mu}{r}\left\{1+\sum_{l=2}^{\infty}\left(\frac{R_{\oplus}}{r}\right)^{\prime}\left[-J_{l} P_{l}\left[\sin \phi_{s a t}\right]+\sum_{m=1}^{l} \bar{P}_{\text {sm }}\left[\sin \phi_{s a t}\left[\bar{C}_{l, m} \cos \left(m \lambda_{s a t}\right)+\bar{S}_{l, m} \sin \left(m \lambda_{s a t}\right)\right]\right]\right\}\right.
$$

EGM96

Degree and Order		Normalized Gravitational Coefficients	
\mathbf{n}	\mathbf{m}	$\overline{\mathrm{C}}_{\mathrm{nm}}$	$\overline{\mathrm{S}}_{\mathrm{nm}}$
2	0	$-.484165371736 \mathrm{E}-03$	
2	1	$-.186987635955 \mathrm{E}-09$	$.119528012031 \mathrm{E}-08$
2	2	$.243914352398 \mathrm{E}-05$	$-.140016683654 \mathrm{E}-05$
3	0	$.957254173792 \mathrm{E}-06$	
3	1	$.202998882184 \mathrm{E}-05$	$.248513158716 \mathrm{E}-06$
3	2	$.904627768605 \mathrm{E}-06$	$-.619025944205 \mathrm{E}-06$
3	3	$.721072657057 \mathrm{E}-06$	$.141435626958 \mathrm{E}-05$
4	0	$.539873863789 \mathrm{E}-06$	
4	1	$-.536321616971 \mathrm{E}-06$	$-.473440265853 \mathrm{E}-06$
4	2	$.350694105785 \mathrm{E}-06$	$.662671572540 \mathrm{E}-06$
4	3	$.990771803829 \mathrm{E}-06$	$-.200928369177 \mathrm{E}-06$
4	4	$-.188560802735 \mathrm{E}-06$	$.308853169333 \mathrm{E}-06$
5	0	$.685323475630 \mathrm{E}-07$	
5	1	$-.621012128528 \mathrm{E}-07$	$-.944226127525 \mathrm{E}-07$
5	2	$.652438297612 \mathrm{E}-06$	$-.323349612668 \mathrm{E}-06$
5	3	$-.451955406071 \mathrm{E}-06$	$-.214847190624 \mathrm{E}-06$
5	4	$-.295301647654 \mathrm{E}-06$	$.496658876769 \mathrm{E}-07$
5	5	$.174971983203 \mathrm{E}-06$	$-.669384278219 \mathrm{E}-06$

First Zonal Harmonic: J2,0 or J2

It represents the Earth's equatorial bulge and quantifies the major effects of oblateness on orbits.

It is almost a thousand times as large as any of the other coefficients.
$J_{2}=-C_{2,0}=\sqrt{\frac{2.1 .(2.2+1)}{2}} 0.4841 \times 10^{-3}=0.001082$

Degree and Order		Normalized Gravitat	
\mathbf{n}	\mathbf{m}	$\overline{\mathrm{C}}_{\mathrm{nm}}$	
2	0	$-.484165371736 \mathrm{E}-03$	
2	1	$-.186987635955 \mathrm{E}-09$	
2	\imath	$01201.1257208 \mathrm{~F} \quad \mathrm{n}$	

First Zonal Harmonic: J2,0 or J2

Oblate planet: $J_{2}>0$

Prolate planet: $J_{2}<0$

Calculation of the Rotational Flattening

Equilibrium of a rotating self gravitating fluidlike body (uniform density)
http://farside.ph.utexas.edu/teaching
/336k/Newton/node109.html

$$
\begin{aligned}
& \frac{R_{e}-R_{p}}{R}=\frac{5 \Omega^{2} R^{3}}{4 G M} \quad \mathrm{R} \text { is the mean radius } \\
& \frac{R_{e}-R_{p}}{R}=\frac{5\left(7.27 \times 10^{-5}\right)^{2}\left(6.37 \times 10^{6}\right)^{3}}{46.67 \times 10^{-11} 5.97 \times 10^{24}}=0.0043 \\
& \frac{R_{e}-R_{p}}{R}=0.0043 \times 6.37 \times 10^{6}=27 \mathrm{~km} \text { vs } 21 \mathrm{~km}
\end{aligned}
$$

First Zonal Harmonic of Other Planets

Sectorial Harmonics (I=m)

The sectorial coefficients represent bands of longitude.
The polynomials $P_{\mathrm{l}, \mathrm{l}}$ are zero only at the poles.

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

Sectorial Harmonics (I=m)

C_{22}

C_{55}

C_{33}

C_{66}

C_{44}

Sectorial harmonics preserve symmetry with respect to the equatorial plane Polynomials $P_{I, I}$ are zero only at the poles

Tesseral Harmonics $(1 \neq m \neq 0)$

Figure 8-6. Tesseral Harmonics. Tesseral harmonics attempt to model specific regions on the Earth which depart from a perfect sphere.

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

Tesseral Harmonics $(1 \neq m \neq 0)$

Determination of Gravitational Coefficients

Because the internal distribution of the Earth is not known, the coefficients cannot be calculated from their definition.

They are determined experimentally; e.g, using satellite tracking.

Satellite-to-satellite tracking: GRACE employs microwave ranging system to measure changes in the distance between two identical satellites as they circle Earth. The ranging system detects changes as small as 10 microns over a distance of 220 km .

Gravitational Coefficients: GRACE

EGM-2008 has been publicly released:
\Rightarrow Extensive use of GRACE twin satellites.
$\Rightarrow 4.6$ million terms in the spherical expansion (130317 in EGM-96)
\Rightarrow Geoid with a resolution approaching $10 \mathrm{~km}\left(5^{\prime} \times 5^{\prime}\right)$.

Resulting Force

$$
\mathbf{F}=\nabla U \text { with } \nabla=\hat{\mathbf{r}} \frac{\partial}{\partial r}+\frac{1}{r} \hat{\boldsymbol{\varphi}} \frac{\partial}{\partial \phi}+\frac{1}{r \cos \phi} \hat{\lambda} \frac{\partial}{\partial \lambda}
$$

$$
\nabla=\hat{\mathbf{r}} \frac{\partial}{\partial r}+\frac{1}{r} \hat{\boldsymbol{\varphi}} \frac{\partial}{\partial \phi}+\frac{1}{r \sin \phi} \hat{\boldsymbol{\theta}} \frac{\partial}{\partial \theta}
$$

Spherical Earth

Gravitational force acts through the Earth's center.

$$
\begin{gathered}
U=\frac{\mu}{r} \\
\nabla=\hat{\mathbf{r}} \frac{\partial}{\partial r}+\frac{1}{r} \hat{\boldsymbol{\varphi}} \frac{\partial}{\partial \phi}+\frac{1}{r \cos \phi} \lambda \frac{\partial}{\partial \lambda}
\end{gathered}
$$

Oblate Earth: J2

$$
\begin{aligned}
& U=\frac{\mu}{r}\left\{1+\sum_{l=2}^{\infty}\left(\frac{R_{\oplus}}{r}\right)^{l}\left[-J_{l} P_{l}\left[\sin \phi_{s a t}\right]+\sum_{m=1}^{l} \bar{P}_{l m}\left[\sin \phi_{s a t}\right]\left[\bar{C}_{l, m} \cos \left(m \lambda_{s a t}\right)+\bar{S}_{l, m} \sin \left(m \lambda_{s a t}\right)\right]\right]\right\} \\
& P_{2}[\gamma]=\frac{1}{2}\left(3 \gamma^{2}-1\right) \\
& U=\frac{\mu}{r}\left\{1-J_{2}\left(\frac{R_{\oplus}}{r}\right)^{2} \frac{3 \sin ^{2} \phi_{s a t}-1}{2}\right\} \\
& \nabla=\hat{\mathbf{r}} \frac{\partial}{\partial r}+\frac{1}{r} \hat{\boldsymbol{\varphi}} \frac{\partial}{\partial \phi}+\frac{1}{r \cos \phi} \lambda \frac{\partial}{\partial \lambda}
\end{aligned}
$$

Perturbation of the radial acceleration

Longitudinal acceleration that can be decomposed into an azimuth and normal accelerations

STK: Gravity Models (HPOP)

Atmospheric Drag

Atmospheric forces represent the largest nonconservative perturbations acting on low-altitude satellites.

The drag is directly opposite to the velocity of the satellite, hence decelerating the satellite.

The lift force can be neglected in most cases.

STK - Atmospheric Models (HPOP)

STK - Solar Activity (HPOP)

Mathematical Modeling

All these parameters are difficult to estimate!

Atmospheric Density

The gross behavior of the atmospheric density is well established, but it is still this factor which makes the determination of satellite lifetimes so uncertain.

There exist several models (e.g., Jacchia-Roberts, HarrisPriester).

Dependence on temperature, molecular weight, altitude, solar activity, etc.

Solar Activity

Atmospheric Density using CHAMP

An accelerometer measures the non-gravitational accelerations in three components, of which the along-track component mainly represents the atmospheric drag.

By subtracting modeled accelerations for SRP and Earth Albedo, the drag acceleration is isolated and is proportional to the atmospheric density.

CHAMP Density at 410 kms

Further Reading

Planetary and Space Science
www.elsevier.com/locate/pss

Atmospheric densities derived from CHAMP/STAR accelerometer observations
S. Bruinsma*, D. Tamagnan, R. Biancale

CNES, Department of Terrestrial and Planetary Geodesy, 18, Avenue E. Belin, Toulouse 31401, Cedex 4, France
Received 29 January 2003; received in revised form 2 October 2003; accepted 21 October 2003

Harris-Priester (120-2000km)

Static model (e.g., no variation with the 27-day solar rotation).

Interpolation determines the density at a particular time.

Simple, computationally efficient and fairly accurate.

Atmospheric Bulge

The high atmosphere bulges toward a point in the sky some 15° to 30° east of the sun (density peak at 2 pm local solar time).

The observed accelerations of Vanguard satellite (1958) indicated that the air density at 665 km is about 10 times as great when perigee passage occur one hour after noon as when it occurs during the night !

Harris-Priester (120-2000km)

The modified Harris-Priester (HP) model may be considered as a middle ground between the two extremes (Harris and Priester, 1962; Long et al., 1989; Hatten and Russell, 2016). Like the Standard Atmosphere, HP relies on exponential interpolation of density between values tabulated at discrete altitudes. However, HP also uses functional dependencies to model latitudinal and diurnal effects. Further, HP may be revised to take into account varying levels of solar activity. This effect has been achieved by including a set of 10 tables, each of which corresponds to a different value of the 81-day centered average 10.7 cm solar flux index $\bar{F}_{10.7}$. Given a value of $\bar{F}_{10.7}$, an interpolation scheme, such as nearest-neighbor (Dowd and Tapley, 1979) or linear (Tolman et al., 2004), is used to calculate density values Thus, HP may produce significantly more accurate density values than a simple exponential atmospheric model while executing in a fraction of the time of more complex models (Montenbruck and Gill, 2001). Such balance makes HP a suitable candidate for use in preliminary studies in which a combination of high speed and reasonable accuracy is paramount. However, even in this context, the HP model is not without its deficiencies. This work addresses

Harris-Priester (120-2000km)

Account for diurnal density bulge due to solar radiation

Height above the Earth's reference ellipsoid

Angle between satellite position vector and the apex of the diurnal bulge

Interpolation Between Altitudes

$$
\begin{gathered}
\rho_{m}(h)=\rho_{m}\left(h_{i}\right) \exp \left(\frac{h_{i}-h}{H_{m_{i}}}\right), \quad h_{i} \leqslant h \leqslant h_{i+1} \\
\rho_{M}(h)=\rho_{M}\left(h_{i}\right) \exp \left(\frac{h_{i}-h}{H_{M_{i}}}\right), \quad h_{i} \leqslant h \leqslant h_{i+1} \\
H_{m_{i}}=\frac{h_{i}-h_{i+1}}{\ln \left(\frac{\rho_{m}\left(h_{i+1}\right)}{\rho_{m}\left(h_{i}\right)}\right)} \\
H_{M_{i}}=\frac{h_{i}-h_{i+1}}{\ln \left(\frac{\rho_{M}\left(h_{i+1}\right)}{\rho_{M}\left(h_{i}\right)}\right)}
\end{gathered}
$$

h $[\mathrm{~km}]$	ρ_{m} $\left[\mathrm{~g} / \mathrm{km}^{3}\right]$	ρ_{M} $\left[\mathrm{~g} / \mathrm{km}^{3}\right]$	h $[\mathrm{~km}]$	ρ_{m} $\left[\mathrm{~g} / \mathrm{km}^{3}\right]$	ρ_{M} $\left[\mathrm{~g} / \mathrm{km}^{3}\right]$
100	497400.0	497400.0	420	1.558	5.684
120	24900.0	24900.0	440	1.091	4.355
130	8377.0	8710.0	460	0.7701	3.362
140	3899.0	4059.0	480	0.5474	2.612
150	2122.0	2215.0	500	0.3916	2.042
160	1263.0	1344.0	520	0.2819	1.605
170	800.8	875.8	540	0.2042	1.267
180	528.3	601.0	560	0.1488	1.005
190	361.7	429.7	580	0.1092	0.7997
200	255.7	316.2	600	0.08070	0.6390
210	183.9	239.6	620	0.06012	0.5123
220	134.1	185.3	640	0.04519	0.4121
230	99.49	145.5	660	0.03430	0.3325
240	74.88	115.7	680	0.02632	0.2691
250	57.09	93.08	700	0.02043	0.2185
260	44.03	75.55	720	0.01607	0.1779
270	34.30	61.82	740	0.01281	0.1452
280	26.97	50.95	760	0.01036	0.1190
290	21.39	42.26	780	0.008496	0.09776
300	17.08	35.26	800	0.007069	0.08059
320	10.99	25.11	840	0.004680	0.05741
340	7.214	18.19	880	0.003200	0.04210
360	4.824	13.37	920	0.002210	0.03130
380	3.274	9.955	960	0.001560	0.02360
400	2.249	7.492	1000	0.001150	0.01810

Mean solar activity

Atmospheric Bulge Position

Third-Body Perturbations

For an Earth-orbiting satellite, the Sun and the Moon should be modeled for accurate predictions.

Their effects become noticeable when the effects of drag begin to diminish.

Mathematical Modeling (Sun Example)

$$
m_{s a t} \ddot{\mathbf{r}}_{s a t}=-\frac{G m_{\oplus} m_{s a t} \mathbf{r}_{\oplus s a t}}{r_{\oplus s a t}^{3}}-\frac{G m_{\square} m_{s a t} \mathbf{r}_{\square s a t}}{r_{\square s a t}^{3}}
$$

Relative motion
is of interest

Inertial frame of reference

$$
\ddot{\mathbf{r}}_{\oplus s a t}=-\frac{G m_{\oplus} \mathbf{r}_{\oplus s a t}}{r_{\oplus s a t}^{3}}-\frac{G m_{\square} \mathbf{r}_{\square s a t}}{r_{\square s a t}^{3}}-\frac{G m_{s a t} \mathbf{r}_{\oplus s a t}}{r_{\oplus s a t}^{3}}-\frac{G m_{\square} \mathbf{r}_{\oplus \square}}{r_{\oplus \square}^{3}}
$$

$$
\ddot{\mathbf{r}}_{\oplus s a t}=-\frac{G\left(m_{\oplus}+m_{s a t}\right) \mathbf{r}_{\oplus s a t}}{r_{\oplus s a t}^{3}}+G m_{\square}\left(\frac{\mathbf{r}_{s a t}}{r_{s a t \square}^{3}}-\frac{\mathbf{r}_{\oplus \square}}{r_{\oplus \square}^{3}}\right)
$$

STK: Third-Body Gravity (HPOP)

Solar Radiation Pressure

It produces a nonconservative perturbation on the spacecraft, which depends upon the distance from the sun.

It is usually very difficult to determine precisely.
It is NOT related to solar wind, which is a continuous stream of particles emanating from the sun.

800km is regarded as a transition altitude between drag and SRP.

Mathematical Modeling

$$
\mathbf{F}_{\mathrm{SR}}=-p_{S R} c_{R} A \mathbf{e}_{s c / s u n}
$$

$\mathrm{p}_{\mathrm{SR}}=\frac{1350 \mathrm{~W} / \mathrm{m}^{2}}{3 e 8 \mathrm{~m} / \mathrm{s}}=4.51 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$
The reflectivity c_{R} is a value between 0 and 2 :

- 0: translucent to incoming radiation.
- 1: all radiation is absorbed (black body).
- 2: all radiation is reflected.

The incident area exposed to the sun must be known. The normals to the surfaces are assumed to point in the direction of the sun (e.g., solar arrays).

Mathematical Modeling: Eclipses

Use of shadow functions: $\quad \mathbf{F}_{\mathrm{SR}}=0$

Dual cone

STK: Solar Radiation Pressure (HPOP)

STK: Shadow Models (HPOP)

STK: Central Body Pressure (HPOP)

S3L Propagator

5. Dominant Perturbations

Gaëtan Kerschen

Space Structures \& Systems Lab (S3L)

