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Motivation for This Lecture

For fixed excitation parameters, the solution of a nonlinear system 

may not be unique.
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Motivation for This Lecture
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For fixed excitation parameters, the solution of a nonlinear system 

may not be unique.
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Motivation for This Lecture
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For fixed excitation parameters, the solution of a nonlinear system 

may not be unique.
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Motivation for This Lecture
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For fixed excitation parameters, the solution of a nonlinear system 

may not be unique.
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Motivation for This Lecture

As opposed to linear systems, this solution can be either stable or 

unstable.  
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Motivation for This Lecture

As opposed to linear systems, this solution can be either stable or 

unstable.
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Motivation for This Lecture

As opposed to linear systems, this solution can be either stable or 

unstable. 

How to analyse stability? What happens at stability changes?

Time (s)

Solution C

Disp.

(m)

Freq.

(Hz)

Amp.

(m)
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Different Ways to Model Nonlinear Structures 

Stability Analysis
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Local Stability Analysis

Locally stable means that the periodic solution is stable for small 

perturbations.

Weakly stable = stable only locally

Strongly stable
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We recast the equations of motion in state-space form:

and perturb an equilibrium solution 𝐲∗(𝑡)

which yields

The stability of this time-varying system can be assessed with 

Floquet theory.

Local Stability Analysis and Linearisation

 𝐲 𝑡 = 𝐋𝐲 𝑡 − 𝐠𝑛𝑙 𝐲 + 𝐠𝑒𝑥𝑡(𝜔, 𝑡)

𝐲 𝑡 = 𝐲∗ 𝑡 + 𝐲𝑝 𝑡 , 𝐲𝑝 𝑡 ≪ 𝐲∗ 𝑡 ,

 𝐲p 𝑡 ≈ 𝐋 −  
𝜕𝐠𝑛𝑙

𝜕𝐲
𝐲=𝐲∗ 𝑡

𝐲𝑝 𝑡 = 𝐉 𝑡 𝐲𝑝 𝑡 .



12

Local Stability Analysis with Floquet Theory

For each periodic solution, Floquet theory provides multipliers 𝜎𝑖.

If at least one Floquet multiplier has a magnitude greater than 1, 

then the solution is unstable, otherwise it is stable.

𝑅𝑒(𝜎)

𝐼𝑚(𝜎)

𝑅𝑒(𝜎)

𝐼𝑚(𝜎)
Stable

𝑛𝑜𝑟𝑚 𝜎 < 1
Unstable

𝑛𝑜𝑟𝑚 𝜎 > 1
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Local Stability Analysis with Floquet Theory

For each periodic solution, Floquet theory provides exponents 𝜆𝑖.

If at least one Floquet exponent has a real part greater than 0, then 

the solution is unstable, otherwise it is stable.

𝑅𝑒(𝜆)

𝐼𝑚(𝜆)

𝑅𝑒(𝜆)

𝐼𝑚(𝜆)Stable

𝑟𝑒𝑎𝑙 𝜆 < 0
Unstable

𝑟𝑒𝑎𝑙 𝜆 >0
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Multipliers and Exponents Are Related via a Simple Mapping

Periodic solutions of a system with 𝑛 DOFs possesses 2𝑛 Floquet

exponents/multipliers.

𝜎 = 𝑒𝜆𝑇

Period
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How to Perform Stability Analysis using Floquet Theory?

Time-domain methods

Monodromy matrix computation (not in this lecture).

Frequency-domain methods

Hill’s matrix computation.
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Reminder: Harmonic Balance Method

Harmonic balance equation for periodic solutions:

Given 𝐡 𝐳, 𝜔 , and the Jacobian matrices 𝐡𝐳 and 𝐡𝜔, a continuation 

procedure can compute branches of periodic solutions.

𝐡 𝐳, 𝜔 ≡ 𝐀 𝜔 𝐳 − 𝐛 𝐳 = 𝟎

Amplitude

Frequency
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In the Frequency Domain: Computation of the Hill’s Matrix

A periodic solution 𝐱∗(𝑡) satisfying the EOMs is perturbed with a 

periodic solution modulated by an exponential decay:

Introducing the perturbation in the EOMs leads to:

𝐱 𝑡 = 𝐱∗ 𝑡 + 𝑒𝜆𝑡𝐬 𝑡

𝐌  𝐱 𝑡 + 𝐂  𝐱 𝑡 + 𝐊𝐱 𝑡 = 𝐟 𝐱,  𝐱, 𝜔, 𝑡

= 𝐟𝑒𝑥𝑡 𝜔, 𝑡 − 𝐟𝑛𝑙 𝐱,  𝐱

𝐌  𝐱∗ + 𝐂  𝐱∗ + 𝐊𝐱∗

+ 𝜆2𝐌𝐬 + 𝜆 2𝐌  𝐬 + 𝐂𝐬 + 𝐌  𝐬 + 𝐂  𝐬 + 𝐊𝐬 𝑒𝜆𝑡

= 𝐟 𝐱,  𝐱, 𝜔, 𝑡



18

In the Frequency Domain: Computation of the Hill’s Matrix

Galerkin

procedure
𝐱∗ 𝑡 = 𝐐 𝑡 ⊗ 𝐈𝑛 𝐳∗

𝐬 𝑡 = 𝐐 𝑡 ⊗ 𝐈𝑛 𝐮

Fourier series approximation:

+

𝚫2𝜆
2 + 𝚫1𝜆 + 𝐡𝐳 𝑒𝜆𝑡𝐮 = 𝟎

Linearisation+

𝐌  𝐱∗ + 𝐂  𝐱∗ + 𝐊𝐱∗

+ 𝜆2𝐌𝐬 + 𝜆 2𝐌  𝐬 + 𝐂𝐬 + 𝐌  𝐬 + 𝐂  𝐬 + 𝐊𝐬 𝑒𝜆𝑡

= 𝐟 𝐱,  𝐱, 𝜔, 𝑡
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In the Frequency Domain: Computation of the Hill’s Matrix

where

and

𝚫1 = 𝛁 ⊗ 𝟐𝐌 + 𝐈2𝑁𝐻+1 ⊗ 𝐂

𝐂

𝐂 −2𝜔𝐌

2𝜔𝐌 𝐂

⋱

𝐂 −2𝑁𝐻𝜔𝐌

2𝑁𝐻𝜔𝐌 𝐂

=

𝚫2 = 𝐈2𝑁𝐻+1 ⊗ 𝐌

𝚫2𝜆
2 + 𝚫1𝜆 + 𝐡𝐳 𝑒𝜆𝑡𝐮 = 𝟎
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In the Frequency Domain: Computation of the Hill’s Matrix

The quadratic eigenvalue problem of size 𝑛 2𝑁𝐻 + 1

can be rewritten as a linear eigenvalue problem of doubled size

with 

𝚫2𝜆
2 + 𝚫1𝜆 + 𝐡𝐳 𝐯 = 0

𝐁 − 𝜆𝐈2𝑛 2𝑁𝐻+1 𝐰 = 𝟎

𝐁 =
−𝚫2

−1𝚫1 −𝚫2
−1𝐡𝐳

𝐈𝑛 2𝑁𝐻+1 𝟎

𝚫2𝜆
2 + 𝚫1𝜆 + 𝐡𝐳 𝑒𝜆𝑡𝐮 = 𝟎
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Computation of the Floquet Exponents from Hill’s Matrix

𝐁 is the Hill’s matrix and its eigenvalues 𝛌 are the Hill’s coefficients 

(real or complex conjugates since 𝐁 is real).

Among these 2𝑛 2𝑁𝐻 + 1 eigenvalues, one can find 2𝑛 Hill’s 

coefficients  𝛌 that approximate the Floquet exponents of the 

periodic solution 𝐱∗.

The best approximation of the Floquet exponents are the 2𝑛 Hill’s 

coefficients with the smallest imaginary parts in modulus.

𝐁 =
−𝚫2

−1𝚫1 −𝚫2
−1𝐡𝐳

𝐈𝑛 2𝑁𝐻+1 𝟎
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Comparing Hill’s Coefficients with Floquet Exponents

Illustration of the sorting criterion on a 2-DOF example:

cubic cubic

𝐹𝑠𝑖𝑛(𝜔𝑡)

Time (s)

Displacement

(m)
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Comparing Hill’s Coefficients with Floquet Exponents

𝑅𝑒(𝜆)

𝐼𝑚(𝜆)

Hill’s coefficients Floquet exponents (Hill) Floquet exponents (monodromy)

𝑵𝑯 = 𝟏
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Comparing Hill’s Coefficients with Floquet Exponents

𝑅𝑒(𝜆)

𝐼𝑚(𝜆)

Hill’s coefficients Floquet exponents (Hill) Floquet exponents (monodromy)

𝑵𝑯 = 𝟑

The approximation quality

increases with 𝑁𝐻.
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Comparing Hill’s Coefficients with Floquet Exponents

𝑅𝑒(𝜆)

𝐼𝑚(𝜆)

Hill’s coefficients Floquet exponents (Hill) Floquet exponents (monodromy)

𝑵𝑯 = 𝟓
Spurious eigenvalues

have imaginary parts that

increase with 𝑁𝐻.
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Comparing Hill’s Coefficients with Floquet Exponents

𝑅𝑒(𝜆)

𝐼𝑚(𝜆)

Hill’s coefficients Floquet exponents (Hill) Floquet exponents (monodromy)

𝑵𝑯 = 𝟕
Spurious eigenvalues

have imaginary parts that

increase with 𝑁𝐻.
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Comparing Hill’s Coefficients with Floquet Exponents

𝑅𝑒(𝜆)

𝐼𝑚(𝜆)

Hill’s coefficients Floquet exponents (Hill) Floquet exponents (monodromy)

𝑵𝑯 = 𝟗
Spurious eigenvalues

have imaginary parts that

increase with 𝑁𝐻.
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Computation of Floquet Exponents with Hill’s Method 

Step 1:

Convergence of the eigenvalues w.r.t.

the number of harmonics.

Eigenvalues of 𝐁 = approximation of Floquet exponents.

Step 2:

Selection of the eigenvalues  𝜆𝑖 with 

smallest imaginary parts in modulus.

 𝐁 =

 λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯  λ2𝑛

𝐁 =
−𝚫2

−1𝚫1 −𝚫2
−1𝐡𝐳

𝐈𝑛 2𝑁𝐻+1 𝟎
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Hill’s Method in Summary

Reasonably accurate if

the number of harmonics retained 𝑁𝐻 is large enough ;

the eigenvalues are correctly sorted.

It does not require time integration, but the eigenvalue problem to 

solve is computationally intensive for large systems.

The only term that needs to be evaluated when 𝐳 varies is 𝐡𝐳, which 

can by obtained as a by-product of the harmonic balance method.

 𝐁 =

 λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯  λ2𝑛



30

Basins of Attraction of Periodic Solutions

When two stable solutions coexist for the same system and 

excitation parameters, initial conditions dictate which solution will 

attract the dynamics and eventually stabilise.

Time (s)

Disp.

(m)

Solution A

𝑥0 = 0.96,  𝑥0 = 0

1

1

0.1 cos 0.4𝜋𝑡

1

0.02
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Basins of Attraction of Periodic Solutions

Time (s)

Disp.

(m)

Solution C

𝑥0 = 0.18,  𝑥0 = 0

1

1

0.1 cos 0.4𝜋𝑡

1

0.02

When two stable solutions coexist for the same system and 

excitation parameters, initial conditions dictate which solution will 

attract the dynamics and eventually stabilise.
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Basins of Attraction of Periodic Solutions

The set of initial conditions leading to a stable periodic solution is 

called region of attraction or basin of attraction.

𝑥0 (m)

 𝑥0

(m/s)
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Basins of Attraction of Periodic Solutions

The set of initial conditions leading to a stable periodic solution is 

called region of attraction or basin of attraction.

𝑥0 (m)

 𝑥0

(m/s)
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Basins of Attraction of Periodic Solutions

The set of initial conditions leading to a stable periodic solution is 

called region of attraction or basin of attraction.

𝑥0 (m)

 𝑥0

(m/s)

𝑥0 = 1.390,  𝑥0 = 0

𝑥0 = 1.391,  𝑥0 = 0
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How to Construct Basins of Attraction?

Numerically

Cell mapping ;

Parallel time integrations.

Experimentally

Stochastic interrogation.



36

Basins of Attraction in a Nutshell

Basins of attraction can have complicated structures (for example, 

interlaced with fractal boundaries).

Their dimensions increase with the number of DOFs.

There exist different types of attractor:

Equilibrium points

Periodic solutions

Quasiperiodic solutions

Strange attractors (chaos)

𝜔 = 1.2
𝑓 = 0.2 − 0.29 − 0.37 − 0.5
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Concluding Remarks on Stability Analysis

Stability of periodic solutions can be assessed by analysing the 

associated Floquet exponents or multipliers.

When the harmonic balance method is employed, stability analysis is 

preferably performed through the Hill’s matrix.

Global analysis (basins of attraction) provides important and intuitive 

stability information, but its usefulness is limited to small systems.
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Different Ways to Model Nonlinear Structures 

Bifurcation Analysis and Tracking
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Stability Changes Occur not only near Turning Points …

Amplitude

Frequency 𝜔

Stable

Unstable
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… but also at Unexpected Locations

Amplitude

Frequency 𝜔
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They Strongly Influence Dynamic Behaviours …

Amplitude

Frequency 𝜔

Sine sweep
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… and Are Related to the Presence of Bifurcations

Amplitude

Frequency 𝜔
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Each Stability Change Scenario Defines a Bifurcation

Amplitude

(m)

Frequency (rad/s)

Fold bifurcation

Branch point

bifurcation

Neimark-

Sacker

bifurcation

Unstable

Stable
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Fold (F) Bifurcations

Amplitude

(m)

Frequency (rad/s)

Amplitude 

jumps

Located near resonances
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Branch-point (BP) Bifurcations

Amplitude

(m)

Frequency (rad/s)

Meeting of two branches with 

different orientations
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Neimark-Sacker (NS) Bifurcations

Another type of oscillations emanates: quasiperiodic (QP) oscillations

Amplitude

(m)

Frequency (rad/s)

Time (s)

Disp.

(m)
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Quasiperiodic Oscillations

Quasiperiodic oscillations are not periodic, and this phenomenon is 

different from linear beating.

Time

Displacement
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Time

Displacement

2𝜋/𝜔

These two frequencies are 

incommensurate (
𝜔

𝜔2
is irrational).

Quasiperiodic Oscillations

Quasiperiodic oscillations contain the forcing frequency 𝜔 (forcing), 

and at least another frequency 𝜔2 (envelope).

2𝜋/𝜔2
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How to Detect Bifurcations using the HB Formalism?

Amplitude

(m)

Frequency (rad/s)

?

?

?

𝐡 𝐳, 𝜔 = 𝟎

Monitoring of test functions

𝜙 along the branch
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Mechanisms for Losing Stability

There are only a few different scenarios for periodic solutions to 

lose stability.

Each mechanism is associated with a type of bifurcation.

10

𝑅𝑒(𝜎)

𝐼𝑚(𝜎)

𝑅𝑒(𝜆)

𝐼𝑚(𝜆)

0
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Detection of Fold Bifurcations: 2 Conditions

𝑅𝑒(  𝜆𝑖)

𝐼𝑚(  𝜆𝑖)

0

1. A Floquet exponent crosses 

the imaginary axis through 0.

𝜙𝐹 = det 𝐡𝐳 = 0

det  𝐁 = 0
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Detection of Fold Bifurcations: 2 Conditions

2. 𝐡𝐳 𝐡𝜔 has full 

rank.

det
𝐡𝐳 𝐡𝜔

𝐭𝑇
≠ 0

𝑅𝑒(  𝜆𝑖)

𝐼𝑚(  𝜆𝑖)

0

1. A Floquet exponent crosses 

the imaginary axis through 0.

𝜙𝐹 = det 𝐡𝐳 = 0

det  𝐁 = 0
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Detection of Branch-point Bifurcations: 2 Conditions

𝑅𝑒(  𝜆𝑖)

𝐼𝑚(  𝜆𝑖)

0

1. A Floquet exponent crosses 

the imaginary axis through 0.

det 𝐡𝐳 = 0

det  𝐁 = 0
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Detection of Branch-point Bifurcations: 2 Conditions

𝑅𝑒(  𝜆𝑖)

𝐼𝑚(  𝜆𝑖)

0

1. A Floquet exponent crosses 

the imaginary axis through 0.

det 𝐡𝐳 = 0

det  𝐁 = 0

2. 𝐡𝐳 𝐡𝜔 is rank-

deficient.

𝜙𝐵𝑃 = det
𝐡𝐳 𝐡𝜔

𝐭𝑇
= 0
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Detection Condition for Neimark-Sacker Bifurcations

A pair of Floquet exponents crosses the imaginary axis as complex 

conjugates at  𝜆𝑖 = ±𝑖𝛽.

The imaginary part of the Floquet exponents that cross the 

imaginary axis provides the envelope pulsation (in rad/s) of the 

quasiperiodic oscillations in the vicinity of the bifurcation.

𝑅𝑒(  𝜆𝑖)

𝐼𝑚(  𝜆𝑖)

0

𝛽

−𝛽
Time

Disp.

2𝜋/𝛽
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Detection Condition for Neimark-Sacker Bifurcations

𝜙𝑁𝑆 = det  𝐁⊙ = 0

Bialternate

matrix product

A pair of Floquet exponents crosses the imaginary axis as complex 

conjugates at  𝜆𝑖 = ±𝑖𝛽.

𝑅𝑒(  𝜆𝑖)

𝐼𝑚(  𝜆𝑖)

0

𝛽

−𝛽

Computational challenge: How to calculate and manipulate 

determinants of large systems?
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Bordering Technique Applied to the HB Formalism

Instead of dealing with det 𝐆 , compute 𝑔 from

𝐆 𝐩
𝐪∗ 0

𝐰
𝑔 =

𝟎
1

so that 𝑔 = 0 ⟺ det 𝐆 = 0

𝜙𝐹 = 𝑔

with

𝐆 = 𝐡𝐳

𝜙𝐵𝑃 = 𝑔

with

𝐆 =
𝐡𝐳 𝐡𝜔

𝐭𝑇

𝜙𝑁𝑆 = 𝑔

with

𝐆 =  𝐁⊙
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Bifurcations Contain Key Dynamic Information

How do bifurcations vary with system parameters?

Frequency

Amplitude
Quasiperiodic

Regime

Bistability

Initial conditions A

Initial conditions B
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DEMO

𝑓sin 𝜔𝑡

1 1

0.1 0.1

1 1

1 1

5

Mode Natural frequency (rad/s) Damping ratio (%)

1 1.00 5.00

2 3.32 1.51

𝑥1 𝑥2
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Influence of System Parameters on Bifurcations

Constructing different frequency responses takes time …

Amplitude

FrequencySystem parameter 𝜅
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Influence of System Parameters on Bifurcations

Amplitude

System parameter 𝜅 Frequency

… while bifurcation tracking quickly provides useful information.
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How to Track Bifurcations within the HB Formalism?

Through the addition of a bifurcation condition and a parameter 𝜅.

𝐡𝑎𝑢𝑔 𝐳, 𝜔, 𝜅 ≡  
𝐡 𝐳, 𝜔, 𝜅 = 𝟎

𝑔 𝐳, 𝜔, 𝜅 = 0

Amplitude equation (HB method)

Bifurcation condition

Amplitude

System parameter 𝜅 Frequency 𝜔
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How to Track Bifurcations within the HB Formalism?

Through the addition of a bifurcation condition and a parameter 𝜅.

𝐡𝑎𝑢𝑔 𝐳, 𝜔, 𝜅 ≡  
𝐡 𝐳, 𝜔, 𝜅 = 𝟎

𝑔 𝐳, 𝜔, 𝜅 = 0

Amplitude equation (HB method)

Bifurcation condition

𝐆 = 𝐡𝐳

Folds & branch points Neimark-Sacker’s

𝐆 =  𝐁⊙

Resolution of the 

bordered system



64

Application to a 2-DOF System

x

k1

l

Moving supports (base excitation)

k2

m2m1

Pre-stress parameter:

λ = l0/l

𝐷 sin(𝜔𝑡)

Hardening spring: 𝑓𝑛𝑙 𝑥1 = 𝑘1 1 −
𝜆

1+
𝑥1
𝑙

2
𝑥1
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Application to a 2-DOF System

x

k1

l

Moving supports

k2

m2m1

Pre-stress parameter:

λ = l0/l

𝐷 sin(𝜔𝑡)

𝜆 = 0.9 l = 0.1

k1 = 60 k2 = 35

Frequency (Hz) Damping ratio (%)

Mode 1 0.50 3.25

Mode 2 2.32 3.25

m1 = 1 m2 = 0.2
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FEPs of the Two Fundamental NNMs

Energy (J)

Frequency (Hz)

Energy (J)

Frequency (Hz)

NNM1

LNM1

(in-phase)

NNM2

LNM2

(out-of-phase)
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NNM1 Features an Alpha-loop due to 3:1 Resonance

Energy (J)

Frequency 

(Hz)
NNM2 / 3

NNM2 / 5

Internal 

resonance
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Computation of the NFRC

Disp. of mass 1 (m) – Base disp. 𝐷 = 5 mm

Frequency (Hz)

NNM1
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An Isolated Response Branch Exists at 𝐷 = 6 mm

Disp. of mass 1 (m) – Base disp. 𝐷 = 6 mm

Frequency (Hz)
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An Increase in Forcing Enlarges the Isola Domain

Disp. of mass 1 (m) – Base disp. 𝐷 = 7 mm

Frequency (Hz)
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Increasing Forcing Further Leads to the Isola Merging

Disp. of mass 1 (m) – Base disp. 𝐷 = 8 mm

Frequency (Hz)

The merging occurs in the 

vicinity of the 3:1 resonance. 
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Merging Mechanism and Stability Information

Disp. of mass 1 (m) – Base disp. 𝐷 = 7 mm

Frequency (Hz)

Fold bifurcations

Neimark-Sacker 

bifurcations
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The Merging Occurs through the Elimination of 2 Folds

Disp. of mass 1 (m) – Base disp. 𝐷 = 8 mm

Frequency (Hz)
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The Fold Curve Reveals the Isola Dynamics

Base disp. 𝐷 (mm)
Frequency (Hz)

Fold branch

Disp. of mass 1 (m)
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Merging Causes a 50% Rise of the Resonance Frequency

Displacement of mass 1 (m)

Sweep frequency (Hz)

6 mm

7 mm

8 mm

9 mm

Frequency 

shift
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Concluding Remarks on Bifurcation Analysis

Bifurcation analysis is useful to understand nonlinear phenomena 

(amplitude jumps, quasiperiodic oscillations, etc.).

They can be monitored during continuation using test functions.

Bifurcation tracking is useful to predict nonlinear phenomena 

(appearance and merging of isolated solutions, appearance of 

quasiperiodic oscillations, etc.).
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