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Course objectives

Given
input

=

v v

Mechanical j‘> Predict the
system output

Write down the
equations of motion

mx + cx + kx = f(t)

Calcul_ate the response ¥ = 0.19 sin 2.3t
analytically or numerically

Is the structure safe ?



Focus on systems with 1DOF

A 1DOF system is a system whose configuration at each
time instant can be described by a single variable.

§$kx
k? mxX+kx=f

m
m| I
f

mlf + mgsin6 = 0




Focus on linear systems

Linear, second-order ordinary differential equation with
constant coefficients

mlf + mgsin6 = 0 ><
.. Small
mll +mgo =0 displacements
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Effect of gravity on spring systems ?

mg = kAl Static equilibrium
mX =—k(Al+x)+mg »>mi+kx=0 Dynamic equilibrium

No need to account for the effect of gravity in the equations
of motion.



Motivation for studying 1DOF systems

useful approximation...

An approximation of reality ! But it can sometimes be a very
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Motivation for studying 1DOF systems

Rigid car
Rigid car -
Flexible suspensions
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Motivation for studying 1DOF systems

Rigid structure
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Outline

Undamped, unforced system

Damped, unforced system

Harmonically-forced system



Undamped, unforced system

k?
mix+kx =0

m

What is the solution to this equation ? x = x(t) ?
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Assumption of harmonic motion

mix+kx =0

U

x =IA

?

COS|wW

)

U

—mAw? cos wt + kA cos wt = 0

U

Wy =

m

\

Natural frequency in rad/s

But how do we determine A?



Initial conditions

mi+kx =0 with x(0) = x,

L

X = A cos wt

U

X = Xy COS wt

What if %(0) = %, ?

X = —wA sin wt I:> x(0) =0

12



More general solution

mi¥ + kx =0 with x(0) = xy, x(0) = x4

: [

£+ =2 sin wpt ‘

X = XgCOS W —SIn w w —
0 n W, n n Vm

x = X cos(w,t — @) = X cos ¢ cos w,t + X sin @ sin w,t

Xg = X COS @

Xo/wy, = X sing \
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Numerical example

k

Vm

W, = =1rad/s =0.16 Hz

x = 0.01cost

Displacement vs time, dof n°1
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Your own numerical propagation

Editor - E\Enseignement\Cours\ULB\Matlab\sdof.m
sdofm | + |

|4 Figure 1

function xdot=sdof (t,x)

= xdot=zeros (2,1);
= xdot (1)=x(2):
= xdot (2)=-x(1):

immand Window

>> t0=0;tf=30;

x0=[0.01 0];
[t,x]=0ded45("sdof", [t0 tf],x0);
plot(c,x(:,1))

>>

DEde | M AKXODELE A

Eile Edit View |Insett Tools Desktop Window Help

R/ 08 =D
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Outline

Undamped, unforced system

Damped, unforced system

Harmonically-forced system
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All real-life systems possess damping

Undamped, unforced system oscillates indefinitely, which is
not in accordance with reality.

kx I.

k ? LL ) ;g._IJI { ox
m mix+cx+kx =20

...... AL S

What is the solution to this equation ?  x = x(t) ?



Assumption of viscous damping

Case

Seal

I \

Mounting
point Orifice

Dashpot that produces viscous damping

Mounting
point

}—» x(t)
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General solution

mi + cx + kx =0 x(t) = AeM

U

(MA2 +ch+k)AeM =0 > mi2 +ch+k =0

- 4 Jc2 _ P o
M o > o \/c 4km Cor = 2Vkm
JZo1 r=— -~
— + _ = =
M2 W Wy C" — 1 Cor  2Vkm



Underdamped motion

—— Imaginary roots,
Cor < 2Vkm, G <1 damped oscillatory motion

x(t) = AeMt 4 Belat  yith M2 = —Cwy, T ilwg

x(t) = e‘c“’nt(/le‘i“’dt + Bel@at)

Xo + CwnXg

x(t) = e~ Gwnt <x0 cos wyt + sin a)dt>

Wq
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Underdamped motion

Displacement vs time, dof n°1
T T T

oo , |
0.008 ANIM
o006 |
0004 |
s ooz |
0
0002
| -
ooos} |
Consider several 0008 Numerical
values of ¢ » | | | | Analytllcal
0 ; 10 s 20 25

Time [s]

t=[0:0.01:30];k=1;m=1;c=0.05;x0=0.01;kssi=c/(2*sqgrt(k*m));wn=sqrt
(k/m);wd=sqrt(1-kssi*2)*wn;plot(t,exp(-kssi*t).*(x0*cos(wd*t)),'r--")



Logarithmic decrement

Xog + Cw,X
x(t) — e_gwnt (XO COS (,()dt + 0 Q no Sin wdt>
Wgq
@ Xo + Cwpx .
X = |x? +( . - 0)
\ W
x(t) = Xe~5@nt(cos wgt — @) -
Xo + Cwp X
tanp =
U
x Xe~G@ntn(cos wyt, —
A=ln—— =In ( atn — ¢) = Cw, T
Xn+1 Xe_Cwn(tn'l'T) (COS W q (tn + T) - QD)
A= Cw,T = 2 - G =
=Cw,l =21 - L=
" J1—¢2 VA2 4+ A2
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Typical values of

Civil structures ~5%

Aerospace structures <1%
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Response to an impulsive force

1 Sudden application of
a very short-duration
F D force: shock/impulse
»
At t

mx + cx + kx = Fot
x(07)=0,x(07) =0

An impulse imparts a :> x(0%) = 0, %(0%) £ 0

change in momentum

24



Initial velocity Is impulse-like

At At
limuas0 J (mx + cx + kx)dt =F limp;_, ot dt
0 0

At
limarso | m¥ dt =limp,o[mx]5¢ = mx(01)
0

At
limAt_mj cxdt = limp,o[cx]5t =0
0

At P
limAtﬁof kx dt =0 x(01) = —
0 m
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Impulse response function

For a unit impulse, Fét = 1.

h(t) =

o —Gwnt

mawg

sinwgt
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Overdamped motion

Cor > 2 em Rgal roots,
no oscillatory motion

x(t) = e~ 6wnt (Aew"\/at + BAe_w"\[at)

_ o+ (§++/T = D

A
2wp+/C% — 1
o _ o = (G =T = Dowx,

2w+ C% — 1
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Overdamped motion

0.01

Displacement vs time, dof n°1
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A design problem example

m=[2—3] kg
k > 200 N/m

xXg < 0.3m/s

x():O

Choose the damping coefficient ¢ such that

Amplitude < 25mm
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Calculate the time of the maximum amplitude

m=[2-3lkg,k>200N/m - 8.16rad/s < w,< 10rad/s

m
X'O < 0.3?,.76'0 =0

X
— x(t) = ~0 g-Gont gip Wyt
Wq
l

Worst case when
Xog = 0.3m/s, wy =8.16rad/s

x(t)=0
wge =59t cos wyt — Cwpe 5@t sinwyt = 0

W 1 1 Wq
n

Wq Cwn
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Calculate the damping coefficient

tmax = w—tan
d

1 ~1 (‘V 1-¢ > x(t) = ﬁe‘c‘“"t sin wg,t

—G tan_1< 1_C2>
XO 1_C2 C.;

Amplitude = e < 25mm

V1 —CCw,

Numerical solution - = 0.281

c =2mw,{=2X3%X816 x0.281 =13.76kg/s

c =0 - Amplitude = 37mm
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Outline

Undamped, unforced system

Damped, unforced system

Harmonically-forced system
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Importance of harmonic excitation

Fourier theorem: other forcing functions can be represented
as a series of harmonic terms.

Since we assume linearity, the reponse can be calculated
by knowing the response to the indivudal terms in the

series.
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Harmonically-forced undamped system

kg
mx + kx = F cos wt

What is the solution to this equation ? x = x(t) ?
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Homogeneous and particular solutions

mX + kx = F cos wt X =Xy + Xp

VAN

Xy = Acoswy,t + Bsinw,t Xp = X cos wt

—mw?X + kX =F
F

X —
k — mw?

F

I:> x=Acosa)nt+Bsina)nt+k_mwzcosa)t

il E+ 20 Sin eyt +—— t
x = x9— COS W — sin w COS W
Ok — mw? " w, "k — mw?
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Harmonic motion

0.4

0.2

-0.6

-0.8

Displacement vs time, dof n°1

RN

Numerical

ANIM Analytical

I
0 5 10 15 20 25

Time [s]

x0=0.01;k=1;m=1;wn=1;w=2;F=1;t=[0:0.01:30];hold on;plot(t,(x0-F/(k-
w”2*m))*cos(wn*t)+(F/(k-w"*2*m))*cos(w*t),'r--")

30
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Dynamic amplification factor

d f 42 in oyt + e (
X =\ X0 — COS W —slnw COS W
° k- mw? " w, T~ mow?
. _ F
The static response is X, = -
The dynamic response Is cos wt = X cos wt
k — mw?

Positive if w < wy,

X
X, »2 | Infinite if = w,

Negative If w > w,
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Bode diagrams

4=0°

AW ' Aol
Maximum ¥
-l response f(t) \/\/\/\/\/\/\/\/\/\
10° ¢

i 10" ¢

M -

N 5 % NNPNNANANNNNNS
1- 10
IX/X,| g 7
10° b t
‘Static Zero

+[response response
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Decibel dB

¢=0"

) .

Y
X(t)/x, \/\/\

Bode diagram

JC[ 2 Il
dB = 101lo (—) = 20 log, —
210 X gmxn




lllustration

P> Pl < 000/3:07 - introdtction >

https://www.youtube.com/watch?v=cfKwnTfNhog




Resonance, a key concept in vibration theory

il E+ 20 sin ot + e t
x =|x9— COS W — sin w COS W
Ok — mw? " w, "k — mw?
k
w= [—7
|m

Xp = tX sin wt

Xo . Ft
X = X COS Wt + —sIin wt +
W 2me

sin wt
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Resonance, a key concept in vibration theory

Displacement vs time, dof n°1
T I T

150

ANIM

100 -

x [m]

100 Numerical
Analytical

|
0 50 100 150
Time [s]

300

-150 .
200 250

k=1;m=1;w=1;F=1;t=[0:0.01:300];hold on;plot(t,F*t/2/m/w.*sin(w*t),'r--")



Resonance, a key concept in vibration theory

4

https://www.youtube.com/watch?v=10IWpHyNOOk
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Resonance, a key concept in vibration theory

P Pl o 003/1:28
https://www.youtube.com/watch?v=JIM6AINLXX4
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Resonance, a key concept in vibration theory

We can also have a

i (5} different type of earthquake

P Pl € 025/359 O B & (= [

https://www.youtube.com/watch?v=n9ULMIjvSIg
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Resonance, a key concept in vibration theory

https://www.youtube.com/watch?v=LV_UuzEznHs
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Beneficial effect of damping

https://www.youtube.com/watc
h?v=wqiSz6P5GtQ

https://www.youtube.com/watch
?v=02rpUMdr7qo
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Harmonically-forced damped system

k L ¢ mx + cx + kx = F cos wt
k
C

W, =
m
! @ > = 2k
F cos wt F
=

X+ 2Cw,x + wix = f cos wt

What is the solution to this equation ? x = x(t) ?

We now disregard the transient response (homogeneous
solution) and focus on the



Complex amplitude

I+ 26wnt 4+ wiz = f/m

z(t) = X e™?
F(t) = F et

(w3 + 2i€ww, —w?)X = F/m

F 1 F 1
X — = e 5
m \ w2 + 2ifww, — w? k — Y 2
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Amplitude and phase

Xr = Xo N 2 2
- =) + (262

_9gw.

X; = Xo wa

d

X/ X (
V- &
g

tanod = " z;
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Bode diagrams

Maximum w/w, = /1 — 2£2 For £ small
1
Max ampl. | X /Xyl =
pl. | X/ Xo| Zfﬂ wiw, = 1
1
X/ Xo| = o;
X/ Xo| u 28
{ =001
4F Maximum ‘
, I response {=0.02
5 0F
Z 6f
L o4
_E Static
& 2fresponse
= 6:
“ 4l Zero
- response
2_
0.1 | | | | 3,
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Frequency ratio I = m/mn
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Bode diagrams

Phase

r= o/,

Frequency ratio
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Physical explanation of resonance

To explain physically the phenomena of resonance, consider the steady-state
forced response of the system where the applied force is Fy cos (wf), the displacement
18 X, (1) = X cos(wf — 6),and the velocity is X,(1) = —oX sin(of — ). Atresonance,
0 = 7 /2. Thus X,(¢)(resonance) = X ¢0s (wf). This shows that at resonance the veloc-
ity and the force are exactly in phase but have different magnitudes. Physically, this
means that the force is always pushing in the direction of the velocity and that the
force changes magnitude and direction just as the velocity does. This condition will
cause the vibration amplitude of the system to reach its maximum value because at
resonance the external force never opposes the velocity.
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Different signals

; _ wit
Displacement ult) = Ae™
du(t) _ i |
VE|OCH’\/ v(t) = T iwAe™" =liwu(t)
. dv(t .

Acceleration a(t) = di ) — _w2Aet = [w2)(t)

10°

10 Acceleration

Amplitude

Displacement

olo,
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Base-excited systems

md = —k(& — Zo) —bl& —2p)
Tr =T — Zo

mx, + bx, + kx, = —my
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In summary

Thorough analysis of a 1DOF oscillator with/without damping
and with/without forcing.

Important concepts of dynamic amplification and resonance.

Bode diagrams.
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