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Course objectives

Given
input

=

v v

Mechanical j‘> Predict the
system output

Equation of motion

Write down the mx +cx + kx = f(t)

equations of motion

Calcul_ate the response x = 0.19 sin 2.3t
analytically or numerically

Is the structure safe ?
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Théoreme de la quantite de mouvement

When a body is acted upon by a force, the time rate of
change of its momentum equals the force

Linear momentum (translation)

N
TH — E ext,h

...written in an inertial frame !...



Digression

What did Richard Feynman mean
about the Second Law of Motion?
Where was the error?

JANUARY 17,2021 FRANCES48 O COMMENTS

Richard Feynman writes about Newton's Second Law of Motion in his work
“Lectures on Physics” (Chapter 15):

»For over 200 years the equations of motion enunciated by Newton were believed to
describe nature correctly, and the first time that an error in these laws was discovered,
the way to correct it was also discovered. Both the error and its correction were
discovered by Einstein in 1905.



Digression

Newton’s Second Law, which we have expressed by the equation
F = d(mv)/dt

was stated with the tacit assumption that m is a constant, but we now know that this is
not true, and that the mass of a body increases with velocity. In Einstein’s corrected

formula m has the value
my

S

where the rest mass represents the mass of a body that is not moving and c is the speed
of light][...].




Spring-mass system: a 1DOF system

Linear momentum (translation)

N k? =
Tni — Z ext,h m

e Spring force: —kx

e External force f acting on the mass.

mj’;:ZFﬂ: mi+ kx = f



Pendulum: a 1DOF system

mg

. . E = —mx
mX = —F.sin 6 . = SiIIH
T 0 . —mX 9
my = E.cos® —m N — _
y . g my o cos mg
r=1[1sind i‘:lécoséf ;1:—190089—:!9281119
y=—lcos@ y=I[0sind ij=10sinf + 16% cos @

mlf + mgsinf = 0

mlf + mgfh =0



Théoreme du moment cinétigue

Angular momentum (rotation) o G =A
dHA _ _ L o Vg =10
T =TMNvug X UA + Megrt A

® Ug ||Ta

dM A
dt

— mcxt,fi



Flexible shalft

At the center of gravity
dM g -
— Mex
dt b
Mg =16 10+ Ko=C
GI, E  nwD* EnR*

shaft = 2(1+ V)L 32 4(1+v)L

C
R
Flexible shaft m
\‘ >
Fer L

6 = KO
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Sliding bar: linear momentum

i
N
m Wg _ E F R, I
— = t.h o | O §
dl'; exr
1=1
}— hh“'-. ¢ =
’ N t R,
Tg = —(costIy+sinfly) | o
2 : | .
- LH o B mg v 6 :;"\\\L
g = —(—sinfly 4+ cosfly) - WU T _S—
2 : 0 A
_ L . 9 _ . Lo o
ag = 5 (—fsinf) — 6 costl)1y + (fcos) — 0 sinf)1,
mL .. . Y
T(—Hsmﬁ—ﬁzcosﬁ) = Rp

2 equations/

l . 3 unknowns

T(Hco.*-sH —6? sinfl) = Rji—mg
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Sliding bar: angular momentum

Choice of point | allows to eliminate the reaction forces
RA and RB

T4 5 I L _
va || U I:> : HI = myj cos 1,
C

9
mlL* . o

3

ﬂj = ﬁ(_‘; + mIG X Vg = —

mL2 L

— 0 = mg cos 0

3

—_

Once 0 Is known the reaction forces can be calculated.

'H].z

12



| Sliding bar




Double pendulum

mlai'l = —Tl sin 61 -+ TQ sin 92
mqy1 = 11 costy — T cosbts —mqg

'mg.’li‘g = _T2 sin 92
mats = Ta cosby —mag

x1 = [y sinty y1 = —ly costh
Ty = ll Sin@l + Zg sin 92 Yo = —ll COS 81 — lg COS 92

Compute 21,21, %2,2Z2  Andreplace in equilibrium equations ...
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So what ?

« Newton's second law must be applied to each

solid separately
e It introduces (unknown) reaction forces

* For multiple solids, it generally leads to lengthy
calculations

15



Our objective for today

Newton (vectorial mechanics, Lagrange (analytical
force and acceleration) mechanics, work and energy)

... through the virtual work principle...

16



Outline

Statics
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Historical perspective

Bernoulli systematized the virtual work principle (VWP) during the 18"
century but was imagined before. The virtual work principle is a
statement of the static equilibrium and is the first variational principle in
mechanics.

In 1743, d’Alembert extends the VWP to dynamics through the
introduction of inertia forces. The VWP becomes equivalent to Newton’s
second law.

When they can be applied, the VWP and d’Alembert’s principle are
absolutely general. They state the necessary and sufficient conditions
either for equilibrium or for motion.

In 1788, Lagrange proposed the VWP as the basis of analytical
mechanics and applies the generalized coordinates to the VWP.

18



Virtual displacement concept

A virtual displacement 5u shows how the mechanical
system's trajectory can hypothetically (hence the term
virtual) deviate very slightly from the actual trajectory.

19



A virtual displacement ...

IS arbitrary but compatible with the kinematic constraints.

takes place instantaneouly (6t=0).

IS Infinitesimal; it obeys the rules of differential calculus.

coincides with the real displacements at the extremities of
the time interval fuity) = duy(ty) =0

20



VWP for a material point (statics)

The virtual work of the applied force
(e.g., gravitational or magnetic) is oW = F.or

SW = F.6r + -+ Fy. 01
= (F_)l + .-+ ﬁN).5T = [_é or

\\ T

A material point is in equilibrium if the virtual work of the

applied forces is zero for any virtual displacement of this point.

21



VWP for a set of material points

Virtual displacements 6ry, ..., 61y ® .

4 o m;(x3, ¥5,23)

N 7
A >® /
m,(xy, 1, 2,)
1

Each point is subjected to a force

R; = Fitf

L Constraint force (e.g., move on a surface)

Equilibrium: each point is at rest, the total force is zero

R, = Fi+ _o:{> SW, = R,.67; = 0
N N
Z5Wl= lﬁi-l_ ﬁﬁl=0

= 1= =1



Constraint forces

F.om +

l

=
I

0

6W=Z§Wi=z f.

N N
1=1 1=1

N
=1

The constraint forces, which force the
particle to move on, e.g., a surface, are

normal to the surface (no friction). Smooth
surface

So the virtual work of the constraint forces is zero for any

virtual displacement:
N

5W=Z5Wi=

=1

23



Virtual work principle

—

N
ﬁi' 57"1' =0
=1

6W=Z

l

For a system to be in static equilibrium, the virtual work of
the forces applied to the system must be zero for virtual
displacements compatible with the system’s constraints.

24



DOFs and generalized coordinates

: minimum number of
coordinates necessary to provide the full @
geometric description of the system

d1, 42, ---4n

Minimum set of coordinates: n = NN

n>N Need for kinematic constraints

(b}

25



Kinematic constraints

The number of DOFs decreases:

f(QL vy Qny t) =0

flar,-qn) =0

The number of DOFs does not decrease:

Z a;dg; + apdt =0 or Z a;dg; =0

Two masses connected

by a rigid bar

26



Example of nonholonomic constraints

» 4 generalized coordinates
x,y,0,0

 All positions and orientations of
the disk are possible

But, time derivatives of coordinates are not independent

v=rd _
& = vcosf dz —rcosfap =0 Not all paths are possible to go from
 =wvsind dy — rsinfde =0 one configuration to another

27



Independent generalized coordinates

An underlying assumption is that the virtual displacements
must be independent.

If this Is not the case, we should consider independent
generalized coordinates such that

5=y T
1 = Ak
et 0qx
N N n R n N R
w3 53 3 = (S 1 -
= i-O0h; = i k — L e
=1 =1 k=1 aqk k=1 \i=1 aqk
n
Stati
oW = z Qk0qr =0 —1 Qr =0 eq?;illci:brium
k=1 Generalized

forces 28



(

0
—Mg

Sliding bar example

etude d'une barre glissante
L =Mgj o)

Rp
R,

5 (). (50 ()

xg =1Isin8, yp =0, xg=0.51sin8, y;=0.51cosé,

56 dxg = lcos888, dyg =0,

8xp = 0.5 cos880, 8yg = —0.5 Lsin 656,
= ( 0.5 cos8 58 . (lcos 868 G Sok Ye sin
56 ( ) 8% ( )

205 Lsingse) °'B 0

SW = (—Mg]'). E:G + (—P7). 5.;:B=0 la force appliguer pour n

)_ (_O(fscl";:gge) + (‘OP),(ICOSOG %9) = 0= (0.5 Mg sin6-Pcos6) 166=0  mummm




Much simpler than Newtonian mechanics

Problem: Find Zto maintain the slider-crank mechanism in static
equilibrium with ¢ = 30°,

- | 'fz—?E

2 equations for translation
1 equation for rotation

X 2 bodies = 6 equations

5 reaction forces + Z = 6 unknowns

30



Much simpler than Newtonian mechanics

Forces: Q, Z; Moment: M
g1 = @

—Mdop — Qoy — Zdz
, ,

yzisincp 5y:§c.os<p&p

z::f'cosanr?'\/él—sinzngrb 52-7‘511’1@(1 chY )5(,0

—Mop —Qoy— Zdz =0

p = 30° Z=71.92 N

31



Outline
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D’Alembert’s principle

—

We now include inertia forces: R; = F;+f; — m;t;

N
The VWP becomes E(ﬁi — m;7;). 61, = 0

i=1
61i(t1)=61;(t2) =0

If 5’} = rT{dt , 1.e., no explicit depend. on time Iin constraints

ﬁi'ﬁi — mlz Fl)dt =0

N
=1

33



Conservation of total energy

—

o) (4]

= —dV

N
ﬁi-ﬁi — mf[?{dt =0
i=1
The forces can be AN
expressed as the E;.
gradient of a potential V i=1
T Is the kinetic energy m;¥;. o dt =

d
d

o~

dT+V)=01[_ > |T+V=E

34



Hamilton’s principle

We derive the equations of motion
from three scalar quantities, namely
the kinetic energy, the potential
energy and the virtual work of the
nonconservative forces.

It is derived from the generalized
d'Alembert’s principle.

N

z(ﬁl — le)E’iL =0

=1

35



Hamilton’s principle: Integral form of the VWP

N
5 Virtual work of
5W = z Fi' 5Ti

external forces

N
E(ﬁl — mf[)ﬁl =0
=1

36



Hamilton’s principle: Integral form of the VWP

= d .
oW + 6T = Z mia(ri. 67"i)
=1

Integration over a time interval [t,, t,] With &7;(t,)=67:(t,) = 0

Conservative
forces

t?
f (8W + 8T)dt = 0 SW = —8V + §W,
t

1

Non-conservative
Hamilton’s principle forces

37



Example from Meirovitch

FIGURE 1.10
a. Rigid bar on a string, b. Position of the mass center, ¢. Free-body diagram

38



Example from Meirovitch

Example 1.6. A uniform rigid bar of total mass m and length L,. suspended at point O

by a string of length L, is acted upon by the horizontal force F, as shown in Fig. 1.10a.
Use the angular displacements #; and 6 to define the position, velocity and acceleration
of the mass center C' in terms of body axes and then derive the equations of motion for the
translation of C and the rotation about C.

Referring to Fig. 1.10b, we can write the position, velocity and acceleralmn of the
mass center C' in the form

- Ly . | -
rc=ra+rac =Liug + - Ur2 ' o (a)
. . LE . '
Ve =va+vac = L1601y +?92“ﬂz | (b)
and
. . Lg . Lo : . -
Cac =as+axc = —Lifju +L161ug — —‘,Zﬂﬂgﬂrz + 7921132 - (©

39



Example from Meirovitch

respectively. Equations ('a.) (c)arein terms of two sets of unit vectors. To obtain expressions
“in terms of the body axes ra, 2, we observe from Fig. 1.10b that the two sets of unit vectors
are related by

= CDS(E’* — 1) —sin(fr — 01)ugy.

(d)
ugl'— 5111(92 — 1 )u,2 +cus(92 — 6'1)1192 '

Insertmg Eqgs. (d) into Eqs. (a) (c), we obtam the pnsnmn w:lomty and acceleratmn nf the
~mass center C in terms of components along the body axes, as follows:

I'(?=|:L|CGS(H;1—9|}+—EE llrz—L]Sln(ﬂg—Q])ﬂgg S {e)

—

ve = LBy sin(62 — 01)ur2 + | L1y cos(02 — 1) + é—zﬁz] ugy (f)

-

and

" . Lo .
ac = ]:Llﬂl sin(fy —#1) — L]EJ%CDS({'}Z — ) — ?29%] | B

. o I -
+ [LIEJ] cos(6r — 01) + L1607 sin(6> — 01) + ?292] ug2



Example from Meirovitch

The bar translates and rotates, with the velocity of the mass center C being given
by Eq. () of Example 1.6 and the velocity of rotation being #2. Hence, the kinetic energy
consists of two parts, one due to translation of C and one due to rotation about C. Inserting
Eq. (f) of Example 1.6 into Eq. (1.71), we obtain the kinetic energy of translation

1 1

. . . ' . L .
T = Emvc Ve = Em {L]ﬂi stn(fq — 01 )0 + |:L1+9; cos(fr — 1)+ —2392] ngzl

. . .
B {Llﬁl sin(f — 0 w2 + [Llf?l cos(fr —61)+ ?283] llgrz]

I . . L%, S |
= 5m |:L%9‘]2+L1L19192605(92 —91.}+f9%i| @
On the other hand, using Eq. (1.72) and recalling that the mass moment of inertia of a thin
uniform bar about C is I = mL>/12, the kinetic energy of rotation about C is simply -

1 1mL3 ,,

) .
— oWt = 2 b

41



Example from Meirovitch

) 2
1 L>. 1mL5 .,
T =Tyt Trot =5m L26? +L1L29192cos(92—91)+f 05 +53%92

-

el
p

—— 207 4 L1 L0, ( 0, —on+ 2a2| B
__2m L1607+ L1L20,0cos(6; 1)+ 3 72 (a)

V=mg [L}(l —cosf)+ —22-(1 “00392)j|

SW,e =F-6rg =Fi-6 [(L1 sinB1 + Losin)i— (Licosdy + Lg_cosé?g)j]

- =F(Licost186) + Lacosthody) = ©1601 + @2592 = Q16q1+ Q20492
(e

Q=61 = FLicos@y, Or=0,= Fchosf);

represent the generalized nonconservative forces.

42




Example from Meirovitch

., T, . . o
oT :mL%91591+m L 2[92003(6}2—91)6914—91 003(82—91)592
——91923111(92—91)5(@2—91)]+Té‘gé@z

L. . :
B2 B0y sin(By — 0,)66>

L1l . .
:m L 29192811](92—91)59}—

L. 1. I Lo, 1.
+mlq I:ngl + 7292(208(92 — 91):1 681 +mlo [7191 cos(6) — )+ -—3“2*92] 667
| - ®)

and the variation in the potential cnergy 1s simply

L | -
6V =mg (Llsin91591+7zsin92692) o . (h)

43



Example from Meirovitch

Iﬂsertlng Egs. (e)-(g) into Eq. (6.31) and collecting terms, we have

) 5] IivL>. .
f (5T—5V—|"5Wnc)dt:[ {[m 21 291928i1‘1(92—91).-—mgL18in91 -
i1 : £ : )

LiLy, L
+FL1c0591]691+[—m L2 018y sin(0y — 0) — — 2si1192—1—FL200392:|592
o . Ln. _. . L. . L. .
-I—mL1|:L191—I-?292005(9291):|591+mL2|:2191COS(9291)+;92i|§92}dt=0

1)

44



Example from Meirovitch

- At this point, we observe that Eq. (i) involves both the virtual dlsplacements 661 and
66> and the virtual velocities 591 and 605, and only the virtual displacements are arbitrary.
Hence, before we can derive the equations of motion, we must transform the terms in 56,
and 60, into terms in 66 and 865, respectively. To this end, we carry out the following
integrations by parts:

fy

g . Ly . . Lo,
f mi. [L191 + —2—92 cos(@y — 91)] 081dt = mliq I:L191 + —592;008(92 — 9})] 601
il . )
=

1

ety d ) Lo
~/ mli— [Llé’l + —292008(92—91)] o6hdt
I . dt. 2 _

Y L o Lo - Ly. . . .
. =--f mL L191+_792005(92—91)m-2—92(92—91)3m(93—91) 561 dt
i

45



Example from Meirovitch

9]

f2 - : Ly . . L. Lo
f mlo [%91 cos(fr» —01) + ~§-2—92i| 00>dt =mlL~ [—;—91 cos(éh — ) + —;92] 66
I . ' )

I

b2 d | L. L.
frl lmLZE [291008(92~91)+392] othdrt

- L. | Li. . . - Lo
- [ mL> [—2—1-91 cos(0 — 1) — —-61(2— B1)sin(B2 — 61) + ?292] 86ndt
f - : '

where we recalled the auxiliary conditions 601 = 689 =0 atr =1, 1. Introducing Egs. (j)
in Eq. (i) and collecting terms, we can wri_te |

2 o L L L |
f {—l:mL%Ql e 21 2 6> cos(f2 — 01) — - 21 2 92 sin(f2 — 91)
f i |

- [mLiL mI2
+mngsin91—FL100391]591 [m 1 26’1005(82—91)4——3-—92

mLiLo .,
MRt 29%8in(92—91)—|—

) |
PEZ2 Ginby — FLycos 92}692} di =0 )

46



Example from Meirovitch

Finally, the integrand is in a form permitting the extraction of the equations of motion. To
this end, we invoke the arbitrariness of 667 and 66,, and assign different values o 601,
while we set 66> = 0. Because the resulting equation must hold for all values of 61, we
conclude that this is possible only if the coefficient of 667 is zero. A similar argument, but
with the roles of 681 and 66, reversed, causes us to conclude that the coefficient of 566> must
be zero as well. Hence, setting the coefficients of 661 and 662 equal to zero, we obtain the
equations of motion |

mL1L>

mL%.ﬁh + [62 005(92 —01) — 92 sin(fy — 91)] +mgL1 sin 61 —FL1 cos

1)
mbiiLo

2

L% ‘mglLo

[91 cos(fr — 1) + 91 sin(fr — 91)] | ——92 + sin - =FL2.COS &>

47



Example from Meirovitch

We observe from Egs. (1) that there are two equations of motion in the unknowns 6}
and 6, as there should be for a two-degree-of-freedom system, and the equations are free of
the string tension T'. By contrast, Eqs. (k) of Example 1.6 are three in number and there are
three unknowns, 81, 6> and 7. Hence, the extended Hamilton’s principle not only yields the
correct number of equations of motion, but the equations themselves are not encumbered
by quantities that may present no interest, such as internal forces and reaction forces. Of

48



Outline

The method of
choice !

49



Lagrange’s equations

Lagrange’s equations can be
derived from Hamilton’s
principle. For the same
generalized conditions, they
yield identical equations of
motion.

Lagrange’s equations are more
expeditious. For instance,
Integration by parts can be
avoided. Lagrange’s equations
represent the method of
choice.

50



Start from Hamilton’s principle

ty
J (6L + 6W,.)dt = 0 L=T-V
t

1

N n
5Wnc — 2 éi.ﬁi — 2
=1

l

T, -

, 0T

.— | 8qy ZQR5QR
k=1

-

Generalized coordinates: 7 = 1:(qq, ..., @, t)

51



Carry out some derivations

n n
9L s+ 2 +ZQ 5q; | dt =0
f (Z (aqk 4k dd Clk) £ k k)

Whered aL5 0L5 +d 0L6
at\aa, 00 ) = 5g. 0kt gp\Gg, |0k

52



And finally Lagrange’s equations

[ (R i) sl )« o=

N & oL
; a—qk(qu] J ZIdt<a_%>_a_%—Qk]6cT1k dt =0

T arbitrary

=0
d ([ 0JL oL B 1
dt aqk aqk — Qk; =1,...,Nn

53



Pendulum example: no reaction force !

Yo
fq " 1 1 .
l *. T = 5??11‘?2” = §m3292
V = —mgy = —mglcost
1 202
L=T-V = Eml 0° + mgl cos0
: , d [ OL 0L
d_ij — mlzg — |\ = | — 7/ = Qk:
dt \ Oqx o

o :
@ = —mgl s1n mEQQ -+ mgl sinf =0



Pendulum with a sliding mass: 2 DOFs

N7 1 . .
0 i’\ T = Em (Q’lz + q%fhz)
g

1
xﬂ q__,'q._, V = —mgdqgi COs g + Ekq%

1

. :
L=T-V = 5™ (qq2 + Q’%Q‘z?) + mgq1 cos qz — 23‘?@%
71 mgy — mqiga” — mgcosga + kg =0
d 9 . .
42 a (mglqg) + mgq; singy = 0

55



Example from Meirovitch

56



Example from Meirovitch

As in Example 6. 1 We use the angles ¢; and 92 (see Flg 1.102) as generahzed
coordmates g1 =01, g2 = 02, so that Lagrange S equatlons Egs. (6. 42) take the form

d al ol a3V
(**"T—")* + .=@k,k=1¢2 (a)
t\a6; /) - s

a6, a0,
where O (k = 1, 2) are the generalized nonconservative forces. From Example 6.1, we
obtain the kinctic energy

1 : . . L2, |
T = oM I:L%Q% + Li1Ly8162cos(62 —01)+ %95} | (b)

the potential energy

V =mg [Ll (1 —cosfp)+ 92—2(1 - 0056'2)] | )

and the virtual work of the nonconservé.tive forces

W ye = FL1cos8160; + FL3cos 0,50

57



Example from Meirovitch

The derivatives with respect to the angular velocities are as follows:

oT LiL
—— =mL 291 + - mlila, 92 cos(f2 —0)
201 |
aT LiL | | mL2 . ©
_ miaLy . :
— 6 6, —6 ——9
| % 2 1008(2 1)+ 3 72
so that |
d (0T \ e AR, " L .
- (ﬁ) = mL01 + i 21 2 [Z COS(92 —61) —62(02 ~ 61) sin(6> — 0y) |
d [ aT LI | o mi2, o
yr (8_6_’;) = 21 2 [91 cos(fy — 91) 91(6’2 - 91)51[1(92 91)] + ———92
Moreover, the derivatives with respect to the angular displacements are
aT leLQ or leLZ
0,6 0> —0 610 —6
0= 2 zsm( 2 —01), 3, 501 2sin(fy — 61) "
v AV mgl, | ©
sinfh

— =mglysinfy, — =
36, 8 1. 1

___392 2



Example from Meirovitch

In addition, the generalized nonconservative forces are recognized as the coefficients of 601
and 607 in the virtual work, Eqg. (d), or

@1 = FLicos#;, @ = FLycosby = ~ (h)
Inserting Egs. (f)—(h) into Eqs. (a), we obtain the desired Lagrange’s equations
o JiLy . . ' S
mL%Ql -+ il (67 cos(@y —61) —9% sin(@s —91)]+mgL]--Sin91 =F1cos6
| 1L | L2 L | W
o . m .
e 21 2 [61 cos(0r — 61) —1—9% sin(fy — 61)1+ —~3—262+ mi 2 sinfy =FLycosfy

We observe that Egs. (i) just derived are identical to Lqs. (1) of Examplé 6.1, obtained
by the extended Hamilton’s principle, as was to be expected. Clearly, Lagrange’s equations
reduce the derivation of the equations of motion to a routine series of differentiations.
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Lagrange equations with constraints

Consider n generalized coordinates which are not independent

Z akdqe =0 [=1,..,m n-m degrees of freedom
k

oL . 1" [t d (0L OL i
> a0 l1%3bﬂk%)&kQ4“”“*)

k t1
dqi.  Not independent Lagrange multipliers

a oLy o
dt \ 9q;, Oq. Tk

60



Lagrange equations with constraints

m n m
Z Al ( ﬂfﬁcé%) Z dqx (Z /\zam) =0
. k=1

d (0L oL - -
[dt (3—) — @ — Qk ;)\gam] qudt =0

Generalized contraint forces



Lagrange equations with constraints

dk )\l

d [ 0L 0L n
— [ =— ]| —=— =0Qr + E A Q1
dt (&jg-) Iq. g — 1Ak

> adge =0 [=1,..,m
k=1

k=1,...n

constraint equations

62



Lagrange equations with constraints

Holonomic system

,fE(QI: ey Qnyy t) =0

Non-holonomic system

Za;kéqk + ajpdt =0
k=1

T

5fi=3"

dfi
GI S0 —
D qr = 0

63



Lagrange vs. Newton

« Newton
— 6 equations per rigid body
— Constraints appear as forces

« Lagrange
- n coordinates
- m constraints / Lagrange multipliers

- m+n equations of motion

64



Piston engine

'// (/q .'“.‘,;..- T
.."!X:' -
2 ;;ﬂﬁ-
S

s =rcosf + lcos ¢

e =rsinf — [sin ¢

)\:r;_- s—?‘(cosﬂ%—;cosqﬁ)
" sin ¢ = ()\ sin ) — %)

No gravity so that the potential energy is zero.

n=3

m=2
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Piston engine: kinetic energy

Obijective: write the kinetic energy as a function of 6 only:

1 1
Tl - (Jl + m1(32) 9 = —J092
2 2 |
1 1 AN
T = 5 3UG + = 5 JACD .{f('};
T3 B §m352 . y Il
at points A and B
mob mMoa
ma — T mp =
. ]. Y 2 ]. -9 '2
Ty, = §mA (?"0) + 5??133 + Japo® Jap = Jo — moab



Piston engine: kinetic energy

Define I — f ke = 2
A 6
6 1
sin ¢ = (Asin@——) . . S=T COSQJFXCOS@
L7 cos od = A\ cos 00 7 .
§= —r (sin 00 + 3 sin @@)
$  Acos® Acos B : .
i - A Sinﬂ—l—k—(‘bsmqb
0 C0S @ \/1—()\51110—%)2 0 A
1 . |
Tl = 5 (Jl + mlcQ) 92 = §J092
_ 1 AN .2 79 1 2 1 2 2\ 52
T5 = §mA (?“9) + 5?’?133 + Japd© = 5?’?’2;14’?" + QmBks + .]ABk@ 0
1 1 o -
T3 = 5??1352 = §mdk§92

The kinetic energy is a function of 6 only /
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Piston engine: simplify the inertia term

1 .
T=T\+T,+T4 = 51(5')82

[(fj—}) = Jyg + mAer -+ (mg + mB) kf + JABké

Assume , limit to first order terms

1(6) ~ Jo + mar® + (m3 +mp)r’sin® + JagA?cos®f =|A — Bcos20

1 _
A=J, -l—mA*rQ s 5 [(md -I—mg)?‘z + JAB)\Q}
1 ‘
B = 5 [(Tn;; +m5)?"2 - JAB)\z}
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Piston engine: Lagrange equations

SWe = Qudp = —P8s — Myd = — (Phy + Mp) 60 hy — g _ ;’—;
d (OL\ 0L 1
— (=)= = L=T==I(6)§>
dt (55) a0 ~ @ 5 1(0)
s Al ldlsy dl _ dl do
1(0)0 + 70— 5 —50% = —Phy — My =
1 dI

I1(0)0 + = —0% = —Pk, — My
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Piston engine: constant speed

Constant speed 6 = wy and P=0
« 1dl . 1dI
I1(0)0 + =—0°? = —Pk, — My — 02— My

I[(0) = A — Bcos26

_ ; It gives the moment to apply so
Bsin 20wy = —Mr | that the system moves at
constant speed.
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Piston engine: calculate reaction forces

51?1191533279&61@:5

s—rcosf —lcoso
e —rsinf 4 [sin¢
xr1 — ccosb

y1 —csinf

To — 1 cosl —acos@

Yo — bsing — e
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Piston engine: equation of motion

d [ 0L oL d (0T oT
a(a) oar QHZ"%iﬁ(a—qJ oar Q“Z“fk

Tri

1 , , 1.
T = 5?}11 (.1,"12 +ylz) + §J192
) | s —rcosf —lcoso
-|—§m2 (Z2? + y2%) + §J2¢2 e —rsinf + [sin ¢
I r, —ccosf
+—-m3s
2 y; — csinf
To — 1T Ccostl —acosg
x1(k=1): mlxl Z a1\ Y2 — bsingp — e
a; = o All =0 except a3 =1
6.1?1

mlsi"l — /\3

0=f2
0=fs
0= fa
0=fs
0=rs
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Piston engine: equation of motion

s—rcosf —lcosp =

m,1f1.7.1 — )\3

mid, = Mg e—rsinf+4lsing =
mody = As r1 — ccosf
Mot = A y1 — csinf

xo —1rcosl —acoso
Yo —bsing —e =
J6 = —Mr + (A1 + As) rsinf — Aarcos @ 4 ¢ (A3 sinf — Mg cos 6)
qu5 = [ (A1sin ¢ + A2 cos @) + Asasin ¢ — Agbcos ¢

mss3 = A1 — P

0=rfi
0= /2
0=fs
0=f4
0= /s
0= fe



Piston engine: physical interpretation of multipliers

A3 = Xo1 + X2

miT, = Ag Ay = Yo1 + Yoo




Piston engine: physical interpretation of multipliers

J10 = —Mp + Xgiesinf — Yojecos 6 — Xi2(r —¢)sinf + Yio(r — ¢) cos @
J10 = —Mp + (X + Xs)rsind — Xarcos 0 + ¢ (Mg sinf — Ay cos 6)

—
e

P
- -
¥

~ ya — ] — —
S A - :\_____ _-‘__-_-_-_ b — X12 A]. + A‘5

’ ﬂ//ka 22BN Yiog = —Ag

L. ) : > —
Aok T

] T WrrrTrrra
gﬂﬁ-
S

§

Lagrange multipliers are combinations of reaction forces.
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Summary from Meirovitch

Newtonian mechanics formulates the equations of motion in terms of physical coordi-
nates and forces, which are in general vector quantities. Itrequires one free-body diagram
for each mass and it includes reaction forces and constraint forces in the equations of
motion. These forces play the role of unknowns, which makes it necessary to work with
more equations of motion than the number of degrees of freedom of the system. As

a result, as the number of degrees of freedom increases, Newtonian mechanics rapidly

loses its appeal as a way of deriving equations of motion.

~Analytical mechanics, or Lagrangian mechanics, does not have the disadvantages
cited above, and must be regarded as the method of choice [or deriving equations of mo-
tion for multi-degree-of-freedom systems, as well as for distributed-parameter systems.
It permits the derivation of all the equations of motion from three scalar quantities,
namely, the kinetic energy, potential energy and virtual work of the nonconservative
forces. It does not require free-body diagrams, and in fact it considers the system as a
whole, rather than the individual components. As aresult, reaction forces and constraint
forces do not appear in the formulation, and the number of equations of motion coincides
with the number of degrees of freedom. The process of deriving the equations of motion
is rendered almost routine by the use of Lagrange’s equations.
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Summary from Meirovitch

—1 Unknown |- -~
machine

Equilibrium conditions: Fi-ri+Fy-15=0

Not solvable by Newton !

77



