
What Are Nonlinear Modes ?

L03 Nonlinear modal analysis

Nonlinear Vibrations of           

Aerospace Structures



Modal Analysis Provides Key Information
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Symmetric wing
bending (5.2 Hz)

Symmetric wing
torsion (7.3 Hz)



What Is a Linear Normal Mode ?
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Cours de théorie des vibrations



How Do We Calculate Linear Normal Modes ?

ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



How Do We Calculate Linear Normal Modes ?
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

−𝜔2𝐴 + 2𝐴 − 𝐵 = 0
−𝜔2𝐵 + 2𝐵 − 𝐴 = 0

𝐵 = 𝐴 2 − 𝜔2

−𝜔2𝐵 + 2𝐵 − 𝐴 = 0
−𝜔2𝐴 2 − 𝜔2

+ 2𝐴 2 − 𝜔2 − 𝐴 = 0

𝜔4 − 4𝜔2 + 3 = 0
𝜔1= 1 rad/s with 𝐴 = 𝐵,

𝜔2= 3 rad/s with 𝐴 = −𝐵,

Linear modes are invariant



Link Between Natural and Resonance Frequencies
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Natural frequency (free 
response, modal analysis)

Resonance frequency
(forced response)

NI2D – 2DOF\Modes_Linear



Properties of Linear Modes ?
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SYNCHRONOUS

LINEAR MODE

NI2D – 2DOF\Modes_Linear



Properties of Linear Modes ?



Phase Quadrature
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Cours de théorie 

des vibrations



Phase Quadrature



Theoretical and experimental modal analysis (TMA and EMA)
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Industrial Use of the Concept of Modes

AIRBUS A350XWB
Govers et al., ISMA 2014.

Design is based on 

shaping resonances

Certification is based on 

measuring resonances 

(eigenvalue solver in all 

commercial FE packages).

(stochastic subspace 

identification, eigensystem

realization, PolyMAX, …).



Outline of this Lecture
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What are nonlinear modes ? 

What are their fundamental properties ?

Link between modes and resonance frequencies

A tutorial



Lyapunov: Cornerstone of Nonlinear Mode Theory
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For n-DOF conservative systems with no internal resonances, 

there exist at least n different families of periodic solutions 

around the stable equilibrium point of the system. 



Lyapunov: Cornerstone of Nonlinear Mode Theory
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For n-DOF conservative systems with no internal resonances, 

there exist at least n different families of periodic solutions 

around the stable equilibrium point of the system. 

At low energy, the periodic solutions of each family are in the 

neighborhood of a LNM of the linearized system. These n 

families define n NNMs that can be regarded as nonlinear 

extensions of the n LNMs of the underlying linear system.



Rosenberg (1960s): Nonlinear Normal Modes 
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An NNM is a synchronous vibration of the system:                 

► All material points of the system reach their extreme values and 

pass through zero simultaneously.

► The system behaves like a nonlinear single-DOF system when it 

vibrates along an NNM.

𝑀 ሷ𝑥(𝑡) + 𝐾𝑥(𝑡) = 0

LNM: synchronous
periodic motion.

NNM: synchronous
periodic motion.

𝑀 ሷ𝑥 𝑡 + 𝐾𝑥 𝑡 + 𝑓𝑁𝐿 𝑥(𝑡) = 0



Is This a Nonlinear Mode ?
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NI2D – 2DOF\NNM_ShawSystem

+animation



Is This a Nonlinear Mode ?
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Is This a Nonlinear Mode ?

19

[1  1] [1  1.19]
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How Do We Calculate Nonlinear Normal Modes ?
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ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



How Do We Calculate Nonlinear Normal Modes ?
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Fundamental Difference Between LNMs and NNMs
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝐴 = 𝐵, 𝜔1= 1 rad/s

𝐴 = −𝐵, 𝜔2= 3 rad/s

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

2 fundamental differences !

Which ones ?

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



Fundamental Difference Between LNMs and NNMs
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝐴 = 𝐵, 𝜔1= 1 rad/s

𝐴 = −𝐵, 𝜔2= 3 rad/s

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

1. Modal shapes depend on 

frequency

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



Fundamental Difference Between LNMs and NNMs
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝐴 = 𝐵, 𝜔1= 1 rad/s

𝐴 = −𝐵, 𝜔2= 3 rad/s

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

2. The natural frequency is 

not fixed (but existence 

conditions !)

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



Fundamental Difference Between LNMs and NNMs
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝐴 = 𝐵, 𝜔1= 1 rad/s

𝐴 = −𝐵, 𝜔2= 3 rad/s

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

𝜔1 ∈ 1, 2 rad/s

𝜔2 ∈ 3,+ ∞ rad/s

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

Existence conditions for NNM

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



Useful Graphical Representation

Total energy =                  

initial potential energy :

Initial conditions:

A frequency-energy plot is calculated by 

- Selecting a frequency in the interval provided by the existence conditions,

- Calculating A and B according to the analytical formulas 

- Calculating the corresponding total energy

- Representing the frequency as a function of the total energy

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝑞1(0) 𝑞2(0) ሶ𝑞1(0) ሶ𝑞2(0) = 𝐴 𝐵 0 0

E = V =
𝐴2

2
+

𝐵 − 𝐴 2

2
+
𝐵2

2
+
0.5𝐴4

4



In Matlab



A Frequency-Energy Plot Is a Convenient Depiction

In-phase mode

Out-of-phase 
mode



Limitation of Analytical Calculations

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

A 1-term harmonic balance approximation cannot

calculate the curvature of nonlinear modes



Numerical Calculation
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NI2D – 2DOF\NNM_ShawSystem



« Curved » Nonlinear Modes Are Now Obtained
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Linear Modes vs. Nonlinear Modes
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2DOF nonlinear

Freq. 

Energy

Frequency-energy dependence

And other important differences

But …



The In-Phase NNM for Increasing Energies

34



Experimental Demonstration
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What You See Is a Nonlinear Normal Mode
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Experimental Demonstration
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What You Have Just Seen
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What You See Is a Nonlinear Normal Mode
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Outline of this Lecture
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What are nonlinear modes ? 

What are their fundamental properties ?

Link between modes and resonance frequencies

A tutorial
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Forced/Damped Response of the Beam (L02)

0.289 ሷ𝑥 + 0.1357 ሶ𝑥 + 11009𝑥 + 2.37.109 𝑥3 = 𝐹𝑠𝑖𝑛𝜔𝑡

F=0.005-0.02-0.06N

Forcing frequency  (Hz)

Max[x(t)] 
(m)

Resonance
frequencies:   
the maxima

NI2D - NonlinearFRFs_1vs11Harmonics – User tab
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Free/Undamped Response of the Beam

0.289 ሷ𝑥 + 11009𝑥 + 2.37.109 𝑥3 = 0

𝑥 = 𝐴𝑐𝑜𝑠𝜔𝑡

𝐴 =
−11009 + 0.289𝜔2

0.75 × 2.37𝑒9

LinkModeFRF.m

Frequency  (Hz)

A 
(m) Natural frequency

of the modes 



43

Link between Natural/Resonance Frequencies ?

Frequency  (Hz)

Max[x(t)] 
(m)

Nonlinear modal 
analysis (NNM)

Forced
response

NNM can predict the locus of resonance frequencies for 

various forcing amplitudes !



In Summary
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Clear physical meaning

Important mathematical properties 

Orthogonality

Modal superposition 

Invariance

Structural deformation at resonance 

Synchronous vibration of the structure

YES 

YES 

YES 

YES 

YES 

LNMs

YES, BUT…

NO 

NO 

YES 

YES 

NNMs


