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You saw…

Every point mass attracts every other point mass by a force 

pointing along the line intersecting both points. The force is 

proportional to the product of the two masses and inversely 

proportional to the square of the distance between the point 

masses: 

http://upload.wikimedia.org/wikipedia/commons/0/0e/NewtonsLawOfUniversalGravitation.svg
http://upload.wikimedia.org/wikipedia/commons/0/0e/NewtonsLawOfUniversalGravitation.svg
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What if we had another body ?

How do we express the interacting forces?

http://upload.wikimedia.org/wikipedia/commons/0/0e/NewtonsLawOfUniversalGravitation.svg
http://upload.wikimedia.org/wikipedia/commons/0/0e/NewtonsLawOfUniversalGravitation.svg
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Center of mass

For the 2-body problem: 

Same masses:

Different masses:

For the 3-body problem: 

The motion of the three bodies 

is chaotic for most initial 

conditions.
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Three-Body Problem: Matlab Example

Three identical masses:

 Two are at rest.

 The third one has a velocity directed upward to the right making 

a 45 degrees angle with the X axis.
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Why Is the 3-Body Problem So Difficult ?
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Why Is the 3-Body Problem So Difficult ?
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The n-body problem

The system can be extended to a n-body problem, 

the equations thus take the form:
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A particular situation

The Circular restricted 3-body problem is a particular 

case of the classical 3-body problem. 

It consists of two large masses, 𝑚1 and 𝑚2 that have a 

circular orbit around their center of mass. 

A third mass significantly smaller than the two others 

orbits with respect to the primaries gravity.

We have 𝑚1 > 𝑚2 ≫ 𝑚3
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Low eccentricity

It may seem a bit restrictive but these hypotheses are 

actually describing useful situations:

The Earth-Moon system with a satellite can be described 

as a CRTBP. The eccentricity of the moon orbit around 

the Earth is 0.054 (low enough).

Similarly, most of the planets with respect to the Sun are 

well suited for the CRTBP approximation.  
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The CRTBP
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The CRTBP
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Newton’s second law

What is interesting in such a problem is the motion of 

the tertiary mass. 

According to Newton’s second law, the equation of 

motion can be written: 

𝑚 ሷ𝒓 = 𝑭𝟏 + 𝑭𝟐

where 𝑭𝟏 and 𝑭𝟐 are the forces from mass 1 and 

mass 2.
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Newton’s second law

𝑭𝟏 = −𝑮
𝑚1𝑚

𝑟1
2 ෝ𝒖𝒓𝟏 = −𝑮

𝑚1𝑚

𝑟1
3 𝒓𝟏

𝑭𝟐 = −𝑮
𝑚2𝑚

𝑟2
2 ෝ𝒖𝒓𝟐 = −𝑮

𝑚2𝑚

𝑟2
3 𝒓𝟐

Similarly to the 2 body problem, the forces take the 

form: 

𝑚 ሷ𝒓 = −𝑮
𝑚1𝑚

𝑟1
3 𝒓𝟏 − 𝑮

𝑚2𝑚

𝑟2
3 𝒓𝟐
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Cartesian form

But how do we express the position of the body in space ? 

From the center of mass, the distance can be expressed in 

Cartesian form

𝒓 = 𝑥 Ƹ𝒊 + 𝑦 Ƹ𝒋 + 𝑧෡𝒌

𝒓𝟏 = (𝑥 − 𝑥1) Ƹ𝒊 + 𝑦 Ƹ𝒋 + 𝑧෡𝒌 = (𝑥 + 𝜇) Ƹ𝒊 + 𝑦 Ƹ𝒋 + 𝑧෡𝒌

𝒓𝟐 = 𝑥 + 𝑥2 Ƹ𝒊 + 𝑦 Ƹ𝒋 + 𝑧෡𝒌 = 𝑥 − 1 + 𝜇 Ƹ𝒊 + 𝑦 Ƹ𝒋 + 𝑧෡𝒌
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Rotating frame

We still need to get an expression for the acceleration ሷ𝒓. 

Let start with the velocity ሶ𝒓. Since we are working in a 

rotating frame attached to the main masses we must take 

the rotation into account. In a rotating frame the time 

derivative can be written as:

ሶ𝒓 = 𝒗𝒓𝒆𝒍 + 𝜴 × 𝒓

𝒗𝒓𝒆𝒍 = ሶ𝑥 Ƹ𝒊 + ሶ𝑦 Ƹ𝒋 + ሶ𝑧෡𝒌

𝑑

𝑑𝑡
𝑖

=
𝑑

𝑑𝑡
𝑟

+ 𝛀 ×

Thus
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Different forces

The acceleration ሷ𝒓 can be easily obtained knowing 

the velocity ሶ𝒓

ሷ𝒓 = 𝒂𝒓𝒆𝒍 + 𝟐𝜴 × 𝒗𝒓𝒆𝒍 + 𝛀 × 𝛀 × 𝒓 + ሶ𝛀 × 𝒓

𝒂𝒓𝒆𝒍 = ሷ𝑥 Ƹ𝒊 + ሷ𝑦 Ƹ𝒋 + ሷ𝑧෡𝒌

𝑑2

𝑑𝑡2
𝑖

=
𝑑

𝑑𝑡
𝑟

+𝛀 ×
𝑑

𝑑𝑡
𝑟

+ 𝛀 ×

Thus

Coriolis Centrifugal
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Equation of motion

ሷ𝒓 = −𝐺
𝑚1

𝑟1
3 𝒓𝟏 − 𝐺

𝑚2

𝑟2
3 𝒓𝟐

ሷ𝑥 − 2Ω ሶ𝑦 − Ω2𝑥 = −𝐺
𝑚1

𝑟1
3 𝑥 + 𝜇 − 𝐺

𝑚2

𝑟2
3 𝑥 − 1 + 𝜇

ሷ𝑦 + 2Ω ሶ𝑥 − Ω2𝑦 = −𝐺
𝑚1

𝑟1
3 𝑦 − 𝐺

𝑚2

𝑟2
3 𝑦

ሷ𝑧 = −𝐺
𝑚1

𝑟1
3 𝑧 − 𝐺

𝑚2

𝑟2
3 𝑧

The equations of motion can be re-written as:
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Small note about the cross product

𝜴 × 𝒗𝒓𝒆𝒍 =
0
0
𝛺

×
ሶ𝑥
ሶ𝑦
ሶ𝑧
=

− ሶ𝑦
ሶ𝑥
0

𝛀 × 𝛀 × 𝒓 =
0
0
𝛺

×
0
0
𝛺

×
𝑥
𝑦
𝑧

=
−𝑥
−𝑦
0

Ƹ𝑖 × Ƹ𝑖 = 0

Ƹ𝑗 × Ƹ𝑗 = 0

෠𝑘 × ෠𝑘 = 0

Ƹ𝑖 × Ƹ𝑗 = ෠𝑘

Ƹ𝑗 × ෠𝑘 = Ƹ𝑖
෠𝑘 × Ƹ𝑖 = Ƹ𝑗

Ƹ𝑖 × ෠𝑘 = − Ƹ𝑗

Ƹ𝑗 × Ƹ𝑖 = −෠𝑘
෠𝑘 × Ƹ𝑗 = − Ƹ𝑖
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Adimensionalized equations

ሷ𝑥 = 𝑥 + 2 ሶ𝑦 −
1 − 𝜇

𝑟1
3 𝑥 + 𝜇 −

𝜇

𝑟2
3 𝑥 − 1 + 𝜇

ሷ𝑦 = 𝑦 − 2 ሶ𝑥 −
1 − 𝜇

𝑟1
3 𝑦 −

𝜇

𝑟2
3 𝑦

ሷ𝑧 = −
1 − 𝜇

𝑟1
3 𝑧 −

𝜇

𝑟2
3 𝑧

Let us adimensionalize these equations with respect 

to mass, time and length:

Where 𝑟1 = 𝑥 + 𝜇 2 + 𝑦2 + 𝑧2 and 𝑟2 = 𝑥 − (1 − 𝜇 )2 + 𝑦2 + 𝑧2
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Lagrange Points

From these equations, five particular equilibrium points 

can be found. These points are called Lagrange points. 

The conditions for equilibrium are that both velocities and 

accelerations are equal to 0

ሶ𝑥 = ሶ𝑦 = ሶ𝑧 = 0

ሷ𝑥 = ሷ𝑦 = ሷ𝑧 = 0

0 = 𝑥 −
1 − 𝜇

𝑟1
3 𝑥 + 𝜇 −

𝜇

𝑟2
3 𝑥 − 1 + 𝜇

0 = 𝑦 −
1 − 𝜇

𝑟1
3 𝑦 −

𝜇

𝑟2
3 𝑦

0 = −
1 − 𝜇

𝑟1
3 𝑧 −

𝜇

𝑟2
3 𝑧
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Lagrange Points

0 = −
1 − 𝜇

𝑟1
3 −

𝜇

𝑟2
3 𝑧

From the last equation, one can easily observe that 𝑧 = 0.
It means that the five points lie in the orbital plane. 

Two cases can be considered, if 𝑦 = 0 we have collinear

Lagrange points otherwise if y ≠ 0 we have equilateral

Lagrange points.
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Equilateral Lagrange Points

If y ≠ 0, the second equation can be simplified to: 

1 =
1 − 𝜇

𝑟1
3 +

𝜇

𝑟2
3

It can be injected in the first equation

𝑥 = 1 −
𝜇

𝑟2
3 𝑥 + 𝜇 +

𝜇

𝑟2
3 𝑥 − 1 + 𝜇

which directly gives that 𝑟2
3 must be equal to 1 and 

thus 𝑟1
3 too.  
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Equilateral Lagrange Points

Considering the original expression of 𝑟1 and 𝑟2

𝑟1 = 𝑥 + 𝜇 2 + 𝑦2 + 𝑧2

𝑟2 = 𝑥 − (1 − 𝜇 )2 + 𝑦2 + 𝑧2

1 = 𝑥 + 𝜇 2 + 𝑦2

1 = 𝑥 − (1 − 𝜇 )2 + 𝑦2

These two simple second degree equations can easily 

be solved to give two points named 𝐿4 and 𝐿5

𝐿4 = 0.5 − 𝜇; ൗ+ 3
2 ; 0

𝐿5 = 0.5 − 𝜇; ൗ− 3
2 ; 0
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Collinear Lagrange Points

If y = 0, the first equation is the only one remaining: 

0 = 𝑥 −
1 − 𝜇

𝑟1
3 𝑥 + 𝜇 −

𝜇

𝑟2
3 𝑥 − 1 + 𝜇

𝑟1 = 𝑥 + 𝜇 2 + 𝑦2 + 𝑧2

𝑟2 = 𝑥 − (1 − 𝜇 )2 + 𝑦2 + 𝑧2

𝑟1 = 𝑥 + 𝜇
𝑟2 = 𝑥 − 1 − 𝜇

with the expression of 𝑟1 and 𝑟2:
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Collinear Lagrange Points

Once injected in the first equation:

0 = 𝑥 −
1 − 𝜇

𝑥 + 𝜇 3
𝑥 + 𝜇 −

𝜇

𝑥 − 1 − 𝜇
𝟑
𝑥 − 1 + 𝜇

Due to the cubic value, the sign is uncertain, we can not 

simplify the expression. Three solution exist. It can be 

solved numerically for value between 𝜇 = 0 and 𝜇 = 1
corresponding to 𝑚1 or 𝑚2 equal to 0 which loses its

interest.
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Collinear Lagrange Points

𝜇

𝑥
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Lagrange Points
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Stability of the Lagrange Points

Equilibria can be stable or unstable, it is the same for 

the Lagrange points.

In the CRTBP, the 3 collinear Lagrange points are 

unstable and the 2 equilateral Lagrange points are 

stable.
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Stability of the Lagrange Points
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Stability of the Lagrange Points
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Orbit Families

The existence of the Lagrange points leads to certain 

particular families around those equilibrium points.

Those orbits are periodic and are connected together 

with bifurcations.
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Orbit Families
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Lyapunov Family

The Lyapunov family comprises planar families of 

orbits around the 3 collinear Lagrange points.

L1 L2 L3
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Orbit Families
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Halo Family

The Halo family comprises out of plane families of 

orbits around the 3 collinear Lagrange points.

L2

H1 H2

H3
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Orbit Families
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Axial Family

The axial family comprises out of plane families of 

orbits around the 3 collinear Lagrange points.

A1
A3

A2
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Orbit Families



46

Vertical Family

The vertical family comprises out of plane families of 

orbits around the 3 collinear Lagrange points.

V1
V3

V2
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What about L4 and L5 ?

Families also exist around the equilateral Lagrange 

points but due to the position of the Lagrange points 

with respect to the masses they are asymmetric 

orbits.

L4 V4

A4
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Conservation of energy

The law of conservation of energy states that the sum of 

the potential and kinetic energies of the third mass is 

constant. It means that given its initial condition some 

region of space cannot be reached by the third mass.

𝑈 = −
1 − 𝜇

𝑥 + 𝜇
−

𝜇

𝑥 − 1 − 𝜇
−
1

2
1 − 𝜇 𝑥 + 𝜇 2 + 𝜇 𝑥 − 1 − 𝜇

2

The potential energy is :

1

2
𝑣2 =

1

2
ሶ𝑥 2 + ሶ𝑦 2

The kinetic energy is :
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Jacobi constant

The Jacobi constant corresponds to the total energy of 

the third mass relative to the reference frame and is 

defined as: 

1

2
𝑣2 −

1 − 𝜇

𝑥 + 𝜇
−

𝜇

𝑥 − 1 − 𝜇
−
1

2
1 − 𝜇 𝑥 + 𝜇 2 + 𝜇 𝑥 − 1 − 𝜇

2
= 𝐽

𝑉 + 𝑈 = 𝐽

A tradeoff between the two types of energy is possible. 
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Jacobi constant

It means that if the mass is at a certain location 

associated to a certain potential energy 𝑈1 and a zero 

velocity 𝑣1 = 0, then the Jacobi constant is equal to the 

potential. The mass cannot reach certain parts of space 

because it does not have enough energy.

If, on the other hand, the velocity 𝑣1 > 0, the mass can 

“climb” higher up to the point where 𝑣1 = 0.

A simple conclusion from this is that certain parts of space 

can be called forbidden regions.
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Forbidden Regions

Those regions can be drawn for given Jacobi constants. 

Knowing that the limit of the regions is given by 𝑣1 = 0, we 

have 

1

2
𝑣2 −

1 − 𝜇

𝑥 + 𝜇
−

𝜇

𝑥 − 1 − 𝜇
−
1

2
1 − 𝜇 𝑥 + 𝜇 2 + 𝜇 𝑥 − 1 − 𝜇

2
= 𝐽

1 − 𝜇

𝑥 + 𝜇
+

𝜇

𝑥 − 1 − 𝜇
+
1

2
1 − 𝜇 𝑥 + 𝜇 2 + 𝜇 𝑥 − 1 − 𝜇

2
+ 𝐽 = 0

> 0 > 0 > 0

Since all the three terms are positive the Jacobi 

constant must be negative.
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Forbidden Regions
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Forbidden Regions
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Conclusions

The 3-body problem is inherently chaotic.

Need of (possibly over-simplifying) assumptions to 

understand dynamics.

CR3BP: rich dynamical environment with several families 

of periodic orbits of interest for space mission design
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