Astrodynamics
 (AEROOO24)

3B. The Orbit in Space

Gaëtan Kerschen

Space Structures \& Systems Lab (S3L)

Motivation: Space

We need means of describing orbits in three-dimensional space.

Two-body propagator

J2 propagator

Complexity of Coordinate Systems: STK

The Orbit in Space

Inertial frames

Coordinate systems

Coordinate types

Importance of Inertial Frames

An inertial reference frame is defined as a system that is neither rotating nor accelerating relative to a certain reference point.

Suitable inertial frames are required for orbit description (remember that Newton's second law is to be expressed in an inertial frame).

An inertial frame is also an appropriate coordinate system for expressing positions and motions of celestial objects.

Reference System and Reference Frame

Distinction between reference system and a reference frame:

1. A reference system is the complete specification of how a celestial coordinate system is to be formed. For instance, it defines the origin and fundamental planes (or axes) of the coordinate system.
2. A reference frame consists of a set of identifiable points on the sky along with their coordinates, which serves as the practical realization of a reference system.

International Celestial Reference System (ICRS)

The ICRS is the reference system of the International
Astronomical Union (IAU) for high-precision astronomy.

Its origin is located at the barycenter of the solar system.

Definition of non-rotating axes:

1. The celestial pole is the Earth's north pole (or the fundamental plane is the Earth's equatorial plane).
2. The reference direction is the vernal equinox (point at which the Sun crosses the equatorial plane moving from south to north).
3. Right-handed system.

Vernal Equinox?

The vernal equinox is the intersection of the ecliptic and equator planes, where the sun passes from the southern to the northern hemisphere (First day of spring in the northern hemisphere).

Today, the vernal equinox points in the direction of the constellation Pisces, whereas it pointed in the direction of the constellation Ram during Christ's lifetime. Why ?

Rotation Axis: Lunisolar Precession

Because of the gravitational tidal forces of the Moon and Sun, the Earth's spin axis precesses westward around the normal to the ecliptic at a rate of 1.4° century. The Earth's axis sweeps out a cone of 23.3 degrees in 26000 years.

F: dominant force on the spherical mass.
f_{1}, f_{2} : forces due to the bulging sides; $f_{1}>f_{2}$, which implies a net clockwise moment.

Rotation Axis: Lunisolar Precession

Competition between two effects:

1. Gyroscopic stiffness of the spinning Earth (maintain orientation in inertial space).
2. Gravity gradient torque (pull the equatorial bulge into the plane of the ecliptic).

Rotation Axis: Nutation

The obliquity of the Earth varies with a maximum amplitude of 0.00025° over a period of 18.6 years.

This nutation is caused by the precession of the Moon's orbital nodes. They complete a revolution in 18.6 years.

Yet Another Disturbance: Polar Motion

Movement of Earth's rotation axis across its surface.
Difference between the instantaneous rotational axis and the conventional international origin (CIO - a conventionally defined reference axis of the pole's average location over the year 1900).

The drift, about 20 m since 1900, is partly due to motions in the Earth's core and mantle, and partly to the redistribution of water mass as the Greenland ice sheet melts.

Yet Another Disturbance: Polar Motion

Figure 1-35. Transformation Geometry Due to Polar Motion. Accounting for polar motion takes into account the actual location of the Celestial Ephemeris Pole (CEP) over time. It moves from an ECEF system without polar motion through the CEP, to an ECEF system with polar motion using the Conventional International Origin (CIO). This correction changes the values very little, but highly accurate studies should include it. The inset plot shows the motion for the CIO from May 1986 to May 1996.

Complicated Motion of the Earth

Need To Specify a Date

Because the ecliptic and equatorial planes are moving, the coordinate system must have a corresponding date:
"the pole/equator and equinox of [some date]".

For ICRS, the equator and equinox are considered at the epoch J2000.0 (January 1, 2000 at 11h58m56s UTC).

ICRS in Summary

Quasi-equatorial coordinates at the solar system barycenter !

An object is located in the ICRS using right ascension and declination

But how to realize ICRS practically ?

Previous Realizations: B1950 and J2000

B1950 and J2000 were considered the best realized inertial axes until the development of ICRF.

They exploit star catalogs (FK4 and FK5, respectively) which provide mean positions and proper motions for classical fundamental stars (optical measurements):

FK4 was published in 1963 and contained 1535 stars in various equinoxes from 1950 to 1975.

FK5 was an update of FK4 in 1988 with new positions for the 1535 stars.

Coord System: \begin{tabular}{ll}
\hline J2000

Prop Specific: \& | Fixed |
| :--- |
| ICRF |
| MeanDfDate |
| MeanDFEpoch |
| TrueDfDate |
| TrueDFpoch |
| B1950 |
| TEMEOFEpoch |
| TEMEOFDate |
| AlignmentAtEpoch |

\hline
\end{tabular}

1		8	23.265	+1.039	+29	5	25.58	-16.33	05	547.877	
2		9	10.695	+6.927	+59	9	59.18	-19.09	0	629.765	+6
3		9	24.659	+1.196	-45	44	50.79	-19.11	0	652.788	+1
4		10	19.257	+0.074	+46	4	20.21	+0.03	0	742.779	.
5		11	34.437	+0.079	-27	47	59.12	+1.65	0	92.265	+0.
6		11	44.014	+1.412	-35	7	59.17	+11.86	0	911.739	+1.
7		13	14.154	+0.019	+15	11	0.80	-1.20	010	1039.483	+0.
9		19	25.674	-0.093	-08	49	26.14	-3.61	016	1652.829	-0.
10		20	4.251	+26.779	-64	52	29.25	+116.39	017	1728.799	+27
11		25	45.056	+66.919	-77	15	15.40	+32.37	023	$23 \quad 9.318$	+68
12		26	17.030	+1.933	-42	18	21.81	-39.57	023	2349.051	+1
13		30	2.362	+0.074	-03	57	26.39	-1.23	027	2729.198	+0.
14		30	22.661	-0.177	-23	47	15.72	+1.27	027	2752.782	-0.
15		31	24.988	+1.449	-48	49	12.67	+1.75	029	290.619	+1
16		32	59.982	+0.044	+62	55	54.40	-0.33	030	308.387	.
17		36	59.291	+0.219	+53	53	49.92	-0.91	034	3410.364	+0.
19		36	52.858	+0.124	+33	43	9.63	-0.40	034	3412.218	+0.
19		38	33.350	-1.739	+29	18	42.30	-25.41	035	3554.458	-1.
20		39	19.697	+1.060	+30	51	39.43	-9.15	036	3638.890	+1
21		40	30.450	+0.636	+56	32	14.46	-3.19	037	3739.341	.
22		43	35.372	+1.637	-17	59	11.82	+3.25	041	414.844	.

Byte-by-byte description of the file: catalog

Bytes	Format	Units	Labels	Explanations
1- 4	I4	---	FK5	* $1 / 1670]+$ FK5 number
$6-7$	I2	h	RAh	Right ascension, hours, Equinox $=\mathrm{J} 2000$, $\mathrm{Bpoch}=\mathrm{J} 2000$
9-10	I2	min	RAm	Right ascension minutes (J2000.0)
12-17	F6. 3	3	RAs	*Right ascension seconds (J2000.0)
19-25	F7. 3	s/ha	PmRA	Proper motion in RA (J2000.0)
27	A1	---	DE-	Sign of declination (Dec) (J2000.0)
28-29	I2	deg	DEd	Declination degrees (J2000.0)
31-32	I2	arcmin	DEm	Declination arcminutes (J2000.0)
34-38	F5. 2	arcsec	DEs	*Declination arcseconds (J2000.0)
40-46	F7. 2	arcsec/ha	pmDE	Proper motion in DE (J2000.0)
48-49	I2	h	RA1950h	Right ascension, hours Equinox=B1950, Bpoch=B1950
51-52	I2	min	RA1950m	Right ascension minutes (B1950.0)
54-59	F6.3	s	RA1950s	*Right ascension seconds (B1950.0)
61-67	F7. 3	s/ha	PmRA1950	Proper motion in RA (B1950.0)
69	A1		DE1950-	Sign of declination (B1950.0)
70-71	I2	deg	DE1950d	Declination degrees (B1950.0)
73-74	I2	arcmin	DB1950m	Declination arcminutes (B1950.0)
76-80	F5. 2	arcsec	DE1950s	*Declination arcseconds (B1950.0)
82-88	F7. 2	arcsec/ha	pmDE1950	Proper motion in DE (B1950.0)
90-94	F5. 2	a	EpRA-1900	*Mean Epoch of observed RA
96-99	F4. 1	ms	e_RAs	*Mean error in RA
101-105	F5. 1	$\mathrm{ms} / \mathrm{ha}$	e_pmRA	Mean error in pmRA
107-111	F5. 2	a	EpDE-1900	*Mean Epoch of observed DE
113-116	F4.1	carcsec	e_DEs	*Mean error in Declination
118-122	F5. 1	carcsec/ha	e_pmDE	Mean error in pmDE
124-128	F5. 2	mag	Vmag	*V magnitude
129	A1	---	n_Vmag	* [VvD] Magnitude flag
131-137	A7	---	SpType	*Spectral type(s)
139-144	F6.3	arcsec	plx	*?Parallax
147-152	F6.1	km/s	RV	*?Radial velocity
155-159	A5	---	AGK3R	AGK3R number (Catalog $<I / 72\rangle$)

Star Catalogs: Limitations and Improvement

1. The uncertainties in the star positions of the FK5 are about 30-40 milliarcseconds over most of the sky.
2. A stellar reference frame is time-dependent because stars exhibit detectable motions.
3. Uncertainties of radio source positions are now typically less than one milliarcsecond, and often a factor of ten better.
4. Radio sources are not expected to show measurable intrinsic motion.

1		08	23.265	+1.039	+29	5	25.58	-16.33	0	5	47.877	+1.
2		$\bigcirc 9$	10.695	+6.927	+59	9	59.18	-19.09	0	6	29.765	+6
3		$\bigcirc 9$	24.659	+1.196	-45	44	50.79	-19.11	0	6	52.788	+1
4		010	19.257	+0.074	+46	4	20.21	+0.03	0	7	42.779	
5		011	34.437	+0.079	-27	47	59.12	+1.65	0	9	2.265	+0
6		011	44.014	+1.412	-35	7	59.17	+11.86	0	9	11.739	
7		013	14.154	+0.019	+15	11	0.80	-1.20	010	10	39.483	+0
9		019	25.674	-0.093	-08	49	26.14	-3.61	01	16	52.829	-0.
10		020	4.251	+26.779	-64	52	29.25	+116.39	01	17	28.799	+27
11		025	45.056	+66.919	-77	15	15.40	+32.37	023	23	9.318	+69
12		026	17.030	+1.933	-42	19	21.81	-39.57	023	23	49.051	
13		030	2.362	+0.074	-03	57	26.39	-1.23	02	27	29.198	+0
14		030	22.661	-0.177	-23	47	15.72	+1.27	02	27	52.782	-0.
15		031	24.988	+1.449	-48	49	12.67	+1.75	029	29	0.619	+1
16		032	59.982	+0.044	+62	55	54.40	-0.33	030	30	8.387	+0.
17		036	59.291	+0.219	+53	53	49.92	-0.91	031	34	10.364	
19		036	52.858	+0.124	+33	43	9.63	-0.40	03	34	12.218	+0.
19		038	33.350	-1.739	+29	18	42.30	-25.41	035	35	54.458	-1
20		039	19.697	+1.060	+30	51	39.43	-9.15	036	36	38.890	+1
21		040	30.450	+0.636	+56	32	14.46	-3.19	031	37	39.341	
22		043	35.372	+1.637	-17	59	11.82	+3.25	04	41	4.844	+1

Byte-by-byte description of the file: catalog

Bytes	Format	Units	Labels	Explanations
1- 4	I4	---	FK5	* $1 / 1670]+$ FK5 number
$6-7$	I2	h	RAh	Right ascension, hours, Equinox $=\mathrm{J} 2000$, $\mathrm{Bpoch}=\mathrm{J} 2000$
9-10	I2	min	RAm	Right ascension minutes (J2000.0)
12-17	F6.3	3	RAs	Wrigit ascerision scconcio (0̌000.0)
19-25	F7. 3	s/ha	pmRA	Proper motion in RA (J2000.0)
27	A1	---	DE-	sign of declination (Dec) (J2000.0)
28-29	I2	deg	DEd	Declination degrees (J2000.0)
31-32	I2	arcmin	DEm	Declination arcminutes (J2000.0)
34-38	F5. 2	arcsec	DEs	*Decilination arcseconas (J2000.0)
40-46	F7. 2	arcsec/ha	pmDE	Proper motion in DE (J2000.0)
48-49	I2	h	RA1950h	Right ascension, hours Equinox=B1950, Epoch=B1950
51-52	I2	min	RA1950m	Right ascension minutes (B1950.0)
54-59	F6. 3	s	RA1950s	*Right ascension seconds (B1950.0)
61-67	F7. 3	s/ha	PmRA1950	Proper motion in RA (B1950.0)
69	A1	---	DE1950-	Sign of declination (B1950.0)
70-71	I2	deg	DE1950d	Declination degrees (B1950.0)
73-74	I2	arcmin	DE1950m	Declination arcminutes (B1950.0)
$76-80$	F5. 2	arcsec	DE1950s	*Declination arcseconds (B1950.0)
82-88	F7. 2	arcsec/ha	pmDE1950	Proper motion in DE (B1950.0)
90-94	F5. 2	a	EpRA-1900	*Mean Epoch of observed RA
96-99	F4.1	ms	e_RAs	*Mean error in RA
101-105	F5. 1	$\mathrm{ms} / \mathrm{ha}$	e-pmRA	Mean error in pmRA
107-111	F5. 2	a	EpDE-1900	*Mean Epoch of observed DE
113-116	F4. 1	carcsec	e_DEs	*Mean error in Declination
118-122	F5. 1	carcsec/ha	e_pmDE	Mean error in pmDB
124-128	F5. 2	mag	Vmag	*V magnitude
129	A1	---	n_Vmag	* [VvD] Magnitude flag
131-137	A7	---	SpType	*Spectral type(s)
139-144	F6. 3	arcsec	plx	*?Parallax
147-152	F6. 1	km/s	RV	*?Radial velocity
155-159	A5	-	AGK3R	AGK3R number (Catalog <I/72>)

ICRF is the Current Realization of ICRS

Since 1998, IAU adopted the International Celestial Reference Frame (ICRF) as the standard reference frame: quasi-inertial reference frame with barely no time dependency.

It represents an improvement upon the theory behind the J2000 frame, and it is the best realization of an inertial frame constructed to date.

Very Long Baseline Interferometry

Further Reading on the Web Site

The Astronomical Journal, 116:516-546, 1998 July
© 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE INTERNATIONAL CELESTIAL REFERENCE FRAME AS REALIZED BY VERY LONG BASELINE INTERFEROMETRY
C. MA
NASA Goddard Space Flight Center, Code 926, Greenbelt, MD 20771
E. F. Arias
Observatorio Astronómico de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina; and Observatorio Naval Buenos Aires
T. M. Eubanks and A. L. Fey
US Naval Observatory, Code EO, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420
A.-M. Gontier
Observatoire de Paris, CNRS, URA 1125, 61 Avenue de l'Observatoire, F-75014 Paris, France
C. S. Jacobs and O. J. Sovers ${ }^{1}$
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099
B. A. Archinal
US Naval Observatory, Code EO, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420
AND
P. Charlot ${ }^{2}$
Observatoire de Paris, CNRS, URA 1125, 61 Avenue de l'Observatoire, F-75014 Paris, France
Received 1997 December 1 ; revised 1998 March 19

TABLE 3
Coordinates of the 212 Defining Sources in the ICRF

Designation ${ }^{\text {a }}$	Source ${ }^{\text {b }}$	Note ${ }^{\text {c }}$			$\alpha(\mathrm{J} 2000.0)$	$\delta(\mathrm{J} 2000.0)$	$\sigma_{\alpha}$$(\mathrm{s})$	$\begin{gathered} \sigma_{\delta} \\ (\operatorname{arcsec}) \end{gathered}$	$C_{\alpha-\delta}$	Epoch of Observation ${ }^{\text {d }}$			$N_{\text {exp }}{ }^{\text {e }}$	$N_{\text {obs }}{ }^{\text {f }}$
		X	S	H						Mean	First	Last		
ICRF J000557.1+382015.	$0003+380$...	\ldots		000557.175409	382015.14857	0.000041	0.00051	-0.041	49,087.0	48,720.9	49,554.8	2	41
ICRF J001031.0 + 105829.	$0007+106$				001031.005888	105829.50412	0.000032	0.00068	0.540	47,938.9	47,288.7	49,690.0	10	74
ICRF J001033.9 + 172418 $\ldots \ldots$.	$0007+171$				001033.990619	172418.76135	0.000021	0.00035	-0.402	48,730.8	47,931.6	49,662.8	19	57
ICRF J001331.1+405137 $\ldots \ldots$	$0010+405$	2	1		001331.130213	405137.14407	0.000026	0.00034	-0.038	49,549.6	48,434.7	49,820.5	7	219
ICRF J001708.4 + 813508 $\ldots \ldots$	$0014+813$	\ldots			001708.474953	813508.13633	0.000121	0.00026	0.012	49,505.2	47,023.7	49,924.8	78	1453
ICRF J004204.5 + $232001 \ldots \ldots$	$0039+230$				004204.545183	232001.06129	0.000036	0.00060	0.090	48,898.1	48,328.5	49,533.8	3	44
ICRF J004959.4-573827.....	0047-579				004959.473091	-573827.33992	0.000047	0.00053	0.298	48,697.0	47,626.5	49,407.6	13	46
ICRF J011205.8 + 224438 $\ldots \ldots$.	$0109+224$			Y	011205.824718	224438.78619	0.000027	0.00049	0.082	48,733.1	48,434.7	49,736.9	7	97
ICRF J012642.7 + $255901 \ldots \ldots$	$0123+257$				012642.792631	255901.30079	0.000030	0.00054	0.167	48,856.4	48,328.5	49,659.8	4	71
ICRF J013305.7-520003.....	0131-522				013305.762585	-520003.94693	0.000049	0.00081	0.399	49,039.1	48,162.4	49,895.6	6	30
ICRF J013658.5 + 475129 $\ldots \ldots$	$0133+476$	2	2		013658.594810	475129.10006	0.000026	0.00027	0.021	48,629.0	45,138.8	49,750.8	190	2196
ICRF J013738.3-243053.....	0135-247				013738.346378	-24 3053.88526	0.000055	0.00042	-0.188	48,321.8	47,640.2	$49,790.7$	3	29
ICRF J014125.8-092843	0138-097	2	1		014125.832025	-09 2843.67381	0.000081	0.00088	0.063	47,138.1	46,875.8	49,498.8	2	20
ICRF J015127.1+274441 $\ldots \ldots$	$0148+274$				015127.146149	274441.79365	0.000031	0.00043	-0.064	48,963.9	48,328.5	49,659.8	5	112
ICRF J015218.0 + 220707 $\ldots \ldots$.	$0149+218$	\ldots			015218.059047	220707.70004	0.000020	0.00029	-0.437	48,294.0	46,977.9	49,848.8	50	243
ICRF J015734.9 + 744243 $\ldots \ldots$	$0153+744$	4	3	Y	015734.964908	744243.22998	0.000091	0.00031	0.059	49,495.7	47,019.9	49,820.5	11	400
ICRF J020333.3 + 723253 $\ldots \ldots$	$0159+723$				020333.385004	723253.66741	0.000072	0.00031	0.033	48,800.7	47,011.4	49,667.9	17	108
ICRF J020504.9 + $321230 \ldots \ldots$	$0202+319$				020504.925371	321230.09560	0.000022	0.00030	-0.441	48,017.7	45,466.3	49,736.9	35	214
ICRF J021748.9 + $014449 \ldots \ldots$.	$0215+015$	1	1		021748.954740	014449.69909	0.000022	0.00039	-0.215	49,302.1	48,328.5	49,547.8	5	133
ICRF J022239.6 + 430207.....	$0219+428$	\ldots			022239.611500	430207.79884	0.000034	0.00043	-0.098	49,103.6	48,650.8	49,554.8	7	64
ICRF J022256.4-344128.....	0220-349	...			022256.401625	-34 4128.73011	0.000050	0.00044	-0.209	48,679.5	47,640.2	49,790.7	4	35
ICRF J022850.0 + $672103 \ldots \ldots$	$0224+671$	\cdots			022850.051459	672103.02926	0.000052	0.00031	-0.080	45,097.6	44,090.5	49,600.3	42	801
ICRF J022934.9-784745.....	$0230-790$	\cdots	\cdots		022934.946647	-784745.60129	0.000149	0.00049	0.028	48,828.1	47,626.5	49,895.6	11	52
ICRF J023838.9 + 163659 $\ldots \ldots$	$0235+164$	1	1		023838.930108	163659.27471	0.000018	0.00027	0.090	47,475.7	44,447.0	49,909.6	194	2595
ICRF J024229.1+110100 $\ldots \ldots$	$0239+108$	2	2		024229.170847	110100.72823	0.000018	0.00030	-0.483	48,582.3	47,511.1	49,662.8	43	153
ICRF J025134.5 + 431515 $\ldots \ldots$	$0248+430$	\ldots	\ldots		025134.536779	431515.82858	0.000027	0.00033	-0.074	49,109.4	47,931.6	49,690.0	10	169
ICRF J025927.0 + 074739	$0256+075$...	\ldots		025927.076633	074739.64323	0.000021	0.00035	-0.607	48,247.0	47,011.4	49,445.6	44	190
ICRF J030350.6-621125.....	0302-623	...			030350.631333	-62 1125.54983	0.000047	0.00033	0.129	49,059.2	48,162.4	49,650.8	15	97
ICRF J030903.6 + 102916.....	$0306+102$	\ldots			030903.623523	102916.34082	0.000023	0.00042	-0.804	48,974.1	47,394.1	49,667.9	18	76
ICRF J030956.0-605839	0308-611		030956.099167	-6058 39.05628	0.000038	0.00029	0.037	49,029.5	47,626.5	49,895.6	79	738
ICRF J031301.9 + 412001 \ldots...	$0309+411$	\ldots	\ldots	Y	031301.962129	412001.18353	0.000026	0.00031	-0.321	48,371.0	47,165.8	49,848.8	29	127
ICRF J034506.4 + $145349 \ldots \ldots$	$0342+147$.	\cdots		034506.416546	145349.55818	0.000021	0.00032	-0.622	48,809.6	47,394.1	49,445.6	23	177
ICRF J040305.5 + $260001 \ldots \ldots$	$0400+258$	3	2	Y	040305.586048	260001.50274	0.000020	0.00030	-0.127	48,990.5	47,005.8	49,820.5	37	397
ICRF J040922.0 + 121739 $\ldots \ldots$	$0406+121$	2	1		040922.008740	121739.84750	0.000021	0.00033	-0.704	48,399.2	46,977.9	49,565.9	28	149
ICRF J041636.5-185108.....	0414-189	\ldots	\ldots		041636.544466	-185108.34012	0.000051	0.00048	-0.078	47,814.6	46,840.8	49,790.7	3	31
ICRF J042442.2-375620 $\ldots \ldots$	0422-380	\cdots	\cdots		042442.243727	-375620.78423	0.000033	0.00119	0.251	49,081.7	48,162.4	49,750.8	11	60
ICRF J042446.8+003606.....	$0422+004$	2	1		042446.842052	003606.32983	0.000020	0.00063	0.038	48,938.2	45,997.8	49,820.5	11	245
ICRF J042636.6+051819 $\ldots \ldots$	$0423+051$	\ldots	\ldots		042636.604102	051819.87204	0.000031	0.00087	0.101	48,977.3	48,194.7	49,667.9	9	64
ICRF J042840.4-375619.....	0426-380	\ldots	\ldots		042840.424306	-375619.58031	0.000036	0.00047	0.011	48,125.7	47,640.2	49,692.6	5	39
ICRF J043900.8-452222.....	0437-454	\ldots	\ldots		043900.854714	-4522 22.56260	0.000057	0.00078	-0.123	49,443.5	48,766.9	49,895.6	7	32
ICRF J044238.6-001743.....	0440-003	1	1		044238.660762	-0017 43.41910	0.000025	0.00064	0.262	47,735.2	47,011.4	49,576.9	15	111
ICRF J044907.6 + 112128 $\ldots \ldots$	$0446+112$	\ldots	\ldots		044907.671119	112128.59662	0.000024	0.00051	-0.143	49,312.0	47,394.1	49,854.8	5	32
ICRF J045005.4-810102.....	0454-810		045005.440195	-810102.23146	0.000137	0.00032	-0.005	48,784.2	47,626.5	49,895.6	18	148
ICRF J045952.0 + 022931.....	$0457+024$	\ldots	\ldots		045952.050664	022931.17631	0.000019	0.00032	0.062	48,993.4	47,005.8	49,750.8	36	394
ICRF J050145.2 + 135607 .	$0458+138$	2	2		050145.270840	135607.22063	0.000037	0.00064	-0.770	48,830.7	47,394.1	49,848.8	13	20
ICRF J050523.1+045942 $\ldots \ldots$	$0502+049$	\ldots	\ldots		050523.184723	045942.72448	0.000037	0.00060	-0.584	48,897.7	47,394.1	49,667.9	6	28
ICRF J050643.9-610940 $\ldots \ldots$.	0506-612	\ldots			050643.988739	-6109 40.99328	0.000047	0.00035	0.145	48,760.5	48,110.9	49,594.7	16	69
ICRF J050842.3+843204 $\ldots \ldots$.	$0454+844$	\ldots	\ldots		050842.363503	843204.54402	0.000194	0.00028	-0.046	48,674.7	46,977.9	49,611.9	42	250
ICRF J051002.3 + 180041 $\ldots \ldots$.	$0507+179$	2	2		051002.369122	180041.58171	0.000020	0.00030	-0.396	49,401.9	47,605.1	49,820.5	24	339
ICRF J051644.9-620705.....	0516-621	\ldots	\ldots		051644.926178	-620705.38930	0.000048	0.00042	0.202	49,455.4	48,749.6	49,895.6	9	56

Formal Definition of ICRS

It is defined by the measured positions of 212 extragalactic sources (mainly quasars).

1. Its origin is located at the barycenter of the solar system through appropriate modeling of VLBI observations in the framework of general relativity.
2. Its pole is in the direction defined by the conventional IAU models for precession (Lieske et al. 1977) and nutation (Seidelmann 1982).
3. Its origin of right ascensions was implicitly defined by fixing the right ascension of the radio source 3C273B to FK5 J2000 value.

3. The Orbit in Space

Coordinate systems

Coordinate Systems

Now that we have defined an inertial reference frame, other reference frames can be defined according to the needs of the considered application.

Coordinate transformations between two reference frames involve rotation and translation.

What are the possibilities for a satellite in Earth orbit?

Geocentric — Inertial (ECI)

A geocentric-equatorial system is clearly convenient.

The geocentric celestial reference frame (GCRF) is the geocentric counterpart of the ICRF and is the standard inertial coordinate system for the Earth.

Geocentric - Fixed (ECEF)

Origin at the Earth's center.
$\Rightarrow z$-axis is parallel to Earth's rotation vector.
$\Rightarrow x$-axis passes through the Greenwich meridian.
$\Rightarrow y$-axis: right-handed set.

For ground tracks and force computation.

ECEF

ECEF-ECI Transformation

It includes precession, nutation, and rotation effects, as well as pole wander and frame corrections.

ECEF-ECI Transformation

Figure 3-29. Classical Transformation. This figure depicts the transformation of a state vector in the body fixed (ITRF) frame to the inertial (FK5) frame. This two-way conversion is necessary for many orbit determination problems. The clear ellipses show the intermediate frames.

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

ECEF-ECI Transformation

Simplified transformation

$$
\begin{aligned}
& \omega_{\oplus}=0.000,072,921,158,553,0 \mathrm{rad} / \mathrm{s} \\
& \theta_{\mathrm{GMST}, 2000}=1.74476716333061 \mathrm{rad} \\
& \theta_{\mathrm{GMST}}=\theta_{\mathrm{GMST}, 2000}+\omega_{\oplus} \times 86400 \times(t+0.5) \mathrm{rad} \\
& \left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right)_{E C I}=\left[\begin{array}{ccc}
\cos \left(\theta_{\mathrm{GMST}}\right) & -\sin \left(\theta_{\mathrm{GMST}}\right) & 0 \\
\sin \left(\theta_{\mathrm{GMST}}\right) & \cos \left(\theta_{\mathrm{GMST}}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{E C E F}
\end{aligned}
$$

Precession, nutation, polar motion ignored

Control
(o) None () Cross-Section Attitude

Integrator

- ODE113
() RK8(7)
- RK8
\square Download Data
ECl to ECEF
- \downarrow Precession

V Nutation
V Polar Wandering
Simplified

Density Model
Harris-Priester

- Jacchia 71
(O) Jacchia-Roberts
\square Measured data
Density Parameters
Harris-Priester coeff.
DailyF10.7
Averaged F10.7

0
155
155
3

Spacecraft Properties

Yet More Coordinate Systems !

Satellite coordinate system

Perifocal coordinate system

Heliocentric coordinate system

Non-singular elements

For ADCS

Natural frame for an orbit (z is zero)

For interplanetary missions

For particular orbits

3. The Orbit in Space

Cartesian and Spherical

1. Cartesian: for computations
2. Spherical: azimuth and elevation (for ground station) right ascension and declination (for astronomers)

Cartesian \leftrightarrow Spherical

$$
\mathbf{r}=X \hat{\mathbf{I}}+Y \hat{\mathbf{J}}+Z \hat{\mathbf{K}}=r \hat{\mathbf{u}}_{r}
$$

$\hat{\mathbf{u}}_{r}=\cos \delta \cos \alpha \hat{\mathbf{I}}+\cos \delta \sin \alpha \hat{\mathbf{J}}+\sin \delta \hat{\mathbf{K}}$

Orbitron

Orbitron: Close-Up

Orbital (Keplerian) Elements

For interpretation

\mathbf{r} and \mathbf{v} do not directly yield much information about the orbit. We cannot even infer from them what type of conic the orbit represents !

Another set of six variables, which is much more descriptive of the orbit, is needed.

6 Orbital (Keplerian) Elements

1. e: shape of the orbit
2. a: size of the orbit
3. i : orients the orbital plane with respect to the ecliptic plane
4. Ω : longitude of the intersection of the orbital and ecliptic planes
5. ω : orients the semi-major axis with respect to the ascending node
6. v : orients the celestial body in space
position of the satellite on the ellipse
orientation of the ellipse
position of the satellite

Control
(o) None () Cross-Section Attitude

Integrator

- ODE113
() RK8(7)
- RK8
\square Download Data
ECl to ECEF
- \downarrow Precession

V Nutation
V Polar Wandering
Simplified

Density Model
Harris-Priester

- Jacchia 71
(O) Jacchia-Roberts
\square Measured data
Density Parameters
Harris-Priester coeff.
DailyF10.7
Averaged F10.7

0
155
155
3

Spacecraft Properties

Orbital Elements a,e,i, Ω, ω, θ from r,v ?

e and a from the 2-body Problem

$$
\mu \boldsymbol{e}=\boldsymbol{v} \times \boldsymbol{h}-\mu \frac{\boldsymbol{r}}{r}
$$

$$
v=\sqrt{\mu\left(\frac{2}{r}-\frac{1}{a}\right)}
$$

$$
e=\left\|\frac{\boldsymbol{v} \times(\boldsymbol{r} \times \boldsymbol{v})}{\mu}-\frac{\boldsymbol{r}}{r}\right\|
$$

$$
a=\frac{r}{2-\frac{r v^{2}}{\mu}}
$$

$$
r=\|\boldsymbol{r}\|, v=\|v\|
$$

Inclination

Angle between the orbital and equatorial planes:

$$
i=\cos ^{-1}\left(\frac{(\boldsymbol{r} \times \boldsymbol{v}) \cdot \widehat{\boldsymbol{K}}}{\|\boldsymbol{r} \times \boldsymbol{v}\|}\right)
$$

Longitude Ω

Angle between the nodal vector \mathbf{n} and the vernal equinox:

$$
\cos \Omega=\frac{\boldsymbol{n} . \hat{\boldsymbol{I}}}{\|\boldsymbol{n}\|}
$$

The nodal vector \mathbf{n} is in the orbital and equatorial planes:

$$
\boldsymbol{n}=\widehat{\boldsymbol{K}} \times \frac{\boldsymbol{h}}{h}
$$

$$
\Omega=\cos ^{-1} \frac{\boldsymbol{n} \cdot \widehat{\boldsymbol{I}}}{\|\boldsymbol{n}\|}=\cos ^{-1}\left(\frac{\left(\widehat{\boldsymbol{K}} \times \frac{\boldsymbol{r} \times \boldsymbol{v}}{\|\boldsymbol{r} \times \boldsymbol{v}\|}\right) \cdot \hat{\boldsymbol{I}}}{\left\|\widehat{\boldsymbol{K}} \times \frac{\boldsymbol{r} \times \boldsymbol{v}}{\|\boldsymbol{r} \times \boldsymbol{v}\|}\right\|}\right)
$$

n. $\widehat{J} \geq \mathbf{0}$

$$
\Omega=360^{\circ}-\Omega
$$

n. $\widehat{J}<\mathbf{0}$

Argument of Perigee

Angle between the nodal and eccentricity vectors:

$$
\cos \omega=\frac{\boldsymbol{e} . \boldsymbol{n}}{\|\boldsymbol{e}\|\|\boldsymbol{n}\|}
$$

$$
\sum n=\widehat{\boldsymbol{K}} \times \frac{\boldsymbol{h}}{h}, \boldsymbol{e}=\frac{\boldsymbol{v} \times(\boldsymbol{r} \times \boldsymbol{v})}{\mu}-\frac{\boldsymbol{r}}{r}
$$

$$
\begin{array}{rr}
\omega=\cos ^{-1}\left(\frac{\left(\widehat{\boldsymbol{K}} \times \frac{\boldsymbol{r} \times \boldsymbol{v}}{\|\boldsymbol{r} \times \boldsymbol{v}\|}\right) \cdot\left(\frac{\boldsymbol{v} \times(\boldsymbol{r} \times \boldsymbol{v})}{\mu}-\frac{\boldsymbol{r}}{r}\right)}{\left\|\widehat{\boldsymbol{K}} \times \frac{\boldsymbol{r} \times \boldsymbol{v}}{\|\boldsymbol{r} \times \boldsymbol{v}\|}\right\|\left\|\frac{\boldsymbol{v} \times(\boldsymbol{r} \times \boldsymbol{v})}{\mu}-\frac{\boldsymbol{r}}{r}\right\|}\right) & \text { e. } \widehat{\boldsymbol{K}} \geq \mathbf{0} \\
\omega=360^{\circ}-\omega & \text { e. } \widehat{\boldsymbol{K}}<\mathbf{0}
\end{array}
$$

True Anomaly

Angle between the position and eccentricity vectors

$$
\begin{gathered}
\cos \theta=\frac{\boldsymbol{r} \cdot \boldsymbol{e}}{r\|\boldsymbol{e}\|} \\
\theta=\cos ^{-1}\left(\frac{\boldsymbol{r} \cdot\left(\frac{\boldsymbol{v} \times(\boldsymbol{r} \times \boldsymbol{v})}{\mu}-\frac{\boldsymbol{r}}{r}\right)}{r\left\|\frac{\boldsymbol{v} \times(\boldsymbol{r} \times \boldsymbol{v})}{\mu}-\frac{\boldsymbol{r}}{r}\right\|}\right) \\
\theta=\mathbf{r} \cdot \boldsymbol{v} \geq \mathbf{0} \\
\theta=360^{\circ}-\theta \\
\boldsymbol{r} \cdot \boldsymbol{v}<\mathbf{0}
\end{gathered}
$$

r,v from a,e,i, Ω, ω, θ ? From Vallado

2.6 Application: r and v from Orbital Elements

We've seen how to find the orbital elements from the position and velocity vectors, but we often need the reverse process to complete certain astrodynamic studies. We'll call the process RANDV to indicate that we're determining the position and velocity vectors. The overall idea is to determine the position and velocity vectors in the perifocal coordinate system, PQW , and then rotate to the geocentric equatorial system. Although the orbit may not be elliptical, and therefore the PQW system would actually be undefined,
we can elegantly work around this limitation. We can also make the method completely generic through several short, simple substitutions.

First, we must use the semiparameter instead of the semimajor axis. As previously mentioned, the semimajor axis is infinite for the parabola, whereas the semiparameter is defined for all orbits. The second requirement concerns how we treat the auxiliary classical orbital elements for the special cases of circular and equatorial orbits.

Let's begin by finding the position and velocity vectors in the perifocal coordinate system. We've developed and presented these equations previously but show them here coupled with the trajectory equation. Notice the use of the semiparameter to replace dependence on the semimajor axis.

$$
\stackrel{\rightharpoonup}{r}_{P Q W}=\left[\begin{array}{c}
\frac{p \cos (\nu)}{1+e \cos (\nu)} \tag{2-100}\\
\frac{p \sin (\nu)}{1+e \cos (\nu)} \\
0
\end{array}\right]
$$

An immediate difficulty arises when attempting to define the true anomaly for circular orbits. It turns out that the orbital elements may be temporarily replaced with the alternate elements to provide the necessary values for the calculations. Although you can design a change like this so it's transparent to users, make sure any changes or alternate codings use temporary variables and don't alter the original elements. It's possible to substitute values:

IF Circular Equatorial
let $\omega=0.0, \Omega=0.0$, and $\nu=\lambda_{\text {true }}$
IF Circular Inclined

$$
\begin{equation*}
\text { let } \omega=0.0 \text { and } \nu=u \tag{2-101}
\end{equation*}
$$

The rationale for assigning ω and Ω to zero will be clear shortly; however, we haven't violated any assumptions because ω and Ω are undefined for circular orbits. Be careful not to return any changed variables in computer applications.

Find the velocity vector by differentiating the position vector:

$$
\stackrel{\rightharpoonup}{v}_{P Q W}=\left[\begin{array}{c}
\dot{r} \cos (\nu)-r \nu \operatorname{SIN}(\nu) \\
\dot{r} \operatorname{SIN}(\nu)+r \nu \operatorname{Cos}(\nu) \\
0
\end{array}\right]
$$

Remembering the geometry from Fig. 1-13, solve Eq. (1-18) as

$$
r \nu=\frac{h}{r}
$$

Now, substitute the definitions of position and angular momentum:

$$
r \dot{\nu}=\frac{\sqrt{\mu p}(1+e \cos (\nu))}{p}=\sqrt{\frac{\mu}{p}}(1+e \cos (\nu))
$$

Using Eq. (1-25) and the equation above, write

$$
\dot{r}=\sqrt{\frac{\mu}{p}}(e \sin (\nu))
$$

Substituting these results into the differentiated vector gives us the final solution:

$$
\vec{v}_{P Q W}=\left[\begin{array}{c}
-\sqrt{\frac{\mu}{p}} \operatorname{Sin}(\nu) \tag{2-102}\\
\sqrt{\frac{\mu}{p}}(e+\cos (\nu)) \\
0
\end{array}\right]
$$

The next step is to rotate the position and velocity vectors to the geocentric equatorial frame. Although this is relatively easy for standard, elliptical, inclined orbits, we'll need to take certain precautions in order to account for special cases, as described with the true anomaly above. We've discussed two of these special cases; the third is the elliptical equatorial case:

$$
\begin{align*}
& \text { IF Elliptical Equatorial } \tag{2-103}\\
& \text { set } \Omega=0.0 \text { and } \omega=\tilde{\omega}_{\text {true }}
\end{align*}
$$

The assumptions remain intact because Ω is undefined for elliptical equatorial orbits.
We can now do the coordinate transformations using Eq. (3-28). We may want to multiply out these operations to reduce trigonometric operations. The rationale for setting certain variables to zero should now be apparent. For the special cases, a zero rotation causes the vector to remain unchanged, whereas a desired angular value causes a change.

Implementing RANDV

Computational efficiency results from assigning the trigonometric terms $[\operatorname{Sin}(\nu)$, $\cos (\nu)]$ and (μ / p) to temporary variables. This saves many transcendental operations and requires very little extra work. There are also some savings in treating special-case orbits if we reuse the same rotation matrices, but there may be some redundancy in special cases.

As with the ELORB algorithm, we may run many test cases to verify the routine. Because RANDV is simply designed to be a mirror calculation of the ELORB routine, we can use the same set of test reference data. But we must test several limiting cases. Algorithm 10 summarizes the process.

ALGORITHM 10: RANDV $\left(p, e, i, \Omega, \omega, \nu\left(u, \lambda_{\text {true }}, \tilde{\omega}_{\text {true }}\right) \Rightarrow \stackrel{\rightharpoonup}{r}_{l J K} \stackrel{\rightharpoonup}{v}_{l J K}\right)$

IF Circular Equatorial
$\operatorname{SET}(\omega, \Omega)=0.0$ and $\nu=\lambda_{\text {true }}$
IF Circular Inclined
$\operatorname{SET} \omega=0.0$ and $\nu=u$
IF Elliptical Equatorial

$$
\operatorname{SET} \Omega=0.0 \text { and } \omega=\tilde{\omega}_{\text {true }}
$$

$$
\begin{gathered}
\stackrel{\rightharpoonup}{r}_{P Q W}=\left[\begin{array}{c}
\frac{p \operatorname{COS}(\nu)}{1+e \operatorname{Cos}(\nu)} \\
\frac{p \operatorname{Sin}(\nu)}{1+e \operatorname{COS}(\nu)} \\
0
\end{array}\right] \quad \stackrel{\rightharpoonup}{v}_{P Q W}=\left[\begin{array}{c}
-\sqrt{\frac{\mu}{p}} \operatorname{SIN}(\nu) \\
\sqrt{\frac{\mu}{p}}(e+\operatorname{COS}(\nu)) \\
0
\end{array}\right] \\
\stackrel{\rightharpoonup}{r}_{I / K}=[\operatorname{ROT} 3(-\Omega)][\operatorname{ROT} 1(-i)][\operatorname{ROT} 3(-\omega)] \stackrel{\rightharpoonup}{r}_{P Q W}=\left[\frac{l / K}{P Q W}\right] \stackrel{\rightharpoonup}{r}_{P Q W} \\
\stackrel{\rightharpoonup}{v}_{l / K}=[\operatorname{ROT} 3(-\Omega)][\operatorname{ROT} 1(-i)][\operatorname{ROT} 3(-\omega)] \vec{v}_{P Q W}=\left[\frac{I J K}{P Q W} \vec{v}_{P Q W}\right. \\
{\left[\frac{I J K}{P Q W}\right]=\left[\begin{array}{cc}
\cos (\Omega) \cos (\omega)-\sin (\Omega) \sin (\omega) \cos (i) \\
\sin (\Omega) \cos (\omega)+\cos (\Omega) \operatorname{cin}(\omega) \cos (i) & -\sin (\Omega) \sin (\omega)+\cos (\Omega) \cos (\omega) \cos (i) \\
\sin (\omega) \sin (i) & -\cos (\Omega) \sin (i) \\
\cos (\omega) \sin (i) & \cos (i)
\end{array}\right]}
\end{gathered}
$$

An example demonstrates the technique.

Vxample 2-6. Finding Position and Velocity Vectors (RANDV Test Case).

GIVEN: $\quad p=11,067.790 \mathrm{~km}=1.73527 \mathrm{ER}, e=0.83285, i=87.87^{\circ}, \Omega=227.89^{\circ}$, $\omega=53.38^{\circ}, \nu=92.335^{\circ}$
FIND: $\quad \stackrel{\rightharpoonup}{r}_{I J K} \stackrel{\rightharpoonup}{v}_{I J K}$
We have to change the rotation angles if we're using special orbits (equatorial or circular), but this orbit doesn't have special cases. From the given information, form the PQW position and velocity vectors:

$$
\stackrel{r}{P Q W}^{r_{P Q}}\left[\begin{array}{c}
\frac{p \cos (v)}{1+e \cos (\nu)} \\
\frac{p \sin (\nu)}{1+e \cos (\nu)} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1.73527 \cos (92.336)^{\circ}}{1+0.83284 \cos (92.336)^{\circ}} \\
\frac{1.73527 \sin (92.336)}{1+0.83284 \cos (92.336)^{\circ}} \\
0
\end{array}\right]=\left[\begin{array}{c}
-0.0731867 \\
1.7947339 \\
0
\end{array}\right] \mathrm{ER}
$$

$$
\stackrel{\rightharpoonup}{v}_{P Q W}=\left[\begin{array}{c}
-\sqrt{\frac{\mu}{p}} \sin (v) \\
\sqrt{\frac{\mu}{p}}(e+\cos (v)) \\
0
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{\frac{1}{1.73527}} \sin (92.336) \\
\sqrt{\frac{1}{1.73527}}(0.83284+\cos (92.336)) \\
0
\end{array}\right]=\left[\begin{array}{c}
-0.7584998 \\
0.6013136 \\
0
\end{array}\right] \frac{\mathrm{ER}}{\mathrm{TU}}
$$

Rotate these vectors to the geocentric equatorial system using the following rotation matrices:

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{r}_{I J K}=[\operatorname{ROT} 3(-\Omega)][\operatorname{ROT} 1(-i)][\operatorname{ROT} 3(-\omega)] \vec{r}_{P Q W} \\
& \stackrel{\rightharpoonup}{v}_{J J K}=[\operatorname{ROT} 3(-\Omega)][\operatorname{ROT} 1(-i)][\operatorname{ROT} 3(-\omega)] \vec{v}_{P Q W}
\end{aligned}
$$

Or, use the expanded matrix with a computer to do the many trigonometric operations, which result in the transformation matrix

$$
\left[\frac{l J K}{P Q W}\right]=\left[\begin{array}{rrrrr}
-0.37773647 & 0.55459739 & -0.74144244 \\
-0.46253821 & 0.58067014 & 0.669 & 98552 \\
0.80210571 & 0.59602342 & 0.037 & 182 & 20
\end{array}\right]
$$

Finally, multiply each vector to apply the transformation:

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{r}_{I J K}=\left[\frac{U S K}{P Q W}\right]^{\stackrel{\rightharpoonup}{r}}{ }_{P Q W}=\left[\begin{array}{ccc}
-0.37773647 & 0.55459739 & -0.74144244 \\
-0.46253821 & 0.58067014 & 0.66998552 \\
0.80210571 & 0.59602342 & 0.03718220
\end{array}\right]\left[\begin{array}{c}
-0.0731867 \\
1.7947339 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
1.023 \\
1.076 \\
1.011
\end{array}\right] \mathrm{ER}=\left[\begin{array}{l}
6524.834 \\
6862.875 \\
6448.296
\end{array}\right] \mathrm{km} \\
& \stackrel{\rightharpoonup}{v}_{I J K}=\left[\frac{U K K}{P Q W}\right] \stackrel{\rightharpoonup}{v}_{P Q W}=\left[\begin{array}{ccc}
-0.37773647 & 0.55459739 & -0.74144244 \\
-0.46253821 & 0.58067014 & 0.66998552 \\
0.80210571 & 0.59602342 & 0.03718220
\end{array}\right]\left[\begin{array}{c}
-0.7584998 \\
0.6013136 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
0.62 \\
0.70
\end{array}\right] \mathrm{ER} / \mathrm{TU}=\left[\begin{array}{r}
4.901320 \\
5.533756 \\
1.976 .341
\end{array}\right] \mathrm{km} / \mathrm{s}
\end{aligned}
$$

Two-Line Elements (TLE)

```
ISS (ZARYA)
1 25544U 98067A 08264.51782528 -.00002182 00000-0 -11606-4 0 2927
2 25544 51.6416 247.4627 0006703 130.5360 325.0288 15.72125391563537
```


For monitoring by Norad *

The meaning of this data is as follows:

```
LINE 1:
FIELD COLS
CONTENT
    EXAMPLE
    COLS
    03-07
    08-08
    10-11
    12-14
    15-17
    19-20
    21-32
    34-43
    45-52
    54-61
    63-63
    65-68
    69-69
```


Line numbe

```
1
Satellite number 25544
1 01-01
03-07
Classification (U=Unclassified)
U
International Designator (Last two digits of launch year)
98
10-11
International Designator (Launch number of the year)
067
International Designator (Piece of the launch)
Epoch Year (Last two digits of year)
A
08
19-20
21-32
34-43
45-52
54-61
12 63-63
First Time Derivative of the Mean Motion
264.51782528
\(-.00002182\)
Second Time Derivative of Mean Motion (decimal point assumed)
00000-0
```


BSTAR drag term (decimal point assumed)

```
-11606-4
The number 0 (Originally this should have been "Ephemeris type")
14 69-69 Checksum (Modulo 10)
292
7
```

```
LINE 2:
FIELD COLS
    01-01
    03-07
    09-16
    18-25
    27-33
    35-42
    44-51
    53-63
    64-68
    69-69
```

CONTENT
Line number
Satellite number
Inclination [Degrees]
Right Ascension of the Ascending Node [Degrees]
Eccentricity (decimal point assumed)
Argument of Perigee [Degrees]
Mean Anomaly [Degrees]
Mean Motion [Revs per day]
Revolution number at epoch [Revs]
Checksum (Modulo 10)

EXAMPLE

2

25544
51.6416
247.4627

0006703
130.5360
325.0288
15.72125391

56353
7

Celestrak: Update TLE

Celestrak: ISS, February 24, 2009

Lost ISS Toolbag

Heidemarie Stefanyshyn-Piper

From Wikipedia, the free encyclopedia
Heidemarie Martha Stefanyshyn-Piper (born on February 7, 1963 experienced salvage officer. Her major salvage projects include de-s Peruvian submarine Pacocha.

Stefanyshyn-Piper has received numerous honors and awards, suct 115 and STS-126, during which she completed five spacewalks tota
\quad Contents [hide]
1 Early life and education
2 Military career
3 NASA career
3.1 STS-115 - Atlantis (September 9-21, 2006)
3.2 NEEMO 12 (May 7-18, 2007)
3.3 STS-126 - Endeavour (November 14-30, 2008)
\quad 3.3.1 Lost tool bag during spacewalk
4 Retirement from NASA
5 Commanding the NSWCCD
6 References
7 External links

Celestrak: IRIDIUM 33, February 24, 2009

Astrodynamics
 (AEROOO24)

3B. The Orbit in Space

Gaëtan Kerschen

Space Structures \& Systems Lab (S3L)

