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Importance/Complexity of Time Measurement

Applications such as GPS rely on an extremely precise 
time measurement system:

an error of 1 nanosecond translates into an error of 
30cm in the distance.
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Complexity: STK
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The Orbit in Time

Orbital position as a function of time

Time systems
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Time Since Periapsis
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Circular Orbits
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Elliptic Orbits
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Mean Anomaly Is Related to Time

For circular orbits, the mean M and true anomalies θ are 

identical.

For elliptic orbits, the mean anomaly represents the 

angular displacement of a fictitious body moving around 

the ellipse at the constant angular speed n.
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Eccentric Anomaly Is Related to Position
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Eccentric Anomaly: Relation with Mean Anomaly ?
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Kepler’s Equation

2
1 1 1 sin

2 tan tan
1 2 1 cos

e e e
M

e e

 




  

     

sinM nt E e E  

It relates time, in terms of M=nt, to 

position, in terms of E, r=a(1-e.cosE).

1 1
2 tan tan

1 2

e
E

e


 

    



13

Usefulness of Kepler’s Equation

θ and orbit are given
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Practical application: 

Determine the time at which a 

satellite passes from sunlight 

into the Earth’s shadow (the 

location of this point is known 

from the geometry).
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Example

A geocentric elliptic orbit has a perigee radius of 9600 km 

and an apogee radius of 21000 km. Calculate the time to 

fly from perigee to a true anomaly of 120.
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Usefulness of Kepler’s Equation

t is given
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Transcendental equation !!! 

(with a unique solution)

Practical application: 

Perform a rendez-vous with the 

ISS (ATV, STS, Soyuz, Progress).
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Numerical Solution: Newton-Raphson

Algorithm for finding approximations to the zeros of a 

nonlinear function.

Recursive application of Taylor series truncated after 

the first derivative.

The initial guess should be close enough to the actual 

solution.
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Numerical Solution: Newton-Raphson

Example: find the zero of f(x)=0.5(x-1)2
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Analytic Solution: Lagrange
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Convergence if e<0.663.

For small values of the eccentricity a good agreement with 

the exact solution is obtained using a few terms (e.g., 3).
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Analytic Solution: Bessel Functions
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Parabolic and Hyperbolic Orbits
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Prediction of the Position and Velocity

If the position and velocity r0 and v0 of an orbiting body are 

known at a given instant t0, how can we compute the 

position and velocity r and v at any later time t ?

Concept of f and g function and series:
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Prussing and Conway

J.E. Prussing, B.A. Conway, Orbital 

Mechanics, Oxford University Press
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Prediction of the Position and Velocity

Some form of Kepler’s equation must still be solved by 

iteration. However, Gauss developed a series expansion in 

the elapsed time parameter t-t0, and there is no longer the 

need to solve Kepler’s equation:
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The Orbit in Time

Time systems

Clocks

Universal time

Earth’s rotation

Atomic time

Coordinated universal time

Julian date
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“Everyday” Time Systems

Are conventional local time systems adequate for orbital 

mechanics ?

 They depend on the user’s position on Earth.

 They are in a format (Y/M/D/H/M/S) that does not lend itself to 

use in a computer-implemented algorithm. For instance, what 

is the difference between any two dates ?

Objective of this section:

What would be a meaningful time system ?
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What are the Ingredients of a Time System ?

1. The interval (a time reckoner): a repeatable 

phenomenon whose motion or change of state is 

observable and obeys a definite law.

2. The epoch (a time reference) from which to count 

intervals

2. The epoch

1. The interval
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Historical Perspective

From remote antiquity, the celestial bodies have been the 

fundamental reckoners of time (e.g. rising and setting of 

the Sun).

Sundials were among the first 

instruments used to measure the 

time of the day. The Egyptians 

divided the day and night into 12h 

each, which varied with the 

seasons (unequal seasonal hour)
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Historical Perspective

It was not until the 14th century that an hour of uniform 

length became customary due to the invention of 

mechanical clocks.

Quartz-crystal clocks were developed in the 1920s.

The first atomic clock was constructed in 1948, and the 

first caesium atomic clock in 1955.
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Quantum Clocks Soon ?

https://www.wired.com/2010/02/quantum-logic-atomic-clock/
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Tow Important Time Scales

1. Universal time: the time scale based on the rotation of 

the Earth on its axis.

2. Atomic time: the time scale based on the quantum 

mechanics of the atom.
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Can We Use the Real Sun ?

Apparent solar time, as read directly by a sundial, is the 

local time defined by the actual diurnal motion of the Sun.

Apparent solar day is the time required for the sun to lie on 

the same meridian. 

Due to the eccentricity of Earth’s orbit, 

the length of the apparent solar day 

varies throughout the year. 

 The real sun is not well suited for 

time reckoning purposes.
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Apparent and Mean Solar Days

Approximation where E is in 

minutes, sin and cos in degrees, and 

N is the day number:

9.87sin 2 7.53cos 1.5sinE B B B  

360 ( 81)

365

N
B




Equation of time

http://upload.wikimedia.org/wikipedia/commons/0/00/Equation_of_time.png
http://upload.wikimedia.org/wikipedia/commons/0/00/Equation_of_time.png
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Can We Use a Fictitious Sun ?

At noon the fictitious sun lies on the Greenwich meridian.

A mean solar day comprises 24 hours. It is the time 

interval between successive transits of a fictitious mean 

sun over a given meridian. A constant velocity in the 

motion about the sun is therefore assumed.

The mean solar second can be defined as 1/86400 of a 

mean solar day.
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Universal Time

Universal time is today’s realization of a mean solar time 

(introduced in 1920s).

It is the same everywhere on Earth.

It is referred to the meridian of Greenwich and reckoned 

from midnight.
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Universal Time UT1

UT1 is the observed rotation of the Earth with respect to 

the mean sun.

It is based on the measurement of the Earth rotation angle 

with respect to an inertial reference frame (sidereal day).

A conversion from mean sidereal day to mean solar day is 

therefore necessary.

Earth rotation 

angle  

(sidereal day)

UT1                                  

(mean solar day)
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IAU2000 Definition of Universal Time UT1

ERA = 2π(0.7790572732640 + 1.00273781191135448 Tu) radians

Earth rotation 

angle  

(sidereal day)

UT1                                  

(mean solar day)
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IAU2000 Definition of Universal Time UT1

Tu is directly related to UT1: 

Julian UT1 date - 2451545.0

ERA = 2π(0.7790572732640 + 1.00273781191135448 Tu) radians

Earth rotation angle w.r.t. ICRF. 

Its time derivative is the Earth’s 

angular velocity.

Earth rotation angle 

at J2000.0 UT1 Explanation 1

Explanation 2

Explanation 3



37

Explanation 1: Mean Solar Sidereal Days

1 solar day= 1.00273781191135448 

sidereal day

http://upload.wikimedia.org/wikipedia/commons/1/1d/Tiempo_sid%C3%A9reo.en.png
http://upload.wikimedia.org/wikipedia/commons/1/1d/Tiempo_sid%C3%A9reo.en.png
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Explanation 2: Julian Date 

The Julian day number is the number of days since noon 

January 1, 4713 BC  Continuous time scale and no 

negative dates.

For historical reasons, the Julian day begins at noon, and 

not midnight, so that astronomers observing the heavens 

at night do not have to deal with a change of date.

The number of days between two events is found by 

subtracting the Julian day of one from that of the other.
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Forward Computation of the Julian Date 
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Backward Computation of the Julian Date
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Computation of Elapsed Time

Find the elapsed time between 4 October 1957 at 

19:26:24 UTC and 12 May 2004 at 14:45:30 UTC

4 October 1957 at 19:26:24 UTC: 2436116.3100 days

12 May 2004 at 14:45:30 UTC: 2453138.11493056 days

 The elapsed time is 17021.805 days
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Standard Epoch Used Today: J2000 

2000 2451545J JD 

To lessen the magnitude of the Julian date, a constant 

offset can be introduced. A different reference epoch 1st

January 2000 at noon is used:
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Explanation 3: Accurate Determination of ERA 

The most remote objects in the universe are quasars in a 

distance of about 3-15 billion light years. Because quasars 

are at such great distances that their motions across the sky 

are undetectable, they form a quasi-inertial reference frame, 

called the international celestial reference frame.

Quasars can be detected with very sensitive 

radiotelescopes.

By observing the diurnal motion of distant quasars (more 

precise than sun-based observations), it is possible to relate 

the position, orientation and rotation of the Earth to the 

inertial reference frame realized by these quasars. 
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Very Long Baseline Interferometry

A radio telescope with a cryogenic 

dual band S/X-band receiver  

(TIGO, Concepcion, Chili)
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Can We Trust the Earth’s Rotation ?

ERA = 2π(0.7790572732640 + 1.00273781191135448 Tu) radians

?
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Can We Trust the Earth’s Rotation ?

No ! 

 The Earth's rotation rate is not uniform. It exhibits 

changes on the order of 2 milliseconds per day. 

Corals dating from 370 millions years ago indicate 

that the number of days was between 385 and 410.

 There also exists random and seasonal variations.

In addition, the axis of rotation is not fixed in space.
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Rotation Rate: Steady Deceleration (Cause 1)

The Moon is at the origin of tides: the water of the 

oceans bulges out along both ends of an axis 

passing through the centers of the Earth and Moon.

The tidal bulge closely follows the Moon in its orbit, 

and the Earth rotates under this bulge in a day. Due 

to friction, the rotation drags the position of the tidal 

bulge ahead of the position directly under the Moon. 

A substantial amount of mass in the bulge is offset 

from the line through the centers of the Earth and 

Moon. Because of this offset, there exists a torque 

which boosts the Moon in its orbit, and decelerates 

the rotation of the Earth. 

Energy transfer from the 

Earth to the Moon 

http://en.wikipedia.org/wiki/File:Tidal_braking.svg
http://en.wikipedia.org/wiki/File:Tidal_braking.svg
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Rotation Rate: Steady Deceleration (Cause 2)

In addition to this tidal acceleration of the Moon, the 

Earth is also slowing down due to tidal friction.

Tides stretch the oceans, and to a small extent, the solid 

mass of a planet or satellite. In one complete rotation, 

the planet material keeps deforming and relaxing. This 

takes energy away from the rotation, transforming it into 

heat.
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The Moon Is Moving Away from the Earth

The secular acceleration of the Moon is small but it has a 

cumulative effect on the Moon's position when 

extrapolated over many centuries. 

Direct measurements of the acceleration have been 

possible since 1969 using the Apollo retro-reflectors left on 

the Moon. 

The results from Lunar Laser Ranging show that the 

Moon's mean distance from Earth is increasing by 3.8 cm 

per year.
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Lunar Laser Ranging Experiment (Apollo 11)

NASA Goddard

(Lunar Reconnaissance Orbiter) 

Lunar Laser Ranging Experiment from 

the Apollo 11 mission
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What is Your Conclusion ?

We cannot “trust” the Earth’s rotation  the length of one 

second of UT1 is not constant !

Its offset from atomic time is continually changing in a not 

completely predictable way.
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International Atomic Time (TAI)

Since the advent of atomic time in 1955 there has been a 

steady transition from reliance on the Earth's rotation to 

the use of atomic time as the standard for the SI unit of 

duration (second).

The second is the duration of 9.192.631.770 cycles of the 

radiation corresponding to the transition between two 

hyperfine levels of the ground state of 133Cs.

Weighted average of the time kept by about 300 atomic 

clocks in over 50 national laboratories worldwide.
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Atomic Clocks: Stability and Accuracy

The hydrogen maser has the 

best stability for periods of up to 

a few hours. 

The caesium clock has high accuracy 

and good long-term stability. 
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Is Atomic Time the Adequate Solution ?

No connection with the motion of 

the sun across the sky !
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Physical and Astronomical Times

Astronomical clocks:

 Related to everyday life. 

 Not consistent; the length of one second of UT is not 

constant. Typical accuracies ~10-8.

Atomic clocks: 

 Consistent. Typical accuracies ~10-14. 

 Not related to everyday life. If no adjustment is made, then 

within a millennium, local noon (i.e., the local time associated 

with the Sun’s zenith position) would occur at 13h00 and not 

12h00. 
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Coordinated Universal Time (UTC) 

Its time interval corresponds to atomic time TAI: 

 It is accurate.

Its epoch differs by no more than 0.9 sec from UT1:

 The mean sun is overhead on the Greenwich meridian at noon.

The good practical compromise between atomic 

and universal times: it is the international standard 

on which civil time is based.
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Leap Seconds 

Leap seconds were introduced in 1971 to reconcile 

astronomical time, which is based on the rotation of the 

Earth, and physical time, which can be measured with great 

accuracy using atomic clocks. 

Leap seconds are introduced to account for the fact that the 

Earth currently runs slow at 2 milliseconds per day and they 

ensure that the Sun continues to be overhead on the 

Greenwhich meridian at noon to within 1s.
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Le Soir Article
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Not So Simple…
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DUT1  =UT1-UTC  <0.9s

http://upload.wikimedia.org/wikipedia/commons/f/fb/Leapsecond.ut1-utc.svg
http://upload.wikimedia.org/wikipedia/commons/f/fb/Leapsecond.ut1-utc.svg
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Leap Seconds: Pros and Cons

Leap seconds are a worry with safety-critical real-time 

systems (e.g., air-traffic control  GPS' internal 

atomic clocks race ahead of UTC).

-

+

This is currently the subject of intense debate (UT vs. TAI; 

i.e., UK vs. France). 

Abandoning leap seconds would break sundials. In

thousands of years, 16h00 would occur at 03h00. The 

British who have to wake up early in the morning to 

have tea…

Astronomers
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Yet More Time Systems ! 

GPS time: running ahead of UTC but behind TAI (it was 

set in 1980 based on UTC, but leap seconds were 

ignored since then).

Time standards for planetary motion calculations:

 Terrestrial dynamic time: tied to TAI but with an offset of 

32.184s to provide continuity with ephemeris time.

 Barycentric dynamic time: similar to TDT but includes 

relativistic corrections that move the origin of the solar system 

barycenter.



IAU2000: determined 

from the Earth 

Rotation Angle
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