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2. Two-body 

problem
4.1 Dominant 

perturbations

Orbital elements 

(a,e,i,Ω,ω) are constant

Real satellites may undergo 

perturbations

This lecture: 

1. Effects of these perturbations on the orbital elements ?

2. Computation of these effects ?
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STK: Different Propagators
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Why Different Propagators ?

Analytic propagation:

Better understanding of the perturbing forces.

Useful for mission planning (fast answer): e.g., lifetime 

computation.

Numerical propagation:

The high accuracy required today for satellite orbits can only be 

achieved by using numerical integration. 

Incorporation of any arbitrary disturbing acceleration 

(versatile).
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6. Non-Keplerian Motion
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Analytic Treatment: Definition

Position and velocity at a requested time are computed 

directly from initial conditions in a single step.

Analytic propagators use a closed-form solution of the 

time-dependent motion of a satellite.

Mainly used for the two dominant perturbations, drag and 

earth oblateness. 
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Analytic Treatment: Pros and Cons

Useful for mission planning and analysis (fast and insight):

Though the numerical integration methods can generate more 

accurate ephemeris of a satellite with respect to a complex force 

model, the analytical solutions represent a manifold of solutions for 

a large domain of initial conditions and parameters.

But less accurate than numerical integration.

Be aware of the assumptions made ! 
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Disturbing Acceleration (Specific Force)

ˆ ˆ ˆRperturbed R T NT N   a F e e e
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Rotating basis whose 

origin is fixed to the 

satellite
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Variation of Parameters (VOP)

Originally developed by Euler and improved by Lagrange 

(conservative) and Gauss (nonconservative).

It is called variation of parameters, because the orbital 

elements (i.e., the constant parameters in the two-body 

equations) are changing in the presence of perturbations. 

The energy and the angular momentum are no longer 

constant either. 

The VOP equations are a system of first-order ODEs that 

describe the rates of change of the orbital elements.

, , , , ,  ?a i e M
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Perturbation Equations (Gauss)
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Let’s demonstrate da/dt (energy variation)
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Let’s demonstrate da/dt
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Let’s demonstrate de/dt (momentum variation)

ሶ𝒉 = 𝒓 × 𝑭 = 𝑟𝑇ො𝒆𝑁 − 𝑟𝑁ො𝒆𝑇 Rotational motion 2nd law
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Let’s demonstrate de/dt (momentum variation)
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Perturbation Equations (Gauss)
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Can We Predict the J2-Drift in Longitude ?
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Disturbing Acceleration (Specific Force) for J2
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Secular Effects: Node Line
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 For posigrade orbits, the node line drifts westward 

(regression of the nodes). And conversely.
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Analytical Prediction: the ISS case

Analytical prediction: the drift in longitude 

for the ISS is 5 degrees per day
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Numerical Prediction: OK !

360-354.9=5.1
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Physical Interpretation of the Perturbation



22

Physical Interpretation of the Perturbation

The oblateness means that the force of gravity is no longer 

within the orbital plane: non-planar motion will result.

The equatorial bulge exerts a force that pulls the satellite 

back to the equatorial plane and thus tries to align the 

orbital plane with the equator.

Due to its angular momentum, the orbit behaves like a 

spinning top and reacts with a precessional motion of the 

orbital plane (the orbital plane of the satellite to rotate in 

inertial space).



Vallado, Fundamental of 

Astrodynamics and 

Applications, Kluwer, 2001.
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Can We Exploit the Drift in Longitude ?

The orbital plane makes a constant angle with the radial 

from the sun:
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Yes ! Sun-Synchronous Orbits

The orbital plane must rotate in inertial space with the 

angular velocity of the Earth in its orbit around the Sun:

360º per 365.26 days or 0.9856º per day

The satellite sees any given swath of the planet under 

nearly the same condition of daylight or darkness day after 

day.
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Example of SPOT-5 Satellite

SPOT-5                

(820 kms, 98.7º)
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Effect of Perturbations on Orbital Elements

Periodic 

Secular: average rate of 

change over many orbits
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Secular Effects: Apse Line
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Vallado, Fundamental of 

Astrodynamics and 

Applications, Kluwer, 2001.
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Can We Exploit the Drift of the Perigee ?

A geostationary satellite cannot view effectively the far 

northern latitudes into which Russian territory extends         

(+ costly plane change maneuver for the launch vehicle !)

Molniya telecommunications satellites are launched from 

Plesetsk (62.8ºN) into 63º inclination orbits having a 

period of 12 hours.

3

2  the apse line is 53000km long.ellip

a
T 


 



31

Analytic Propagators in STK: 2-body, J2

2-body: constant orbital elements.

J2: accounts for secular variations in the orbit elements 

due to Earth oblateness; periodic variations are 

neglected.
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J2 Propagator: Underlying Equations
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HPOP and J2 Propagators Applied to ISS
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Effects of Atmospheric Drag: Semi-Major Axis 
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Because drag causes the dissipation of mechanical energy 

from the system, the semimajor axis contracts.

Drag paradox: the effect of atmospheric drag is to increase 

the satellite speed and kinetic energy !
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Effects of Atmospheric Drag: Semi-Major Axis
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Effects of Atmospheric Drag: Orbit Plane 
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The orientation of the orbit plane is not changed by drag.
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Effects of Atmospheric Drag: Apogee, Perigee

Apogee height changes drastically, perigee height remains 

relatively constant.

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.
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Effects of Atmospheric Drag: Eccentricity

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.
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Early Reentry of Skylab (1979)

Increased solar activity, which 

increased drag on Skylab, led to 

an early reentry. 

Earth reentry footprint could not 

be accurately predicted (due to 

tumbling and other parameters). 

Debris was found around 

Esperance (31–34°S, 122–

126°E). The Shire of Esperance 

fined the United States $400 for 

littering, a fine which, to this day, 

remains unpaid.

http://upload.wikimedia.org/wikipedia/en/0/07/Skylab_(SL-4).jpg
http://upload.wikimedia.org/wikipedia/en/0/07/Skylab_(SL-4).jpg
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Effects of Third-Body Perturbations 

The only secular perturbations are in the node and in the 

perigee.

For near-Earth orbits, the dominance of the oblateness 

dictates that the orbital plane regresses about the polar 

axis. For higher orbits, the regression will be about some 

mean pole lying between the Earth’s pole and the ecliptic 

pole.

Many geosynchronous satellites launched 30 years ago 

now have inclinations of up to ±15º  collision avoidance 

as the satellites drift back through the GEO belt.
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Effects of Third-Body Perturbations 

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

The Sun’s attraction 

tends to turn the 

satellite ring into the 

ecliptic. The orbit 

precesses about the 

pole of the ecliptic.
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STK: Analytic Propagator (SGP4)

The J2 propagator does not include drag.

SGP4, which stands for Simplified General Perturbations 

Satellite Orbit Model 4, is a NASA/NORAD algorithm. 
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STK: Analytic Propagator (SGP4)

Several assumptions; propagation valid for short durations 

(3-10 days).

TLE data should be used as the input.

It considers secular and periodic variations due to Earth 

oblateness, solar and lunar gravitational effects, and 

orbital decay using a drag model.
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SGP4 Applied to ISS: RAAN
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Further Reading
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Secular Effects: Orders of Magnitude

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.
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Periodic Effects: Orders of Magnitude

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.



48

6. Non-Keplerian Motion
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2-body: analytic propagator (constant orbital elements).

J2: analytic propagator (secular variations in the orbit 

elements due to Earth oblateness.

HPOP: numerical integration of the equations of motion 

(periodic and secular effects included).

STK Propagators

Accurate

Versatile

Errors accumulation 

for long intervals

Computationally 

intensive

http://www.clker.com/clipart-3592.html
http://www.clker.com/clipart-3592.html
http://images.google.be/imgres?imgurl=http://www.clker.com/cliparts/e/2/a/d/1206574733930851359Ryan_Taylor_Green_Tick.svg.thumb.png&imgrefurl=http://www.clker.com/clipart-10842.html&usg=__jqf8IsgHUAEnbuCtn1f9HK1ChkU=&h=99&w=86&sz=3&hl=fr&start=38&um=1&itbs=1&tbnid=4q3qiyQTj_yiyM:&tbnh=82&tbnw=71&prev=/images?q%3Dclipart%2B"green%2Bcheck%2Bmark"%26ndsp%3D18%26hl%3Dfr%26rlz%3D1T4GGLJ_enBE316BE316%26sa%3DN%26start%3D36%26um%3D1
http://images.google.be/imgres?imgurl=http://www.clker.com/cliparts/e/2/a/d/1206574733930851359Ryan_Taylor_Green_Tick.svg.thumb.png&imgrefurl=http://www.clker.com/clipart-10842.html&usg=__jqf8IsgHUAEnbuCtn1f9HK1ChkU=&h=99&w=86&sz=3&hl=fr&start=38&um=1&itbs=1&tbnid=4q3qiyQTj_yiyM:&tbnh=82&tbnw=71&prev=/images?q%3Dclipart%2B"green%2Bcheck%2Bmark"%26ndsp%3D18%26hl%3Dfr%26rlz%3D1T4GGLJ_enBE316BE316%26sa%3DN%26start%3D36%26um%3D1
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Real-Life Example: German Aerospace Agency
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Real-Life Example: German Aerospace Agency
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Further Reading on the Web Site
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Real-Life Example: Envisat 

http://nng.esoc.esa.de/envisat/

ENVpred.html



Why do the 

predictions degrade 

for lower altitudes ?
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NASA began the first complex numerical integrations 

during the late 1960s and early 1970s.

Did you Know ?

19691968

http://upload.wikimedia.org/wikipedia/commons/8/8b/Apollo-8-patch.png
http://upload.wikimedia.org/wikipedia/commons/8/8b/Apollo-8-patch.png
http://upload.wikimedia.org/wikipedia/commons/2/27/Apollo_11_insignia.png
http://upload.wikimedia.org/wikipedia/commons/2/27/Apollo_11_insignia.png
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What is Numerical Integration ?
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State-Space Formulation
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How to Perform Numerical Integration ?
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First-Order Taylor Approximation (Euler)
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Exact solution

The stepsize has to be extremely 

small for accurate predictions, 

and it is necessary to develop 

more effective algorithms.

along the tangent
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Numerical Integration Methods
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Examples: Implicit vs. Explicit

 Trapezoidal rule (implicit)

nt 1nt

 Euler forward (explicit)

nt 1nt

 Euler backward (implicit)
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A variety of methods has been applied in astrodynamics. 

Each of these methods has its own advantages and 

drawbacks:

Accuracy: what is the order of the integration scheme ?

Efficiency: how many function calls ?

Versatility: can it be applied to a wide range of problems ?

Complexity: is it easy to implement and use ?

Step size: automatic step size control ?

Why Different Methods ?
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Runge-Kutta Family: Single-Step

Perhaps the most well-known numerical integrator.

Difference with traditional Taylor series integrators: the RK 

family only requires the first derivative, but several 

evaluations are needed to move forward one step in time.

Different variants: explicit, embedded, etc.
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Runge-Kutta Family: Single-Step
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Runge-Kutta Family: Single-Step

Butcher Tableau

The Runge-Kutta methods are fully described by the 

coefficients:
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RK4 (Explicit)
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RK4 (Explicit)
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RK4 (Explicit)
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RK4 (Explicit)

The local truncation error for a 4th order RK is O(h5).

The accuracy is comparable to that of a 4th order Taylor 

series, but the Runge-Kutta method avoids the 

calculation of higher-order derivatives.

Easy to use and implement.

The step size is fixed.
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RK4 in STK



71

Embedded Methods

They produce an estimate of the local truncation error:

 adjust the step size to keep local truncation errors 

within some tolerances. 

This is done by having two methods in the tableau, one with 

order p and one with order p+1, with the same set of 

function evaluations: 
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Embedded Methods

The two different approximations for the solution at each 

step are compared:

If the two answers are in close agreement, the approximation is 

accepted. 

If the two answers do not agree to a specified accuracy, the step 

size is reduced.

If the answers agree to more significant digits than required, the 

step size is increased. 
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Ode45 in Matlab / Simulink

Runge-Kutta (4,5) pair of Dormand and Prince:                        

 Variable step size.

 Matlab help: This should be the first solver you try 



74

Ode45 in Matlab / Simulink

edit ode45
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Ode45 in Matlab / Simulink

Be very careful with the default parameters !

options = odeset('RelTol',1e-8,'AbsTol',1e-8);

AnneesPrecedentes/options = odeset('RelTol',1e-6,'AbsTol',1e-6);
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RKF 7(8): Default Method in STK

Runge-Kutta-Fehlberg integration method of 7th order 

with 8th order error control for the integration step size. 
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Integrator Selection

Montenbruck and Gill,

Satellite orbits, Springer, 

2000
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Why is the Step Size So Critical ?

Theoretical arguments:

1. The accuracy and the stability of the algorithm are 

directly related to the step size.

2. Nonlinear equations of motion.

Data for Landsat 4 and 6 in circular orbits around 800km 

indicates that a one-minute step size yields about 47m 

error. 

A three-minute step size produces about a 900m error !
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Why is the Step Size So Critical ?

More practical arguments:

1. The computation time is directly related to the 

step size.

2. The particular choice of step size depends on the 

most rapidly varying component in the disturbing 

functions (e.g., 50 x 50 gravity field).
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XMM (e~0.8)
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ISS(e~0)

0 50 100 150 200 250 300 350 400
30

35

40

45

50

55

60

65

70

True anomaly (deg)

S
te

p
 s

iz
e

 (
s
)



83

“Difficult” Orbits 

Automatic time step is especially nice on highly eccentric 

orbits (Molniya, XMM). These orbits are best computed 

using variable step sizes to maintain some given level of 

accuracy:

Without this variable step size, we waste a lot of time near 

apoapsis, when the integration is taking too small a step.

Likewise, the integrator may not be using a small enough step 

size at periapsis, where the satellite is traveling fast.
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6. Non-Keplerian Motion
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ISS Example

1. Earth’s oblateness only

2. Drag only

3. Sun and moon only

4. SRP only

5. All together.
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J2 Only
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Overall Effects of the J2 Perturbation

Nodal regression: regression of the nodal line:

Apsidal rotation: rotation of the apse line:

Mean anomaly.

No secular variations for a, e, i because we have a 

conservative perturbation.

2

2

2 2 7 / 20

1 3
cos

2 (1 )

T

avg

J R
dt i

T e a

 
      

  


 
2

22

2 2 7 / 20

1 3
4 5sin

4 (1 )

T

avg

J R
dt i

T e a


 

 
   

  




88

Drag Only: i, Ω, a

HPOP with drag – Harris Priester                                                                     

(without oblateness/SRP/Sun and Moon)
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Drag: Relationship with Eclipses 
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SRP Only: i, Ω, a 

HPOP with SRP                                                                           

(without oblateness/drag/Sun and Moon)
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SRP: Relationship with Eclipses 
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All Perturbations Together
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GEO Satellites

Nice illustration of:

1. Perturbations of the 2-body problem.

2. Secular and periodic contributions.

3. Accuracy required by practical applications.

4. The need for orbit correction and thrust forces.

And it is a real-life example (telecommunications, 

meteorology) !
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Three Main Perturbations for GEO Satellites

1. Non-spherical Earth

2. SRP

3. Sun and Moon
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Station Keeping of GEO Satellites

The effect of the perturbations is to cause the spacecraft 

to drift away from its nominal station. If the drift was 

allowed to build up unchecked, the spacecraft could 

become useless.

A station-keeping box is defined by a longitude and a 

maximum authorized distance for satellite excursions in 

longitude and latitude. 

For instance, TC2: -8º ± 0.07º E/W ± 0.05º N/S



96

East-West and North-South Drift

N/S drift

E/W drift

What are the perturbations generating these drifts ?
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East-West Drift

A GEO satellite drifts in longitude due to the influence of 

two main perturbations:

1. The elliptic nature of the Earth’s equatorial cross-

section: J22 (and not from the N/S oblateness J2).

2. 

ΔV

ΔV
vsat

vsat
SRP



98

East-West Drift due to Equatorial Ellipticity
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East-West Drift due to Equatorial Ellipticity
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East-West Drift: HPOP (2,0) vs. HPOP (2,2)
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East-West Drift: Stable Equilibirum

HPOP with 2,2                                                                              

(without Sun and moon/SRP/drag)
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East-West Drift: Stable Equilibirum

HPOP with 2,2                                                                              

(without Sun and moon/SRP/drag)
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East-West Drift: Stable Equilibirum

HPOP with 2,2                                                                              

(without Sun and moon/SRP/drag)
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North-South Drift

The perturbations caused by the Sun and the Moon are 

predominantly out-of-plane effects causing a change in 

the inclination and in the right ascension of the orbit 

ascending node.

Similar effects on the orbit to those of the Earth’s 

oblateness (but here with respect to the ecliptic)

A GEO satellite therefore drifts in latitude with a 

fundamental period equal to the orbit period.
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North-South Drift

Period ? 

HPOP with Sun and Moon                                                   

(without oblateness/SRP/drag)
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North-South Drift

Period ? 

HPOP with Sun and Moon                                                   

(without oblateness/SRP/drag)
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Thrust Forces for Stationkeeping

GEO spacecraft require continual stationkeeping to stay 

within the authorized box using onboard thrusters.
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