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Today: maths but hopefully useful/meaningful maths

PHYSICAL INSIGHT

PRACTICAL IMPLICATIONS 

INDUSTRIAL APPLICATIONS

COMPLICATED MATH

ACADEMIC EXAMPLES
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Outline (“nonlinear version of DSM course”)

Undamped, unforced dynamics

Damped, unforced dynamics

Undamped/damped, harmonic forcing

Going beyond…

Focus on a 1DOF oscillator

Linear vs. nonlinear
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Colored boxes

Important take-away

message

I need your opinion

FYI                                       

(not on the critical path)
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Back to basics: the spring-mass-damper-oscillator
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Important dynamical quantities

Natural 

frequency

Damping

ratio

Mass-normalized

forcing

Divide by m
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Linear system: undamped, unforced case

Multiply by velocity & integrate

Energy conservation

The response of a linear oscillator

takes the form of harmonic motion at 

the natural frequency 𝜔0 = 𝑘/𝑚

The natural frequency depends

only on k and m !
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Comparison against direct time integration

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

2\LinearFreeUndamped\ExactSolutionUndampedUnforcedLinear1DOF
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Response to different initial displacements (𝜔0 = 1)

What do you

observe ?

𝑇 =
2𝜋

𝜔0
= 6.28𝑠
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The principle of superposition

The principle of superposition is the cornerstone of 

linear theory:

The response caused by two or more inputs is the 

sum of the responses that would have been 

caused by each input individually. 

A X

B Y

A+B X+Y
LIN

LIN

LIN
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The undamped, unforced Duffing oscillator

WHY ?

ሷ𝜃 + 𝜔0
2 sin 𝜃 = 0

sin 𝜃 = 𝜃 −
𝜃3

6
+…

𝐹 = 2𝑘 𝑙1 − 𝑙0
𝑥

𝑙1
= 2𝑘𝑥 1 −

𝑙0

𝑥2 + 𝑙0
2

𝑙0

𝑥2 + 𝑙0
2

= 1 −
𝑥2

2𝑙0
2 +

3𝑥4

8𝑙0
4 + 𝑂(𝑥6)

http://en.wikipedia.org/wiki/File:SimplePendulum01.JPG
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Response to an initial displacement

Multiply by the 

velocity and integrate
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Response to an initial displacement



14

Response to an initial displacement
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Let’s compare the linear and nonlinear cases

What can you

conclude ?

LINEAR NONLINEAR
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The solution is expressed as an elliptic cosine

The response does not take the form of 

a harmonic function.

The frequency depends on k and m but 

also on the initial displacement and 

nonlinear coefficient
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It is the exact solution: confirmation in Matlab

Function ellipj.m

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

3\DuffingFreeUndamped\ICdep_ValidationExactSolution
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More on elliptic functions
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More on elliptic functions
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Let’s compare the linear and nonlinear cases

Linear NL

What do you

observe ? (2)
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The period depends on the nonlinear coefficient

Hardening case, 

« More stiffness »

Softening case

« Less stiffness »

Linear case
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The period depends on the initial displacement

Failure of superposition 

principle
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The period can be calculated explicitly

The period is equal to 4 times the time to move from

the initial position to the equilibrium position. The 

corresponding variation of  is between 0 and /2.
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The period can be calculated explicitly

Function ellipke.m
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The natural frequency of the Duffing oscillator

This highlights the frequency-

amplitude dependence of 

nonlinear ocillations

Very important concept:              

the backbone curve
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What if the nonlinear coefficient is negative ?
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What if the nonlinear coefficient is negative ?

This highlights the frequency-

amplitude dependence of 

nonlinear ocillations

Very important concept:              

the backbone curve
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The elliptic cosine looks like a pure cosine
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Really ?

What do you

observe ?

Acceleration signal

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

3\DuffingFreeUndampedICdep_ValidationExactSolution



30

Analytical expression of the acceleration signal
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Frequency analysis through FFT

1.317

3.951

6.585
Relation 

between the 

numbers ?

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

3\DuffingFreeUndampedICdep_ValidationExactSolution
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Frequency analysis through FFT

Nonlinear system 

generates harmonics

1.317

3.951

6.585

An analysis based

on the first harmonic

only underestimates

the actual amplitude
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Response to an initial velocity
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Response to an initial velocity

Failure of superposition 

principle

0.474

0.856

1.414
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Beneficial or detrimental effect of nonlinearity

Hardening

Softening

Linear case
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Free response: quite a number of lessons learned !

LINEAR NONLINEAR

2. No superposition principle

2 

2 

3 

3

3. Frequency-amplitude dependence: concept of backbone curve

4 

4. Nonlinear systems generate harmonics

1. The response is no longer purely harmonic

1

1
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Jacobi elliptic functions: the way to go ?

Very useful for gaining insight into the dynamics of the 

undamped, unforced Duffing oscillator.

However, they have very limited applicability: 

Even if it will necessarily be an approximation, can you think

of a simpler and more versatile mathematical function ?

Elliptic functions do no longer represent

the exact analytical solution (which does

not exist anyway…).



38

Use a combination of sinusoids !

Idea at the root of the harmonic balance method (HBM). 

Rationale: one can get a reasonably accurate approximation 

by keeping the first few terms (truncated Fourier series):

Methodology: 

1. Substitute the approximation in the equations of motion;

2. Equate the coefficients associated with a specific harmonic; 

3. Compute the unknowns by solving a nonlinear algebraic system     

with 2𝑁𝐻+1 equations.
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Harmonic balance as a Galerkin method
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So let’s try…

&

What are our

2 options at this stage ?

Nonlinear systems

generate harmonics
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Option 1: we look for an approximation

Initial displacement A 1-term HB 

approximation
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Option 2: we enrich our assumption

Initial displacement

Even more 

harmonics !
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A 2-term HB approximation

Neglecting harmonics 5, 7 and 9: 

3 unknowns

&

3 equations

This third-order polynomial can be solved in closed form but 

the analytical expression is lengthy.
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Eventually…

E:\TheoryComputationTestingNlVib\Matlab\Chapter 3\HB_TwoTerm
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Enrich our assumption: an endless process

The response of a nonlinear system should be expressed

as an infinite series of harmonics, highlighting the very rich

frequency content of nonlinear oscillations.

Indeed…
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Advantages and drawbacks of HB

Conceptual simplicity and physical insight

Usually accurate with a few harmonics

Efficient computational implementation of HBM (tomorrow)

Filtering property and focus on steady-state response

Analytical solutions only for very simple problems

Transient and nonperiodic responses

Less efficient for nonsmooth nonlinearies
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Outline 

Undamped, unforced dynamics: linear vs. nonlinear

Damped, unforced dynamics: linear vs. nonlinear

Undamped/damped, harmonic forcing: linear vs. nonlinear

Going beyond…

Focus on a 1DOF oscillator

Linear vs. nonlinear
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Linear system: damped, unforced case

The response of a damped linear

oscillator is a damped sine wave

LINEAR DAMPING ?

Find again a constant of motion called                     

(no longer the energy !)
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Damped, unforced case (linear system)
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Can you guess the time series ?

Displacement

Time

?
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Usefulness of time-frequency analysis

DemoFreeDuffing.m

A clear manifestation of 

the frequency-

amplitude dependence

of nonlinear ocillations
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