Nonlinear Vibrations of Aerospace Structures

Last Lecture

Close-Up of the Different Loops

Discover additional properties of nonlinear modes

Numerical computation of nonlinear modes

Another puzzling result !

- 1. How to characterize the different loops ?
- 2. How they are created ?
- 3. What is their impact on the theory of NNMs?
- 4. What is their impact for engineering design ? Theoretical curiosity or real stuff ?

Let's Start with the First Loop

In-Phase and Out-of-Phase NNMs Are Connected

So there is modal coupling/interaction on this NNM branch

Modes on the Branch Present a Third Harmonics

Indeed, Remember Lissajous Curves...

>> LissajousNNM
l=sin/sin 2=cos/cos: 2
Enter harmonics 1:1
Enter harmonics 2:3

Matlab Code

```
f=input('l=sin/sin 2=cos/cos: ');
wl=input('Enter harmonics 1:');
w2=input('Enter harmonics 2:');
temps=[0:0.01:50];
if f==1
    for k=1:6
        xl=rand(l)*sin(wl*temps)+rand(l)*sin(w2*temps);
        x2=rand(1)*sin(w1*temps)+rand(1)*sin(w2*temps);
        subplot(3,2,k)
        plot(x1,x2)
        xlabel('x l');
        ylabel('x 2');
        set(gcf,'uni','nor','pos',[0.2 0.2 0.6 0.6])
    end
else
    for k=1:6
        xl=rand(1)*cos(wl*temps)+rand(1)*cos(w2*temps);
        x2=rand(1)*cos(w1*temps)+rand(1)*cos(w2*temps);
        subplot(3,2,k)
        plot(x1,x2)
        xlabel('x l');
        ylabel('x 2');
        set(gcf,'uni','nor','pos',[0.2 0.2 0.6 0.6])
    end
```

end

This Is Thus a 3:1 Modal Interaction

And Also...

It Goes On Forever

Energy (J)

- 1. How to characterize the different loops ? **OK**!
- 2. How they are created ?
- 3. What is their impact on the theory of NNMs?
- 4. What is their impact for engineering design ? Theoretical curiosity or real stuff ?

In-Phase and Out-of-Phase NNMs Are Disconnected

The Missing Piece of Info of the FEP: Harmonics

Evidence of the Second 3:1 Modal Interaction

There Is Also a 5:1 Modal Interaction

Another Viewpoint

$$\ddot{q}_1 + (2q_1 - q_2) + 0.5q_1^3 = 0$$

$$\ddot{q}_2 + (2q_2 - q_1) = 0$$

$$A = \pm \sqrt{\frac{8(\omega^2 - 2)(\omega^2 - 1)}{3(\omega^2 - 2)}}$$
$$B = \frac{A}{2 - \omega^2}$$
$$\omega_1 \in [1, \sqrt{2} [\text{ rad/s}]$$
$$\omega_2 \in [\sqrt{3}, +\infty [\text{ rad/s}]$$

The Frequency Ratio: From $\sqrt{3}$ to $+\infty$

So there exists a countable infinity of modal interactions !

- 1. How to characterize the different loops ? **OK**!
- 2. How they are created ? **OK**!
- 3. What is their impact on the theory of NNMs?
- 4. What is their impact for engineering design ? Theoretical curiosity or real stuff ?

No Longer a Synchronous Motion

Let's Revisit the System We Initially Considered

We Got in the Previous Lecture

Again Lissajous Curves...

>> LissajousNNM
l=sin/sin 2=cos/cos: 2
Enter harmonics 1:2
Enter harmonics 2:3

Neither Abstract Nor a New Alphabet...

 $M\ddot{q}(t) + Kq(t) = 0 \qquad M\ddot{q}(t) + Kq(t) + f_{NL}[q(t)] = 0$

LNM: synchronous periodic motion.

NNM: synchronous periodic motion.

Modal interactions

NNM: periodic motion (nonnecessarily synchronous).

Another Impact: The In-Phase Mode Bifurcates

Remember Bifurcation/Stability Are Tight Together

An Unstable Part of the Branch

Let's Try to Investigate What's Going On

Open Matlab and load the file that contains the results

FILE	NIADLE		CODE	SIMULINK	ENVIRONMENT	RESOURCES
🗢 🔶 🔁 💹 👃 🔸 d: 🕨 Trash 🕨 NNMTuto 🕨 r	esults • res000	001				
Current Folder	۲	Command Window				
🗋 Name 🔺		>>	cd d:\Trash	NNMTuto	\results\r	es000001
🗄 res.mat		>>	load res			
		>>	res			
		res	3 =			
			Sol	.: [4x500	double]	
			Amplitude	e: [2x500	double]	
			Pulsatior	n: [1x500) double]	
			Energy	y: [1x500	double]	
			Prediction	1: [5x500	double]	
			Stepsize	e: [1x500	double]	
			Itnumber	: [1x500	double]	
			Angle_beta	: [1x500	double]	
			Floo	(: [4x500	double]	
			Stak	: [1x500	double]	
			list dofs	: []		
			_			
		$f_{x} >>$				

Initial Conditions for an Unstable NNM

>> log10(res.Energy) ans = Columns 1 through 10 -4.0000-3.5355 -3.0114-2.4511-1.8710-1.4370-1.0721-0.7467-0.4459-0.1596 Columns 11 through 20 0.1225 0.4141 0.7460 1.1054 1.2869 1.4251 1.4983 1.5359 1.5526 1.5525 Columns 21 through 30 1.5215 1.4604 1.3731 1.2651 1.1511 1.0705 1.1176 1.3035 1.5701 1.8719 Columns 31 through 40 3.1036 2.1140 2.3121 2.5284 2.7065 2.8575 2.9883 3.2386 3.3569 3.4621 Columns 41 through 50 3.5862 3.6958 3.8244 3.9723 4.1396 4.2933 4.3316 4.3422 4.3508 4.3539

An Unstable NNM (Newmark Simulation)

Initial Conditions for a Stable NNM

>> log10(res.Energy) ans = Columns 1 through 10 -4.0000-3.5355 -3.0114 -2.4511 -1.8710 -1.4370 -1.0721-0.7467-0.4459-0.1596Columns 11 through 20 0.1225 0.4141 0.7460 1.1054 1.2869 1.4251 1.4983 1.5359 1.5526 1.5525 Columns 21 through 30 1.5215 1.4604 1.3731 1.2651 1.1511 1.0705 1.1176 1.3035 1.5701 1.8719 Columns 31 through 40 2.3121 2.5284 2.7065 2.9883 2.1140 2.8575 3.1036 3.2386 3.3569 3.4621 Columns 41 through 50 3.5862 3.6958 3.8244 3.9723 4.1396 4.2933 4.3316 4.3422 4.3508 4.3539

A Stable NNM (Newmark Simulation)

- 1. How to characterize the different loops ? **OK!**
- 2. How they are created ? **OK**!
- 3. What is their impact on the theory of NNMs? **OK!**
- 4. What is their impact for engineering design ? Theoretical curiosity or real stuff ?
Do Modal Interactions Exist In Reality ?

Lissajous Curves...

>> LissajousNNM
l=sin/sin 2=cos/cos: 1
Enter harmonics 1:1
Enter harmonics 2:2

More Details

Experimental investigation of targeted energy transfer in strongly and nonlinearly coupled oscillators

D. Michael McFarland^{a)}

Department of Aerospace Engineering, University of Illinois at Urbana—Champaign, 306 Talbot Laboratory, 104 S. Wright Street, Urbana, Illinois 61801

Gaetan Kerschen^{b)}

Department of Materials Mechanical and Aerospace Engineering, University of Liège, 1 Chemin des Chevreuils (B52/3), B-4000 Liege, Belgium

Jeffrey J. Kowtko, Young S. Lee, and Lawrence A. Bergman^{c)} Department of Aerospace Engineering, University of Illinois at Urbana—Champaign, 306 Talbot Laboratory, 104 S. Wright Street, Urbana, Illinois 61801

Alexander F. Vakakis^{d)}

Division of Mechanics, National Technical University of Athens, P.O. Box 64042, GR-157 10 Zografos, Athens, Greece, and Department of Mechanical and Industrial Engineering (adjunct), Department of Aerospace Engineering (adjunct), University of Illinois at Urbana—Champaign, 306 Talbot Laboratory, 104 S. Wright Street, Urbana,

Illinois 61801

J. Acoust. Soc. Am., Vol. 118, No. 2, August 2005

Do Modal Interactions Exist In Complex Systems ?

Bolted connections between external fuel tank and wing tip

Front connection

Rear connection

The Testing Campaign

IMG_1679.avi

IMG_1680.MOV

Softening Nonlinearity in the Bolted Connections

Swept sine testing

Finite Element Model Reduction

Finite element model (2D shells and beams, 85000 DOFs)

Condensation of the linear components of the model

Craig-Bampton technique

- 8 remaining nodes
- 500 internal modes

Reduced model accurate in [0-100] Hz, 548 DOFs

A Close Look at Two Modes

Mode	Freq.	Mode	Freq.
	(Hz)		(Hz)
1	0.0936	13	21.2193
2	0.7260	14	22.7619
3	0.9606	15	23.6525
4	1.2118	16	25.8667
5	1.2153	17	28.2679
6	1.7951	18	29.3309
7	2.1072	19	31.0847
8	2.5157	20	34.9151
9	3.5736	21	39.5169
10	8.1913	22	40.8516
11	9.8644	23	47.3547
12	16.1790	24	52.1404

The First Wing Bending Mode Is Not Affected

The First Wing Torsional Mode Is Nonlinear

Close-Up of the 3:1 Modal Interaction

No Resemblance With Any LNMs

Nonlinear Modal Analysis of a Full-Scale Aircraft

G. Kerschen,^{*} M. Peeters,[†] and J. C. Golinval^{*} University of Liège, 4000 Liège, Belgium and C. Stéphan[‡] ONERA–The French Aerospace Lab, 92320 Châtillon, France

JOURNAL OF AIRCRAFT Vol. 50, No. 5, September–October 2013

Modal Interactions @ SAB & Airbus

Discover the properties of nonlinear modes

Numerical computation of nonlinear modes

Another puzzling result !

How To Calculate NNMs ?

Finite element model

Frequency-energy plot

An NNM is a periodic motion of a nonlinear system.

1. Look for periodic solutions !

Naive Approach

$$\begin{vmatrix} 1 \\ - 1$$

$$z_0 \rightarrow z(t, z_0)$$

using numerical
time integration

Case 1: $x_1(0) = 1$ and $x_2(0) = 1$ \longrightarrow Periodic solution Case 2: $x_1(0) = 1$ and $x_2(0) = 1.08$ \longrightarrow Periodic solution Case 3: $x_1(0) = 1$ and $x_2(0) = 1.16$ \longrightarrow Periodic solution Case 4: $x_1(0) = 1$ and $x_2(0) = 1.24$ \longrightarrow Periodic solution Case 5: $x_1(0) = 1$ and $x_2(0) = 1.19$ \longrightarrow Periodic solution !

Shooting Technique

Optimisation of the initial state of a system $[\mathbf{x}_0 \ \dot{\mathbf{x}}_0]^T$ to obtain a periodic solution after time integration over a period *T*.

A More Robust Approach

Newton-Raphson

Example: find the zero of $f(x) = \frac{1}{2}(x-1)^2$

$$f(x_1) = f(x_0) + \frac{df(x)}{dx}\Big|_{x=x_0} (x_1 - x_0) = 0$$

$$\frac{1}{2}(x_0 - 1)^2 + (x_0 - 1)(x_1 - x_0) = 0$$
$$-\frac{1}{2}(x_0 - 1)^2 \qquad 1$$

$$x_1 = x_0 + \frac{-\frac{1}{2}(x_0 - 1)^2}{(x_0 - 1)} = x_0 - \frac{1}{2}(x_0 - 1) = \frac{x_0 + 1}{2}$$

$$x_{j+1} = \frac{x_j + 1}{2}$$

Matlab Code: Homemade or fsolve

```
function NewtonRaphsonIllustration
clear all;close all;clc
plot([-3:0.01:3],0.5*([-3:0.01:3]-1).^2,'k',[-3:3],[0 0 0 0 0 0],'k--');hold on;pause
StartingPoint=-2;
while abs(0.5*(StartingPoint-1)^2)>0.0001
plot([-3:0.01:3],0.5*(StartingPoint-1)^2+(StartingPoint-1)*([-3:0.01:3]-StartingPoint))
StartingPoint=0.5*(StartingPoint+1),pause
end
SolutionFound=[StartingPoint 0.5*(StartingPoint-1)^2]
```

```
- function FsolveIllustration
clear all;close all;clc
StartingPoint=-2;
SolutionFound=fsolve('Quadratic',StartingPoint)- function y=Quadratic(x)
y=0.5*(x-1)^2
```

Result

State Space Formulation

$M\ddot{x}(t) + Kx(t) + f_{nl}\{x(t), \dot{x}(t)\} = 0$

 $\dot{z} = g(z, t)$

State-space form

where
$$z^{T} = \begin{bmatrix} x^{T} & \dot{x}^{T} \end{bmatrix}$$
$$g(z) = \begin{bmatrix} \dot{x} \\ -M^{-1}[Kx + f_{nl}(x, \dot{x})] \end{bmatrix}$$

$$\mathbf{H}(\mathbf{z}_{p0},T) \equiv \mathbf{z}_p(T,\mathbf{z}_{p0}) - \mathbf{z}_{p0} = \mathbf{0}$$

Periodicity condition (2-point BVP)

Numerical solution through iterations:

$$\mathbf{H}\left(\mathbf{z}_{p0}^{(0)}, T^{(0)}\right) + \frac{\partial \mathbf{H}}{\partial \mathbf{z}_{p0}}\Big|_{(\mathbf{z}_{p0}^{(0)}, T^{(0)})} \Delta \mathbf{z}_{p0}^{(0)} + \frac{\partial \mathbf{H}}{\partial T}\Big|_{(\mathbf{z}_{p0}^{(0)}, T^{(0)})} \Delta T^{(0)} + \mathbf{H} \mathbf{E} \mathbf{T} = 0$$

$$\frac{\partial \mathbf{H}}{\partial \mathbf{z}_{0}}\left(\mathbf{z}_{0}, T\right) = \frac{\partial \mathbf{z}(t, \mathbf{z}_{0})}{\partial \mathbf{z}_{0}}\Big|_{t=T} - \mathbf{I}$$

$$\frac{\partial \mathbf{H}}{\partial T}\left(\mathbf{z}_{0}, T\right) = \frac{\partial \mathbf{z}(t, \mathbf{z}_{0})}{\partial t}\Big|_{t=T} - \mathbf{I}$$

$$= \mathbf{g}\left(\mathbf{z}\left(T, \mathbf{z}_{0}\right)\right)$$

2n x 2n — Monodromy matrix

Jacobian Matrix through Linear ODEs

$$\left[\frac{\partial \mathbf{z}(t, \mathbf{z}_0)}{\partial \mathbf{z}_0}\right] \longrightarrow \text{Floquet multipliers} \longrightarrow \text{NNM stability}$$

If a Floquet multiplier has a magnitude larger than one, then the periodic solution is *unstable*; otherwise, it is *stable* in the linear sense.

Combining Shooting with Continuation

Energy (J)

Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques

M. Peeters, R. Viguié, G. Sérandour, G. Kerschen *, J.-C. Golinval

Structural Dynamics Research Group, Department of Aerospace and Mechanical Engineering, University of Liège, 1 Chemin des Chevreuils (B52/3), B-4000 Liège, Belgium

Mechanical Systems and Signal Processing 23 (2009) 195-216

Discover the properties of nonlinear modes

Numerical computation of nonlinear modes

Another puzzling result !

2DOF System Excited from the Base

Mode 1 Features a Modal Interaction

NNM as a Function of the Base Displacement

The Forced Damped Response: An Island !

Experimental Set-Up

Experimental Evidence

More Details

RESEARCH ARTICLE

Experimental study of isolas in nonlinear systems featuring modal interactions

Thibaut Detroux¹*, Jean-Philippe Noël¹, Lawrence N. Virgin², Gaëtan Kerschen¹

1 Space Structures and Systems Laboratory, Aerospace and Mechanical Engineering Department, University of Liège, Liège, Belgium, 2 Nonlinear Dynamics Group, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America

Nonlinear normal modes, a rigorous extension of the concept of modes to nonlinear systems.

Similar concept (resonance !) but fundamental differences:

- Frequency-energy dependence
- Bifurcations
- Stability
- Modal interactions (harmonics)

Current Research @ S3L (G. Abeloos' Thesis)

We can now calculate

- 1. backbones directly from the experiment (without a model)
- 2. stable and unstable frequency responses including isolated branches

PhD thesis defense on November 24 at 15.00 (02 math) Possibility to do a new PhD on the topic...

Current Research @ S3L (G. Abeloos' Thesis)

