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Nonlinear System Identification: a Three-Step Process

Do I observe nonlinear effects? Yes.

Should I build a nonlinear model? Yes.

3

2

1

Detection

Characterisation

Estimation

Information

vs. complexity

Where is the nonlinearity located? At the joint.

What is the underlying physics? Dry friction.

How to model its effects? 𝑓𝑛𝑙 𝑞,  𝑞 = 𝑐 𝑠𝑖𝑔𝑛  𝑞 .

Model parameters? 

How uncertain are they?

𝑐 = 5.47.

𝑐 = 𝒩(5.47,1).

This lecture
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Computer-Aided Modelling Is Useful but…

Paris aircraft, 

ONERA, France.

Complex geometry.

Multi-scale physics.

Model parameters?

Applied torque?

Bolted connection between wing tip and fuel tank.
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Objective of this Lecture

Infer from experimental data a suitable nonlinearity model.

This is challenging:

This is crucial: 

Prior knowledge is most often very limited.

Physical mechanisms resulting in nonlinearity are extremely diverse.

Nonlinearity may translate into a plethora of dynamic phenomena.

The success of the parameter estimation step is conditional upon an 

accurate characterisation of all observed nonlinearities.
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Typical Questions to be Answered

Is nonlinearity elastic or dissipative?

Is nonlinearity hardening or softening?

Is nonlinearity symmetric or asymmetric?

Is nonlinearity smooth or nonsmooth?
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Reminder: Individualistic Nature of Structural Nonlinearities

Elastic

Hardening-softening

Asymmetric

Smooth

Elastic

Hardening
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Nonsmooth
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Dissipative

–
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Nonsmooth
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Importance of the Toolbox Philosophy

Different methods bring different perspectives to the dynamics.

1. Time-frequency analysis:

2. Restoring force plots:

Reveals the frequency-amplitude dependence of NL oscillations.

Provide a direct visualisation of NL stiffness and damping curves.
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Outline of Lecture 8

Time-frequency analysis using 

the wavelet transform (WT).

Acceleration surface method (ASM).
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Is nonlinearity elastic or dissipative?

Is nonlinearity hardening or softening?

Is nonlinearity symmetric or asymmetric?

Is nonlinearity smooth or nonsmooth?

Nonlinear Frequency Spectra Are Highly Informative

Resonance frequencies are not affected much by dissipative NLs.

Resonance frequencies increase or decrease with amplitude.

Asymmetries generate important even harmonic components.

Nonsmoothness generates wideband frequency components.
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Reminder: the Fourier Transform (FT)
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FT Fails to Capture Time-Varying Frequencies
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The Short-Time Fourier Transform (STFT)

𝑋 𝜔 =  
−∞

+∞

𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡

𝑋 𝜔, 𝜏 =  
−∞

+∞

𝑥 𝑡 𝑤(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡

Observation window is nonzero 

for a short period of time.

Time-frequency

representation.

Drawback: the observation window is the same for all frequencies.
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The Wavelet Transform (WT)

𝑋 𝜔 =  
−∞

+∞

𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡

𝑋 𝑎, 𝑏 =
1

√𝑎
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+∞

𝑥 𝑡 𝜓
𝑡 − 𝑏

𝑎
𝑑𝑡

Mother wavelet = windowing 

strategy with variable resolution. 

Time-frequency

representation.
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The Morlet Wavelet: a Gaussian-windowed Complex Sinusoid

𝑋 𝜔 =  
−∞

+∞

𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡

𝑋 𝑎, 𝑏 =
1

√𝑎
 
−∞
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𝑥 𝑡 𝜓
𝑡 − 𝑏

𝑎
𝑑𝑡

𝜓 𝑡 = 𝑒−𝑡
2/2 𝑒𝑗𝜎𝑡
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Windowing Strategy with Variable-Sized Regions

𝑋 𝑎, 𝑏 =
1

√𝑎
 
−∞

+∞

𝑥 𝑡 𝜓
𝑡 − 𝑏

𝑎
𝑑𝑡

𝑎 = 1 𝑎 > 1 𝑎 < 1

𝑏 locates of the observation window in the time domain.

𝑎 defines the freq. resolution by expanding/contracting the window.
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Reminder: Fourier Transform Applied to Free-Decay Data

with 𝑞0 = 10 and  𝑞0 = 0
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WT Highlights the Amplitude-Dependence of NL Oscillations
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Wavelet Transform Applied to the SmallSat Spacecraft

NL WEMS device.

Test campaign in 

Stevenage, UK.
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High-Level Data Convey Very Rich Information
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Reminder: Choose a Sufficiently High Sampling Frequency
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Outline of Lecture 8

Time-frequency analysis using 

the wavelet transform (WT).

Acceleration surface method (ASM).
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How Can We Visualise the NL Behaviour of this Connection?

Paris aircraft, 

ONERA, France.

Bolted connection involving 

complex dynamics.

Physical insight is key to 

parametric modelling.
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Macroscopic Idealisation as Lumped Spring and Dashpot

Wing tip Fuel tank

𝑖 𝑗

Potential nonlinear 

connections must be 

instrumented on both sides.
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𝑘1

Newton’s Second Law Written at Degree of Freedom ‘𝑖’

𝑖 𝑗

𝑘2

 
𝑘
𝑚𝑖,𝑘  𝑞𝑘 + 𝑔𝑖(𝑞,  𝑞) = 𝑝𝑖

Linear connections 

to neighbouring DOFs

(e.g., bending stiffnesses in a wing)
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𝑘1

Discard all Terms not Related to the Nonlinear Connection

Linear connections 

to neighbouring DOFs

(e.g., bending stiffnesses in a wing)

𝑖 𝑗

𝑘2

𝑚𝑖,𝑖  𝑞𝑖+ 𝑔𝑖(𝑞𝑖 − 𝑞𝑗 ,  𝑞𝑖 −  𝑞𝑗) ≅ 𝑝𝑖

 
𝑘
𝑚𝑖,𝑘  𝑞𝑘 + 𝑔𝑖(𝑞,  𝑞) = 𝑝𝑖
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𝑘1

Assume no Forcing Term and Drop the Mass Constant

𝑖 𝑗

𝑘2

𝑔𝑖 𝑞𝑖 − 𝑞𝑗 ,  𝑞𝑖 −  𝑞𝑗 ≅ −  𝑞𝑖

Linear connections 

to neighbouring DOFs

(e.g., bending stiffnesses in a wing)

NL can be 

visualised!

 
𝑘
𝑚𝑖,𝑘  𝑞𝑘 + 𝑔𝑖(𝑞,  𝑞) = 𝑝𝑖
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𝑘1

ASM in Summary: 4 Instrumentation and Processing Steps

𝑖 𝑗

𝑘2

𝑔𝑖 𝑞𝑖 − 𝑞𝑗 ,  𝑞𝑖 −  𝑞𝑗 ≅ −  𝑞𝑖

1. Instrument the nonlinear connection with 2 accelerometers.

2. Integrate and filter to get displacement and velocity time series.

3. Calculate the 3D acceleration surface over a single mode.

4. Consider surface slices to obtain stiffness and damping curves.
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𝑘1

ASM in Summary: Assumptions and Strengths

𝑖 𝑗

𝑘2

𝑔𝑖 𝑞𝑖 − 𝑞𝑗 ,  𝑞𝑖 −  𝑞𝑗 ≅ −  𝑞𝑖

1. Exploits a SDOF (single-mode) simplification of the EOMs.

2. Works better with swept-sine (stepped-sine) excitations.

3. Relies exclusively on measured time series.

4. Can be easily understood.
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A Softening, Symmetric, Nonsmooth Behaviour Is Revealed
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Note on instrumentation:

joints between substructures 

are generic candidates.



30

ASM Applied to the SmallSat Spacecraft

Test campaign in 

Stevenage, UK.

Accelerometers 

positioned on both sides.
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Stiffness Curve Is Obtained by Considering Small Velocities

𝑔𝑖 𝑞𝑖 − 𝑞𝑗 ,  𝑞𝑖 −  𝑞𝑗 ≅ −  𝑞𝑖
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A Hardening, Asymmetric, Nonsmooth NL Is Visualised
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-2

-2

0

-100

100

0

Sweep frequency (Hz)5 13 5 13Sweep frequency (Hz)

-100

100

0

-2 2

– Absolute 

acceleration (m/s²)

Relative displacement ( – )



33

Concluding Remarks and Learning Outcomes

Two complementary methods for nonlinearity characterisation. But, 

engineering insight and experience are equally important.

WT and ASM can be easily understood.

Instrument nonlinearities on both sides and apply sine excitations.

Damping characterisation remains a difficult endeavour.
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J.P. Noël, G. Kerschen, Nonlinear system identification in structural 

dynamics: 10 more years of progress, Mechanical Systems and Signal 
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