Astrodynamics (AERO0024)

2. The Two-Body Problem

Gaëtan Kerschen Space Structures & Systems Lab (S3L)

 Cassini Classical Orbit Elements

 Time (UTCG):
 15 Oct 1997 09:18:54.000

 Semi-major Axis (km):
 6685.637000

 Eccentricity:
 0.020566

 Inclination (deg):
 30.000

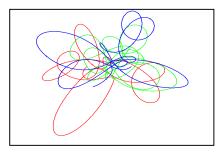
 RAAN (deg):
 150.546

 Arg of Perigee (deg):
 230.000

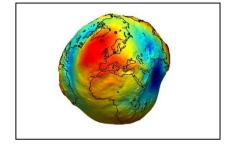
 True Anomaly (deg):
 136.530

 Mean Anomaly (deg):
 134.891

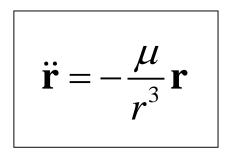
2. The Two-Body Problem



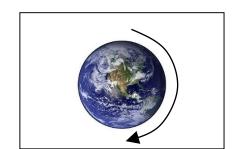
2.1 Justification of the 2-body model



2.2 Gravitational field

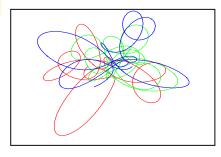


2.3 Relative motion



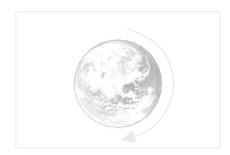
2.4 Resulting orbits

2. The Two-Body Problem



2.1 Justification of the 2-body model



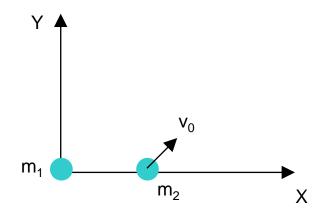


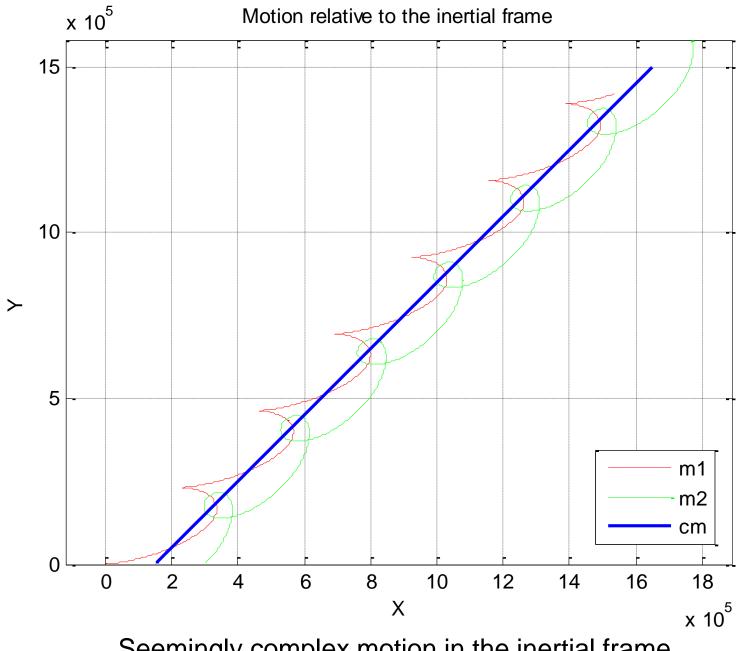
N-body problem

Two-Body Problem: Matlab Example

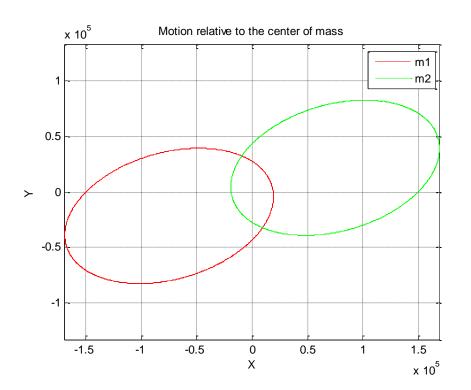
Two identical masses:

- \Rightarrow One is at rest at the origin of the inertial frame of reference.
- \Rightarrow The other one has a velocity directed upward to the right making a 45 degrees angle with the X axis.





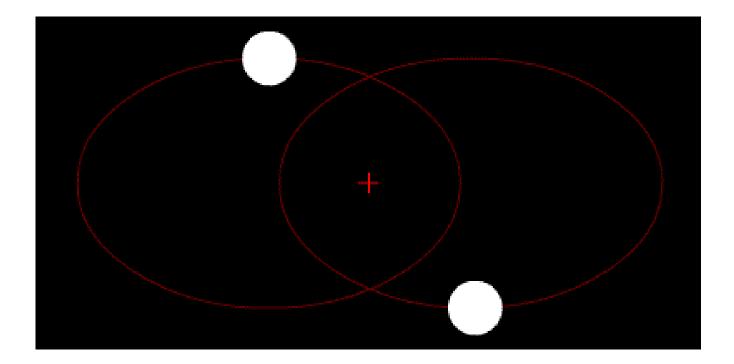
Seemingly complex motion in the inertial frame

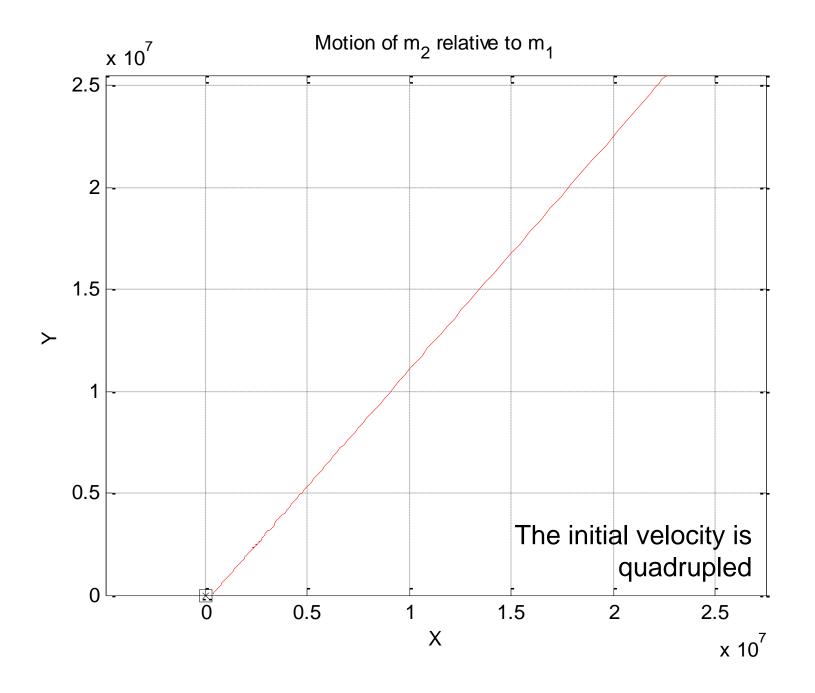


Motion of m₂ relative to m₁ x 10⁵ 1.5 1 0.5 ≻ 0 -0.5 0 0.5 1.5 2 2.5 3 1 Х x 10⁵

Much less complex motion when viewed from the c.o.m

Much less complex motion when viewed from $\ensuremath{m_1}$

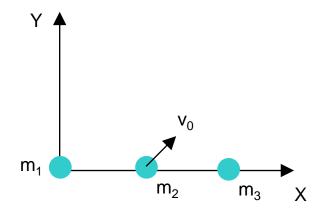


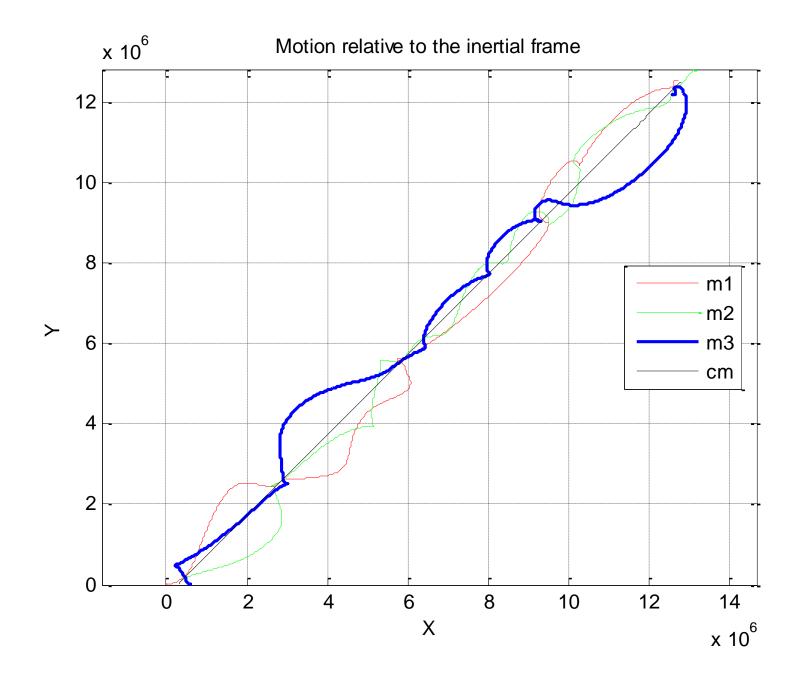


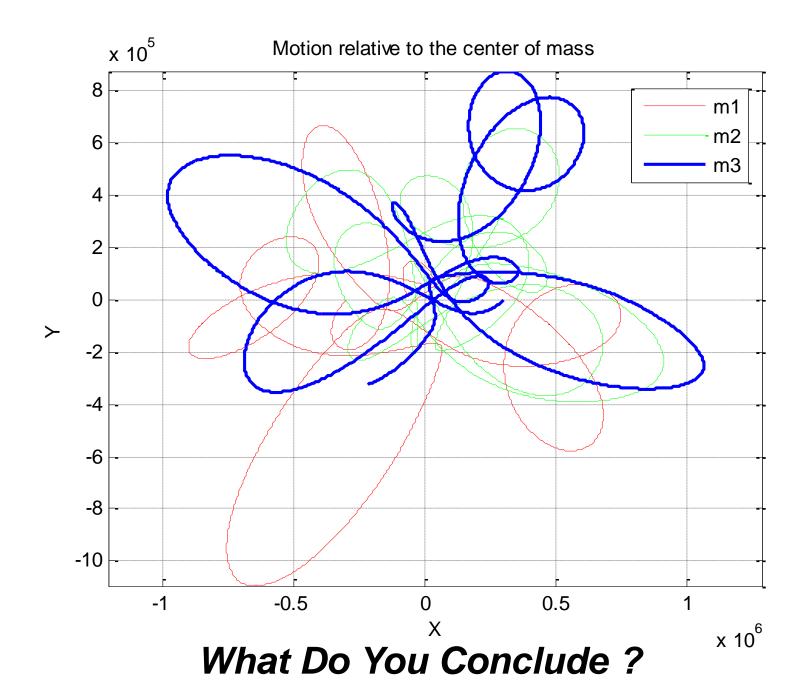
Three-Body Problem: Matlab Example

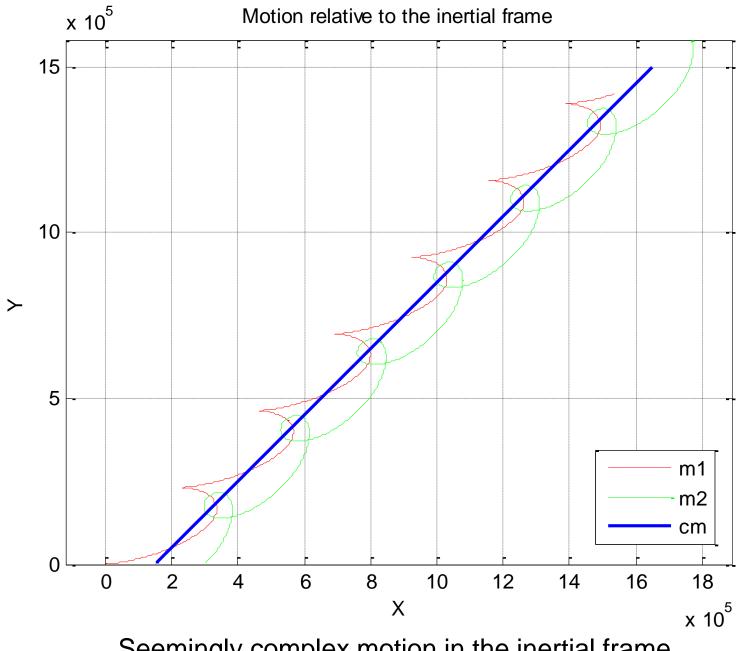
Three identical masses:

- \Rightarrow Two are at rest.
- \Rightarrow The third one has a velocity directed upward to the right making a 45 degrees angle with the X axis.



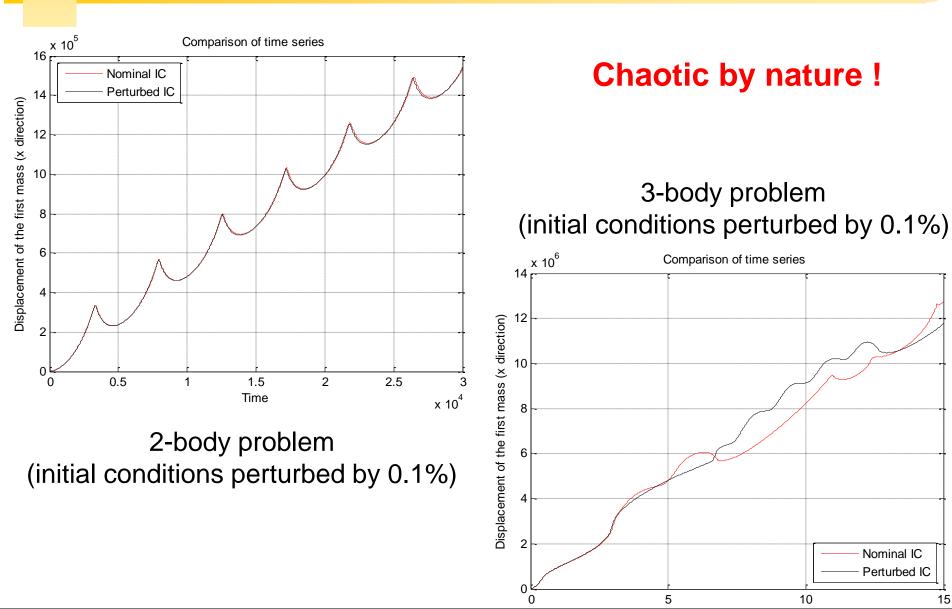






Seemingly complex motion in the inertial frame

Why Is the 3-Body Problem So Difficult ?



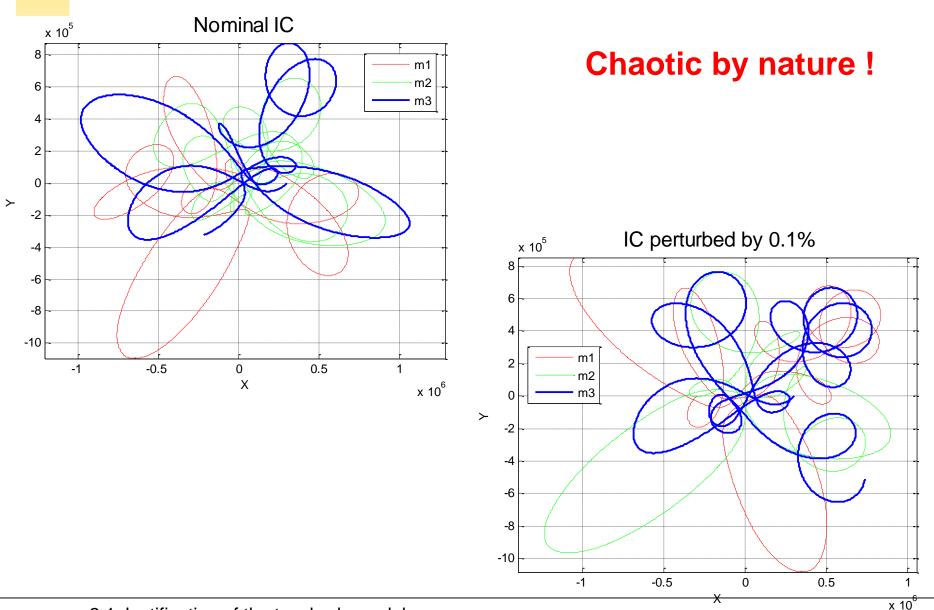
15

Nominal IC Perturbed IC

10

Time

Why Is the 3-Body Problem So Difficult ?



Precise orbit propagation:

Elaborate models are necessary to compute the motion of satellites to the high level of accuracy required for many applications today (e.g., the GPS system). The 2body problem is not helpful in that context.

Interest in the Two-Body Problem ?

Qualitative understanding:

The main features of satellite and planet orbits can be described by a reasonably simple approximation, the two-body problem.

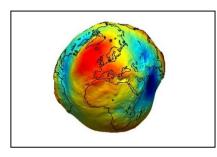
Mission design:

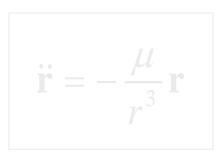
Some important quantities (ΔV and C_3) can be computed fairly accurately using the two-body assumption.

Interplanetary transfer:

In lecture 6, we will use a sequence of 2-body problems to approximate a complex interplanetary mission.

2. The Two-Body Problem

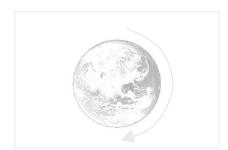




2.2 Gravitational field:

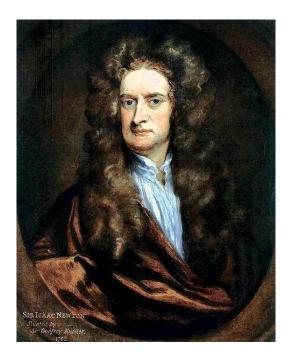
- 2.2.1 Newton's law of universal gravitation
- 2.2.2 The Earth
 - 2.2.3 Gravity models and geoid

What is the highest point on Earth?



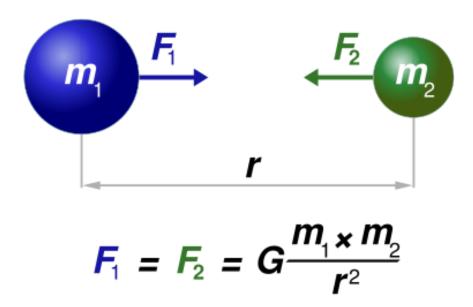
The law of universal gravitation is an empirical law describing the gravitational attraction between bodies with mass.

It was first formulated by Newton in *Philosophiae Naturalis Principia Mathematica* (1687). He was able to relate objects falling on the Earth to the motion of the planets.



Isaac Newton (1642-1727)

Every point mass attracts every other point mass by a force pointing along the line intersecting both points. The force is proportional to the product of the two masses and inversely proportional to the square of the distance between the point masses:



In Vector Form

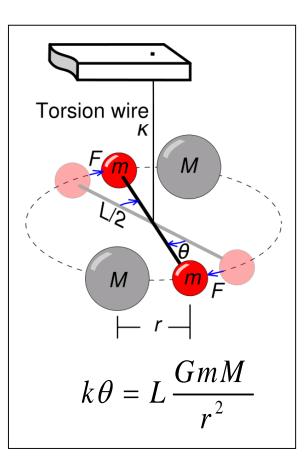
 $-G \frac{m_1 m_2}{|\mathbf{r}|^2} \hat{\mathbf{r}}_{12}$ \mathbf{F}_{12}

 $\hat{\mathbf{r}}_{12} = \frac{\mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{r}_2 - \mathbf{r}_{11}|}$ $|\mathbf{r}_{12}| = |\mathbf{r}_2 - \mathbf{r}_1|$ with

Gravitational Constant

By measuring the mutual attraction of two bodies of known mass, the gravitational constant *G* can directly be determined from torsion balance experiments.

Due to the small size of the gravitational force, *G* is presently only known with limited accuracy and was first determined many years after Newton's discovery:



$(6.67428 \pm 0.00067) \times 10^{-11} \text{ m}^3.\text{kg}^{-1}.\text{s}^{-2}$

(http://www.physics.nist.gov/cgi-bin/cuu/Value?bg)

Gravitational Parameter of a Celestial Body

$$\mu = GM_{\oplus}$$

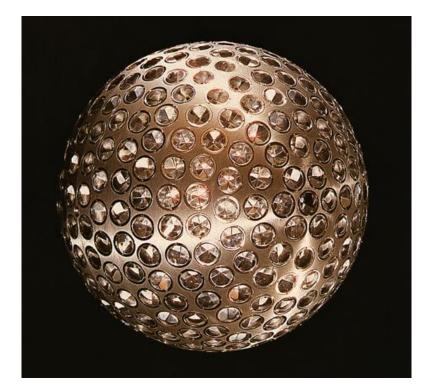
The gravitational parameter of the Earth has been determined with considerable precision from the analysis of laser distance measurements of artificial satellites:

 $398600.4418 \pm 0.0008 \text{ km}^3 \text{ s}^{-2}$.

The uncertainty is 1 to 5e8, much smaller than the uncertainties in *G* and *M* separately (~1 to 1e4 each).

Satellite Laser Ranging

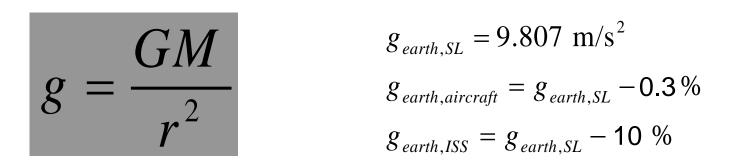
TIGO (Concepcion, Chile)



LAGEOS-1

Lasers measure ranges from ground stations to satellite borne retro-reflectors. Because the events of sending and receiving a pulse can be registered within a few picoseconds, the distance between the ground station and the satellite is determined within a few millimeters.

Acceleration of Gravity



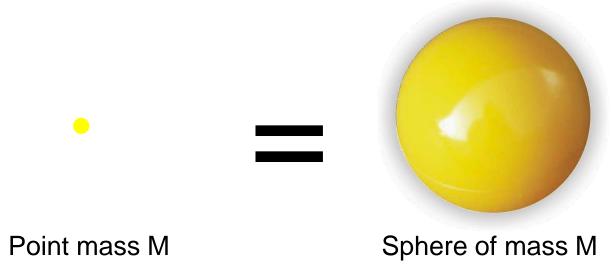
We sense our own weight by feeling contact forces acting on us in opposition to the force of gravity: W=mg.

If planetary gravity is the only force acting on a body, then the body is said to be in free fall. There are, by definition, no contact forces, so there can be no sense of weight.

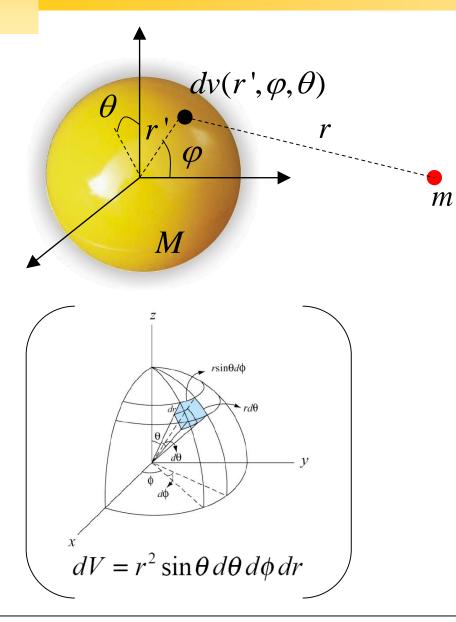
A person in free fall experiences weightlessness: gravity is still there, but he cannot feel it.

Up to now, point masses were considered.

But an object with a spherically-symmetric distribution of mass exerts the same gravitational attraction on external bodies as if all the object's mass were concentrated at a point at its centre.



Spherically Symmetric Mass Distribution



$$M = \iiint_{v} \rho dv$$
$$V = -Gm \iiint_{v} \frac{\rho dv}{r}$$
$$dv = r'^{2} \sin \varphi d\varphi d\theta dr'$$
$$r = \sqrt{R^{2} + r'^{2} - 2r'R\cos\varphi}$$
$$\frac{dr}{d\varphi} = \frac{r'R\sin\varphi}{r}$$

Spherically Symmetric Mass Distribution

$$M = \left(\int_0^{2\pi} \mathrm{d}\theta\right) \left(\int_0^{\pi} \sin\varphi \mathrm{d}\varphi\right) \left(\int_0^{R_0} \rho r'^2 \mathrm{d}r'\right) = 4\pi \left(\int_0^{R_0} \rho r'^2 \mathrm{d}r'\right)$$

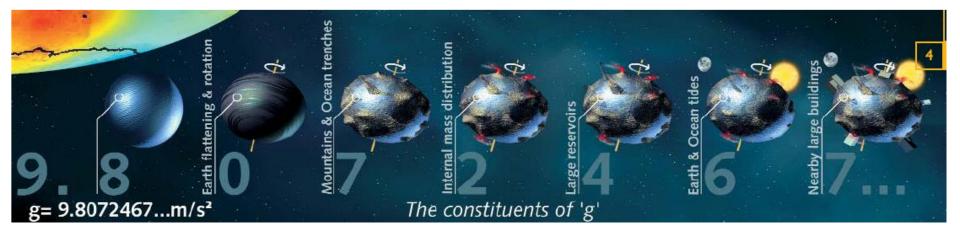
$$V = -2\pi Gm \left(\int_0^{R_0} \left(\int_0^{\pi} \frac{\sin \varphi d\varphi}{r} \right) \rho r'^2 dr' \right)$$
$$= -2\pi Gm \left(\int_0^{R_0} \left(\frac{1}{r'R} \int_{R-r'}^{R+r'} dr \right) \rho r'^2 dr' \right)$$
$$= -\frac{4\pi Gm}{R} \left(\int_0^{R_0} \rho r'^2 dr' \right) = -\frac{GMm}{R} \quad \text{OK }!$$

What is the Highest Point on Earth?

Mount Chimborazo (6310 m), located in Ecuador, may be considered as the highest point on Earth. It is the spot on the surface farthest from the Earth's center.

6384.4 km (Chimborazo) vs. 6382.3 km (Everest)

The Earth is not a Sphere...

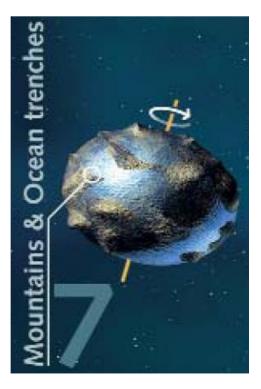


1st Order Effect: Equatorial Bulge

Because our planet rotates, the centrifugal force tends to pull material outwards around the Equator where the velocity of rotation is at its highest:

- \Rightarrow The Earth's radius is 21km greater at the Equator compared to the poles.
- ⇒ The force of gravity is weaker at the Equator (g=9.78 m/s²) than it is at the poles (g=9.83 m/s²).

2nd Order Effect: Mountains and Oceans



Rather than being smooth, the surface of the Earth is relatively "lumpy":

⇒ There is about a 20 km difference in height between the highest mountain and the deepest part of the ocean floor.

3rd Order Effect: Internal Mass Distribution

The different materials that make up the layers of the Earth's crust and mantle are far from homogeneously distributed:

⇒ For instance, the crust beneath the oceans is a lot thinner and denser than the continental crust.

Because of its relative simplicity, a flattened ellipsoid, called the **reference ellipsoid**, is typically used as the idealized Earth:

- \Rightarrow Ellipsoid of revolution.
- \Rightarrow The size is represented by the radius at the equator, *a*.
- ⇒ The shape of the ellipsoid is given by the flattening, *f*, which indicates how much the ellipsoid departs from spherical. f=(a-b)/a, where *b* is the polar radius.

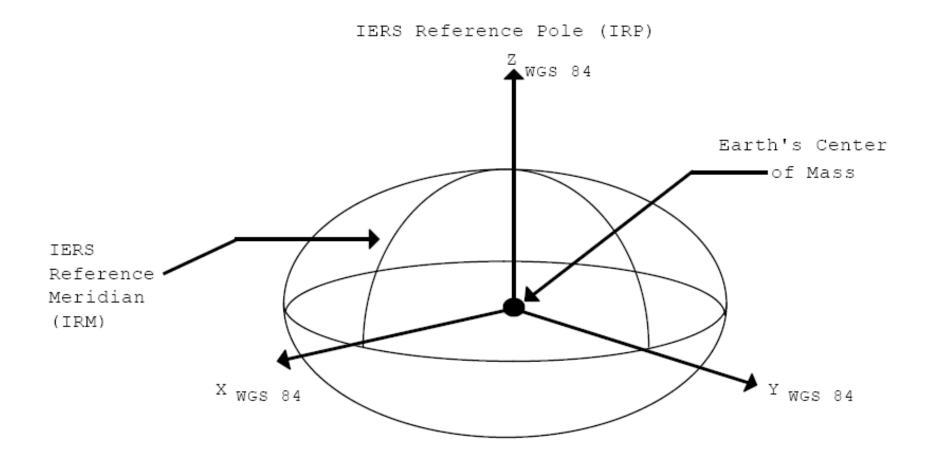
Most Common Reference Ellipsoid

WGS84 (World Geodetic System 1984, revised in 2004):

- \Rightarrow Origin at the center of mass of Earth.
- \Rightarrow a=6378.137 km, b=6356.752 km, f=0.335 %.
- \Rightarrow Reference system used by the GPS.
- \Rightarrow Official document on the course web site (interesting to read !).

Parameter	Notation	Value
Semi-major Axis	a	6378137.0 meters
Reciprocal of Flattening	1/f	298.257223563
Angular Velocity of the Earth	ω	7292115.0 x 10 ⁻¹¹ rad/s
Earth's Gravitational Constant	GM	$3986004.418 \ge 10^8 \text{m}^3/\text{s}^2$
(Mass of Earth's Atmosphere		
Included)		
WGS84 four defining parameters		

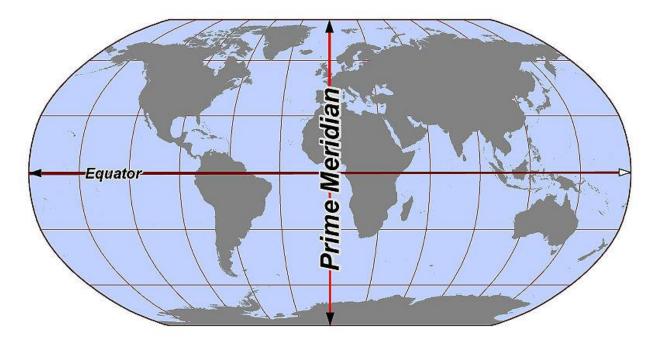
WGS84 Coordinate System



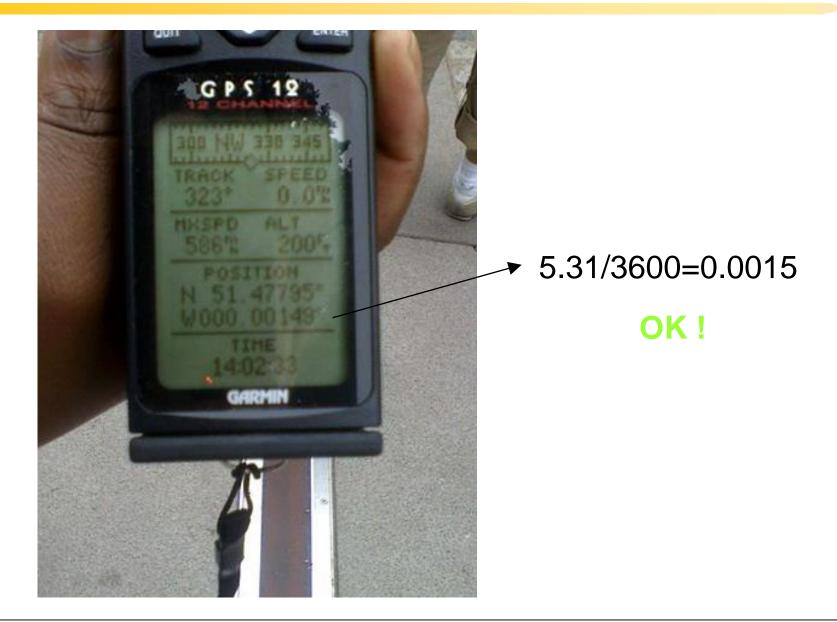
Longitude

Point coordinates such as latitude, longitude and elevation are defined from the reference ellipsoid.

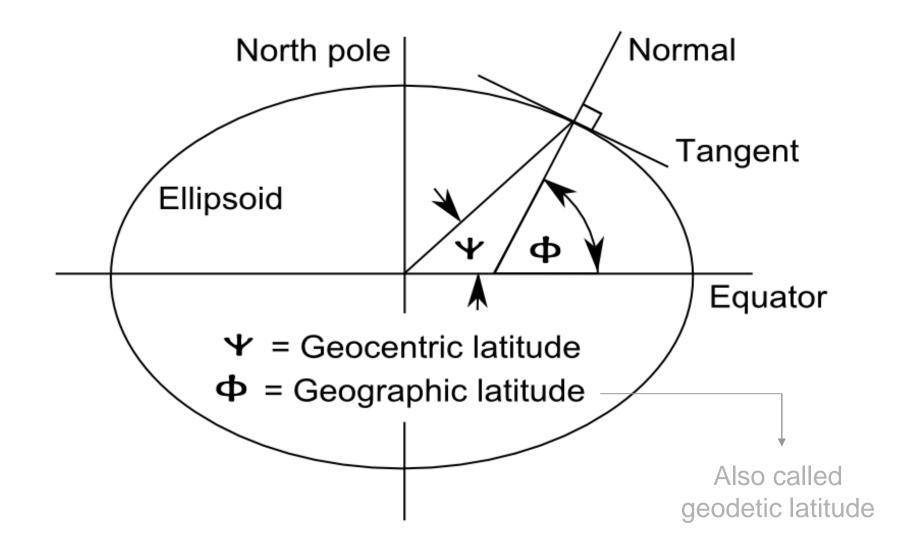
The meridian of zero longitude is the IERS Reference Meridian, which lies 5.31" east of the Greenwich Meridian.



GPS Receiver at the Greenwich Meridian



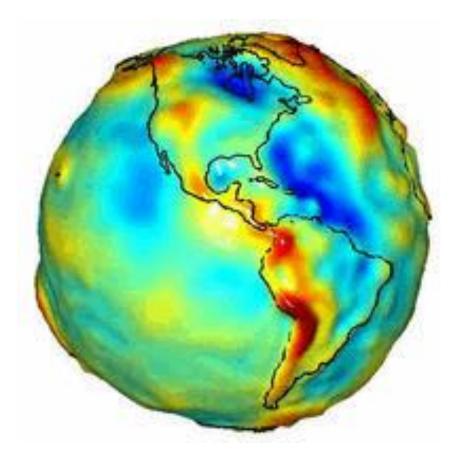
Latitude



The **geoid** is that equipotential surface which would coincide exactly with the mean ocean surface of the Earth, if the oceans were in equilibrium, at rest, and extended through the continents:

- \Rightarrow It is by definition a surface to which the force of gravity is everywhere perpendicular.
- ⇒ It is an irregular surface but considerably smoother than Earth's physical surface. While the latter has excursions of almost 20 km, the total variation in the geoid is less than 200 m.

The True Figure of the Earth



Gravitational Modeling

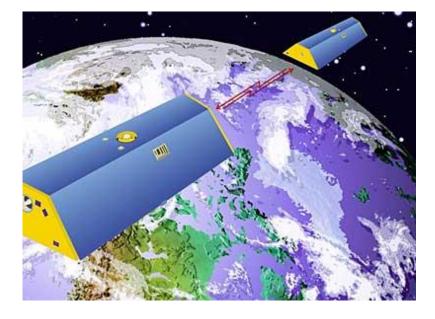
Spherical harmonics are used to model the Earth gravitational model:

$$V = \frac{GM}{r} \left[1 + \sum_{n=2}^{n_{max}} \sum_{m=0}^{n} \left(\frac{a}{r}\right)^{n} \overline{P}_{nm} \left(\sin \phi'\right) \left(\overline{C}_{nm} \cos m\lambda + \overline{S}_{nm} \sin m\lambda\right) \right]$$

Gravitational potential function

- ⇒ The current set is **EGM2008** (Earth Gravity Model 2008). The model comprises 4.6 million terms in the spherical expansion (order and degree 2159).
- \Rightarrow Geoid with a resolution approaching 10 km (5'x5').
- \Rightarrow More details in Chapter 4 (Non-Keplerian motion).

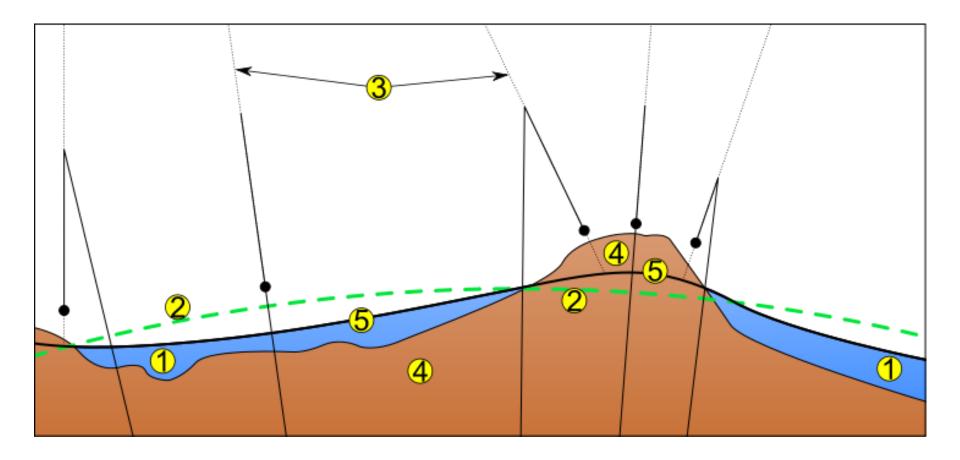
EGM2008 Made Use of Grace Satellites



GRACE employs microwave ranging system to measure changes in the distance between two identical satellites as they circle Earth. The ranging system detects changes as small as 10 microns over a distance of 220 km. EGM2008 contains no explicit information about which level surface, out of the infinitely many that may be generated from the potential coefficients, is "the" geoid.

EGM2008 model is therefore used to compute geoid undulations with respect to WGS84 ellipsoid. The result is referred to as WGS84-EGM08 geoid.

Geoid calculator for EGM96: http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/intpt.html

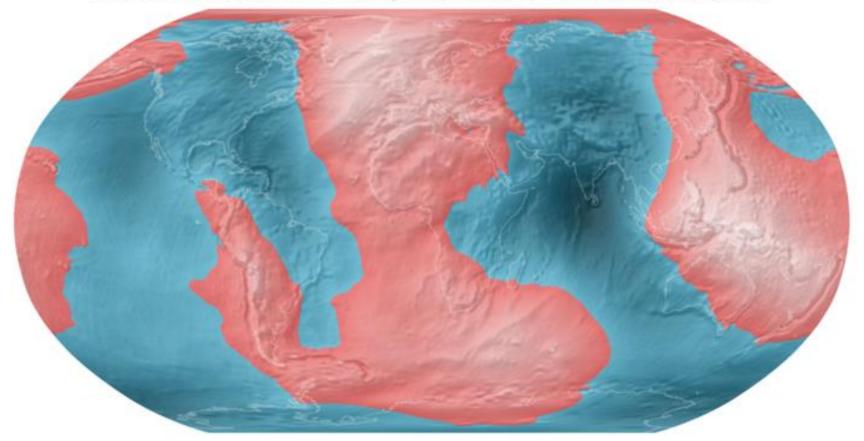


- 1: ocean
- 2: reference ellipsoid
- 3: local plumb

- 4: continent
- 5: geoid

Deviation of the Geoid from the idealized figure of the Earth

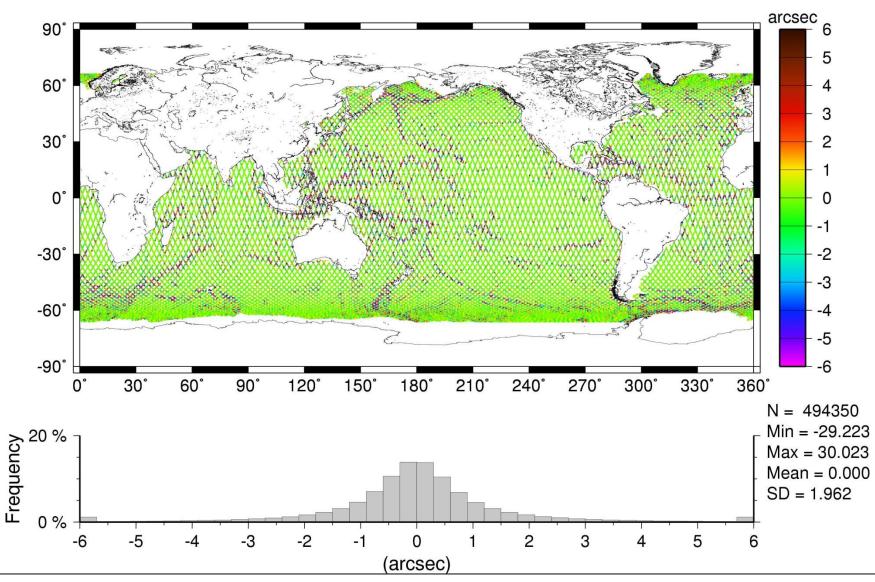
(difference between the EGM96 geoid and the WGS84 reference ellipsoid)



Red areas are above the idealized ellipsoid; blue areas are below.

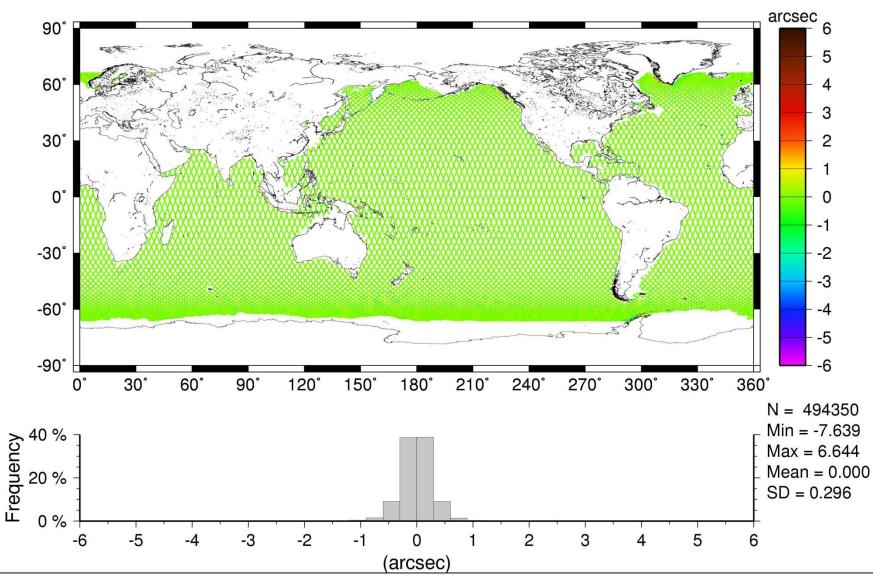
-107.0 m

Residual Sea Surface Slopes (EGM-96)



^{2.2.3} Gravity models and geoid

Residual Sea Surface Slopes (EGM-2008)



^{2.2.3} Gravity models and geoid

Future Improvements: GOCE, 2009

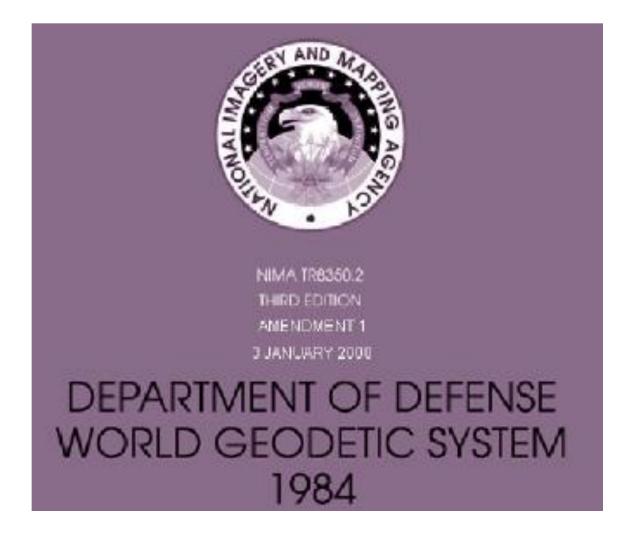
Parameter	Requirement		
	Accuracy	Resolution (km)	Spherical Harmonic Degree
Geoid (m)	0.01–0.02	100	200
Gravity Anomalies (mGal)	1.0	100	200

(EGM96: ~0.5 m) $(1mGal = 10^{-5} m/s^2)$

Why So Many Efforts ???

- 1. GPS and an advanced map of the geoid can replace time-consuming leveling procedures.
- 2. Physics of the Earth's interior (gravity is directly linked to the distribution of mass).
- 3. Understanding of ocean circulation, which plays a key role in energy exchanges around the globe.
- 4. Computation of the motion of satellites to the level of accuracy required today.

Further Reading on the Course Web Site



Einstein's theory is the current description of gravity in modern physics.

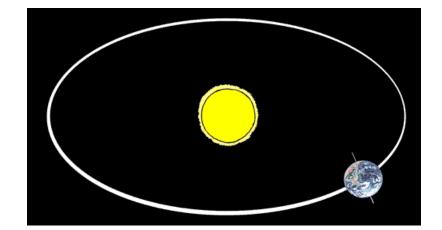
This course will not cover the theory of general relativity, but Newton's law is still an excellent approximation of the effects of gravity if:

$$\frac{\Phi}{c^2} = \frac{GM}{rc^2} <<<1, \text{ and } \left(\frac{v}{c}\right)^2 <<<1$$

General Relativity: Earth-Sun Example

$$\frac{\Phi}{c^2} = \frac{GM_{sun}}{r_{orbit}c^2} \sim 10^{-8}, \text{ and } \left(\frac{v}{c}\right)^2 = \left(\frac{2\pi r_{orbit}}{1 \text{ year.}c}\right)^2 \sim 10^{-8} \text{ oK }!$$

G=6.67428 ×
$$10^{-11}$$
 m³.kg⁻¹.s⁻²
r_{orbit}=1.5 × 10^{11} m (1 AU)
M_{sun}=1.9891 × 10^{30} kg
c=3e8 m.s⁻¹

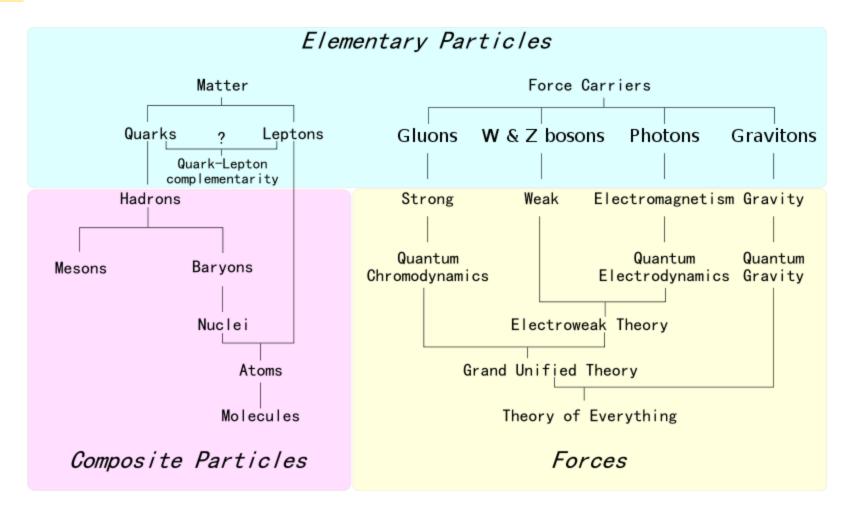


What is the relationship between the gravitational force and other known fundamental forces ?

That one body may act upon another at a distance through a vacuum without the mediation of anything else, by and through which their action and force may be conveyed from one another, is to me so great an absurdity that, I believe, no man who has in philosophic matters a competent faculty of thinking could ever fall into it. (Newton, 1692)

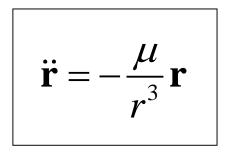
The question is not yet fully resolved today !

The Quest of a Unifying Theory



[End of digression]

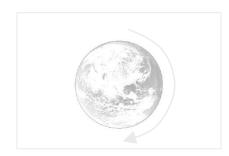
2. The Two-Body Problem



2.3 Relative motion:

2.3.1 Equations of motion

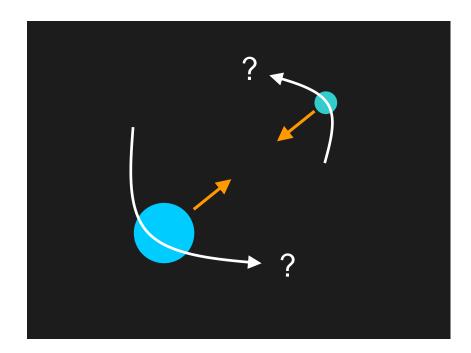
2.3.2 Closed-form solution



Definition of the 2-Body Problem

Motion of two bodies due solely to their own mutual gravitational attraction. Also known as **Kepler problem**.

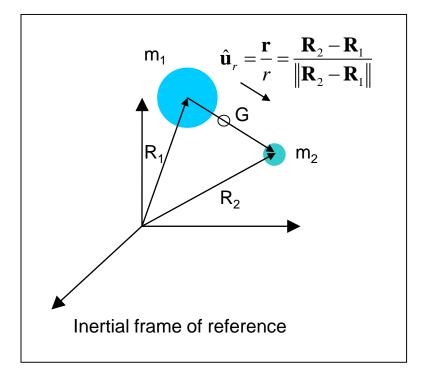
Assumption: two point masses (or equivalently spherically symmetric objects).



Motion of the Center of Mass

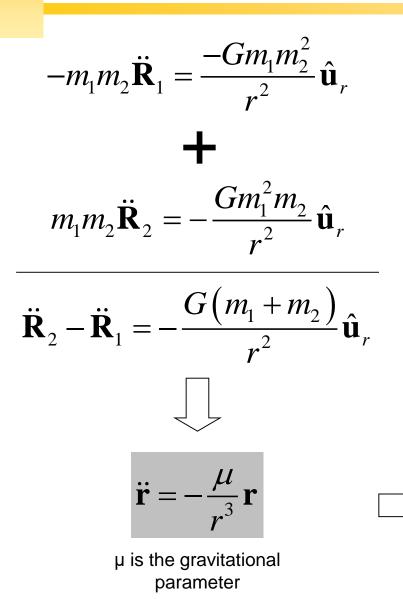
$$m_1 \ddot{\mathbf{R}}_1 = \frac{Gm_1m_2}{r^2} \hat{\mathbf{u}}_r$$
$$+$$
$$m_2 \ddot{\mathbf{R}}_2 = -\frac{Gm_1m_2}{r^2} \hat{\mathbf{u}}_r$$
$$m_1 \ddot{\mathbf{R}}_1 + m_2 \ddot{\mathbf{R}}_2 = 0$$
$$+$$
$$\mathbf{R}_G = \frac{m_1 \mathbf{R}_1 + m_2 \mathbf{R}_2}{m_1 + m_2}$$

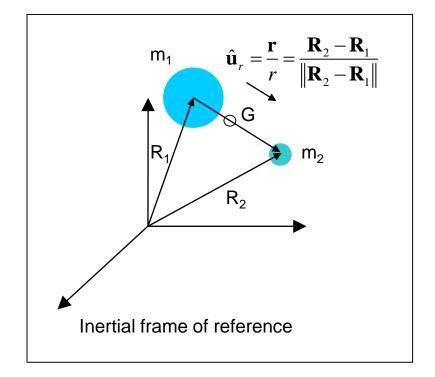
$$\mathbf{R}_G = \mathbf{R}_{G0} + \mathbf{v}_G$$



The c.o.m. of a 2-body system may serve as the origin of an inertial frame.

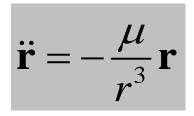
Equations of Relative Motion



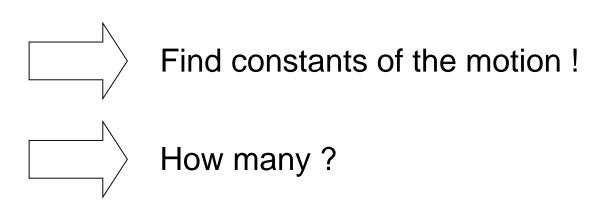


The motion of m_2 as seen from m_1 is the same as the motion of m_1 as seen from m_2 .

Equations of Relative Motion



This is a nonlinear dynamical system. How to solve it ?

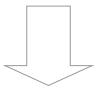


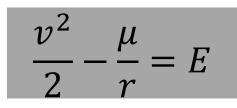
Energy Conservation

$$\ddot{\mathbf{r}} = -\frac{\mu}{r^3}\mathbf{r}$$

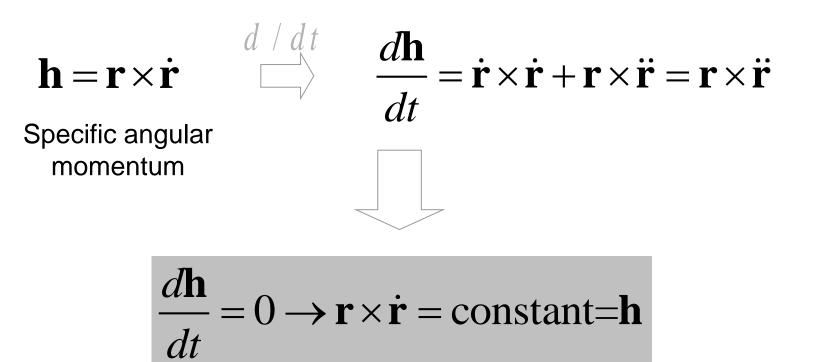
$$\ddot{\mathbf{r}} \cdot \dot{\mathbf{r}} = \frac{1}{2} \frac{d}{dt} (\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}) = \frac{1}{2} \frac{d}{dt} (\dot{r}^2) = \frac{1}{2} \frac{d}{dt} (v^2)$$

$$\mu \frac{\mathbf{r} \cdot \dot{\mathbf{r}}}{r^3} = \mu \frac{r \cdot \dot{r}}{r^3} = \mu \frac{\dot{r}}{r^2} = -\frac{d}{dt} \left(\frac{\mu}{r}\right)$$

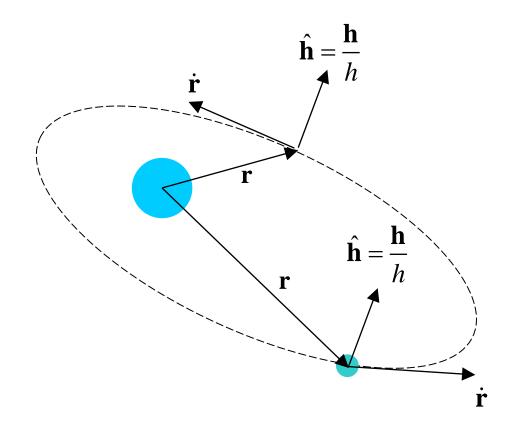




Constant Angular Momentum



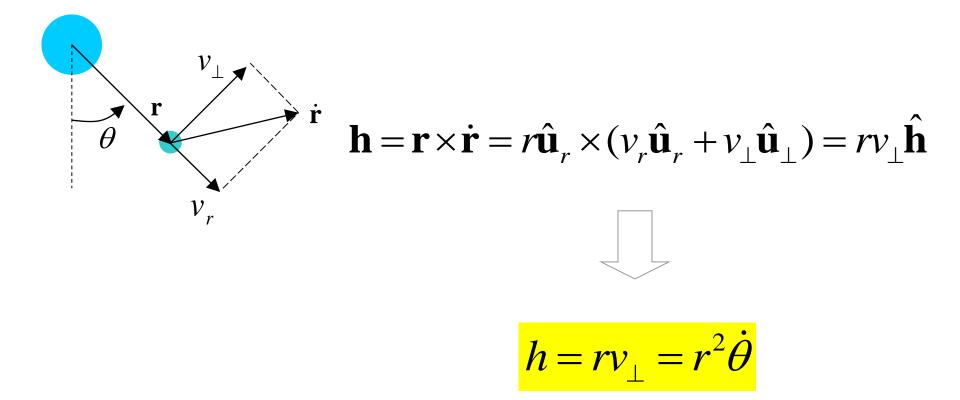
The Motion Lies in a Fixed Plane



The fixed plane is the **orbit plane** and is normal to the angular momentum vector.

$\mathbf{r} \times \dot{\mathbf{r}} = \text{constant} = \mathbf{h}$

Azimuth Component of the Velocity



The angular momentum depends only on the azimuth component of the relative velocity

First Integral of Motion

$$\ddot{\mathbf{r}} = -\frac{\mu}{r^{3}}\mathbf{r} \qquad \stackrel{\times \mathbf{h}}{\longrightarrow} \qquad \ddot{\mathbf{r}} \times \mathbf{h} = -\frac{\mu}{r^{3}}\mathbf{r} \times \mathbf{h} = -\frac{\mu}{r^{3}}\mathbf{r} \times (\mathbf{r} \times \dot{\mathbf{r}})$$
$$\overset{\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a}.\mathbf{c}) - \mathbf{c}(\mathbf{a}.\mathbf{b})}{\longrightarrow} \qquad \ddot{\mathbf{r}} \times \mathbf{h} = \frac{\mu}{r^{3}} \left[\dot{\mathbf{r}}(\mathbf{r}.\mathbf{r}) - \mathbf{r}(\mathbf{r}.\dot{\mathbf{r}}) \right]$$

$$= \mu \left(\frac{\dot{\mathbf{r}}}{r} - \frac{\mathbf{r}\dot{r}}{r^2}\right) = \mu \frac{d}{dt} \left(\frac{\mathbf{r}}{r}\right)$$

 $\dot{\mathbf{r}} \times \mathbf{h} - \mu \frac{\mathbf{r}}{r} = \text{constant} = \mu \mathbf{e}$

e lies in the orbit plane (**e**.**h**)=0: the line defined by **e** is the apse line. Its norm, *e*, is the eccentricity.

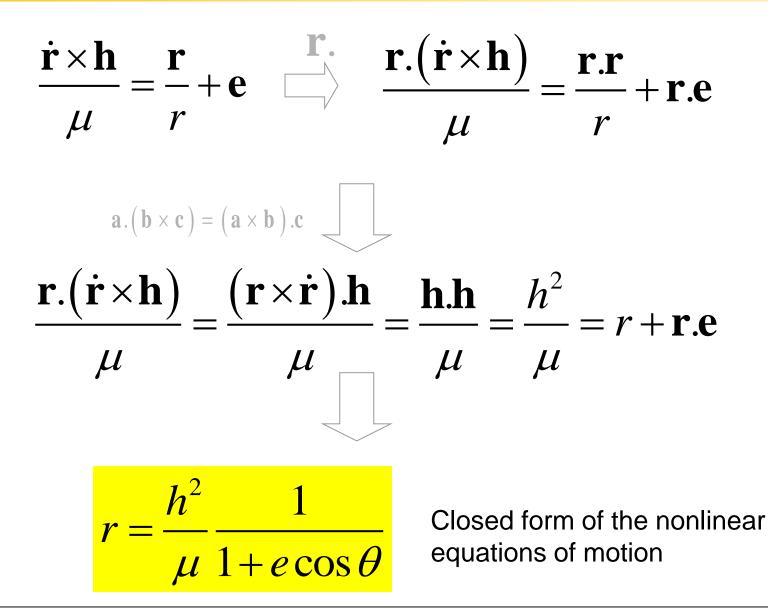
Note: demonstrate the Identity $\mathbf{r} \cdot \dot{\mathbf{r}} = r\dot{r}$

$$\frac{d}{dt}(\mathbf{r},\mathbf{r}) = \mathbf{r}.\frac{d\mathbf{r}}{dt} + \frac{d\mathbf{r}}{dt}.\mathbf{r} = 2\mathbf{r}.\frac{d\mathbf{r}}{dt} = 2\mathbf{r}.\dot{\mathbf{r}}$$

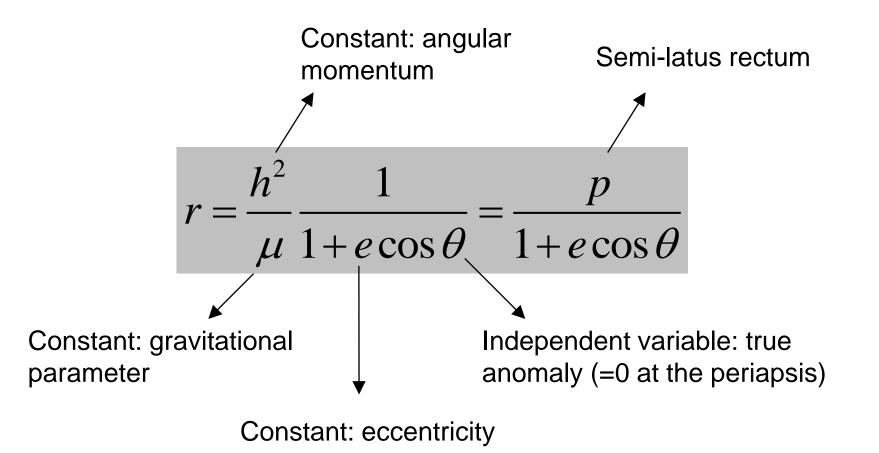
$$\mathbf{r} \cdot \mathbf{r} = r^2 \quad \Box \quad \frac{d}{dt} (\mathbf{r} \cdot \mathbf{r}) = 2r \frac{dr}{dt} = 2r\dot{r}$$

 $\mathbf{r} \cdot \dot{\mathbf{r}} = 2r\dot{r}$

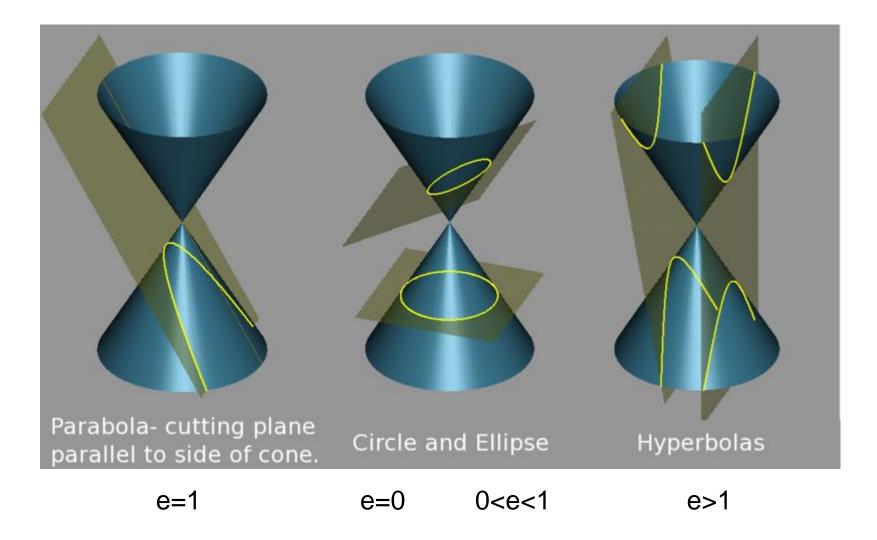
Orbit Equation



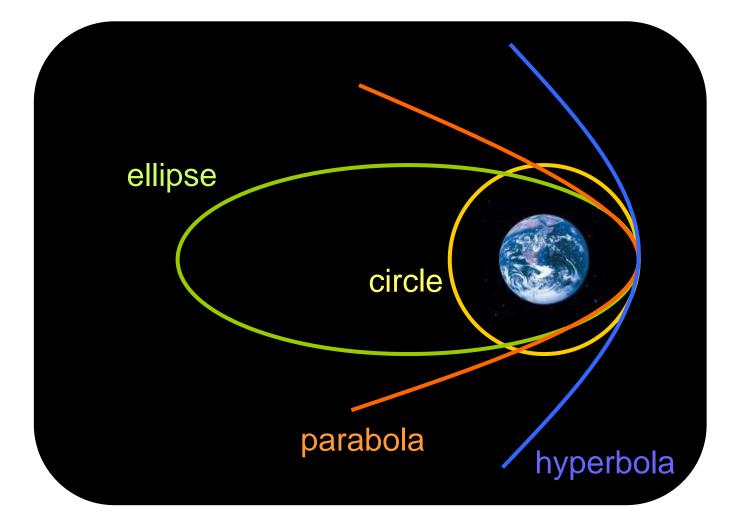
Conic Section in Polar Coordinates



Conic Section



Possible Motions in the 2-Body System

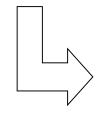


In Summary

We can calculate *r* for all values of the true anomaly.

The orbit equation is a mathematical statement of Kepler's first law.

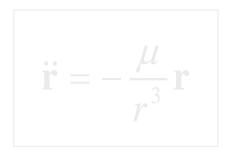
The solution of the "simple" problem of two bodies cannot be expressed in a closed form, explicit function of time.

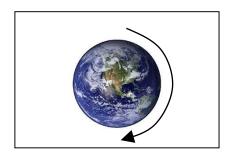


Do we have 6 independent constants ?

The two vector constants **h** and **e** provide only 5 independent constants: **h.e**=0

2. The Two-Body Problem





2.4 Resulting orbits:

- 2.4.1 Circular orbits
- 2.4.2 Elliptic orbits
- 2.4.3 Parabolic orbits
- 2.4.4 Hyperbolic orbits

Circular Orbits (e=0)

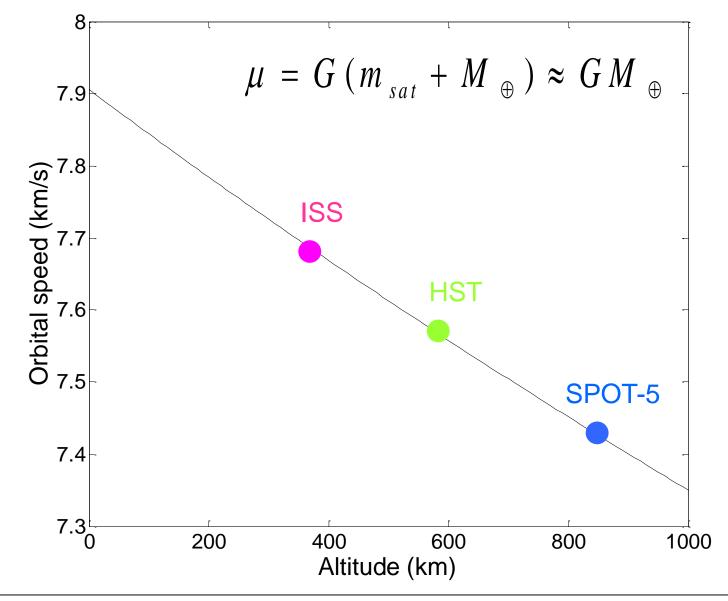
$$r = \frac{h^2}{\mu} = \text{Constant} \qquad h = rv_{\perp} = rv_{circular}$$

$$v_{circ} = \sqrt{\frac{\mu}{r}} \qquad T_{circ} = \frac{2\pi r}{\sqrt{\frac{\mu}{r}}} = \frac{2\pi}{\sqrt{\mu}} r^{3/2}$$

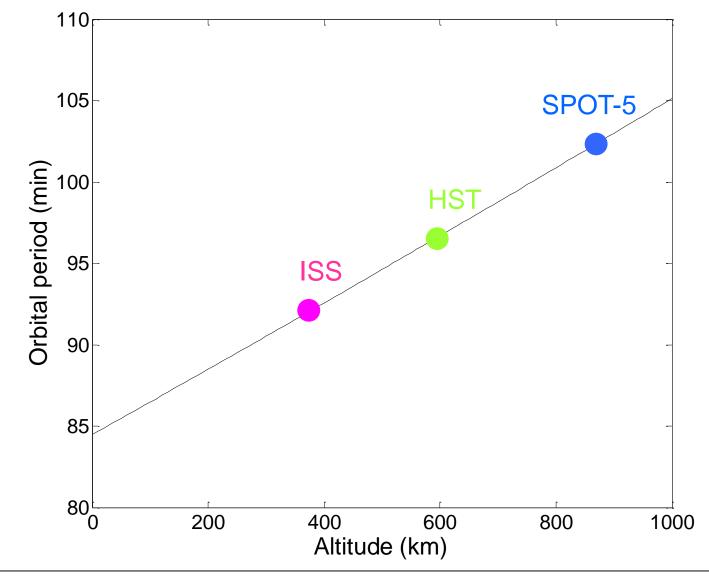
$$\varepsilon_{circ} = -\frac{\mu}{2r} < 0$$

2.4.1 Circular orbits

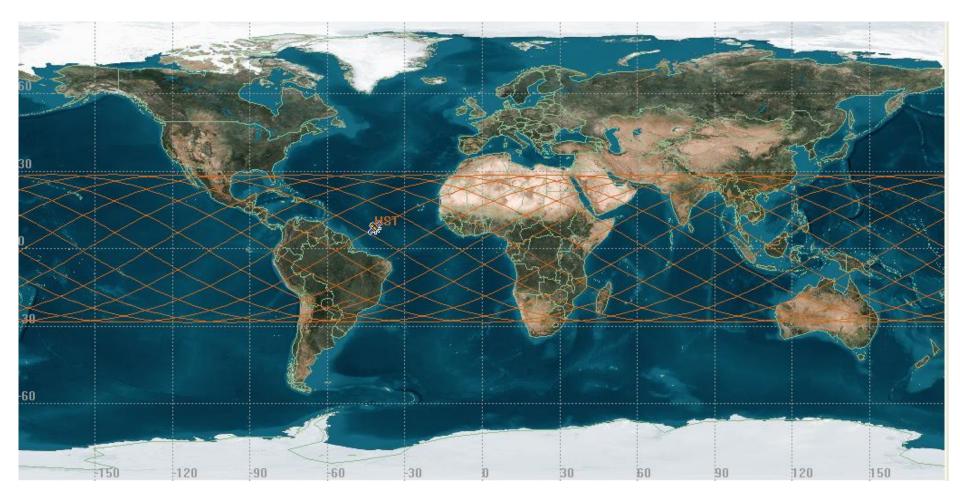
Orbital Speed



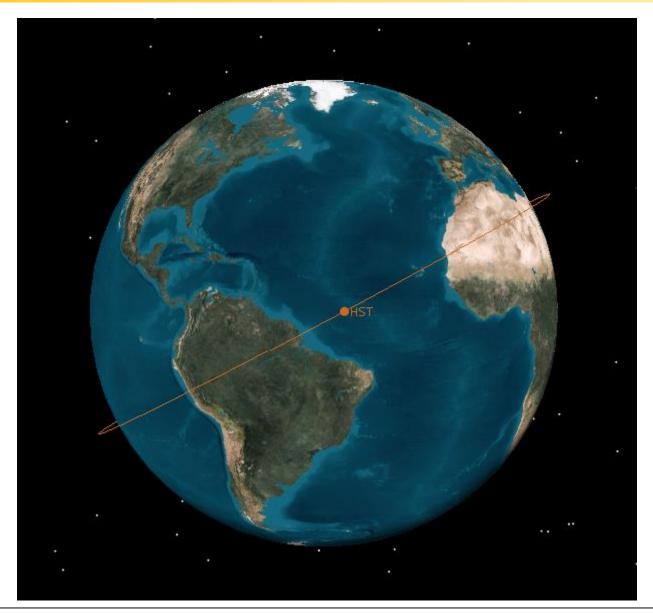
Orbital Period



Hubble Space Telescope



Hubble Space Telescope

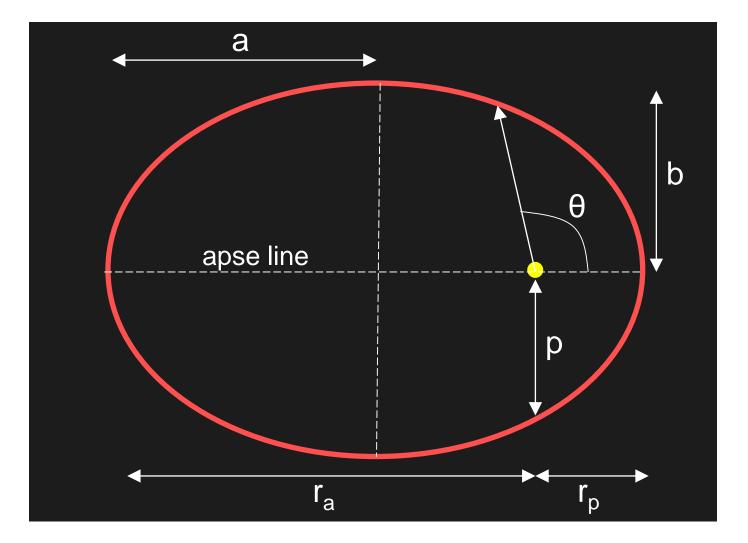


- 7.9 km/s is the first cosmic velocity; i.e., the minimum velocity (theoretical velocity, r=6378 km) to orbit the Earth.
- 2. 35786 km is the altitude of the **geostationary orbit**. It is the orbit at which the satellite angular velocity is equal to that of the Earth, $\omega = \omega_E = 7.292 \ 10^{-5}$ rad/s, in inertial space (*).

$$r_{GEO} = \left(\frac{T_{circ}\sqrt{\mu}}{2\pi}\right)^{2/3}$$

^{*} A sidereal day, 23h56m4s, is the time it takes the Earth to complete one rotation relative to inertial space. A synodic day, 24h, is the time it takes the sun to apparently rotate once around the earth. They would be identical if the earth stood still in space.

Geometry of the Elliptic Orbit

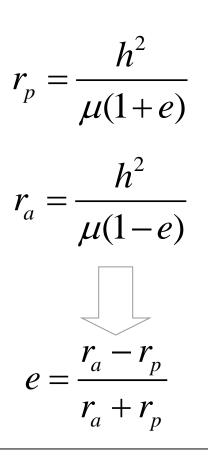


Elliptic Orbits (0<e<1)

$$r = \frac{h^2}{\mu} \frac{1}{1 + e\cos\theta}$$

The relative position vector remains bounded.

 θ =0, minimum separation, periapse



Energy of an Elliptical Orbit

$$\frac{v^2}{2} - \frac{\mu}{r} = E \qquad \frac{v_p^2}{2} - \frac{\mu}{r_p} = E_{perigee}$$

$$\int h = v_p r_p \qquad \text{See part 1}$$

$$\frac{h^2}{2r_p^2} - \frac{\mu}{r_p} = E_{perigee}$$

$$\int r_p = \frac{h^2}{\mu(1+e)}$$

$$-\frac{1}{2}\frac{\mu^2}{h^2}(1-e^2) = E_{perigee} \qquad \Box \qquad \text{Link between energy} \\ and the other \\ constants h and e!$$

$$\int h = \sqrt{\mu a(1-e^2)} \qquad \text{See next slide}$$

$$-\frac{\mu}{2a} = E_{perigee}$$

Note: Angular Momentum

$$r = \frac{h^2}{\mu} \frac{1}{1 + e\cos\theta}$$

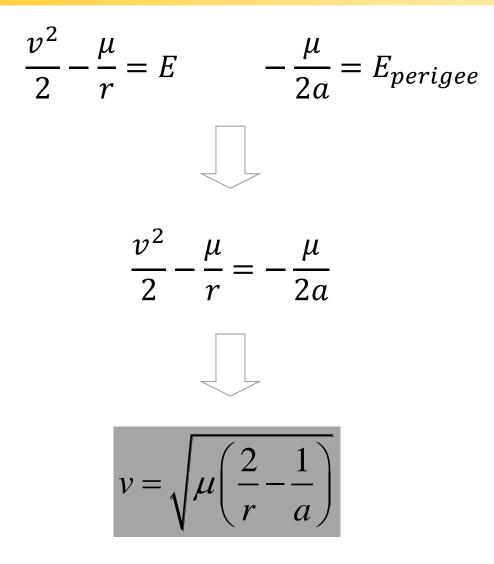
Orbit equation

$$r = \frac{a(1-e^2)}{1+e\cos\theta}$$

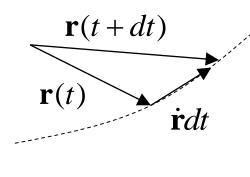
Polar equation of an ellipse (*a*, semimajor axis)

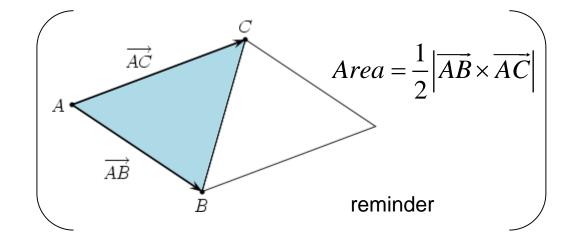
$$h = \sqrt{\mu a (1 - e^2)}$$

Velocity in an Elliptical Orbit



Kepler's Second Law





$$dA = \frac{1}{2} \left| \mathbf{r} \times \dot{\mathbf{r}} dt \right| = \frac{1}{2} \left| \mathbf{h} \right| dt = \frac{1}{2} h dt$$

$$\frac{dA}{dt} = \frac{h}{2} = \frac{1}{2}r^2\frac{d\theta}{dt} = \text{constant}$$

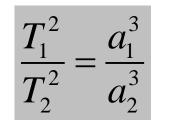
The line from the sun to a planet sweeps out equal areas inside the ellipse in equal lengths of time.

Kepler's Third Law

$$T = \frac{\text{enclosed area}}{dA/dt} = \frac{2\pi ab}{h}$$
$$h = \sqrt{\mu a(1-e^2)} \qquad b = a\sqrt{1-e^2}$$

$$T_{ellip} = 2\pi \sqrt{\frac{a^3}{\mu}}$$

The elliptic orbit period depends only on the semimajor axis and is independent of the eccentrivity.



The squares of the orbital periods of the planets are proportional to the cubes of their mean distances from the sun.

Satellite in Elliptic Orbit

$$r_{p} = 354 + 6378 = 6732 \,\mathrm{km} \qquad r_{a} = 1447 + 6378 = 7825 \,\mathrm{km}$$

$$\begin{cases} e = \frac{r_{a} - r_{p}}{r_{a} + r_{p}} = 0.075, \quad a = \frac{r_{a} + r_{p}}{2} = 7278.5 \,\mathrm{km} \\ T = 2\pi \sqrt{\frac{a^{3}}{\mu}} = 6179.798 = 103 \,\mathrm{min} \\ v = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)} \qquad v_{p} = 7.98 \,\mathrm{km/s} \\ v = 6.86 \,\mathrm{km/s} \end{cases}$$

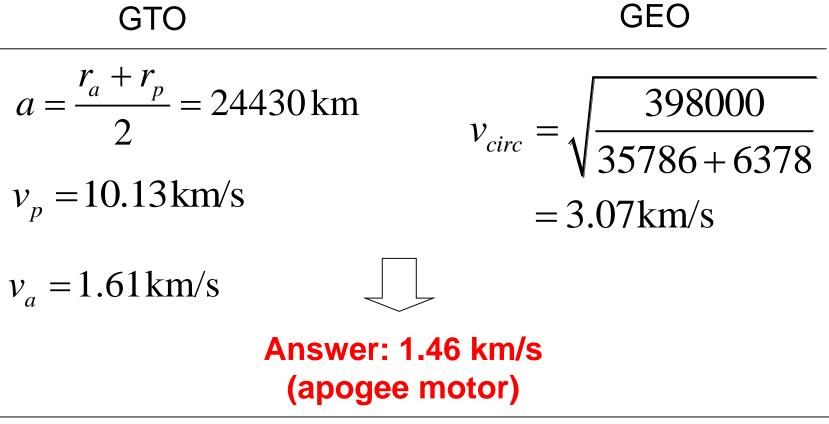
GTO and GEO

For an orbit with a perigee at 320 km and an apogee at 35786 km, what is the velocity increment required to reach the geostationary orbit ?

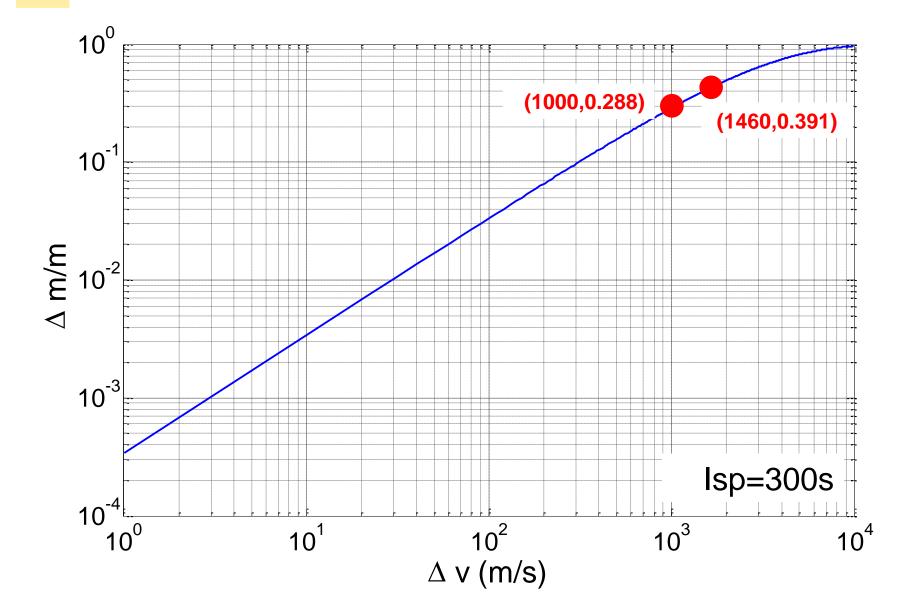
$$v = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)}$$

GTO and GEO

For an orbit with a perigee at 320 km and an apogee at 35786 km, what is the velocity increment required to reach the geostationary orbit ?



GTO and GEO



Parabolic Orbits (e=1)

$$r = \frac{h^2}{\mu} \frac{1}{1 + \cos \theta} \qquad \theta \to \pi, \ r \to \infty$$

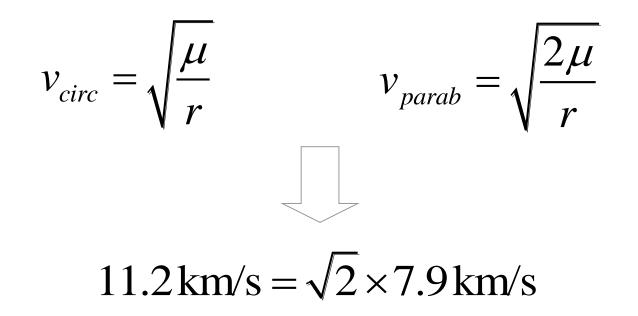
$$\varepsilon_{parab} = -\frac{1}{2} \frac{\mu^2}{h^2} (1 - e^2) = 0$$

The satellite has just enough energy to escape from the attracting body.

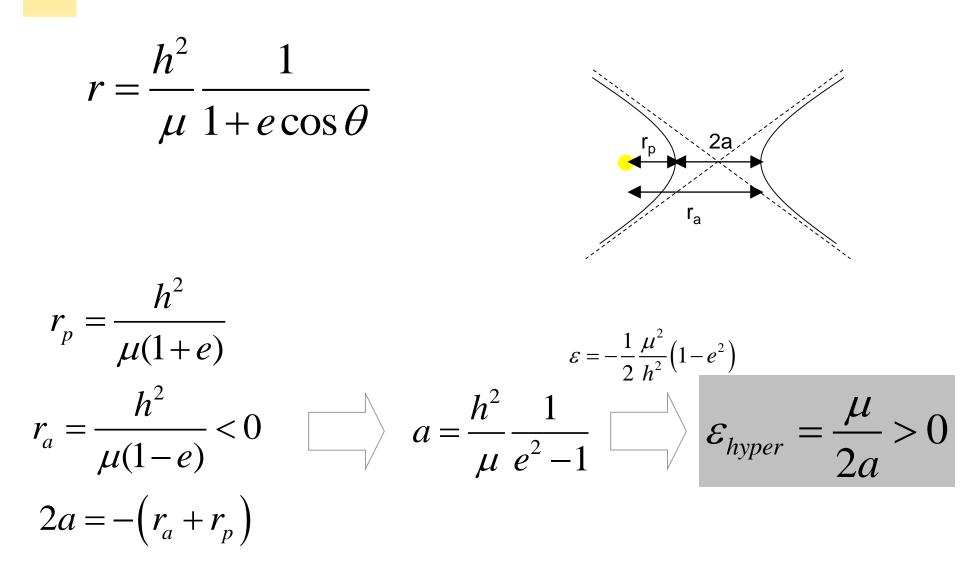
$$\varepsilon = \frac{v^2}{2} - \frac{\mu}{r}$$

$$v_{parab} = \sqrt{\frac{2\mu}{r}}$$

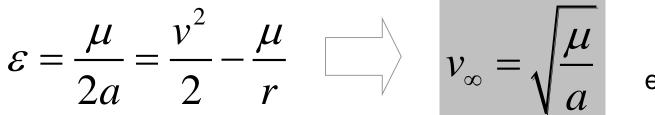
The satellite will coast to infinity, arriving there with zero velocity relative to the central body. 11.2 km/s is the **second cosmic velocity**; i.e., the minimum velocity (theoretical velocity, r=6378km) to orbit the Earth.



Hyperbolic Orbits (e>1)



C₃ Velocity



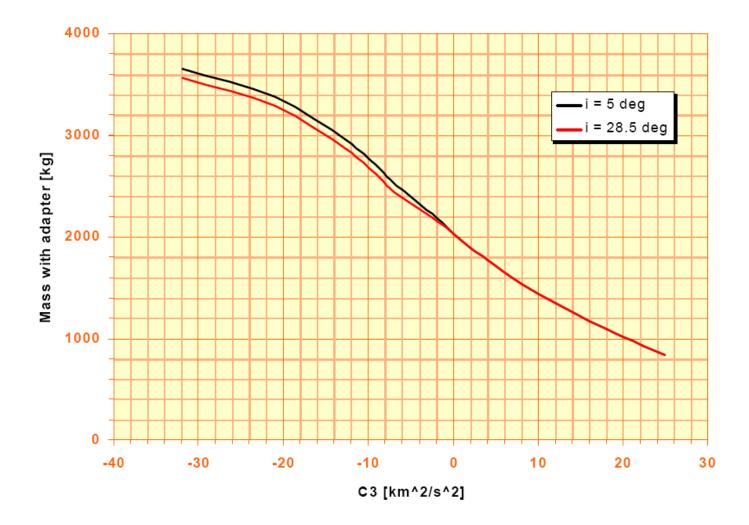
Hyperbolic excess speed

C₃ is a measure of the energy for an interplanetary mission:

16.6 km²/s² (Cassini-Huygens)

8.9 km²/s² (Solar Orbiter, phase A)

Soyuz ST v2-1b (Kourou Launch)



Delta II, Delta III and Atlas IIIA

Delivered mass comparison

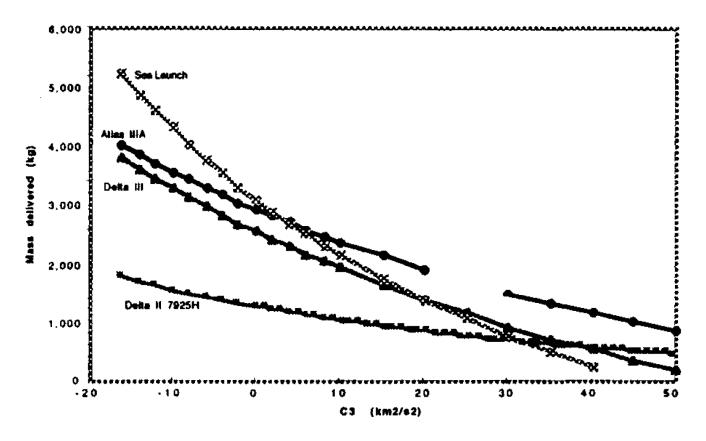


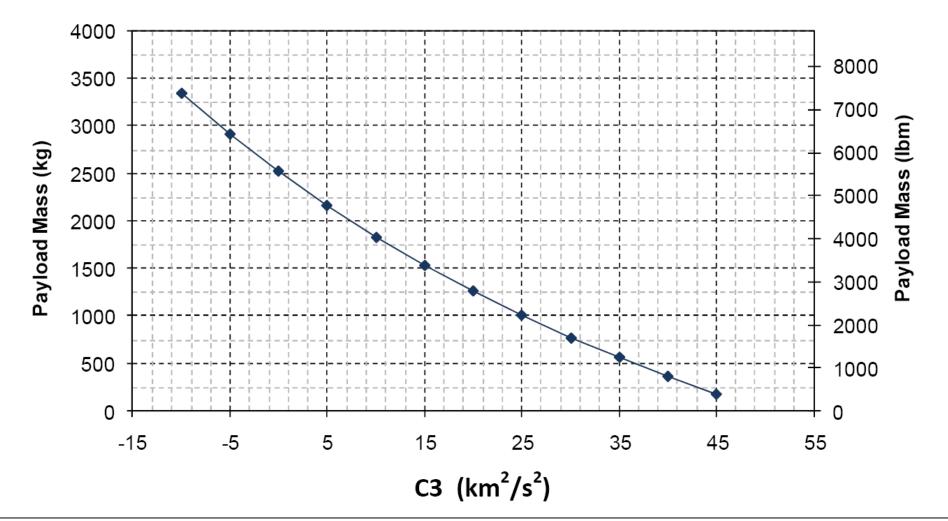
Figure 1. Delivered mass as a function of C3 or the Delta II 7927, Delta III, Altlas IIIA, and Sea Launch.

Proton

C3 Parameter (km ² /s ²)	Payload Systems Mass (kg)
-5	6270
-2	5890
0	5650
5	5090
10	4580
15	4110
20	3685
25	3295
30	2920
35	2575
40	2260
45	1990
50	1750
55	1525
60	1305
65	1120
C3 Parameter = $V^2 - 2\mu/R$.	
Performance based on the use of 15255 mm PLF (standard).	
At fairing jettison, FMHF shall be no more than 1135 W/m ² .	
PSM includes LV adapter system mass.	
PSM is calculated assuming a 2.33-sigma LV propellant margin.	

Table 2.9.1-1: Earth Escape Proton M Breeze M Missions

Falcon 9



The Two-Body Problem

2.1 JUSTIFICATION OF THE 2-BODY MODEL

2.2 GRAVITATIONAL FIELD

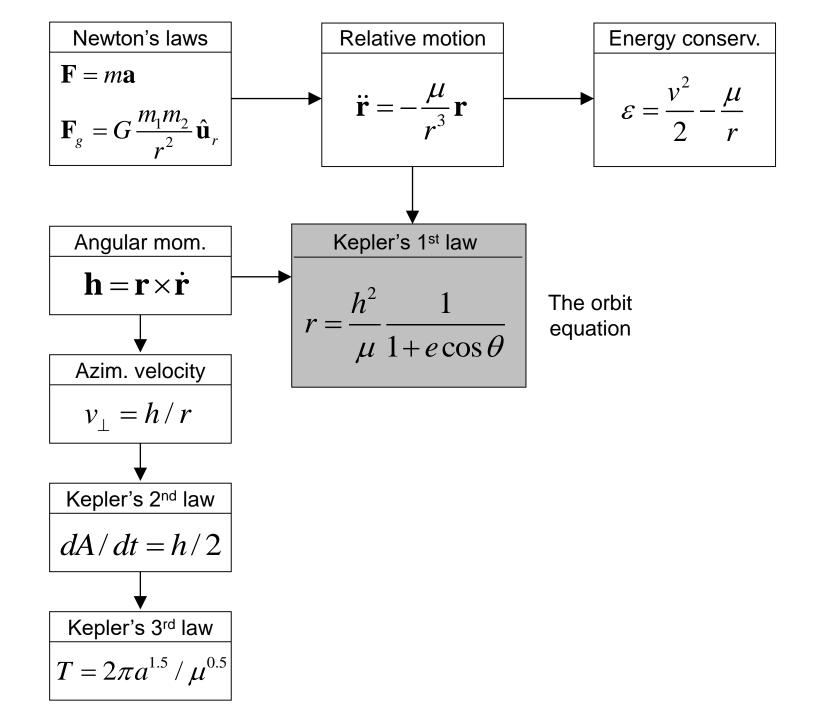
- 2.2.1 Newton's law of universal gravitation
- 2.2.2 The Earth
- 2.2.3 Gravity models and geoid

2.3 RELATIVE MOTION

- 2.3.1 Equations of motion
- 2.3.2 Closed-form solution

2.4 RESULTING ORBITS

- 2.4.1 Circular orbits
- 2.4.2 Elliptic orbits
- 2.4.3 Parabolic orbits
- 2.4.4. Hyperbolic orbits



Closed-form solution from which we deduced Kepler's laws.

Analytic formulas for orbital energy, velocity and period.

Two-body propagator available in STK. Often used in early studies to perform trending analysis.

But ...

We have lost track of the time variable !

Compactness of the solar system: measured by the ratio of the distance *a* of a planet from the Sun to the radius R of the Sun.

$$\frac{a}{R}$$
 \Box 200

Compactness of the hydrogen atom: measured by the ratio of the distance *a* of an electron from the nucleus to the radius R of the nucleus.

$$\frac{a}{R}$$
 \Box 5e4

Astrodynamics (AERO0024)

2. The Two-Body Problem

Gaëtan Kerschen Space Structures & Systems Lab (S3L)

 Cassini Classical Orbit Elements

 Time (UTCG):
 15 Oct 1997 09:18:54.000

 Semi-major Axis (km):
 6685.637000

 Eccentricity:
 0.020566

 Inclination (deg):
 30.000

 RAAN (deg):
 150.546

 Arg of Perigee (deg):
 230.000

 True Anomaly (deg):
 136.530

 Mean Anomaly (deg):
 134.891