Cinématique et dynamique des machines

Dynamics and introduction to vibrations

Exercise Session 2

07/12/2022

Dimitri Piron

Dimitri.piron@ulb.be

Dynamics

Find the resonance frequency of the following system (inertia I_o , length L). Use the small angle assumption if needed

Step 0: Take a look at the system!

- Step 1: How many degrees of freedom ?
- Step 2: Select the coordinates q
- Step 3: Build the Lagrangian of the system
 - L = T V
- <u>Step 4</u>: Apply the Lagrangian equation

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} = Q_k$$

Non-conservative forces:

$$Q_k = \sum_i F_i \frac{\partial x_i}{\partial q_k}$$

Projection of the forces on the coordinate q_k

Example:

$$\vec{F}_{1} = -F_{1} \vec{1}_{y,F}$$

$$\vec{I}_{y,F} = \frac{3L}{4} \sin \theta$$

$$\frac{\partial \vec{1}_{y,F}}{\partial \theta} = \frac{3L}{4} \cos \theta$$

$$\longrightarrow Q_{\theta,F_{1}} = -F_{1} \frac{3L}{4} \cos \theta$$
2

<u>Step 5</u>: Use of the harmonic signal assumption

Step 5bis: Consider the free and undamped system (intrinsic property)

<u>Step 6</u>: Solve the equation for ω

Step 7: Critical thinking about the obtained solution

```
What is the major limitation of the obtained result?
How can I compute the static deflexion?
What would happen if gravity is taken into account?
```


The Newton and the Lagrangian approaches provide the same EOM (which makes sense!)

Dynamics

Calculate the natural frequencies of the simplified building where only horizontal movement of the floors are assumed.

Step 0: Take a look at the system!

Step 1: How many degrees of freedom ?

Step 2: Select the coordinates q

<u>Step 3</u>: Build the equation<u>s</u> of motion

Step 4: Use of the harmonic signal assumption

Dynamics

Calculate the natural frequencies of the simplified building where only horizontal movement of the floors are assumed.

<u>Step 5</u>: Solve for ω

Calculate the natural frequencies and the mode shapes of this pendulum

Dynamics

Step 0: Take a look at the system!

Step 1: How many degrees of freedom ?

Step 2: Select the coordinates q

Step 3: Build the equations of motion

<u>Step 4</u>: Use of the harmonic signal assumption

<u>Step 5</u>: Solve for ω

<u>Step 6</u>: Inject ω_1 and ω_2 in the reduced equation

<u>Step 7</u>: Critical thinking about the obtained solution

How can we physically interpret the two frequencies?

What is the physical representation of the mode shapes?