

ELECTRICAL POWER SUB-SYSTEM

PRESENTED BY : PIERRICK IGOT

SLIDES ORIGINALLY WRITTEN BY: VINCENT LEMPEREUR

 Date:
 24/11/2023

 Ref:
 SY-0071-01-00-Formation_EPS.pptx

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

INTRODUCTION

THALES ALENIA SPACE

EPS: general informations

THALES ALENIA SPACE IN BELGIUM

Presentation of myself

 Date:
 24/11/2023

 Ref:
 SY-0071-01-00-Formation_EPS.pptx

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

THALES ALENIA SPACE

Date: 24/11/2023 Ref: SY-0071-01-00-Formation_EPS.pptx Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

FROM EARTH TO DEEP SPACE

36 000 KM

Date: 24/11/2023 /// 4 Ref: ETCA-PS-PPT-22039 Template: 83230347-DOC-TAS-EN-006

23 000 KM

PROPRIETARY INFORMATION

800 KM

8/000 KM

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

00 KM

SPACE FOR LIFE ///

SPACE TO CONNECT

SPACE TO SECURE & DEFEND

SPACE TO OBSERVE & PROTECT

SPACE TO EXPLORE

SPACE TO TRAVEL & NAVIGATE

THALES ALENIA SPACE IN 2022

8,500 EMPLOYEES

2,2 BN € SALES

18 SITES WORLDWIDE

PROPRIETARY INFORMATION

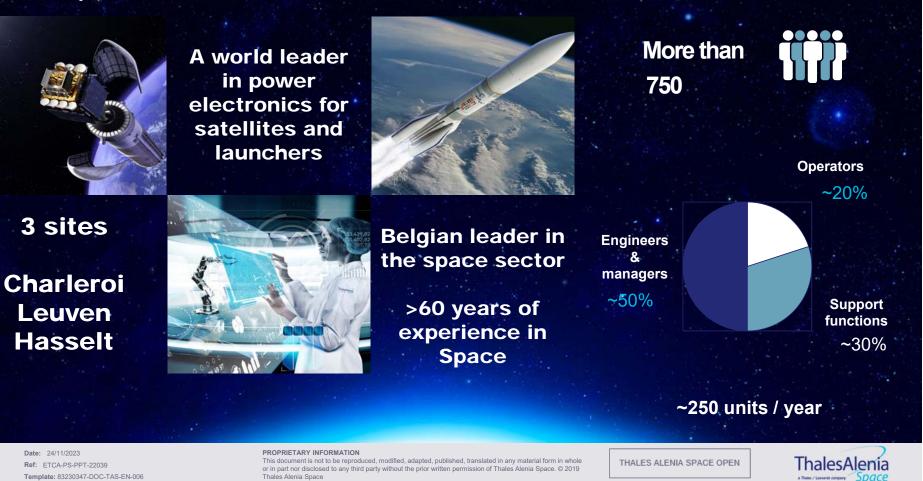
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

ThalesAlenia

/// 6

Ref: XXXXX Template: 83230347-DOC-TAS-EN-006

Date: 24/11/2023



Template: 83230347-DOC-TAS-EN-006

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

ThalesAlenia + These / Leaverth Conguery Space

THALES ALENIA SPACE IN BELGIUM

/// 9

NEW SPACE IN THALES ALENIA SPACE

Software-defined Long term sustainability Electrical propulsion leader

Federate High power/High voltage integration Automotive components Micro-solutions Agile Techno-push New ways of working System approach Automatised manufacturing Partnership Open-innovation Explore

 Date:
 24/11/2023

 ///
 10
 Ref:
 ETCA-PS-PPT-22039

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION This document is not to be reprod

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

A FULLY FLEXIBLE SOFTWARE-DEFINED SATELLITE

FULL RECONFIGURATION IN ORBIT

UNRIVALED MISSION PERFORMANCES

EXTENSIVE HOSTING CAPACITY

SMART OPERATIONS

 Date:
 24/11/2023

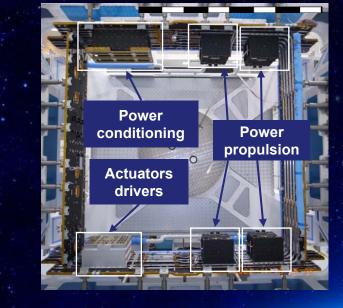
 /// 11
 Ref:
 ETCA-PS-PPT-22039

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

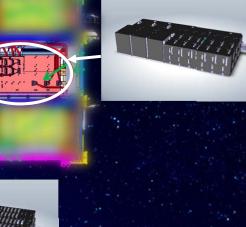


Template: 83230347-DOC-TAS-EN-006

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

OUR SOLUTIONS IN BELGIUM A COMPLETE NEW GENERATION FOR AVIONICS SUBSYSTEM

2020 Satellite



same scale

- More power
- + More interfaces
- + More functions
- + More flexible
- + Less mass
- Automotive components
- + **Much** more faster to build

Cost efficiency

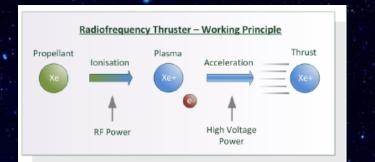
Space Inspire

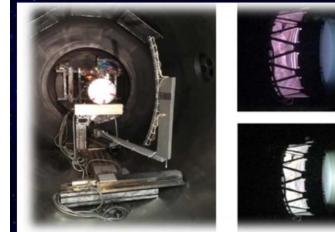
 Date:
 24/11/2023

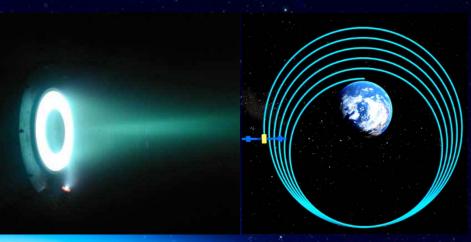
 ///
 13
 Ref:
 ETCA-PS-PPT-22039

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION


This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN


LEADER IN ELECTRICAL PROPULSION


From **Chemical** propulsion to full **Electrical** propulsion with Grid Ion Engine technology

We provide **power for thrusters**

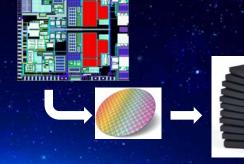
Orbit raising | Station keeping

Date: 24/11/2023 /// 14 Ref: ETCA-PS-PPT-22039 Template: 83230347-DOC-TAS-EN-006 PROPRIETARY INFORMATION This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Laonardo company SDACE

SOFTWARE INSIDE & MICRO-SOLUTION



Proprietary micro-controllers in all products with adapted software solutions

Software defined solutions – Flexibility – Live Reconfiguration

Strong **partnerships** with leading-edge companies

Proprietary GaN driver for all power switches

High performance – High integration

 Date:
 24/11/2023

 ///
 15
 Ref:
 ETCA-PS-PPT-22039

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

OUR SOLUTION A COMPLETE NEW GENERATION FOR SOLAR GENERATOR

Flexible Solar Array

Smaller footprint in launcher for bigger solar cells surface

 Date:
 24/11/2023

 /// 16
 Ref:
 ETCA-PS-PPT-22039

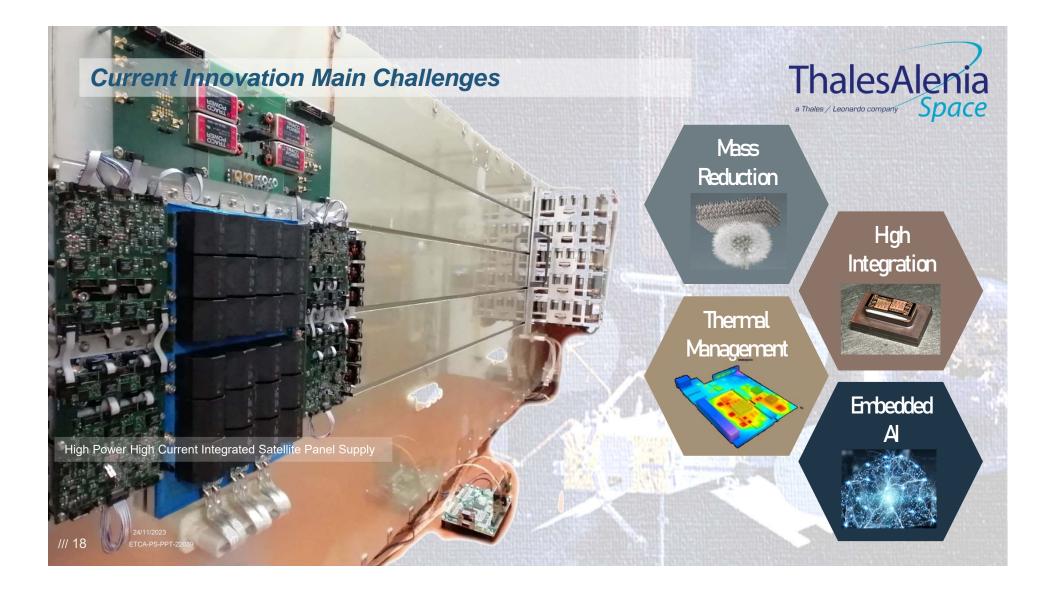
 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

AND OTHER NEW TECHNOLOGIES FOR HIGH VOLTAGE AND HIGH POWER SOLUTIONS...

- Break-through technologies developed since 5 to 10 years, becoming mature now
- Matured in fruitful partnerships with Belgian and European SMEs, in other industries
- Successfully combining « open innovation » in a « fierce competition » environment


 Date:
 24/11/2023

 I//
 17
 Ref:
 ETCA-PS-PPT-22039

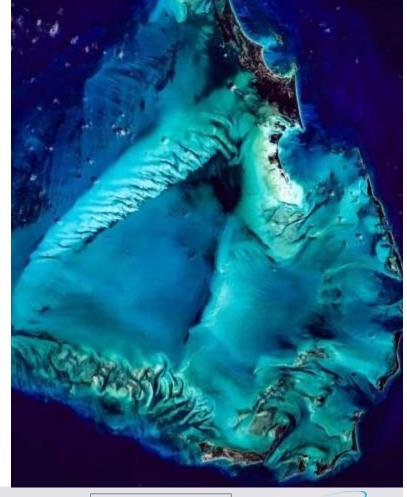
 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

WANNA JOIN THE TEAM ?

/// Internship


- Feel free to apply !
- I <u>DSP-BE-STAGE@thalesaleniaspace.com</u>

Dgreh#Dfuredw# Grfxphqw

/// **JOBS**

/ CAREERS (MYWORKDAYJOBS.COM)

 Date:
 24/11/2023

 ///
 19
 Ref:
 Non référence

Ref: Non référencé Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

Date: 24/11/2023
Ref: SY-0071-01-00-Formation_EPS.pptx
Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

INTRODUCTION

/// Training

I GRADUATED AS ELECTROMECHANICS ENGINEER FROM UCLOUVAIN

/// Professional career in TAS-Belgium at Charleroi

Specialized in hardware design in Electronics for satellite platform equipments

I ELECTRONIC DESIGNER

- Power conditioning and distribution (PCU/PCDU) Exomars & SWOT project
 - **I** TECHNICAL MANAGER
- PCDU modules for Space Inspire (whole HPU + module in ACE)

Source: Le Temps

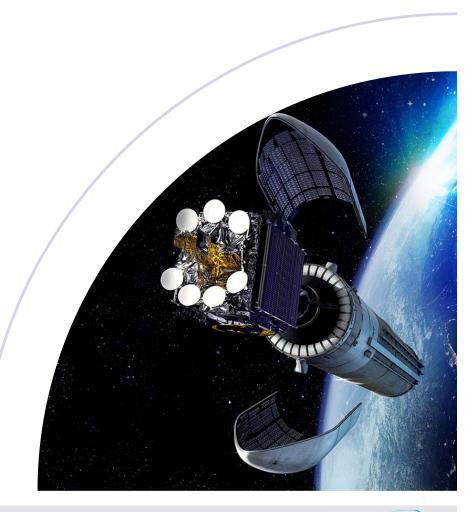
 Date:
 24/11/2023

 Ref:
 SY-0071-01-00-Formation_EPS.pptx

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN



AGENDA

- 1. Introduction
 - **SEPS GENERAL INFORMATION**
 - SEPS DESIGN DRIVERS
- 2. Primary power sources

SOLAR CELLS & SOLAR ARRAYS

- 3. Secondary power sources batteries
- 4. Power Management, Control & Distribution
 - **ARCHITECTURE**
 - SPCU / PCDU EXAMPLES
- 5. Power budget practical exercise
- 6. Conclusions

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

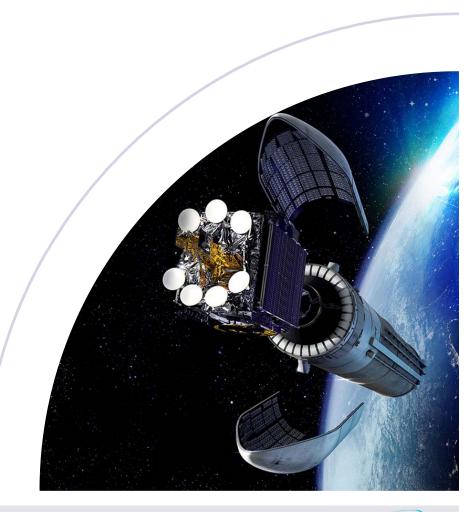
 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

AGENDA


1. Introduction

SEPS – GENERAL INFORMATION

- SEPS DESIGN DRIVERS

SOLAR CELLS & SOLAR ARRAYS

- **S**PCU / PCDU EXAMPLES

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Lassards company Space

A satellite is made of...

P/F (Platform)

- **MECHANICAL & THERMAL STRUCTURE**
- **Solution ELECTRICAL SYSTEM, AVIONIC, PROPULSION**
- Son-Board Computer, Software, Remote Control
- Severgy Sources: Solar, Batteries, Fuel

P/L (Payload)

- 🛰 ANTENNAS, TWTA, ...
- S. CAMERA, ALTIMETER, RADAR, DETECTORS
- S CLOCK, SCIENTIFIC INSTRUMENTS

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROP This document

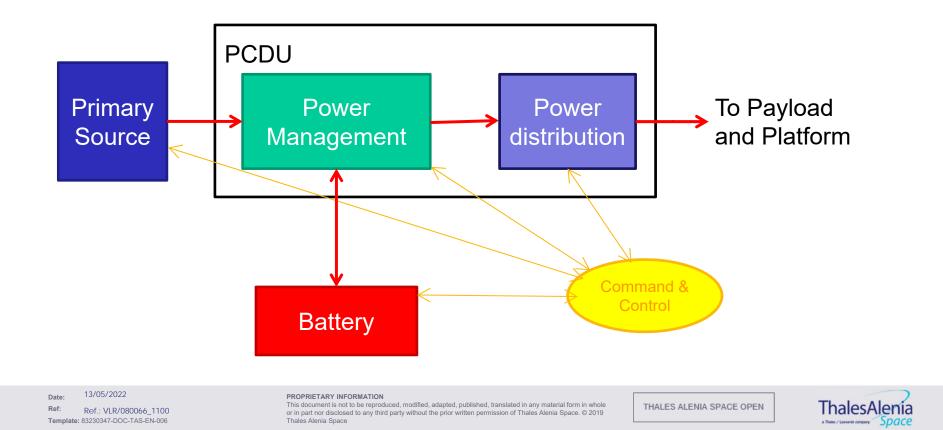
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

ELECTRICAL POWER SYSTEMS

Satellite's Electrical Power Subsystem (EPS) shall

- Sprovide electrical power all satellite's units
- Storage energy to power units in case of orbital night phases, transient phases and peak power demand
- Sautonomously manage the available power in order supply units and charge the battery
- Suffill some distribution requirements providing ON/OFF protected power lines, heater supply (for S/C thermal control needs) and commanding pyro lines (e.g. SA and antenna deployment)
- Solution Note: power system failure means the loss of mission

 Date:
 13/05/2022


 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

General functional block diagram

Functions (1/2)

Primary Source Power Management Battery Power distribution Command & Command &

SPOWER GENERATION

- The power is generated from different sources ('fuel') or combination of them: the Solar radiant energy (solar cells via photovoltaic effect), Chemical (piles fuel cells), nuclear (RTG), mechanical (reaction wheels), ...
- Serimary sources convert 'fuel' into electrical power

SENERGY STORAGE

- * The energy is generally stored under an electro-mechanical form and retrieved under an electrical form
- **S** The storage of the energy is done by a **secondary source**, when the primary system's energy is not available or insufficient

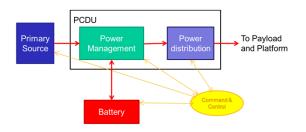
CONDITIONING AND REGULATION

This function covers everything which is required to adapt the primary sources to the need of users 'equipment' (constant voltage, battery charge...)

Solution

- STo distribute the conditioned power to users
- SDC/DC voltage converters
- SON/OFF switches (sometimes
- Solution Does not include the harness

 Date:
 13/05/2022


 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

Functions (2/2)

S PROTECTION

STo avoid a propagation of

failures or any Single Point Failure

Superior Anticologies Anticolog

SFuses

Circuit breakers

Sobserving parameters

🛰 Current, voltages, temperatures, status, ...

Sunformation are transmitted to the Ground by telemetry for mid-term and long-term monitoring

Sunformation are transmitted to the On-Board Computer for real-time monitoring

COMMAND

Sconfiguration setting (nominal, safety, recovery, ...)

Parameters

SON/OFF

 Date:
 13/05/2022

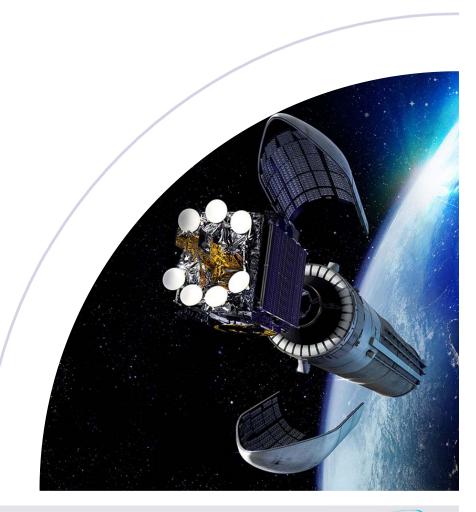
 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

AGENDA


1. Introduction

SEPS – GENERAL INFORMATION

Seps Design Drivers

SOLAR CELLS & SOLAR ARRAYS

- **S**PCU / PCDU EXAMPLES

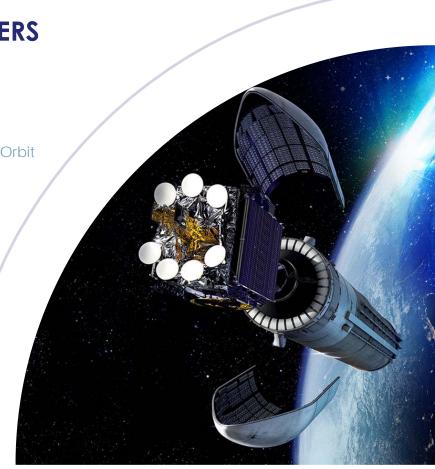
13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Lassards company Space


System drivers / Synthesis

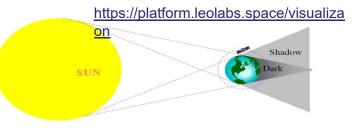
The orbit

Low Earth Orbit (LEO), geostationary (GEO), Mean Earth Orbit (MEO), Sun Synchronous Orbit (SSO), Sun Centric (Interplanetary), ...

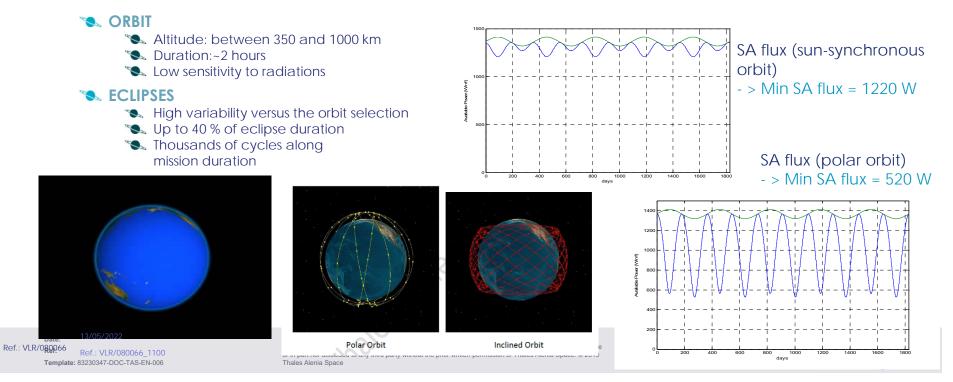
The mission

- 🔍 (Life) duration
- Sector Energy budget
 - S Mission profiles
 - 🛰 Payload needs
 - S Max and Mean power
 - Solution (attitude) of the satellite
- **Reliability requirements**

 Date:
 13/05/2022


 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-000


PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

System drivers / Orbits

LEO (Low Earth Orbit) / Scientific applications - Earth observation

SYSTEM DRIVERS / ORBITS GEO (Geostationary Orbit): Telecom applications S ORBIT SType: Circular Sun 🛰 Áltitude: 35786 km Duration: 24 hours Medium sensitivity to radiations Less then 1% of mission duration Only during equinoctial periods SFrom few to 72 min max ... DURING LIFETIME ... BUT UP TO 6 MONTHS EOR WITH ELECTRICAL PROPULSION DRASTICALLY **MODIFY THE SITUATION** 6378 km 35786 km Solution Increased number of longer eclipses Summer Solstice Subscription Thermal cycling more severe 23°27' Ratio charge / discharge impacted Equinox SHigher battery DoD (especially if thrust has to be Eclipse Duration performed in night mode) 72 mn S Winter Solstice Nore stringent radiative environment **MISSION DURATION** Sal5 years € Time 26 Feb 13 Apr 29 Aug 14 Oct 21 March 21 Sept **EXAMPLE(S): SPACEBUS BASED SATELLITES**, ... 13/05/2022 PROPRIETARY INFORMATION Date:

Ref.: VLR/080066 1100 Template: 83230347-DOC-TAS-EN-006

Ref:

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

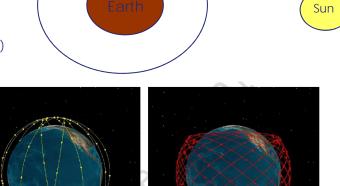
THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Lanardo company Space

SYSTEM DRIVERS / ORBITS

MEO (Medium Earth Orbit): GNSS/TELECOM applications

S ORBIT


- SType: Circular
- SAltitude: 1000 to 20000 km
- Suration: 12 hours
- Section Medium to high sensitivity to radiations (according to orbit height)

S ECLIPSES

- Superation: up to 1 hour
- MISSION DURATION

SUp to 15 years

S EXAMPLE(S): GLOBALSTAR, GALILEO, IRIDIUM, ...

 Date:
 13/05/2022

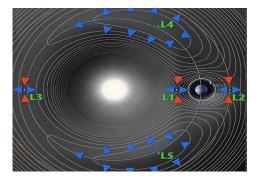
 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

Polar Orbit


THALES ALENIA SPACE OPEN

Inclined Orbit IhalesAlenia They Lawrent corpery Space

SYSTEM DRIVERS / ORBITS

Lagrange Point: Scientific applications - ESA

POINTS WHERE THE COMBINED GRAVITATIONAL PULL OF TWO LARGE MASSES PRECISELY COMPENSATE THE CENTRIPETAL FORCE REQUIRED TO ROTATE WITH THEM (ANALOGY WITH THE GEOSTATIONARY ORBIT)
Distance from earth for L1,L2: 1.5*106 km

None

- MISSION DURATION 3 years
- S EXAMPLE(S): HERSCHEL (L2), PLANCK(L2), GAIA(L2),...

Interplanetary

Challenge : management of solar flux, which decreases

with the square of the distance to the sun

	Distance (AU)	Solar fluw (W/m²)
Mercury	0.39	9.3 10 ³
Earth	1.0	1.36 10 ³
Mars	1.5	582
Jupiter	5.2	48.7
Saturn	9.5	13.5
l in any material form in whole Thales Alenia Space. © 2019	THALES ALENIA SPACE OPEN	ThalesAle

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

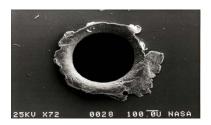
PROPRIETARY INFORMATION

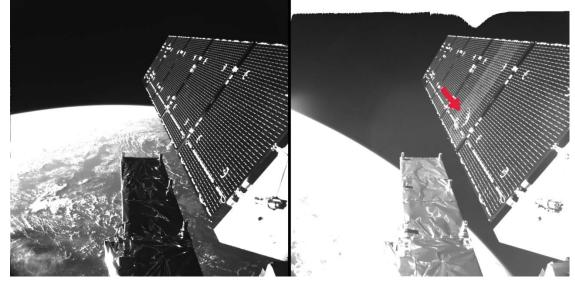
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

System drivers / Orbits M-METEORITE & DEBRIS Satellites en fonctionnement 6% Satellites abandonnés Nombre d'objets en orbite terrestre par mois selon le type d'objet Fragments 22% 42% \ 16000 Collision Iridium 33 -15000 Nombre total d'objets Cosmos 2251 14000 -Débris de frac 13000 FengYun1C -Engin spatial 12000 Essai ASAT - 200 -Débris liés aux mission 11000 aggerated as compared to the Earth Corps de fusée 10000 Nombre d'objets Dernier 9000 8000 étages de Déchets 7000 lanceurs opérationnels 6000 17% 5000 13% 4000 3000 2000 1000 1956 1958 1960 1964 1968 1970 1972 976 978 **15** 000 parts > 10cm 300 000 parts < 10 cm SLarge concentration between 700 & 1000 km

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100


 Template:
 83230347-DOC-TAS-EN-006


PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

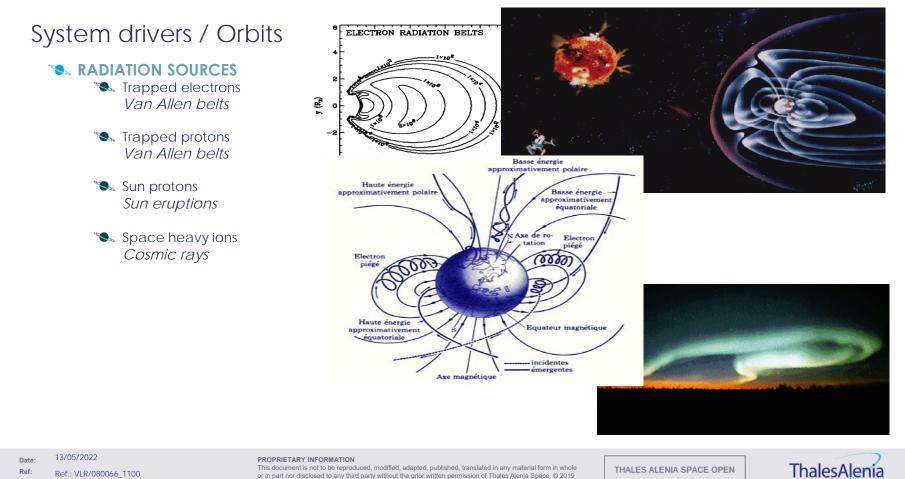
System drivers / Orbits

- SLOS (FRENCH RULE) TO AVOID GENERATION OF NEW DEBRIS
 - Scontrolled desorbitation or
 - Service Parking in specific orbit with complete (propulsion and electronic) passivation (25 years in LEO, 100 years in GEO)

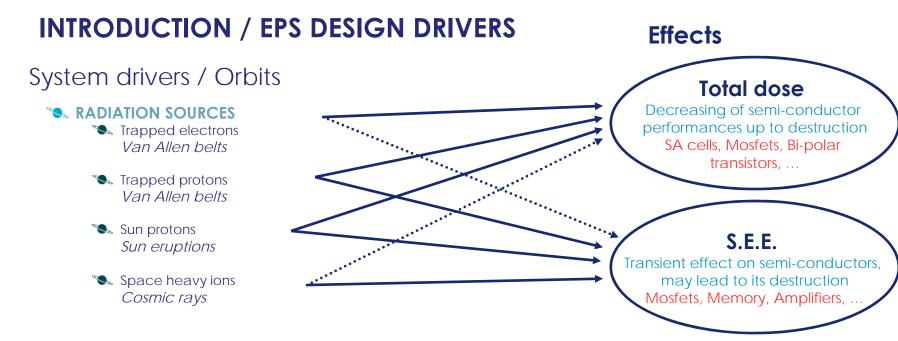
 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006


PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN


Thales Alenia Space

Template: 83230347-DOC-TAS-EN-006

or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019

a Thains / Lanards company Space

-> The radiation environment has a direct impact on the definition & sizing of EPS

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-000

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

SYSTEM DRIVERS / MISSIONS

Solution (LIFE) DURATION

- Suffrom few minutes (launchers) to 15 years (Geo)
- Ageing drifts shall be assessed on each EPS constituent / Even some manufacturers may not be qualified for long term missions (e.g. ABSL batteries)
- Sumpact on total radiation dose & nb of thermal cycles

SENERGY BUDGET

- **Mission** profiles
- Regulated or Not regulated bus VS payload

Seave and the search and the search

- **S**TV broadcasting points a zone of the Earth
- Science satellites may point any zone of the sky
- Military satellites may point any zone of the earth and shall be very agile

Salax and Mean power (in sunlight and in eclipse)

Orientation (attitude) of the satellite. The attitude constraints directly drive the sizing of the primary and secondary sources: impacts on

- Seclipse duration
- SA flux
- Payload power available (in sunlight and in eclipse)
- Definition of recovery / safety attitudes of the S/C
- **S**Thermal control
- 🔊 Bus quality
- **S**....

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

SL<

INTRODUCTION / EPS DESIGN DRIVERS

EPS in practice (3)

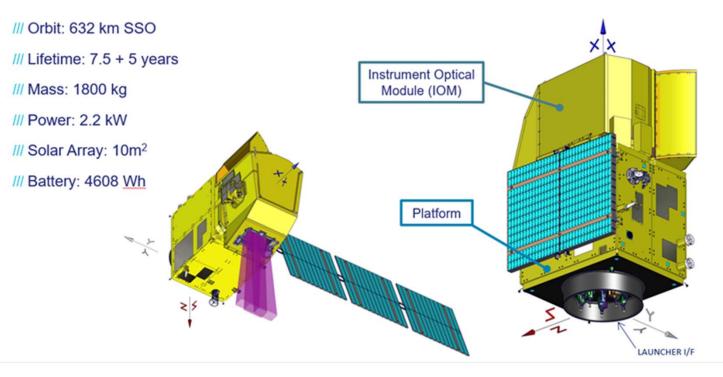
DEMETER (2004) Micro Satellite

Science (Geodesy) satellite - P = 110 W

		57
DEMETER	Mass (kg)	Satellite mass ratio
Satellite dry mass	110	100 %
Power System (incl. SADM)	6.5	6 %
Battery Lilon	4	4 %
Solar Array	6.5	6 %
Power TOTAL	17	16 %
Data fron	n CNES	Lan a star

Illustration CNES

THALES ALENIA SPACE OPEN


13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

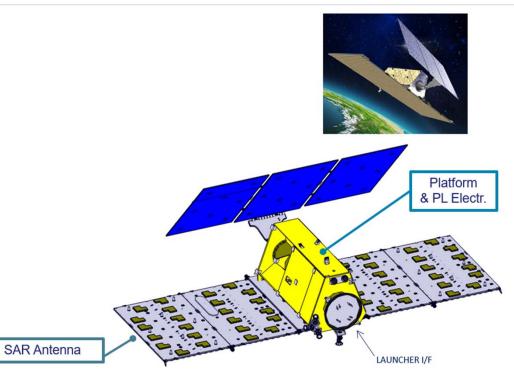
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

SL<# Hgxdugr=#ghpdqgh#srxu#udwlr#Jdolohr#2#QHR#2#Vz SLHUULFN#LJRW>#5823<25356

CHIME

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100


 Template:
 83230347-DOC-TAS-EN-006

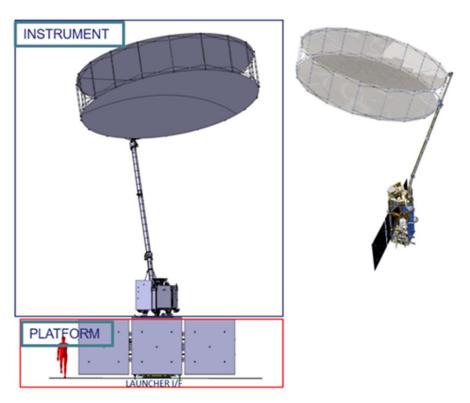
PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

ROSE-L

/// Orbit:	693 km SSO
/// Lifetime:	7.5 + 5 years
/// Mass:	2130 kg
/// Power:	≈ 6.3 kW
/// Solar Array:	≈ 26 m²
/// Battery:	10860 Wh

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006


PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

CIMR

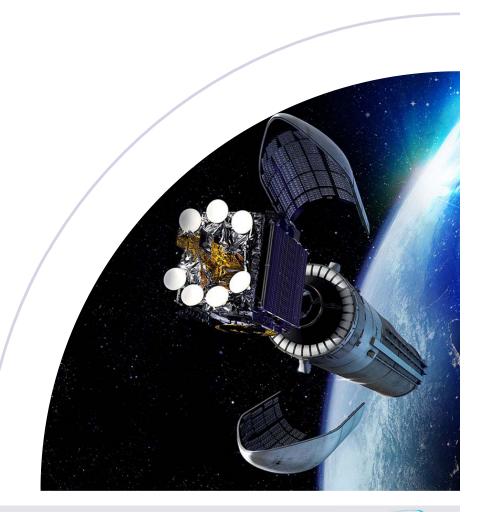
/// Orbit:	817 km SSO
/// Lifetime:	7.5 + 5 years
/// Mass:	1709 kg (dry)
/// Power:	≈ 1.96 kW
/// Solar Array:	≈ 14,57 m²
/// Battery:	3620 Wh

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN


AGENDA

SEPS – GENERAL INFORMATION

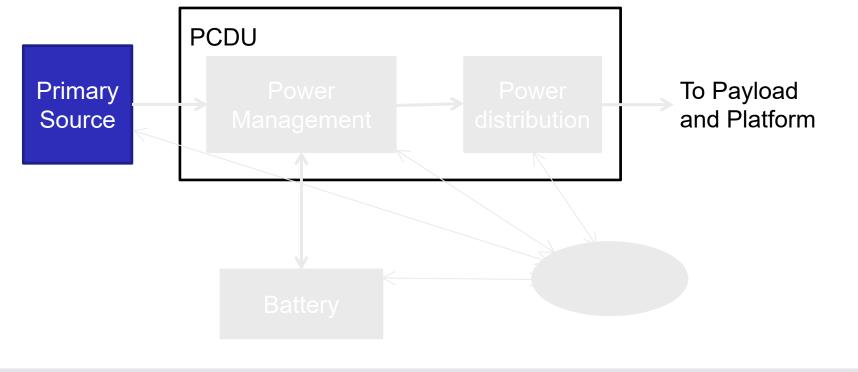
- Seps design drivers
- 2. Primary power sources

SOLAR CELLS & SOLAR ARRAYS

- - **SARCHITECTURE**
 - **N**PCU / PCDU EXAMPLES

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION


This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Lasnards company Space

INTRODUCTION / EPS GENERAL INFORMATION

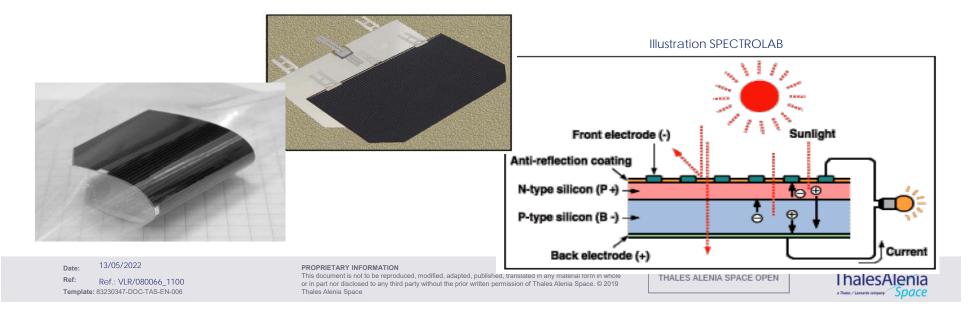
General functional block diagram

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

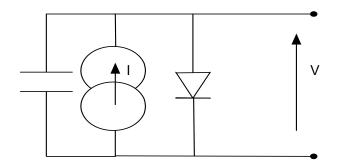
PROPRIETARY INFORMATION

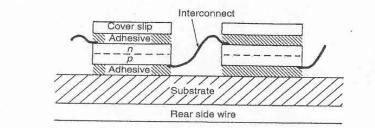

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

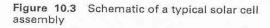
SA cells

Solar Cell is composed of a semi-conductor material and converts photons to ELECTRONS

S PHOTOVOLTAIC EFFECT

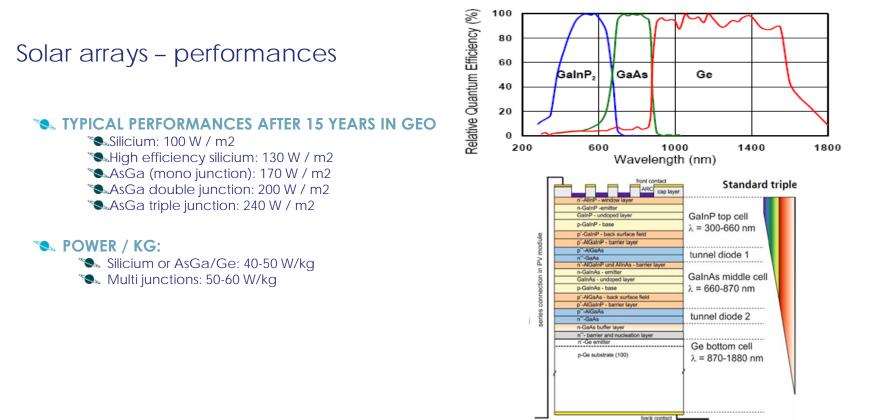

- The solar flux is reflected, absorbed by the solar cell or crosses it
 Every absorbed photon whose energy is greater than semi-conductor gap is going to release an electron and to create a positive « hole » (lack of electron). This electron is part of the crystalline network
 Photons with excess energy dissipate it as heat in the cell, leading to reduced efficiency
 An electrical field is introduced in the cell in order to separate this pair of opposite charges




Equivalent circuit diagram

SACH SOLAR CELL IS EQUIVALENT TO

- S a current source in parallel with
- 🛰 a capacitor (variable) and
- 🛰 a diode


 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

 Date:
 13/05/2022

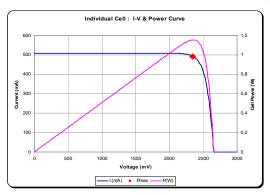
 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

SA cell efficiency & characteristics



Electrical Data

		BOL	2,5E14	5E14	1E15
Average Open Circuit Voc	[mV]	2700	2616	2564	2522
Average Short Circuit Isc	[mA]	520.2	518.5	514.0	501.9
Voltage at max. Power V _{mp}	[mV]	2411	2345	2290	2246
Current at max. Power Imp	[mA]	504.4	503.2	500.6	486.6
Average Efficiency ŋ _{bare} (1367 W/m ²)	[%]	29.5	28.6	27.8	26.5
Average Efficiency ŋ _{bare} (1353 W/m ²)	[%]	29.8	28.9	28.1	26.8
Standard: CASOLBA 2005 (05-20MV1_etc): Spe	ctrum: AMO W	$RC = 1367 W/m^{2}$	T = 28 °C		@fluence 1MeV [e/cm

Standard: CASOLBA 2005 (05-20MV1, etc.); Spectrum: AMO WRC = 1367 W/m²; T = 28 °C

@fluence 1MeV [e/cm²]

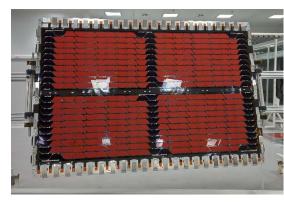
13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

SL46


PRIMARY POWER SOURCES / SOLAR CELLS & ARRAYS

Solar arrays

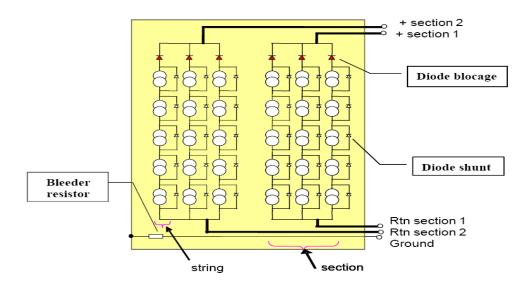
- **SA SOLAR CELL PRODUCES SOME HUNDREDS OF MILLIWATTS**
- A SOLAR ARRAY (SA) IS COMPOSED OF THOUSANDS CELLS ASSEMBLED IN SERIES AND IN PARALLEL
 - Solution The network = cells + interconnections + cabling + diodes
 - Solution A string = assembling of cells in series to obtain the desired voltage
 - Solution = strings in parallel to obtain the desired current

SECTIONS ARE INDEPENDENT

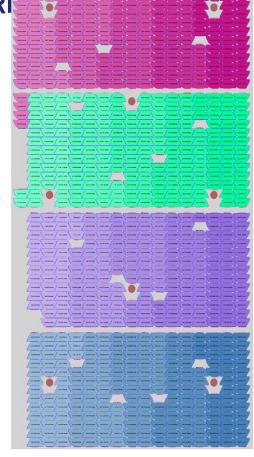
 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

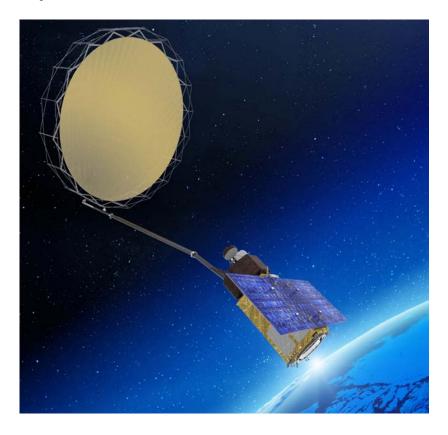

PROPRIETARY INFORMATION

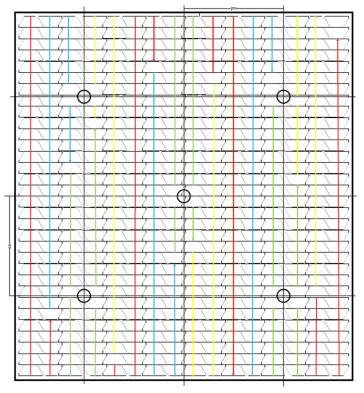
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN



SL46# Hgxdugr#7#mxqfw

SLHUULFN#LJRW>#5823<25356


13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006


PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

Copernicus CIMR Wing panel 37s 13p 2290 mm x 2100 mm dimension

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Lashards company Space

Panel, glue, coverglass, ...

SUBSTRATE

🛰 Kapton with glass – or carbon- reinforcement

SLUE, ADHESIVE

- 🛰 Fix SA cell on SA panel
- Solution Fix the coverglass on the cell
- Sector 2017 Sector

S PANEL (HONEYCOMB)

- Support SA cells
- S. Transfer heat to bottom side
- Second Se
- Se compatible with deployment and orientation mechanisms

- Sector SA cell against ATOX
- Notect SA cell against radiation
- Limit the UV flux to the adhesive layer and to the cell by allowing suitable wavelength selection, via a good optical coupling (between free-space and glass & between glass and adhesive)

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

Efficiency degradation factors

CELLS MISTMATCH & CALIBRATION

MISSION LIFETIME

- Loss of power: 1% to 2% every year (depends of the orbit)
- **RADIATION EFFECTS**

Radiation Degradation

(Fluence 1MeV Electrons/cm²)

Parameters	1x10 ¹⁴	5x10 ¹⁴	1x10 ¹⁵
Imp/Imp₀	0.99	0.98	0.96
Vmp/Vmp₀	0.94	0.91	0.89
Pmp/Pmp₀	0.93	0.89	0.86

🔊 UV

METEORITE IMPACT

ATOX DENSITY

Aggressive and corrosive environment (tied to the LEO) on cover glass protection and on exposed interconnection (oxidation of silver and then increase of resistivity)

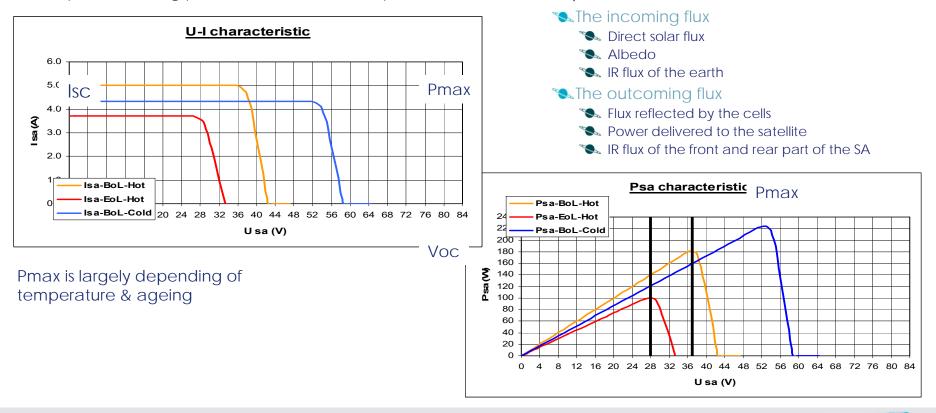
AK CELLS O			EOL WS	Isc Max	Voc Max
Duration	0,0	12,5	12,5	0,0	0,0
	-,-	,•	,•	-,-	-,-
Cell Mismatch	0,990	0,990	0,990	1,010	1,010
Cell Calibration	0,970	0,970	0,970	1,000	1,000
RSS	0,968	0,968	0,968	1,010	1,010
CVG Loss	0,982	0,982	0,982	0,995	0,995
UV + μM	1,000	0,969	0,969	1,000	1,000
ΑΤΟΧ	1,000	1,000	1,000	1,000	1,000
Dataset Uncert.	1,000	1,000	1,000	1,020	1,000
Pointing Error	0,9998	0,9998	0,9998	0,9998	0,9998
Life Loss	0,982	0,951	0,951	1,015	0,995
String //	13	13	13	6	1
Cell serie	37	37	37	37	37
V bus	70,0	70,0	70,0	0,0	0,0
Delta V	2,8	2,8	2,8	2,8	2,8
V fluence (EOL)	0,00E+00	2,11E+14	2,11E+14	0,00E+00	0,00E+00
I fluence (EOL)	0,00E+00	9,89E+13	9,89E+13	0,00E+00	0,00E+00
Solar flux	1323	1323	1413	1413	1413
Declinaison	0,00	32,00	0,00	0,00	0,00

Temp NOP	99,4°C	95,3°C	99,3°C	122,0°C	NA
Temp OP	80,0°C	80,0°C	80,0°C	121,3°C	-130,0°C
Isc	17,4	14,2	17,9	9,23	
Іор	16,80	13,07	16,70	0	0
Voc	80,6	76,4	76,3	76,1	129,34
Vmp	73,2	68,9	69,6		
Imp	16,31	13,33	16,80		
Power @ Vmp	1194	918	1170		
Power @ Vbus	1176	915	1169	0	0
Power @ Vbus 1Str Failed	1085	844	1079		

Datas of Copernicus CIMR Wing panel 37s 13p

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

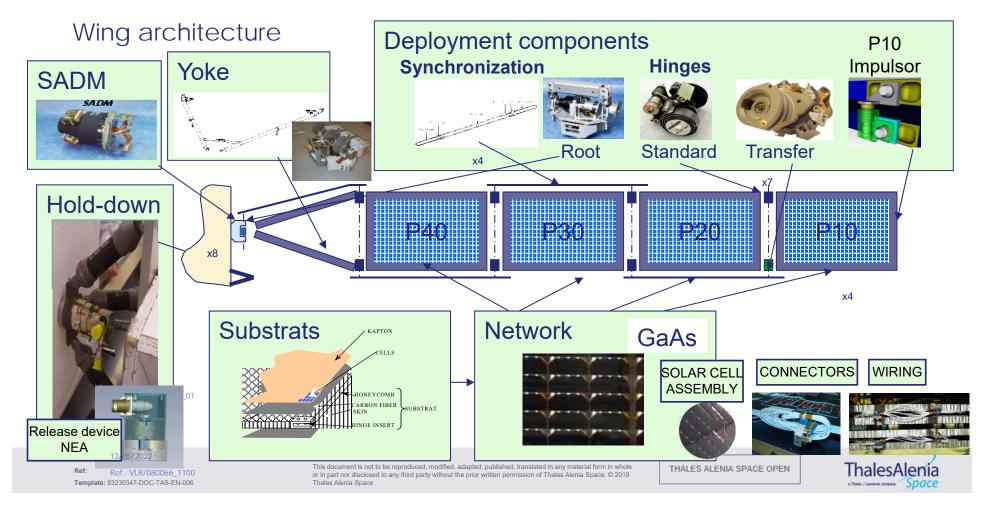

 Template:
 83230347-DOC-TAS-EN-000

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

Optimal working point - at max. available power

 Date:
 13/05/2022


 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

Temperature is linked to

Solar arrays – Types

S FIXED

- Solar cells are glued on the structure of the satellite
- * The power is limited by the surface of the satellite

Solution DEPLOYABLE (FIXED)

- Solar cells are glued on flaps (folded at launch and deployed in orbit)
- Solution to manage the attitude constraints

Solution DEPLOYABLE AND MOBILE

🛰 1-degree of freedom

LADEE (Lunar Atmosphere and Dust Environment Explorer)

 Date:
 13/05/2022

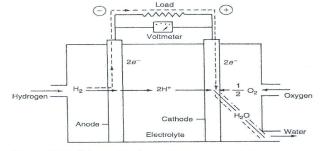
 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

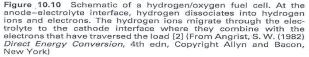
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

Space Inspire


CIMR

PRIMARY POWER SOURCES / FUEL CELLS

Electromechanical devices performing a controlled chemical reaction (oxidation) to derive electrical energy (rather than heat energy)


SADVANTAGES

- Summe I thermal changes
- Compact and flexible solution
- Service Production of water (manned mission)

S DRAWBACKS

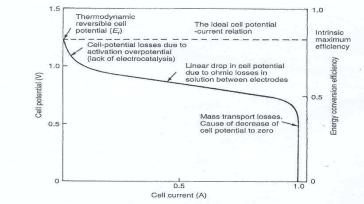
Need of fuels: hydrogen & oxygen yielding water as the reaction product

Solution Structure Orbiter, LUNAR ROVER, ...

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006


PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

PRIMARY POWER SOURCES / FUEL CELLS

Typical current-voltage curve for a hydrogen/oxygen fuel cell

Performance summary of fuel

Figure 10.11 Typical cell potential and efficiency-current relation of an electrochemical electricity producer showing regions of major influence of various types of overpotential losses (Source [10])

System	Specific power (W/kg)	Operation	Comment
Gemini	33	240 h	Not drinking water
Apollo	25		Operated at 505 K 24 h start-up / 17 h shutdown
Shuttle	275	2500 h	15 min start-up / instantaneous shutdown
SPE technology	110 – 146	> 40000 h	
Alkaline technology	367	> 3000 h	
Alkaline technology	110	> 40 000 h	
Goal (lightweight cell)	550		

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

ThalesAlenia This Space

PRIMARY POWER SOURCES / FUEL CELLS

Use of fuel cell as « secondary power source »

REGENERATIVE FUEL CELLS (100 KW SYSTEM POWER) ELECTROLYZE OF WATER IS PERFORMED DURING THE 'CHARGE' CYCLE THANKS TO PRIMARY SOURCE POWER

S. ADVANTAGE

Solution SA power need thanks to judicious sizing of the fuel

DRAWBACK
 Source Enclosed (S0 – 60 %) than battery

INTERESTING FOR LEO OPERATIONS WHERE ATMOSPHERIC DRAG IS IMPORTANT (VERY LOW ORBITS) -> REDUCTION OF PROPELLANT USED FOR ORBIT CONTROL

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

PRIMARY POWER SOURCES / RTG

Deep-space missions (further than Mars) or Military use

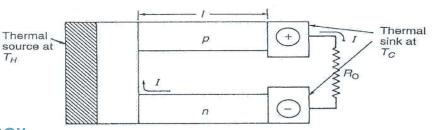
SLONG TIME MISSIONS, NOT-COMPATIBLE WITH FUEL CELLS

SAR FROM SUN, NOT-COMPATIBLE WITH SA

Science of SA flux partially compensated by increased of cell efficiency due to decrease of temperature (rE/rSC)1.5

-> Use of radioactive decay process, use of thermoelectric effect

Thermoelectric effect


Severation of a voltage between (semi-conductor) materials maintaining a **TEMPERATURE DIFFERENCE. POWER FUNCTION OF:**

TH

- Absolute t° of hot junction
- **S**T° difference between materials
- Properties of materials

LOW EFFICIENCY (< 10 %)</p> -> REMOVING WASTE HEAT MAY BE AN ISSUE

SAMEAT SOURCE: SPONTANEOUS DECAY OF A RADIOACTIVE MATERIAL, EMITTING HIGH-ENERGY Figure 10.12 Schematic diagram of a semiconductor radioisotope PARTICLES, HEATING ABSORBING MATERIALS

generator (From Angrist, S. W. (1982) Direct energy conversion, 4th edn, Copyright Allyn and Bacon, New York)

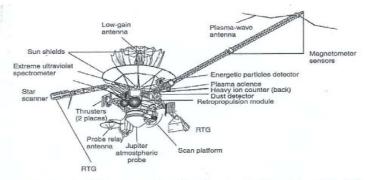
13/05/2022 Date: Ref: Ref.: VLR/080066 1100 Template: 83230347-DOC-TAS-EN-006

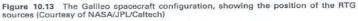
PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Leonards company Space


PRIMARY POWER SOURCES / RTG


Advantages

- **Solution NUMPENDENT OF S/C ORIENTATION & SHADOWING**
- S INDEPENDENCE OF DISTANCE FROM SUN
- Search LOW POWER LEVEL MAY BE PROVIDED FOR LONG TIME PERIOD
- **S** NOT SUSCEPTIBLE TO RADIATION DAMAGE
- S COMPATIBLE WITH LONG ECLIPSE (E.G. LUNAR LANDERS)

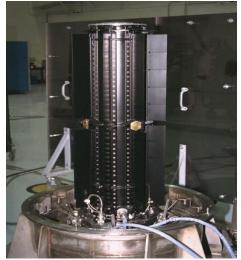
Drawbacks

- Affect the radiation environment of S/C (deployment away from the main satellite bus)
- Radioactive source induce safety precautions in AIT
- High t° operation required -> impact thermal environment of S/C
- Interfere with plasma diagnostic equipment (scientific missions)
- Senvironmental risk in case of launch failure or S/C crash

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

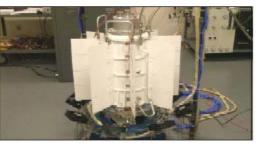

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

PRIMARY POWER SOURCES / RTG & OTHERS

Example of RTG

Saturn Mission)	628 W	195 W/KG
Second Se	285 W	195 W/KG
S. NIMBUS/VIKING/PIONNER	35 W	457 W/KG
SAPPOLO LANDER	25 W	490 W/KG
SAMARS SCIENCE LABORATORY	120 W	416 W/KG



Nuclear fission

S FISSIBLE MATERIAL (E.G. URANIUM-235) USE OF NUCLEAR FISSION PROCESS

(AS FOR TERRESTRIAL NUCLEAR POWER PLANT

SUSED TO DRIVE THERMOELECTRIC CONVERTE

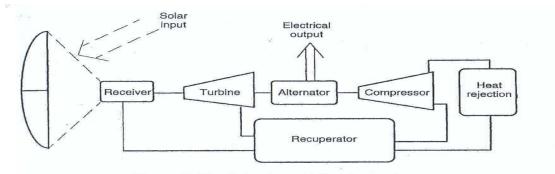
MMRTG Engineering Unit

ThalesAlenia a Thains / Laonardo company Space

OPEN

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION This document is not to be reproduced, modified, adapted, put or in part nor disclosed to any third party without the prior writ Thales Alenia Space


PRIMARY POWER SOURCES / OTHERS

Solar heat

SUSE OF SUN ENERGY TO DRIVE A HEAT ENGINE AND THEN A ROTARY CONVERTER TO ELECTRICITY OR A THERMOELECTRIC CONVERTER

SCONCEPT INTERESTING FOR SPACE STATION

- **S**Reduced drag (reducing area of SA panels)
- Reduced maintenance effort

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

PRIMARY POWER SOURCES / OTHERS

Other sources

S Fuel Cell

- Regenerative fuel cells (100 kW system power) electrolyze of water is performed during the 'charge' cycle thanks to primary source power
- Solution today Network Interesting for very large mission, no application today

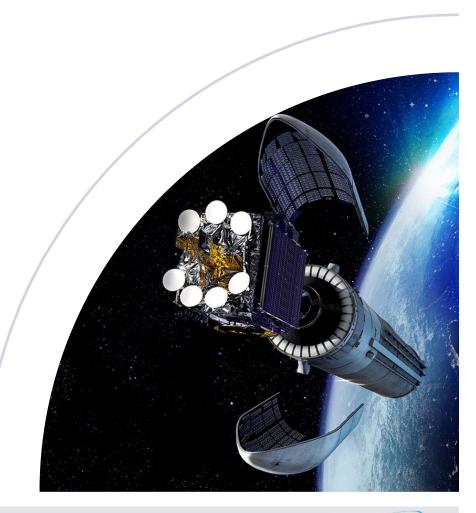
SRTG. RadioThermal Generator => e.g. Voyager 1 & 2

- Seneration of a voltage between (semi-conductor) materials maintaining a temperature difference.
- Low efficiency (< 10 %)</p>
- Subscription of the second sec

Date:	13/05/2022		
Ref:	Ref.: VLR/080066_1100		
Template: 83230347-DOC-TAS-EN-006			

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN


AGENDA

- - **S**EPS GENERAL INFORMATION
 - SEPS DESIGN DRIVERS

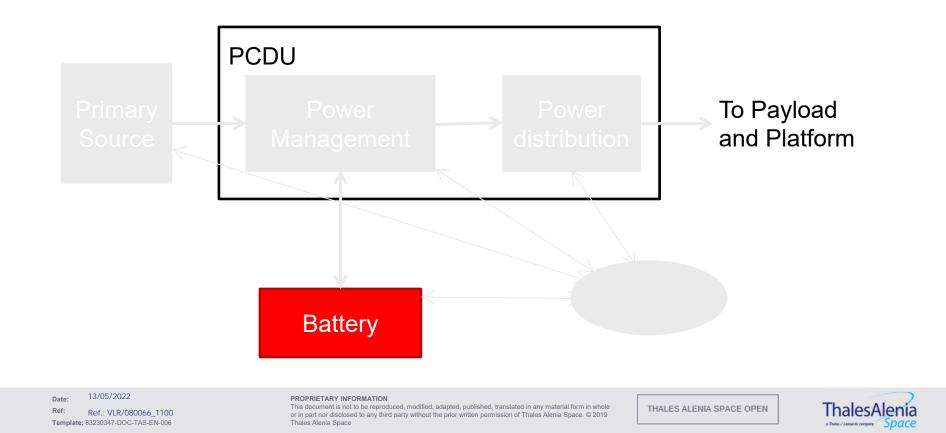
SOLAR CELLS & SOLAR ARRAYS

3. Secondary power sources - batteries

- - **SARCHITECTURE**
 - **N**PCU / PCDU EXAMPLES

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

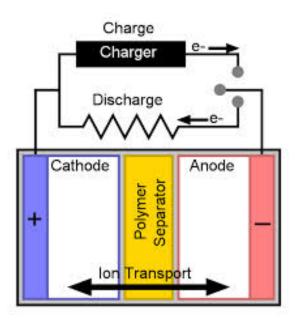

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Lanardis company Space

INTRODUCTION / EPS GENERAL INFORMATION

General functional block diagram



SECONDARY POWER SOURCES

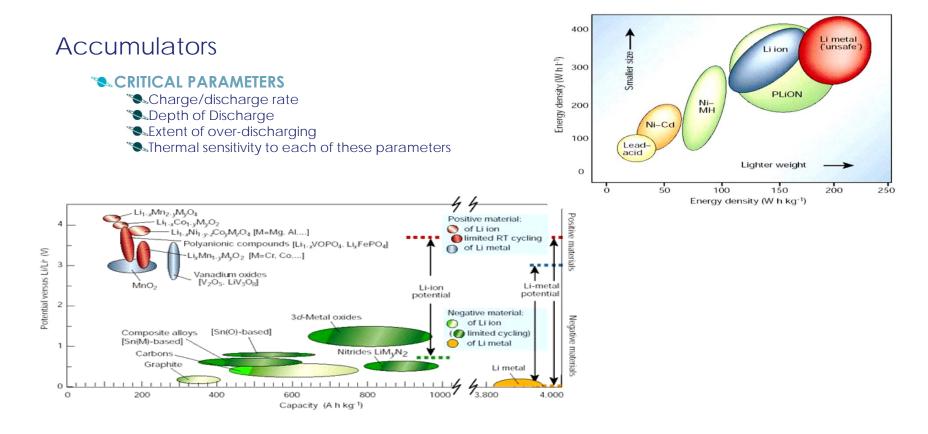
Accumulators

- SELECTROMECHANICAL DEVICES PERFORMING A CONTROLLED CHEMICAL REACTION TO DERIVE ELECTRICAL ENERGY
- DURING DISCHARGE, THE POSITIVE ACTIVE MATERIAL IS REDUCED, ABSORBING ELECTRONS, AND THE NEGATIVE MATERIAL IS OXIDIZED, RELEASING ELECTRONS. IONS ARE DISSOLVED INTO AN ELECTROLYTE AND TRANSFERRED THROUGH A SEPARATOR (WHICH IS AN ELECTRIC INSULATOR) TO EQUILIBRATE THE CHARGE.

Solution IF THE ELECTRODE MATERIALS ARE CHOSEN SO THAT THESE REACTIONS ARE REVERSIBLE, THE CELL CAN BE RECHARGED. IT IS CALLED SECONDARY (I.E. RECHARGEABLE).

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100


 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

SECONDARY POWER SOURCES

 Date:
 13/05/2022

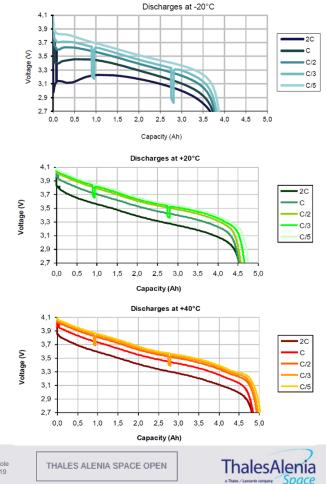
 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

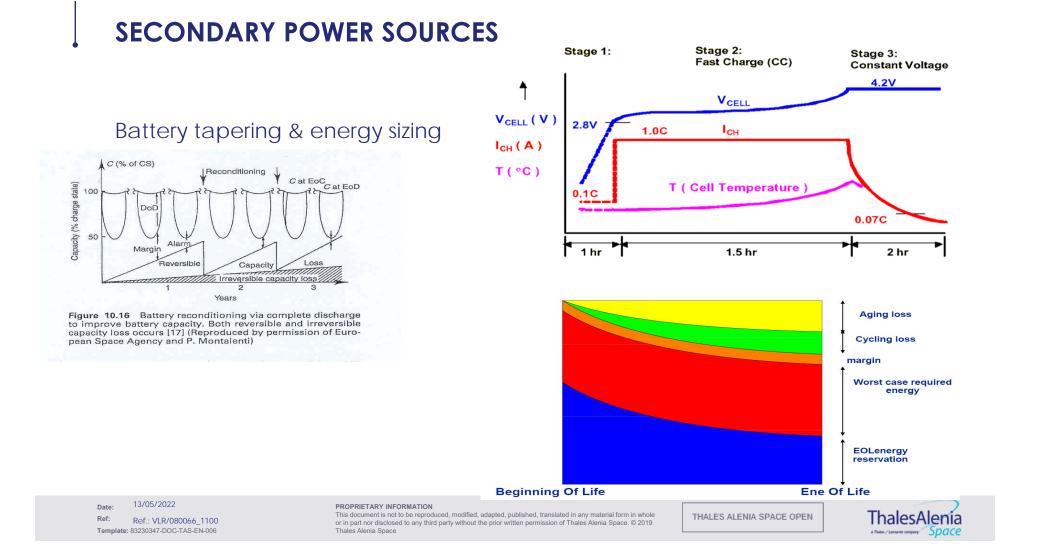
PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

SL53 SECONDARY POWER SOURCES


Typical Characteristics

- Capacity : a battery's capacity is the amount of electric charge it can store. Capacity is given in A.h (1 A.h = 3600 Coulomb).
 - 🛰 1.5Ah -> 100Ah
- C rate: the C-rate signifies a charge or discharge rate relative to the capacity of a battery in one hour.
- Cell Open Circuit Voltage : difference between cell electrode potentials
- SVoltage range
 - 𝖦 4.1V → 3.3V (or 3V or 2.7V)
- Series Resistance
 - 🛰 1mΩ -> 10m Ω
- SLeakage current
 - 🔊 0mA -> 5mA


PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

Gldsrvlwlyh

SL53# Yrlu#HSV0WDVE0WQ03334#srxu#ghvljq SLHUULFN#LJRW>#5823<25356

SECONDARY POWER SOURCES

Battery

S ROLE: SUPPORT THE SOLAR ARRAY DURING

- **S**LEOP phases
- SLoss of sun pointing
- Seak power demands

S...

SERIES / PARALLEL ASSEMBLING OF ACCUMULATOR CELLS

Suln series to reach the desired voltage

- 🛰 22-37 V in LEO
- SGalileo FoC: 42.5 V
- SPACEBUS 4000/NEO: 100 V

SIn parallel to reach the desired capacity

SALANCING

Mandatory in GEO

🛰 deep discharges (up to 80%)

Trade OFF in LEO:

- 🛰 Thousands of cycles
- Smaller discharges

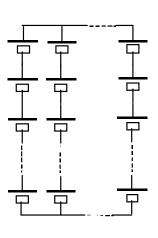


Illustration TAS

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-000

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

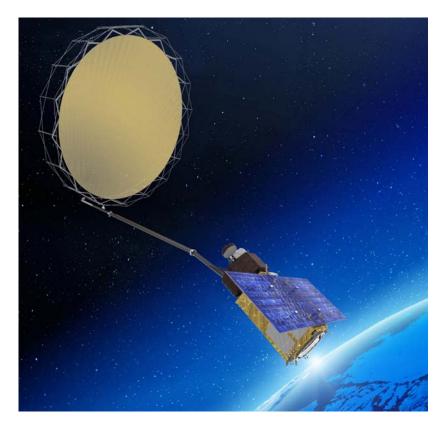
Illustration SAFT

SL54 **SECONDARY POWER SOURCES**

Bol	SAFT NiCd VOS 40	SAFT NiH2 93 AN	SAFT Lilon VOS140	SAFT Lilon MP76065	SONY LilOn 18650HC
Capacity	46 Ah	89 Ah	38.6 Ah	6.1 Ah	1.4 Ah
Mean voltage	1.2 V	1.36 V	3.6 V	3.6 V	3.7 V
Energy	55 Wh	120 Wh	140 Wh	22 Wh	5.2 Wh
Mass	1610 g	2108 g	1107 g	155 g	41.2 g
Energy/kg	34 Wh/kg	57 Wh/kg	126 Wh/kg	141 Wh/kg	126 Wh/kg
Efficiency	70 %	70 %	90 %	90 %	90 %

Data CNES

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006


PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

SL54# H{hpsoh#gh#glphqvlrqqhphqw#2#Yrlu#h{hsoh#Whohvdw#@A#Hgxdugr#Who SLHUULFN#LJRW>#5823<25356

SECONDARY POWER SOURCES

Copernicus CIMR Battery Configuration (855P)2S

8S5P Module

Nameplate characteristics module				
End of Charge Voltage 33.6 V				
Capacity nameplate	61.5 Ah			
Energy nameplate 1810 Wh				
CIMR Battery				

Nameplate characteristics CIMR			
End of Charge Voltage	67.2 V		
Capacity nameplate	61.5 Ah		
Energy nameplate	3620 Wh		

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

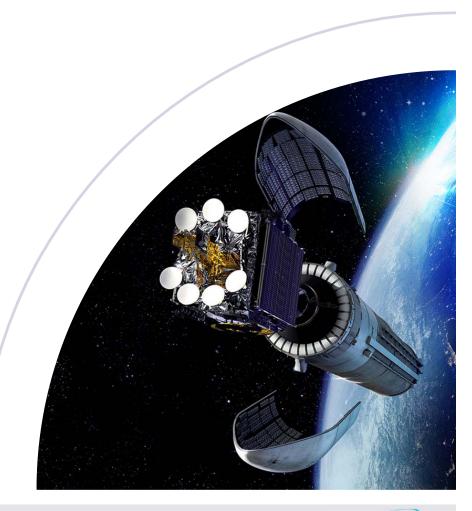
PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

AGENDA

- 1. Introduction
 - **SALEPS GENERAL INFORMATION**
 - SEPS DESIGN DRIVERS
- 2. Primary power sources


SOLAR CELLS & SOLAR ARRAYS

3. Secondary power sources - batteries

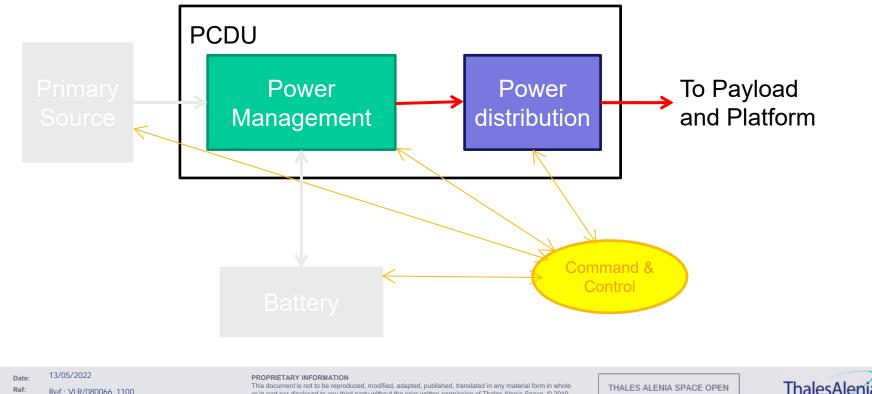
4. Power Management, Control & Distribution

- SPCU / PCDU EXAMPLES
- 5. Power budget practical exercise
- 6. Conclusions

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006


PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

INTRODUCTION / EPS GENERAL INFORMATION

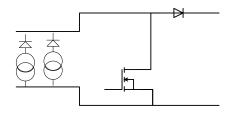
General functional block diagram

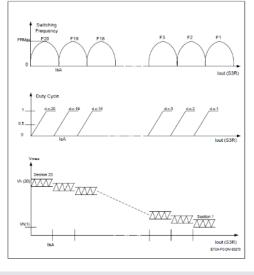
Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

ThalesAlenia a Thains / Lanards company Space

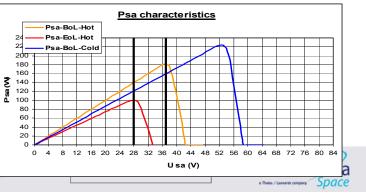
POWER MANAGEMENT, CONTROL & DISTRIBUTION / ARCHITECTURE Conditioning topology


= HOW SOLAR ARRAY POWER IS USED TO BE DELIVERED TO THE DIFFERENT USERS / CHARGE THE


Sate And Antial Switching Series Regulator (S3R)

S3R operates at the bus voltage and extracts the available power from the solar array for this precise voltage (aka DET

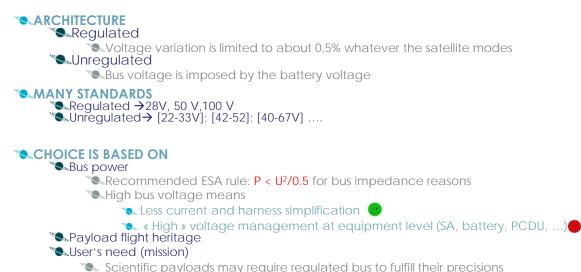
Direct Energy Transfer)


- Simplest solution
- Sone section in switching
- Sky < 10kHz
- Reliable or Non reliable

Maximum Power Point Tracking (MPPT)

- MPPT can operate in a wide range of voltages to track the maximum available power from the solar array, converts the (VMP, IMP) into (Vbus, Ibus)
 - More complex and dissipative solution
 - 🛰 Drawbacks: Efficiency & Mass
 - Advantages: Works for different SA characteristics / MPP achieved
 - Main interest: Interplanetary missions / Nonpointing Solar Arrays (vibrations constrains or PF complexity)

 Date:
 13/05/2022


 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any mat or in part nor disclosed to any third party without the prior written permission of Thales Aleni Thales Alenia Space

Bus voltage 1/3

- Scientific payloads may require regulated bus to fulfill their precision Thermal stability of some specific loads may requires regulated bus
- (thermal management is easier in that architecture)

-> SOME ARCHITECTURE MAY EVEN REQUIRES TWO BUSES

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

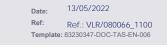

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

Bus voltage 2/3

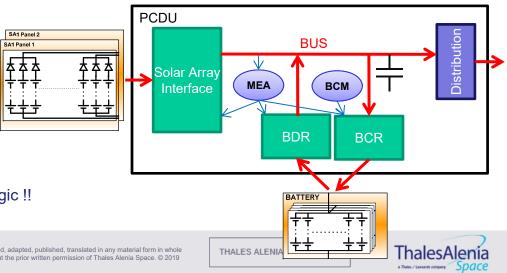
REGULATED BUS

- Solver the satellite modes Voltage variation is limited to about 0,5% whatever the satellite modes
 - Solar Array operative voltage is constant
- Need of dedicated electronics to manage the battery discharge
 - Substantial power dissipation inside the PCDU during eclipse


Secontrolled by the MEA

- Acts on Solar Array Interface if enough power is available
- **S**Acts on Battery Discharge Regulator in any other case

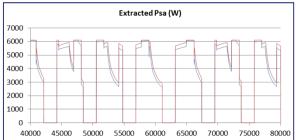
Seattery Recharge Controlled by BCM


Acts on the Battery Charge Regulator when power recharge is allowed

!! SpaceInspire is a regulated bus with a different control logic !!

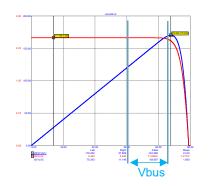
PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space



Bus Voltage 3/3

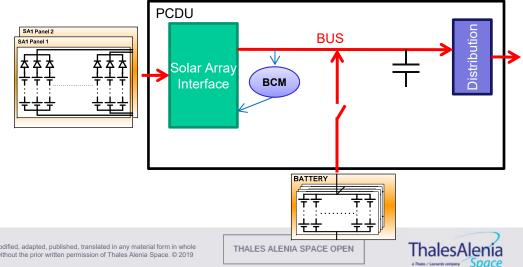
SUNREGULATED BUS


Sus Voltage follows the battery voltage

Solar Array extracted power depends on battery State of Charge

Sattery Recharge Controlled by BCM

SActs on the Solar Array interface to guarantee the battery charge


13/05/2022

Template: 83230347-DOC-TAS-EN-006

Ref.: VLR/080066_1100

Date:

Ref:

PROPRIETARY INFORMATION

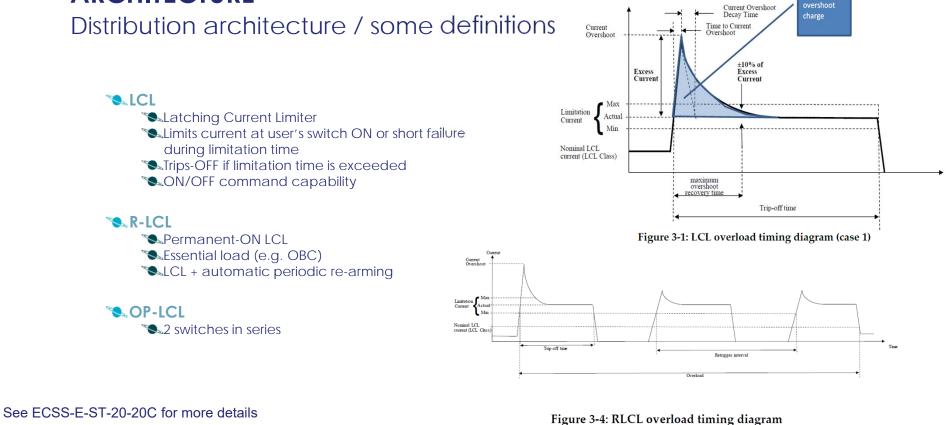
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

Distribution architecture

DISTRIBUTION CONCERNS THE WAY THE POWER IS DISTRIBUTED FROM PRIMARY & SECONDARY SOURCES TO USER'S THROUGH PCDU. TO AVOID FAILURE PROPAGATION IN CASE OF USER'S SHORT FAILURE, THESE LINES SHALL BE PROTECTED BY

S FUSE

- Simplest solution
- Sumposes all the user's to be compatible with bus transients induces by fuse blowing
- Sumposes the need of extraction during AIT phase


 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

21/10/2014 Date: 13/05/2022 Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

Other constituents of PCDU

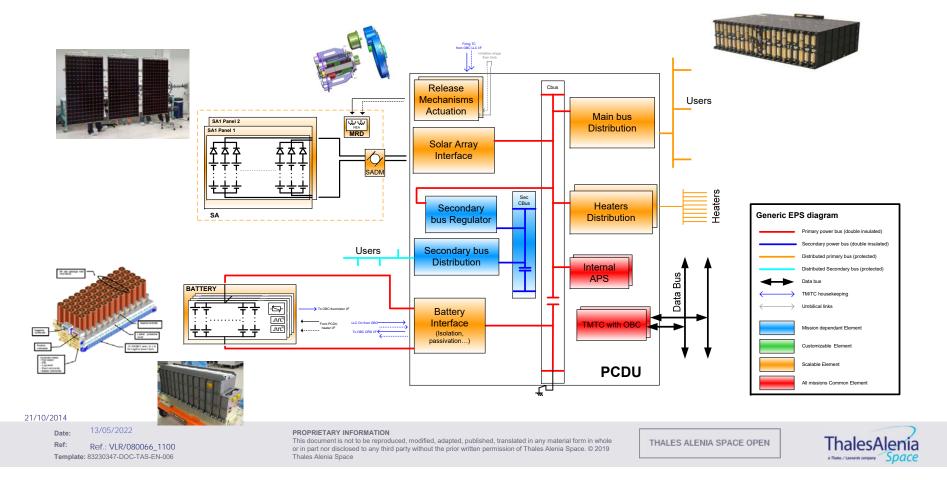
SADM motor driver Antenna motor driver

COMMAND ON DEPLOYMENT
 Actuation of pyro - MRD
 Actuation of thermal knifes - MRD

SLI-ION BATTERY CELLS MANAGEMENT

SACQUISITION OF THERMISTORS

HEATERS

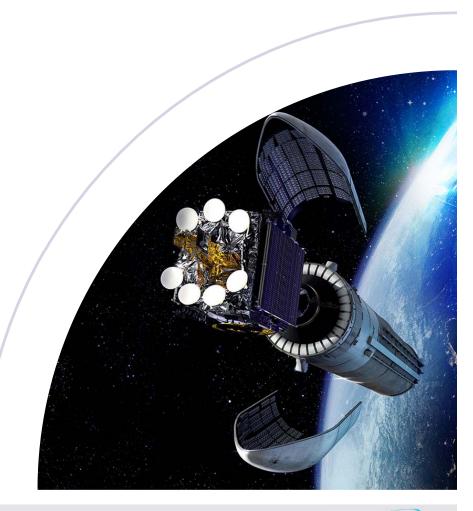

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN



AGENDA

- 1. Introduction
 - **S** EPS GENERAL INFORMATION
 - SEPS DESIGN DRIVERS
- 2. Primary power sources

SOLAR CELLS & SOLAR ARRAYS

- 3. Secondary power sources batteries
- 4. Power Management, Control & Distribution
 - **S**ARCHITECTURE
 - SPCU / PCDU EXAMPLES
- 5. Power budget practical exercise
- 6. Conclusions

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

POWER MANAGEMENT, CONTROL & DISTRIBUTION / PC(D)U

Examples µSAT

SLOW POWER: 260 W / LOW VOLTAGE : UNREGULATED BUS (22-37 V

SOLAR ARRAY REGULATOR: BOOST CONVERTER

SNOT RELIABLE

S DISTRIBUTION FUNCTIONS

SLCL, Pyro

DC/DC for secondary (+5, +-15,+20 V) + LCL protection
 Adaptability of the distribution by paralleling of LCL's

CNES/ASTRIUM/TAS-F MYRIADE PLATFORM PASELINE

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

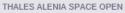
PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Heurs Traction of The Second THALES ALENIA SPACE OPEN

POWER MANAGEMENT, CONTROL & DISTRIBUTION / PC(D)U

Examples Scientific, earth observation & constellations

- **SALARGE FLEXIBILITY NEEDED**
- **MODULAR STRUCTURE**
- **SALARGE FLEXIBILITY**
- **SAREDUNDANCY (TOLERANT TO ONE FAILURE)**
- ***** BUS POWER : 500 W TO 4200 W**
- **Solution** BUS VOLTAGE : UP TO 50 V, NON-REGULATED OR REGULATED
- SOLAR ARRAY REGULATION : MPPT OR DET (S3R OR S2R)
- ***** LITHIUM CELLS MANAGEMENT : CELLS VOLTAGE BALANCING AND BY-PASS ELECTRONICS
- **SA DISTRIBUTION : LCLS, FCLS, RELAYS+FUSES, HEATER SWITCHES, PYRO ELECTRONICS**
- ****** TMTC : MIL-1553B BUS OR OTHER
- Challenges of new constellations
 - Source of cots (component off-the-shelf) taken from automotive product lines and tested in RADIATION "A POSTERIORI" – INCLUDING PLASTIC PACKAGE
 - **SAUSE OF AUTOMATIVE PRODUCTION LINES**
 - REVIEW OF COMPLETE VALIDATION / TEST CONCEPT (BURN-IN AT PART LEVEL, SCREENING AT BOARD LEVEL, LIMITED TESTS AT S/C LEVEL,,,)


 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-000

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space



Document

SL5<

POWER MANAGEMENT, CONTROL & DISTRIBUTION / PC(D)U

Examples Scientific, Earth observation & constellation

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

Herschel Planck PCDU

- 1.9 kW
- Regulated bus / S3R: 28 V
- Mass: 24 kg
- 3 FMs manufactured, 2 in flight since May 2009 (missions ended mid-2013)
- Customer: Thales Alenia Space Italy (ESA)

PCDU for constellation

- 1.2 kW to 1.8 kW
- Unregulated bus / MPPT or S3R: 28 V
- -Mass: 7 kg to 13kg
- -G*2 : 25 FMs delivered, 24 in flight
- -O3B : 8 FMs delivered, 8 in flight
- Iridium : 84 FMs and delivered, 75 in flight

ARSAT 50V PCU

- 4,2 kW
- Regulated bus / S3R: 50 V
- Mass: 19 kg
- 1 EM + 2 FMs in flight (Oct-14 & Sept-15)

SENTINEL-3 PCDU

- 2,1 kW
- Unregulated bus / S3R: 28 V
- Mass: 16.2 kg
- 1 EM + 4 FMs delivered, FM1&2 in flight since February 2016, April 2018

SENTINEL-1 PCDU

- 5,8 kW
- Unregulated bus/S3R 60V +
- Regulated bus: 28 V
- Mass: 23.2 kg
- 4 FMs delivered, FM1&2 in flight since April 2014 and 2016

FRENCH OBSERVATION SATELLITE PCDU

- 2,7 kW
- Unregulated bus/MPPT: 28 V
- Mass: 19.2 kg
- 1 EM + 6 FMs delivered

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

SL5<# Hgxdugr#0#qhz#SI

SLHUULFN#LJRW>#5823<25356

POWER MANAGEMENT, CONTROL & DISTRIBUTION / PC(D)U

Examples GEO high power

SPACEBUS 4000 PCU

- SEFULL REGULATED BUS 6 TO 27 KW / 100 V
- **SOLAR ARRAY REGULATION: S3R**
- **SANO DISTRIBUTION FUNCTION (PCU ONLY)**
- S FLIGHT HERITAGE : 84 PCU'S, 58 IN FLIGHT, 480 YEARS

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

Gldsrvlwlyh

SL63# SLHUULFN#LJRW>#5823<25356

SL64# Hgxdugr=#dmrxwhu

SLHUULFN#LJRW>#5823<25356

POWER MANAGEMENT, CONTROL & DISTRIBUTION / PC(D)U

Examples GEO high power

SPACE INSPIRE

🔊 HPU

- Sull regulated bus 8 to 32 kW / 100 V
- Solar array regulation: S3R
- Substribution by fuses

SACE (PCDU PART)

- Secondary Power Bus 28V
- **S**Heaters
- Services / MRD
- Substribution by fuses

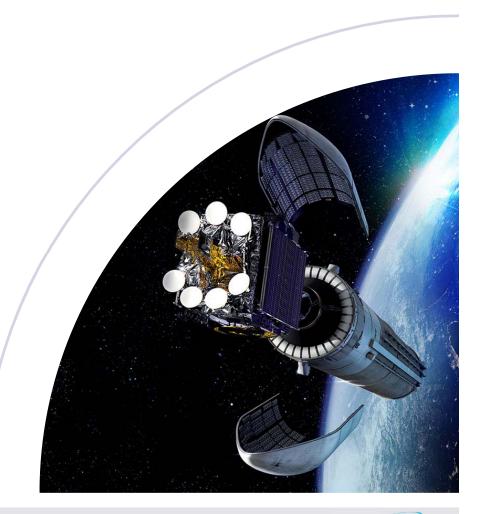
 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space



AGENDA

- 1. Introduction
 - **SALEPS GENERAL INFORMATION**
 - Seps design drivers
- 2. Primary power sources

SOLAR CELLS & SOLAR ARRAYS

- 3. Secondary power sources batteries
- 4. Power Management, Control & Distribution
 - **S**ARCHITECTURE
 - SPCU / PCDU EXAMPLES
- 5. Power budget practical exercise
- 6. Conclusions

 Date:
 13/05/2022

 Ref:
 Ref.: VLR/080066_1100

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

EPS SIZING

- 1. Orbit selection (altitude & inclination trade-off's)
- 2. Bus voltage trade-off
- 3. Bus regulation trade-off
- 4. Battery sizing
- 5. Power conditioning topology trade-off
- 6. Solar array's surface

 Date:
 24/11/2023

 Ref:
 SY-0071-01-00-Formation_EPS.pptx

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN

IIIStudy case #1

I STUDY OF A MICRO SATELLITE TO TARGET SHIP BASED AND GROUND BASED RADARS

- Lifetime: 12 years
- Orbit: Leo

I PAYLOAD REQUIREMENTS

- Acquisition in sun & eclipse phases
- Bus power of 650 W
 - Max power to be considered
 - Sum of all user's needs (AOCS, payloads, emitters, receivers, thermal control...) including distribution losses (LCL, fuse, harness)
 - Worst case consumption in all satellite phases (acquisition, data transmission, night & day modes, seasons variation on thermal control, ...)
 - Excluding power conditioning needs

 Date:
 24/11/2023

 Ref:
 SY-0071-01-00-Formation_EPS.pptx

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

///Orbit selection

I ALTITUDE TRADE-OFF

- Lower than 1000 km (to avoid Van Allen belts impacts on radiation level)
- Above 500 km to ensure that the cluster altitude can be maintained during lifetime (atmospheric drag effect)
- Instrument precision is better at low altitude but instrument coverage increases with altitude
- -> Circular orbit of 600 km altitude has been selected among several candidates (out of the scope of this study case, based essentially on payload needs)

I INCLINATION TRADE - OFF

- Polar orbit for best possible coverage worldwide
- Sun-synchronous orbit as other candidate

 $T^2 = \frac{4\pi^2 r^3}{r}$ Gm。

- *G* is the gravitational constant (=6.67 x 10^{-11} m³.s⁻².kg⁻¹),
- m_e is the mass of the Earth (=5.98 x 10²⁴ kg),
- *r* is the distance from the satellite to the centre of the Earth (in metres),

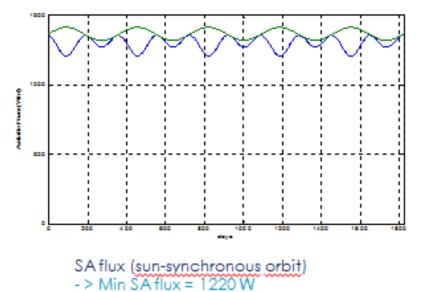
 $r = r_E + h$, where $r_E = 6378$ km

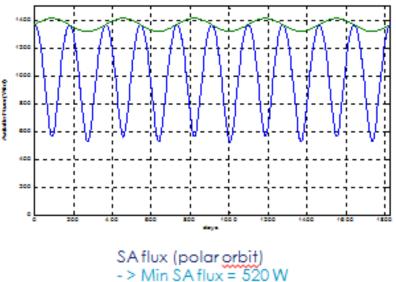
Orbit characteristics						
Average height	600 km	600 km				
Period	97 min	97 min				
Eccentricity	0.001 (circular orbit)	0.001 (circular orbit)				
Inclination	90 ° (polar orbit)	98° (sun-synchronous)				
Eclipse duration	21.3 min	30 min				

 Date:
 24/11/2023

 Ref:
 SY-0071-01-00-Formation_EPS.pptx

 Template:
 83230347-DOC-TAS-EN-006


PROPRIETARY INFORMATION


This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

/// Orbit selection / Inclination trade-off

Orbit selection / Inclination trade-off

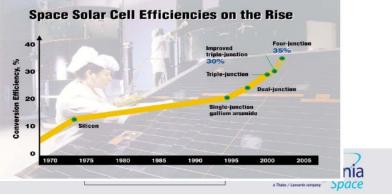
Date: 24/11/2023 Ref: SY-0071-01-00-Formation_EPS.pptx Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Lassards company Space


///Orbit selection / Inclination trade-off

I EPS SIZING SHALL CONSIDER WORST CASE CONDITIONS OF ILLUMINATION AND EOL PHOTOVOLTAIC EFFICIENCY OF SA CELLS. THIS LEADS TO THE FOLLOWING DATA (WORST CASE FIGURES).

Minimum SA flux (W/m²) 1220 520 Minimum SA flux (W/m²) BOL SA cell efficiency 28 % data EOL/BOL ratio 76.5 % 110		Sun-synchronous	Polar	
EOL/BOL ratio 76.5%	Minimum SA flux (W/m²)	1220	520	manufacturer
	BOLSA cell efficiency	28 %		data
Total available SA power (W / m ²) (260) 110	EOL/BOL ratio	76.5%		
	Total available SA power (W / m ²)	260	110	

I NOTE THAT PHOTOVOLTAIC EFFICIENCY EOL/BOL RATIO TAKES INTO ACCOUNT THE FOLLOWING ELEMENTS (SA PANEL MANUFACTURER DATA)

- 5-years mission lifetime
- radiation effects
- UV and meteoritic impact
- effect of ATOX density (aggressive and corrosive environment tied to the LEO) on cover glass protection
- Effect of temperature (including earth albedo)

Date: 24/11/2023 Ref: SY-0071-01-00-Formation_EPS.pptx Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any m or in part nor disclosed to any third party without the prior written permission of Thales Ali Thales Alenia Space

III EPS sizing: Bus voltage trade-off

- Compatible with bus power (< 1 kW) \rightarrow remember: Recommended ESA rule: P < U²/0.5 \rightarrow U=sqrt(P*0.5)=sqrt(1kW*0.5)=22V
- High hardware heritage
- 50 V
 - Reduced current levels
 - Reduced harness & power dissipations

III EPS sizing: Bus regulation trade-off

REGULATED POWER BUS – MAIN HYPOTHESIS 1

BDR (Battery => bus) conversion efficiency=94%

UNREGULATED POWER BUS – MAIN HYPOTHESIS

- Internal losses (Battery => bus) internal connections=1% BAT to PCDU harness losses : 3%

NOTE: PCDU LOW LEVEL CONSUMPTION: 30 W FOR BOTH CONFIGURATIONS

III EPS sizing: Battery sizing

- MAX DOD OF 40 % CONSIDERED FOLLOWING 1
 - Orbit characteristics (period and eclipse)
 Mission duration 10 years => 55 000 cycles

BATTERY DISSIPATION (AT BATTERY LEVEL)

25 W (discharge) • 15 W (charge)

Date: 24/11/2023 Ref: SY-0071-01-00-Formation EPS.pptx Template: 83230347-DOC-TAS-EN-006

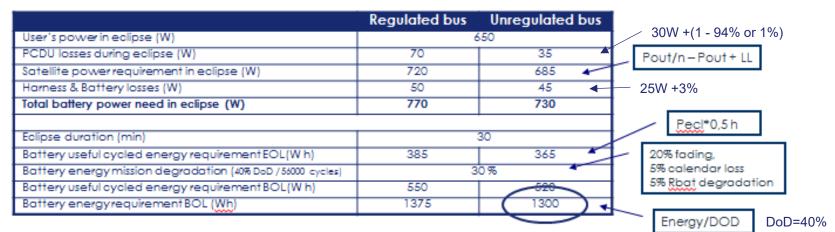
PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Snace

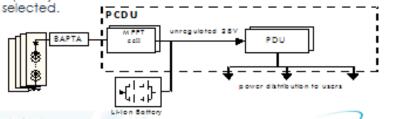
Available Energy vs. BoL Energy (in %) Check-up 4.1V @20°C 50 20000 30000 40000 60000 Cycles Number

Available Energy evolution

LEO cycling in Real Time @20°C-EOCV=4.05Volts at different DoD


20% DOD

THALES ALENIA SPACE OPEN



~ 9% Variation ≈7% Vari~

/// EPS sizing / bus regulation trade-off & Battery sizing

Slight advantage for URB coupled with lower PCDU mass / complexity. If no specific requirement on payload (including EMC), URB is selected.

 Date:
 24/11/2023

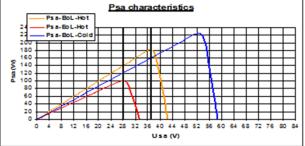
 Ref:
 SY-0071-01-00-Formation_EPS.pptx

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

PROPERTARY INCOME.

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space THALES ALENIA SPACE OPEN


///EPS sizing: Conditioning topology trade-off (Unregulated bus topology)

I MPPT

- Power converter efficiency: 95 %
- Control efficiency: ability to track the maximum power whatever the battery state is (charged, discharged, with or without failure, ...): 99 % accuracy

I DET

• S3R conversion efficiency: 98 %

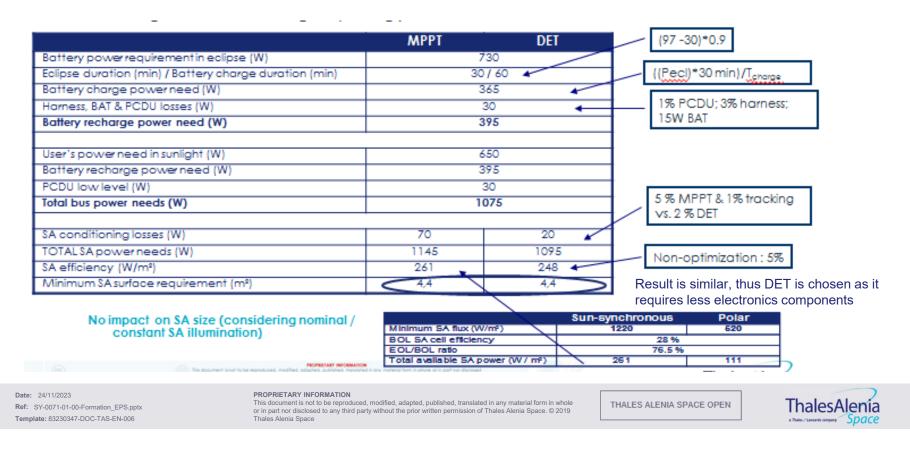
III EPS sizing: Battery data (based on previous selection)

Battery recharge duration = 90 % of sunlight duration

NOTE: CONSIDERING 28 V URB WITH 40 % DOD, BATTERY VOLTAGE IS COMPRISED BETWEEN 28V & 37V IN NOMINAL OPERATING CASES

 Date:
 24/11/2023

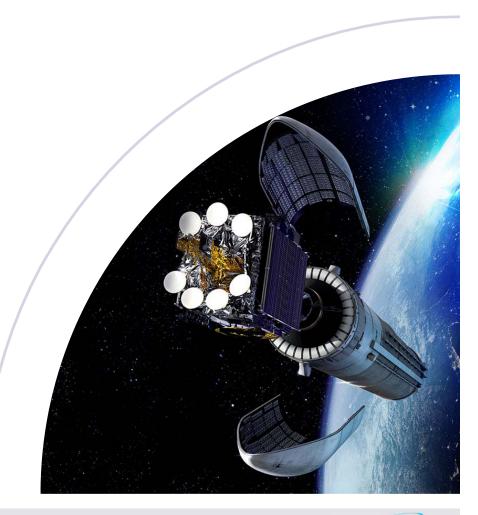
 Ref:
 SY-0071-01-00-Formation_EPS.pptx


 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

/// EPS sizing: Conditioning topology trade-off



AGENDA

- - **S**EPS GENERAL INFORMATION
 - SEPS DESIGN DRIVERS

SOLAR CELLS & SOLAR ARRAYS

- - **SARCHITECTURE**
 - **S**PCU / PCDU EXAMPLES
- 6. Conclusions

13/05/2022 Date: Ref: Ref.: VLR/080066_1100 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

ThalesAlenia a Thains / Lasnards company Space

CONCLUSIONS

III The design of any Power Subsystem is strongly linked with System analyses (Attitude & Orbit, Mission, Operations)

/// The electrical architecture of spacecrafts is not standard

- **I** UNREGULATED OR REGULATED POWER BUS
- *I* VOLTAGE (28 V, 50 V, 100 V, ...)
- I CONDITIONING (S3R, MPPT, ...)
- **I PROTECTIONS (RELIABLE OR NOT)**
- **I** DISTRIBUTION (FUSE, LCL, ...)
- I ...

MMRTO Engineering Unit

AND SHALL BE ADAPTED NEARLY ON CASE BY CASE

 Date:
 24/11/2023

 Ref:
 SY-0071-01-00-Formation_EPS.pptx

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

CONTACTS

III Thales Alenia Space in Belgium

- TÉL. : + 32/71 44 22 11 1
- FAX: + 32/71 44 22 00 1
- WWW.THALESALENIASPACE.COM I

/// Nicolas Chapuis

- **ELECTRONIC DESIGN ENGINEER** 1
- TÉL: +32/71 44 28 80 1
- E-MAIL: PIERRICK.IGOT@THALESALENIASPACE.COM 1

Date: 24/11/2023 Ref: SY-0071-01-00-Formation_EPS.pptx Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

ThalesAlenia The The Leonardo company Space

THANK YOU FOR YOUR ATTENTION

Date: 24/11/2023
Ref: SY-0071-01-00-Formation_EPS.pptx
Template: 83230347-DOC-TAS-EN-006

© 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN