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Course objectives

Mechanical 

system

Given

input

Predict the 

output

Write down the 

equations of motion
𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑓(𝑡)

Calculate the response

analytically or numerically
𝑥 = 0.19 sin 2.3𝑡

Is the structure safe ?



3

Focus on systems with 1DOF

A 1DOF system is a system whose configuration at each

time instant can be described by a single variable.

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝑓

𝑚𝑙 ሷ𝜃 + 𝑚𝑔 sin 𝜃 = 0
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Focus on linear systems 

Linear, second-order ordinary differential equation with

constant coefficients

Small 

displacements

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝑓

𝑚𝑙 ሷ𝜃 + 𝑚𝑔 sin 𝜃 = 0

𝑚𝑙 ሷ𝜃 + 𝑚𝑔𝜃 = 0
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Effect of gravity on spring systems ? 

𝑚𝑔 = 𝑘∆𝑙

𝑚 ሷ𝑥 = −𝑘 ∆𝑙 + 𝑥 + 𝑚𝑔 → 𝑚 ሷ𝑥 + 𝑘𝑥 = 0

Static equilibrium

Dynamic equilibrium

No need to account for the effect of gravity in the equations

of motion.
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Motivation for studying 1DOF systems

An approximation of reality ! But it can sometimes be a very

useful approximation…

One-story building
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Motivation for studying 1DOF systems

Vertical motion of a rigid car



8

Motivation for studying 1DOF systems

Offshore platform

heavy

light
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Outline

Undamped, unforced system

Damped, unforced system

Harmonically-forced system
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Undamped, unforced system

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

What is the solution to this equation ? 𝑥 = 𝑥 𝑡 ?
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Assumption of harmonic motion

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

𝑥 = 𝐴 cos𝜔𝑡

−𝑚𝐴𝜔2 cos𝜔𝑡 + 𝑘𝐴 cos𝜔𝑡 = 0

? ?

𝜔𝑛 =
𝑘

𝑚
Natural frequency in rad/s

But how do we determine A?
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Initial conditions

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

𝑥 = 𝐴 cos𝜔𝑡

with 𝑥(0) = 𝑥0

𝑥 = 𝑥0 cos𝜔𝑡

ሶ𝑥 0 = ሶ𝑥0

ሶ𝑥 = −𝜔𝐴 sin𝜔𝑡 ሶ𝑥 0 =0

What if                  ?
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More general solution

𝑚 ሷ𝑥 + 𝑘𝑥 = 0 with 𝑥(0) = 𝑥0, ሶ𝑥 0 = ሶ𝑥0

𝜔𝑛 =
𝑘

𝑚
𝑥 = 𝑥0 cos𝜔𝑛𝑡 +

ሶ𝑥0
𝜔𝑛

sin𝜔𝑛𝑡

𝑥 = 𝑋 cos 𝜔𝑛𝑡 − 𝜑 = 𝑋 cos 𝜑 cos𝜔𝑛𝑡 + 𝑋 sin𝜑 sin𝜔𝑛𝑡

𝑥0 = 𝑋 cos𝜑

ሶ𝑥0/𝜔𝑛 = 𝑋 si𝑛 𝜑
𝑋 = 𝑥0

2 +
ሶ𝑥0

𝜔𝑛

2

tan𝜑 =
ሶ𝑥0

𝜔𝑛𝑥0
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Numerical example

𝜔𝑛 =
𝑘

𝑚
= 1 𝑟𝑎𝑑/𝑠 = 0.16 𝐻𝑧

𝑥 = 0.01 cos 𝑡

ANIM
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Your own numerical propagation
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Outline

Undamped, unforced system

Damped, unforced system

Harmonically-forced system
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All real-life systems possess damping

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

What is the solution to this equation ? 𝑥 = 𝑥 𝑡 ?

Undamped, unforced system oscillates indefinitely, which is

not in accordance with reality. 

𝑐
𝑐
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Assumption of viscous damping

Dashpot that produces viscous damping
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General solution

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0 𝑥(𝑡) = 𝐴𝑒𝑡

𝑚2 + 𝑐+ 𝑘 𝐴𝑒𝑡 = 0 → 𝑚2 + 𝑐+ 𝑘 = 0

1,2 = −
𝑐

2𝑚
±

1

2𝑚
𝑐2 − 4𝑘𝑚 𝑐𝑐𝑟 = 2 𝑘𝑚

1,2 = −𝜔𝑛 ±𝜔𝑛 2 − 1  =
𝑐

𝑐𝑐𝑟
=

𝑐

2 𝑘𝑚

1,2 = −𝜔𝑛 ± 𝑖𝜔𝑑 𝜔𝑑 = 1 − 2𝜔𝑛
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Underdamped motion

𝑐𝑐𝑟 < 2 𝑘𝑚 ,  < 1 Imaginary roots,      

damped oscillatory motion

𝑥 𝑡 = 𝑒−𝜔𝑛𝑡 𝐴𝑒−𝑖𝜔𝑑𝑡 + 𝐵𝑒𝑖𝜔𝑑𝑡

𝑥 𝑡 = 𝑒−𝜔𝑛𝑡 𝑥0 cos𝜔𝑑𝑡 +
ሶ𝑥0 + 𝜔𝑛𝑥0

𝜔𝑑
sin𝜔𝑑𝑡

𝑥 𝑡 = 𝐴𝑒1𝑡 + 𝐵𝑒2𝑡 1,2 = −𝜔𝑛 ± 𝑖𝜔𝑑with
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Underdamped motion

Consider several

values of c

t=[0:0.01:30];k=1;m=1;c=0.05;x0=0.01;kssi=c/(2*sqrt(k*m));wn=sqrt

(k/m);wd=sqrt(1-kssi^2)*wn;plot(t,exp(-kssi*t).*(x0*cos(wd*t)),'r--')

Numerical

Analytical

ANIM
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Logarithmic decrement

𝑥 𝑡 = 𝑒−𝜔𝑛𝑡 𝑥0 cos𝜔𝑑𝑡 +
ሶ𝑥0 + 𝜔𝑛𝑥0

𝜔𝑑
sin𝜔𝑑𝑡

𝑥 𝑡 = 𝑋𝑒−𝜔𝑛𝑡 cos𝜔𝑑𝑡 −𝜑

𝑋 = 𝑥0
2 +

ሶ𝑥0 + 𝜔𝑛𝑥0
𝜔𝑑

2

tan𝜑 =
ሶ𝑥0 + 𝜔𝑛𝑥0
𝜔𝑑𝑥0

∆= ln
𝑥𝑛
𝑥𝑛+1

= ln
𝑋𝑒−𝜔𝑛𝑡𝑛 cos𝜔𝑑𝑡𝑛 −𝜑

𝑋𝑒−𝜔𝑛 𝑡𝑛+𝑇 cos𝜔𝑑(𝑡𝑛 + 𝑇) −𝜑
= 𝜔𝑛𝑇

∆= 𝜔𝑛𝑇= 2𝜋


1 − 2
→  =

∆

4𝜋2 + ∆2

Two successive 

maxima
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Typical values of 

Civil structures ~5% Aerospace structures <1%
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Response to an impulsive force

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹𝛿𝑡

𝑥(0−) = 0, ሶ𝑥 0− = 0

Sudden application of 

a very short-duration 

force: shock/impulse

An impulse imparts a 

change in  momentum
𝑥(0+) = 0, ሶ𝑥 0+ ≠ 0
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Initial velocity is impulse-like

𝑙𝑖𝑚∆𝑡→0න
0

∆𝑡

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 𝑑𝑡 =𝐹 𝑙𝑖𝑚∆𝑡→0න
0

∆𝑡

𝛿𝑡 𝑑𝑡

𝑙𝑖𝑚∆𝑡→0න
0

∆𝑡

𝑚 ሷ𝑥 𝑑𝑡 = 𝑙𝑖𝑚∆𝑡→0 𝑚 ሶ𝑥 0
∆𝑡 = 𝑚 ሶ𝑥 0+

𝑙𝑖𝑚∆𝑡→0න
0

∆𝑡

𝑐 ሶ𝑥𝑑𝑡 = 𝑙𝑖𝑚∆𝑡→0 𝑐𝑥 0
∆𝑡 = 0

𝑙𝑖𝑚∆𝑡→0න
0

∆𝑡

𝑘𝑥 𝑑𝑡 = 0 ሶ𝑥 0+ =
𝐹

𝑚



26

Impulse response function

𝑥 𝑡 = 𝑒−𝜔𝑛𝑡
ሶ𝑥0

𝜔𝑑
sin𝜔𝑑𝑡

For a unit impulse, 𝐹𝛿𝑡 = 1: 

ℎ 𝑡 =
𝑒−𝜔𝑛𝑡

𝑚𝜔𝑑
sin𝜔𝑑𝑡

ሶ𝑥 0 =
𝐹

𝑚
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Overdamped motion

𝑐𝑐𝑟 > 2 𝑘𝑚 Real roots,                               

no oscillatory motion

𝑥 𝑡 = 𝑒−𝜔𝑛𝑡 𝐴𝑒
𝜔𝑛 2−1𝑡

+ 𝐵𝐴𝑒
−𝜔𝑛 2−1𝑡

𝐴 =
ሶ𝑥0 + ( + 2 − 1)𝜔𝑛𝑥0

2𝜔𝑛 2 − 1

𝐵 =
− ሶ𝑥0 − (− 2 − 1)𝜔𝑛𝑥0

2𝜔𝑛 2 − 1
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Overdamped motion

ANIM
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A design problem example 

ሶ𝑥0 < 0.3 𝑚/𝑠

𝑥0 = 0

𝑚 = 2 − 3 𝑘𝑔

𝑘 > 200 𝑁/𝑚

Amplitude < 25𝑚𝑚

Choose the damping coefficient c such that
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Calculate the time of the maximum amplitude

ሶ𝑥0 < 0.3
𝑚

𝑠
, 𝑥0 = 0

𝑚 = 2 − 3 𝑘𝑔, 𝑘 > 200 𝑁/𝑚 → 8.16 𝑟𝑎𝑑/𝑠 < 𝜔𝑛< 10 𝑟𝑎𝑑/𝑠

𝑥 𝑡 =
ሶ𝑥0

𝜔𝑑
𝑒−𝜔𝑛𝑡 sin𝜔𝑑𝑡→

→

Worst case when

ሶ𝑥0 = 0.3 𝑚/𝑠, 𝜔𝑑 = 8.16 𝑟𝑎𝑑/𝑠

ሶ𝑥 𝑡 = 0

𝜔𝑑𝑒
−𝜔𝑛𝑡 cos𝜔𝑑𝑡 − 𝜔𝑛𝑒

−𝜔𝑛𝑡 sin𝜔𝑑𝑡 = 0

tan𝜔𝑑𝑡𝑚𝑎𝑥 =
𝜔𝑑

𝜔𝑛
→ 𝑡𝑚𝑎𝑥 =

1

𝜔𝑑
tan−1

𝜔𝑑

𝜔𝑛

Maximum 

amplitude

𝑡𝑚𝑎𝑥
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Calculate the damping coefficient

𝑡𝑚𝑎𝑥 =
1

𝜔𝑑
tan−1

1 − 2


𝑥 𝑡 =

ሶ𝑥0
𝜔𝑑

𝑒−𝜔𝑛𝑡 sin𝜔𝑑𝑡

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =
ሶ𝑥0

1 − 2𝜔𝑛

𝑒

−

1−2
tan−1

1−2


< 25𝑚𝑚

𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 →  = 0.281

𝑐 = 2𝑚𝜔𝑛 = 2 × 3 × 8.16 × 0.281 = 13.76𝑘𝑔/𝑠

𝑐 = 0 → 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 37𝑚𝑚
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Outline

Undamped, unforced system

Damped, unforced system

Harmonically-forced system
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Importance of harmonic excitation

Fourier theorem: other forcing functions can be represented

as a series of harmonic terms.

Since we assume linearity, the reponse can be calculated

by knowing the response to the indivudal terms in the 

series.
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Harmonically-forced undamped system

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝐹 cos𝜔𝑡

What is the solution to this equation ? 𝑥 = 𝑥 𝑡 ?

𝐹 cos𝜔𝑡
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Homogeneous and particular solutions

𝑥 = 𝑥𝐻 + 𝑥𝑃

𝑥𝐻 = 𝐴 cos𝜔𝑛𝑡 + 𝐵 sin𝜔𝑛𝑡 𝑥𝑃 = 𝑋 cos𝜔𝑡

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝐹 cos𝜔𝑡

−𝑚𝜔2𝑋 + 𝑘𝑋 = 𝐹

𝑋 =
𝐹

𝑘 −𝑚𝜔2

𝑥 = 𝐴 cos𝜔𝑛𝑡 + 𝐵 sin𝜔𝑛𝑡 +
𝐹

𝑘 −𝑚𝜔2
cos𝜔𝑡

𝑥 = 𝑥0 −
𝐹

𝑘 − 𝑚𝜔2
cos𝜔𝑛𝑡 +

ሶ𝑥0
𝜔𝑛

sin𝜔𝑛𝑡 +
𝐹

𝑘 −𝑚𝜔2
cos𝜔𝑡
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Harmonic motion

x0=0.01;k=1;m=1;wn=1;w=2;F=1;t=[0:0.01:30];hold on;plot(t,(x0-F/(k-

w^2*m))*cos(wn*t)+(F/(k-w^2*m))*cos(w*t),'r--')

Numerical

AnalyticalANIM
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Dynamic amplification factor

𝑥 = 𝑥0 −
𝐹

𝑘 −𝑚𝜔2
cos𝜔𝑛𝑡 +

ሶ𝑥0
𝜔𝑛

sin𝜔𝑛𝑡 +
𝐹

𝑘 −𝑚𝜔2
cos𝜔𝑡

𝑋0 =
𝐹

𝑘
The static response is

𝑋

𝑋0
=

1

1 −
𝜔2

𝜔𝑛
2

The dynamic response is
𝐹

𝑘 −𝑚𝜔2
cos𝜔𝑡 = 𝑋 cos𝜔𝑡

Positive if 𝜔 < 𝜔𝑛

Infinite if 𝜔 = 𝜔𝑛

Negative if 𝜔 > 𝜔𝑛
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Bode diagrams

Static

response
Zero

response

Maximum 

response
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Decibel dB
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Illustration

https://www.youtube.com/watch?v=cfKwnTfNhog
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Resonance, a key concept in vibration theory

𝑥 = 𝑥0 −
𝐹

𝑘 −𝑚𝜔2
cos𝜔𝑛𝑡 +

ሶ𝑥0
𝜔𝑛

sin𝜔𝑛𝑡 +
𝐹

𝑘 −𝑚𝜔2
cos𝜔𝑡

𝜔 =
𝑘

𝑚
?

𝑥𝑃 = 𝑡𝑋 sin𝜔𝑡

𝑥 = 𝑥0 cos𝜔𝑡 +
ሶ𝑥0
𝜔
sin𝜔𝑡 +

𝐹𝑡

2𝑚𝜔
sin𝜔𝑡
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Resonance, a key concept in vibration theory

Numerical

Analytical

k=1;m=1;w=1;F=1;t=[0:0.01:300];hold on;plot(t,F*t/2/m/w.*sin(w*t),'r--')

ANIM
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Resonance, a key concept in vibration theory

https://www.youtube.com/watch?v=10lWpHyN0Ok
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Resonance, a key concept in vibration theory

https://www.youtube.com/watch?v=JiM6AtNLXX4
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Resonance, a key concept in vibration theory

https://www.youtube.com/watch?v=n9ULMIjvSIg
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Resonance, a key concept in vibration theory

https://www.youtube.com/watch?v=LV_UuzEznHs
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Beneficial effect of damping

https://www.youtube.com/watc

h?v=wqiSz6P5GtQ

https://www.youtube.com/watch

?v=02rpUMdr7qo



48

Harmonically-forced damped system

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹 cos𝜔𝑡

What is the solution to this equation ? 𝑥 = 𝑥 𝑡 ?

𝐹 cos𝜔𝑡

𝑐

ሷ𝑥 + 2𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝑓 cos𝜔𝑡

𝜔𝑛 =
𝑘

𝑚

 =
𝑐

2 𝑘𝑚

𝑓 =
𝐹

𝑚

We now disregard the transient response (homogeneous

solution) and focus on the steady-state response.
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Complex amplitude
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Amplitude and phase
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Bode diagrams

Static

response

Zero

response

Maximum 

response
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Bode diagrams
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Physical explanation of resonance
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Different signals
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Base-excited systems
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In summary

Thorough analysis of a 1DOF oscillator with/without damping 

and with/without forcing.

Important concepts of dynamic amplification and resonance.

Bode diagrams.


