Astrodynamics
 (AERO0024)

8. Interplanetary Trajectories

Gaëtan Kerschen

Space Structures \& Systems Lab (S3L)

Motivation

8. Interplanetary Trajectories

Patched conic method

Lambert's problem

Gravity assist

浸

What is the first step?

The spacecraft is in parking orbit (circular) around the Earth.

What should be achieved first?

Reminder: 2-body problem

$$
\begin{gathered}
\varepsilon=\frac{\mu}{2 a}=\frac{v^{2}}{2}-\frac{\mu}{r} \quad \square v_{\infty}=\sqrt{\frac{\mu}{a}} \quad \begin{array}{c}
\text { Hyperbolic } \\
\text { excess speed }
\end{array}
\end{gathered}
$$

Step 1: hyperbolic trajectory (escape the Earth)

2-body problem Earth-satellite (Sun and Mars gravity neglected)

Motion in the planetary reference frame

How far can we go with this 2-body problem?

Sphere of influence (SOI): a spacecraft is within the Earth's SOI if the gravitational force due to Earth is greater than the gravitational force due to the sun.

$$
\begin{gathered}
\frac{G m_{E} m_{\text {sat }}}{r_{E, s a t}^{2}}>\frac{G m_{S} m_{\text {sat }}}{r_{S, s a t}^{2}} \\
r_{E, s a t}<2.5 \times 10^{5} \mathrm{~km}
\end{gathered}
$$

What's wrong with this value?

The 3-body problem

The spacecraft orbits the planet or the Sun

Orbit the planet

Orbit the sun

SOI: Correct Definition due to Laplace

It is the surface along which:

$$
\frac{P_{p}}{A_{s}}=\frac{P_{s}}{A_{p}}
$$

Measure of the planet's influence on the orbit of the
 vehicle relative to the sun

Measure of the deviation of the vehicle's orbit from the Keplerian orbit arising from the planet acting by itself

If $\frac{P_{p}}{A_{s}}>\frac{P_{s}}{A_{p}}$ the spacecraft is inside the SOI of the planet.

SOI Radii

$$
r_{S O I} \approx\left(\frac{m_{p}}{m_{s}}\right)^{\frac{2}{5}} r_{s p}
$$

Planet
SOI Radius (km)
1.13×10^{5}
6.17×10^{5}
9.24×10^{5} OK!
5.74×10^{5}
4.83×10^{7}
8.67×10^{7}

SOI radius (body radii)

Mercury	1.13×10^{5}	45
Venus	6.17×10^{5}	100
Earth	9.24×10^{5} OK!	145
Mars	5.74×10^{5}	170
Jupiter	4.83×10^{7}	677
Neptune	8.67×10^{7}	3886

At the sphere of influence, far from the Earth

น$v_{S O I} \approx v_{\infty}$

Motion in the planetary reference frame

Planetary to heliocentric frame

2-body problem Sun-satellite (Earth's gravity neglected)

Motion in the
heliocentric reference frame

Reminder: Hohmann Transfer

The minimum-fuel impulsive transfer orbit is the elliptic orbit that is tangent to both orbits at its apse line.

Step 2: Hohmann transfer

Hohmann transfer design

$$
\Delta V=\sqrt{\frac{2 \mu_{\text {sun }} R_{\text {mars }}}{R_{\text {earth }}\left(R_{\text {earth }}+R_{\text {mars }}\right)}}-\sqrt{\frac{\mu_{\text {sun }}}{R_{\text {earth }}}}
$$

Velocity of the satellite on the elliptical orbit around the Sun

$$
v_{\infty}+v_{\text {earth }} \quad v_{\text {earth }}
$$

around the Sun
$\sqrt{\frac{2 \mu_{\text {sun }} R_{\text {mars }}}{R_{\text {earth }}\left(R_{\text {earth }}+R_{\text {mars }}\right)}}-\sqrt{\frac{\mu_{\text {sun }}}{R_{\text {earth }}}} \approx v_{\infty}+v_{\text {earth }}-v_{\text {earth }} \approx v_{\infty}$
$\mu_{\text {sun }}=1.327 \mathrm{e} 20$
$R_{\text {earth }}=149.6 \mathrm{e} 9 \quad$ We can calculate $\nu_{\infty} \approx 2.9 \mathrm{~km} / \mathrm{s}$!
$R_{\text {mars }}=228 \mathrm{e} 9$

Let's go back to our initial hyperbola

Which one is a transfer to an outer (inner) planet?

We can now design the initial hyperbola

2-body problem Earth-satellite

 (Sun's gravity neglected)

Motion in the planetary reference frame

We want to calculate $\Delta \mathrm{V} 1$ and β

We know v_{∞} and $r_{p} \quad v_{\infty}=\sqrt{\frac{\mu}{a}} \quad r_{p}=\frac{h^{2}}{\mu(1+e)}$
Orbit equation with $\theta=0$
We have 3 unknowns, 2 equations, but $\quad a=\frac{h^{2}}{\mu} \frac{1}{e^{2}-1}$
https://en.wikipedia.org/wi
ki/Hyperbolic_trajectory

Existence of launch windows: Mars should arrive at the apogee of the transfer ellipse at the same time the spacecraft does.

Motion in the heliocentric reference frame

Existence of Launch Windows

Phasing maneuvers are not practical due to the large periods of the heliocentric orbits.

The planet should arrive at the apse line of the transfer ellipse at the same time the spacecraft does.

Transfer time

$$
\begin{gathered}
t_{12}=\frac{\pi}{\sqrt{\mu_{\text {sun }}}}\left(\frac{R_{1}+R_{2}}{2}\right)^{3 / 2} \\
\text { Hohmann }
\end{gathered}
$$

Step 3: Planetary arrival \rightarrow similar reasoning

Governing Equations

$$
v_{2}-v_{A}=\sqrt{\frac{\mu_{\text {sum }}}{R_{2}}}\left(1-\sqrt{\frac{2 R_{1}}{\left(R_{1}+R_{2}\right)}}\right)
$$

Patched conic method: in summary

Sequence of 2-body problems: outbound hyperbola (departure), Hohmann transfer ellipse (interplanetary travel) and inbound hyperbola (arrival) with one body always being the spacecraft.

Approximate method: if the spacecraft is close enough to one celestial body, the gravitational forces due to other planets are neglected.

Very useful for preliminary mission design (delta-v requirements and flight times). But actual mission design employs the accurate numerical integration techniques.

Assumption of Circular, Coplanar Orbits

Planet

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

Inclination of the orbit to the ecliptic plane
7.00°
3.39응
0.00°
1.85
1.30응
2.48°
0.77°
1.77°
17.16°

Eccentricity
0.206 KO!
0.007
0.017
0.094
0.049
0.056
0.046
0.011
0.244 KO!

Earth-Jupiter Example: Hohmann

Galileo's original mission was designed to use a direct Hohmann transfer, but following the loss of Challenger Galileo's intended Centaur booster rocket was no longer allowed to fly on Shuttles. Using a lesspowerful solid booster rocket instead, Galileo used gravity assists instead.

Earth-Jupiter Example: Hohmann

Velocity when leaving Earth's SOI:
$v_{D}-v_{1}=v_{\infty}^{E}=\sqrt{\frac{\mu_{\text {sun }}}{R_{1}}}\left(\sqrt{\frac{2 R_{2}}{\left(R_{1}+R_{2}\right)}}-1\right)=8.792 \mathrm{~km} / \mathrm{s}$

Velocity relative to Jupiter at Jupiter's SOI:
$v_{2}-v_{A}=v_{\infty}^{J}=\sqrt{\frac{\mu_{\text {sun }}}{R_{2}}}\left(1-\sqrt{\frac{2 R_{1}}{\left(R_{1}+R_{2}\right)}}\right)=5.643 \mathrm{~km} / \mathrm{s}$

Transfer time: 2.732 years

Earth-Jupiter Example: Departure

Velocity on a circular parking orbit (300km):
$v_{c}=\sqrt{\frac{\mu_{E}}{R_{E}+h}}=7.726 \mathrm{~km} / \mathrm{s}$
$\Delta v=\sqrt{v_{\infty}^{2}+\frac{2 \mu}{r_{p}}}-7.726 \mathrm{~km} / \mathrm{s}=6.298 \mathrm{~km} / \mathrm{s}$
$e=1+\frac{r_{p} v_{\infty}^{2}}{\mu}=2.295$

Earth-Jupiter Example: Arrival

Final orbit is circular with radius $=6 \mathrm{R}_{\mathrm{J}}$

$$
\begin{aligned}
& \Delta v=\sqrt{v_{\infty}^{2}+\frac{2 \mu}{r_{p}}}-\sqrt{\frac{\mu(1+e)}{r_{p}}}=24.95-17.18=7.77 \mathrm{~km} / \mathrm{s} \\
& \mathrm{e}=1.108
\end{aligned}
$$

Rendez-vous opportunities: synodic period

$$
\begin{gathered}
\begin{array}{l}
\theta_{1}=\theta_{10}+n_{1} t \\
\theta_{2}=\theta_{20}+n_{2} t \\
\phi=\theta_{2}-\theta_{1}
\end{array} \\
\phi_{0}-2 \pi=\phi_{0}+\left(n_{2}-n_{1}\right) T_{s y n} \square \phi=\phi_{0}+\left(n_{2}-n_{1}\right) t \\
T_{s y n}=\frac{2 \pi}{\left|n_{1}-n_{2}\right|} \\
T_{s y n}=\frac{T_{1} T_{2}}{\left|T_{1}-T_{2}\right|} \\
T_{s y n}=\frac{365.26 \times 687.99}{|365.26-687.99|}=777.9 \text { days }
\end{gathered}
$$

Earth-Mars mission

The total time for a manned Mars mission is

$$
258.8+453.8+258.8=971.4 \text { days }=2.66 \text { years }
$$

1. In 258 days, Mars travels $258 / 688 * 360=135$ degrees. Mars should be ahead of 45 degrees.
2. In 258 days, the Earth travels $258 / 365 * 360=255$ degrees. At Mars arrival, the Earth is 75 degrees ahead of Mars.
3. At Mars departure, the Earth should be behind Mars of 75 degrees.
4. A return is possible if the Earth wins 360-75-75=210 degrees w.r.t. Mars. The Earth wins 360/365-360/688=0.463 degrees per day. So one has to wait $210 / 0.46=453$ days.

Hohmann Transfer: Other Planets

Planet	v_{∞} departure $(\mathrm{km} / \mathrm{s})$	Transfer time (days)
Mercury	7.5	105
Venus	2.5	146
Mars	2.9	259
Jupiter	8.8	998
Saturn	10.3	2222
Pluto	11.8	16482

Assumption of circular, co-planar orbits and tangential burns

Venus Express: A Hohmann-Like Transfer

Interplanetary Transfer Orbit

Date: 09 Nov 2005
Satellite: Venus Express
Copyright: ESA

Venus Express: Consolidated Report On Mission Analysis
(Issue 3)
by
J. M. Sánchez Pérez
J. Rodriguez Canabal

April, 2005

European Space Operations Centre
$\mathrm{C}_{3}=7.8 \mathrm{~km}^{2} / \mathrm{s}^{2}$
Time: 154 days
Why?
$\rightarrow \mathrm{C}_{3}=6.25 \mathrm{~km}^{2} / \mathrm{s}^{2}$
Time: 146 days

Real data

Hohmann

Organization ESA
Major EADS Astrium, Toulouse, France, leading a
contractors team of 25 subcontractors from 14 European countries.

Mission
Orbiter
type
Satellite of Venus
Launch date 9 November 2005 03:33:34 UTC
Launch Soyuz-FG/Fregat
vehicle
Mission 150 days enroute; 1,000 days in orbit
duration 4 years and 5 months elapsed
COSPARID 2005-045A 图
Home page www.esa.int/SPECIALSNenus_Express

Sensitivity Analysis: Departure

The maneuver occurs well within the SOI, which is just a point on the scale of the solar system.

One may therefore ask what effects small errors in position and velocity (r_{p} and v_{p}) at the maneuver point have on the trajectory (target radius R_{2} of the heliocentric Hohmann transfer ellipse).

$$
\frac{\delta R_{2}}{R_{2}}=\frac{2}{1-\frac{R_{1} v_{D}^{2}}{2 \mu_{s u n}}}\left(\frac{\mu_{1}}{v_{D} v_{\infty} r_{p}} \frac{\delta r_{p}}{r_{p}}+\frac{v_{\infty}+\frac{2 \mu_{1}}{r_{p}}}{v_{D}} \frac{\delta v_{p}}{v_{p}}\right)
$$

Sensitivity Analysis: Earth-Mars, 300km Orbit

$$
\begin{aligned}
\mu_{\text {sun }} & =1.327 \times 10^{11} \mathrm{~km}^{3} / s^{2}, \mu_{1}=398600 \mathrm{~km}^{3} / \mathrm{s}^{2} \\
R_{1}= & 149.6 \times 10^{6} \mathrm{~km}, R_{2}=227.9 \times 10^{6} \mathrm{~km}, r_{p}=6678 \mathrm{~km} \\
v_{D} & =32.73 \mathrm{~km} / \mathrm{s}, v_{\infty}=2.943 \mathrm{~km} / \mathrm{s} \\
& \square \frac{\delta R_{2}}{R_{2}}=3.127 \frac{\delta r_{p}}{r_{p}}+6.708 \frac{\delta v_{p}}{v_{p}}
\end{aligned}
$$

A 0.01% variation in the burnout speed v_{p} changes the target radius by 0.067% or 153000 km .

A 0.01% variation in burnout radius $r_{p}(670 \mathrm{~m}!$) produces an error over 70000 km .

Sensitivity Analysis: Launch Errors

Standard GTO

a	semi-major axis (km)	40
e	eccentricity	4.510^{-4}
i	inclination (deg)	0.02
$\omega \mathrm{p}$	argument of perigee (deg)	0.2
Ω	ascending node (deg)	0.2

Trajectory correction maneuvers are clearly mandatory.

Sensitivity Analysis: Arrival

The heliocentric velocity of Mars in its orbit is roughly $24 \mathrm{~km} / \mathrm{s}$.

If an orbit injection were planned to occur at a 500 km periapsis height, a spacecraft arriving even 10s late at Mars would likely enter the atmosphere.

Venus Express mission operations update

10 November 2005
At 11:30 CET, 10 November 2005, Venus Express Ground Segment Manager Manfred Warhaut reported from ESOC's Main Control Room that both the Venus Express spacecraft and ground segment continue to perform excellently.

The Venus Express Launch and Early Orbit (LEOP) operations continue to run very smoothly.
Artist's impression of Venus Express spacecraft However, the highlight of this period was the successful planning and testing of the Trajectory Correction Manoeuvre (TCM-0).

Given the slight over-performance of the Soyuz-Fregat launcher, it was decided to do the TCM-0 in direction of Earth in order to make best use of fuel. The movement (slew) of the spacecraft was enabled at 06:20 CET, started 06:43 and was completed 07:13.

Subsequently, the TCM-0 started at 07:38:52, had a manoeuvre duration of 48 seconds and a magnitude of 0.5 metres per second. Assessment of the manoeuvre afterwards based on Doppler data indicated that the manoeuvre duration was about 1 second less than commanded with negligible error in performance.

At 08:33 the spacecraft was turned back to the starting attitude. This completed the foreseen activities for this period.

The support from the ESA and NASA Deep Space Network ground stations has been very good throughout the LEOP.

TCM/ OTM (1)	Date	Event	Duration Delta v [m / s]		
			(4)	Bi (5)	Mono (6)
1	09.11 .97	V1-Launch	34,13	2,70	
2	25.02 .98	V1			0,18
3	Canceled	V1			
4	Canceled	V2-CA			
5	03.12 .98	V2-DSM	5.275,23	450,00	
6	04.02 .99	V2	125,21	11,55	
7	18.05 .99	V2			0,23
8	Canceled	V2			
9	06.07 .99	Earth	466,91	43,49	
10	19.07 .99	Earth	54,63	5,13	
11	02.08 .99	Earth	383,78	36,29	
12	11.08 .99	Earth	128,46	12,25	
13	31.08 .99	Earth-CA	69,90	6,69	
14	14.06 .00	Flush	5,74	0,55	
15	Canceled	Jupiter			
16	Canceled	Jupiter			
17	28.02 .01	Flush	5,32	0,51	
18	01.04 .02	Flush	9,85	0,89	
19	01.05 .03	Flush	17,53	1,58	
20	27.05 .04	Phoebe	362,00	34,70	
21	17.06 .04	Phoebe-CA	38,38	3,68	
22	Canceled	Pre SOI			
Cruise				609,99	0,40

NASA MARS InSight Mission

Contrairement à ce que l'on pourrait penser, la fusée utilisée pour InSight n'est pas pointée directement vers Mars, bien au contraire. Les règles de protection planétaire, qui stipulent que dans l'exploration martienne, tout doit être fait pour éviter de contaminer la planète rouge avec des germes terrestres, ont ici une conséquence étonnante. Les engins robotiques martiens sont effectivement lancés de manière à rater leur cible, ceci pour empêcher l'étage supérieur du lanceur, qui suit les sondes sur leur lancée, de s'écraser sur Mars.

InSight n'étant pas tiré précisément en direction de Mars, des manoeuvres de correction de trajectoire sont programmées tout au long de son voyage pour éliminer la dérive placée volontairement au départ, et ramener la sonde sur le droit chemin.

NASA MARS InSight Mission

Date (subject to change)	Trajectory Correction Maneuvers	Activity
May 22, 2018 17 days after launch	TCM 1	To point InSight towards Mars and fine-tune its flight path after launch.
July 28, 2018 121 days before landing	TCM 2	To point InSight towards Mars.

6. Interplanetary Trajectories

6.2 Lambert's problem

Nontangential Burns

Section 6.1 discussed Hohmann interplanetary transfers, which are optimal with respect to fuel consumption.

Why should we consider nontangential burns (i.e., nonHohmann transfer) ?

	$\begin{aligned} & \text { Initial Alt } \\ & (\mathrm{km}) \end{aligned}$	$\begin{gathered} \text { Final Alt } \\ (\mathrm{km}) \\ \hline \end{gathered}$	$\nu_{\text {trans }_{b}}$	Bi-elliptic Transfer Alt (km)	$\begin{gathered} \Delta v \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \tau_{\text {trans }}(\mathrm{h}) \\ \hline \end{gathered}$
Transfer to Geosynchronous						
Hohmann	191.34411	35,781.35			3.935	5.256
One-tangent	191.344 I1	35,781.35	160°		4.699	3.457
Bi-elliptic	191.34411	35,781.35		47,836.00	4.076	21.944
		Transfer to the Moon				
Hohmann	191.34411	376,310.00			3.966	118.683
One-tangent	191.34411	376,310.00	175°		4.099	83.061
Bi-elliptic	191.34411	376,310.00		503,873.00	3.904	593.919

Non-Hohmann Trajectories

Solution using Lambert's theorem (Lecture 05):

If two position vectors and the time of flight are known, then the orbit can be fully determined.

NASA Insight: 205 days vs. 258 days

Venus Express Example

Earth Departure				Venus Arrival					FP
Date	Lift Off	$\begin{gathered} \mathrm{V}_{\infty} \\ \mathrm{Km} / \mathrm{s} \end{gathered}$	$\begin{gathered} \boldsymbol{\delta}_{\infty} \\ \operatorname{deg} \end{gathered}$	Date	Hour	$\begin{gathered} \mathrm{V}_{\infty} \\ \mathrm{Km} / \mathrm{s} \end{gathered}$	$\begin{gathered} \xi \\ \mathrm{K}_{\mathrm{m}} \end{gathered}$	η_{Km}	
26.10.05	04:43:38.7	2.7855	-25.614	06.04.06	21:16:27	4.6215	8815.3	12826.5	1
27.10.05	04:37:42.4	2.7855	-25.614	07.04.06	02:12:56	4.6192	8824.2	12828.4	
28.10 .05	04:31:46.4	2.7855	-25.614	07.04.06	07:02:54	4.6171	8832.2	12829.9	
29.10 .05	04:25:36.0	2.7855	-25.613	07.04.06	11:46:26	4.6153	8839.3	12830.9	
30.10 .05	04:19:25.9	2.7855	-25.613	07.04.06	16:24:56	4.6139	8845.4	12831.5	
31.10 .05	04:13:10.7	2.7855	-25.613	07.04.06	20:57:02	4.6128	8850.7	12831.5	
01.11.05	04:06:50.1	2.7855	-25.613	08.04.06	01:22:50	4.6121	8854.9	12830.9	
02.11.05	04:00:23.6	2.7855	-25.613	08.04.06	05:41:07	4.6119	8858.2	12829.6	
03.11.05	03:53:50.4	2.7855	-25.612	08.04.06	09:52:23	4.6120	8860.5	12827.5	
04.11.05	03:47:09.4	2.7855	-25.612	08.04.06	13:53:36	4.6127	8861.9	12824.2	
05.11.05	04:03:21.1	2.7904	-21.052	10.04.06	17:27:06	4.6059	8769.9	12910.2	2
06.11.05	03:57:04.2	2.7904	-21.051	10.04.06	18:29:06	4.6036	8767.5	12919.5	
07.11.05	03:44:32.1	2.7904	-21.051	10.04.06	12:10:22	4.6033	8790.0	12905.4	
08.11.05	03:39:30.3	2.7904	-21.051	11.04.06	04:26:18	4.5999	8733.8	12955.0	
09.11 .05	03:33:34.5	2.7904	-21.050	11.04.06	08:16:25	4.5990	8715.3	12970.4	
10.11.05	03:26:40.7	2.7904	-21.050	11.04.06	11:26:04	4.5986	8697.4	12983.7	
11.11.05	03:19:19.0	2.7904	-21.050	11.04.06	14:27:44	4.5987	8677.8	12996.4	
12.11.05	03:19:32.8	2.8560	-19.502	12.04.06	09:12:37	4.5983	8582.6	13061.0	3
13.11.05	03:12:43.3	2.8560	-19.502	12.04.06	11:55:55	4.5984	8552.8	13080.1	
14.11.05	03:04:40.2	2.8560	-19.502	12.04.06	14:12:26	4.5990	8523.5	13097.1	

Porkchop Plot: Visual Design Tool

In porkchop plots, orbits are considered to be non-coplanar and elliptic.

Interplanetary Mission Design Handbook:

Earth-to-Mars Mission Opportunities and
Mars-to-Earth Return Opportunities 2009-2024
L.E. George
U.S. Air Force Academy, Colorado Springs, Colorado
L.D. Kos

Marshall Space Flight Center, Marshall Space Flight Center, Alabama

HUMAN MARS DESIGN REFERENCE MISSION OVERVIEW

The design reference mission (DRM) is currently envisioned to consist of three trans-Mars injection (TMI)/flights: two cargo missions in 2011, followed by a piloted mission in 2014. The cargo missions will be on slow (near Hohmann-transfer) trajectories with an in-flight time of 193-383 days. The crew will be on higher energy, faster trajectories lasting no longer than 180 days each way in order to limit the crew's exposure to radiation and other hazards. Their time spent on the surface of Mars will be approximately $535-651$ days (figure 1). A summary of the primary cargo and piloted trajectories is summarized in table 1.

Earth-Mars Trajectories 2013/14 Conjunction Class
 C_{3} (Departure Energy) $\mathrm{km}^{2} / \mathrm{sec}^{2}$

Earth-Mars Trajectories
 2013/14 Piloted Missions

E=Minimum flight time trajectory using 2011 Piloted Mission Departure Excess Speed ($3.99 \mathrm{~km} / \mathrm{sec}$) and while maintaining acceptable Mars entry velocity needed for aerobraking.
Departure: 1/20/14 (56678J)
Arrival: 6/30/14 (56839J)
$\mathrm{L}=\mathrm{Latest}$ possible trajectory to keep flight time limited to 180 days. The acceptable window of opportunity for launch will be along the arc from E to L .
Latest Departure: $1 / 22 / 14$ (56679J)
Arrival: 7/21/14 (56859J)

Figure 1. 2014 primary piloted opportunity.

Mission	Launch Date $(\mathrm{m} / \mathrm{d} / \mathrm{yr})$	TMI $\boldsymbol{\Delta} \boldsymbol{V}$ $(\mathrm{m} / \mathrm{sec})$	Velocity Losses $(\mathrm{m} / \mathrm{sec})$	\boldsymbol{C}_{3} $\left(\mathrm{~km}^{2} / \mathrm{sec}^{2}\right)$	Mars Arrival Date	Transfer Time $($ days $)$
Cargo 1	$11 / 8 / 11$	3,673	92	8.95	$8 / 31 / 12$	297
Cargo 2	$11 / 8 / 11$	3,695	113	8.95	$8 / 31 / 12$	297

Primary Piloted Mission Opportunity 2014

Launch Date	TMI $\boldsymbol{\Delta} \boldsymbol{V}$ $(\mathrm{m} / \mathrm{sec})$	Velocity Losses $(\mathrm{m} / \mathrm{sec})$	\mathbf{C}_{3} $\left(\mathrm{~km}^{2} / \mathrm{sec}^{2}\right)$	Outbound TOF $($ days $)$	Mars Arrival Date	Mars Stay $($ days $)$	Mars Depart Date	TEI $\boldsymbol{\Delta V}$ $(\mathrm{m} / \mathrm{sec})$	TOF (days)	Earth Arrival Date	Total TOF (days)
$1 / 20 / 14$	4,019	132	15.92	161	$6 / 30 / 14$	573	$1 / 24 / 16$	1,476	154	$6 / 26 / 16$	888
$1 / 22 / 14$	4,018	131	15.92	180	$7 / 21 / 14$	568	$2 / 9 / 16$	1,476	180	$8 / 7 / 16$	928

6. Interplanetary Trajectories

ΔV Budget: Earth Departure

Planet	C_{3} $\left(\mathrm{~km}^{2} / \mathrm{s}^{2}\right)$
Mercury	$[56.25]$
Venus	6.25
Mars	8.41
Jupiter	77.44
Saturn	106.09
Pluto	$[139.24]$

Assumption of circular, co-planar orbits and tangential burns

Table 2.9.1-1: Earth Escape Proton M Breeze M Missions

C3 Parameter ($\mathbf{k m}^{2} \mathbf{/ s}^{\mathbf{2}}$)	Payload Systems Mass (kg)
-5	6270
-2	58690
0	565
5	5090
10	4580
15	4110
20	3685
25	3295
30	2920
35	2575
40	260
45	1990
50	1750
55	1525
60	1305
65	1120

$\Delta \mathrm{V}$ Budget: Arrival at the Planet

A spacecraft traveling to an inner planet is accelerated by the Sun's gravity to a speed notably greater than the orbital speed of that destination planet.

If the spacecraft is to be inserted into orbit about that inner planet, then there must be a mechanism to slow the spacecraft.

Likewise, a spacecraft traveling to an outer planet is decelerated by the Sun's gravity to a speed far less than the orbital speed of that outer planet. Thus there must be a mechanism to accelerate the spacecraft.

Prohibitive ΔV Budget? Use Gravity Assist

Also known as planetary flyby trajectory, slingshot maneuver and swingby trajectory.

Useful in interplanetary missions to obtain a velocity change without expending propellant.

This free velocity change is provided by the gravitational field of the flyby planet and can be used to lower the Δv cost of a mission.

What Do We Gain ?

Gravity Assist in the Heliocentric Frame

A Gravity Assist Looks Like an Elastic Collision

Inertial frame

Frame attached to the train

Frame attached to the train

Inertial frame

Leading-Side Planetary Flyby

Trailing-Side Planetary Flyby

What Are the Limitations ?

Launch windows may be rare (e.g., Voyager).

Presence of an atmosphere (the closer the spacecraft can get, the more boost it gets).

Encounter different planets with different (possibly harsh) environments.

What about flight time ?

Cassini Interplanetary Trajectory

Rosetta

Messenger

Technicians prepare MESSENGER for transfer to a hazardous processing facility prior to loading the spacecraft's complement of hypergolic propellants.

Organization

NASA
Major Johns Hopkins University Applied
contractors Physics Laboratory (JHUAPL)
Mission type Fly-by(s)/orbit
Flyby of Earth, Venus, Mercury
Satellite of Mercury
Orbital insertion ETA: 2011-03-18 02:14:00 UTC date

Launch date \quad 2004-08-03 06:15:56 UTC elapsed: 5 years, 8 months, and 6 days

Launch vehicle Delta II 7925H-9.5
Launch site Space Launch Complex 17-A Cape Canaveral Air Force Station

COSPAR ID 2004-030A स
Home page messenger.jhuapl.edu 중
Mass $\quad 1,093 \mathrm{~kg}(2,410 \mathrm{lb})$

Hohmann Transfer vs. Gravity Assist

Gravity assist

Planet	C3 $\left(\mathrm{km}^{2} / \mathrm{s}^{2}\right)$	Transfer time (days)	Real mission	C3 $\left(\mathrm{km}^{2} / \mathrm{s}^{2}\right)$	Transfer time (days)
Mercury	$[56.25]$	105	Messenger	16.4	2400
Saturn	106.09	2222	Cassini Huygens	16.6	2500

Remark: the comparison between the transfer times is difficult, because it depends on the target orbit. The transfer time for gravity assist mission is the time elapsed between departure at the Earth and first arrival at the planet.

Astrodynamics
 (AERO0024)

8. Interplanetary Trajectories

Gaëtan Kerschen

Space Structures \& Systems Lab (S3L)

