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l Outline ("nonlinear version of DSM course™)

Undamped, unforced dynamics
Damped, unforced dynamics

Undamped/damped, harmonic forcing

Going beyond...



l Colored boxes




l Back to basics: the spring-mass-damper-oscillator

[—' F(t)




l Important dynamical quantities

mij(t) + cy(t) + ky(t) = F(£),  9(0) = yo, y(0) = o

C F(t)

wo = Vk/m, = , 7

’ = v || T T
Natural Damping Mass-normalized

frequency ratio forcing



Linear system: undamped, unforced case

ii(t) + wgy(t) =0, 5(0) = o, y¥(0) = yo

-2 2.,2 t "2 2.
Y Z(t) + woyz( ) — % 4+ w%yo Energy conservation
y d
wot =+ [ Y e ——y
Yo +2 ﬂz — 12 a
[(5-5)~ -
0
The response of a linear oscillator
takes the form of harmonic motion at
/o the natural frequen = Jk
y() = 12+ y_oz Gin (wgt +tan] wa[}) e natural frequency w, = /k/m
.]"
“o /0 The natural frequency depends

only on k and m !



l Comparison against direct time integration
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l Response to different initial displacements (wy = 1)

What do you
observe ?




The principle of superposition

The principle of superposition is the cornerstone of
linear theory:

The response caused by two or more inputs is the
sum of the responses that would have been
caused by each input individually.

LIN
A+B X+Y
LIN

LIN
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l The undamped, unforced Duffing oscillator

ij(t) + wiy(t) +asy’(f) =0

WHY ?
{[, \
L, , ‘
v
X, X [
() F=2k(ly— lo) 7= 2kx [ 1~ s
! /x2+l02
6 + wy? sinf = 0

° Lo x?  3x* .
=1-—+—7+0(x")
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|
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http://en.wikipedia.org/wiki/File:SimplePendulum01.JPG

l Response to an initial displacement

ij(t) + wiy(t) +azy’(t) =0 5(0) =0, y(0) = yo

4
y —dy
=
W /(13— (B + % (B + 1)
Y = Yo Ccos¢P
O = \/wg + azy3

m = azy3/20?
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l Response to an initial displacement

g 7*: 07.{30&' wJ‘:; “—)(3‘\30‘1 -—fists;——*: At—\/ 0\31 =
<°“> . YR A YO
)
g ( &
y Sy




l Response to an initial displacement
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l Let’'s compare the linear and nonlinear cases

ij(t) + wiy(t) +azy’(t) =0 5(0) =0, y(0) = yo

LINEAR NONLINEAR

y d ¢ dg’
Yo \/(2 l’%)—yz 70 \/1—msin2q‘)’

Wy = Vk/fﬂ O = \/w(z]+0¢3y%

What can you
conclude ?
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The solution is expressed as an elliptic cosine

f

Fplm / \/1 m sin cp’

= Ot

cn(u|m) = cos ¢

Yy = Yocos¢

y(t) = yocn (Qt|m)

The response does not take the form of
a harmonic function.

The frequency depends on k and m but
also on the initial displacement and
nonlinear coefficient

Handbook of Mathematical Functions
With
Formulas, Graphs, and Mathematical Tables

Edited by
Milton Abramowitz and Irene A. Stegun

The Jacobian elliptic functions can also be
defined with respect to certain integrals. Thus if

16.1.3

e do
u=fo (1—msin? )%
the angle ¢ is called the amplitude
16.1.4 o=am u
and we define
16.1.5

sSn %=§in @, ¢N U=CO08 @,

dn u=(1—m sin? ¢)'/?
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l It IS the exact solution: confirmation in Matlab

L

Mewmark

— — — Elliptic cosine | |

() +y(t) + () =0

Function ellipj.m
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More on elliptic functions

We recall that trigonometric functions can be defined in terms of
the functional inverse of specific integrals. For example,

= arcsiny — sinf =y (3.63)

o — / yoody
0 /1 — yfz
Similarly, Jacobi elliptic functions result from the inversion of the
elliptic integral of the first kind. For instance,

[5’ dy’
H = -
Jo (1—y"?)(1-ky?)

— sn(u, k) =y (3.64)

or, it = sin ¢,

— sn(u,k) = sin¢ (3.65)

o= [ \/1 k2 sin” ¢’
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While trigonometric functions are defined with reference to a cir-
cle, the previous section has shown that the Jacobi elliptic functions
refer to the ellipse. But their geometrical interpretation is similar:

X
r

cen(u, k) = %, sn(u, k) =: (3.67)

cost = —, sinf = (3.66)

- = ==

with ¥ = 1 on the unit circle whereas r varies along the unit ellipse.
Finally, Jacobi elliptic functions include trigonometric and hyper-
bolic functions as Special cases

k=0 : sn(u,0)=sin(u), en(u,0) = cos(u) (3.68)
k=1 : sn(u,1)=tanh(u), en(u,1) = sech(u) (3.69)

and

cn(0,k) =1, sn(0,k) =0 (3.70)

en?(u, k) 4 sn?(u, k) =1 (3.71)
d d d

@m — —sndn, ESH = cndn, adn = —kcnsn (3.72)
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l Let’'s compare the linear and nonlinear cases

y(t) +y(t) =0 () +y(t) + > () =0
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08
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What do you
observe ? (2)
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l The period depends on the nonlinear coefficient

y(t) [m]

08F

06

0.4 F

0.2F

02F

0.4 F

0.6 -

0.8 F

10
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Hardening case,

« More stiffness »

Softening case
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Linear case
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l The period depends on the initial displacement

15T

0.5

0.5

1 5F

() +y(t) + () =0

'/ x0=0.5

Time [s]

12

Failure of superposition
principle
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l The period can be calculated explicitly

The period is equal to 4 times the time to move from
the initial position to the equilibrium position. The
corresponding variation of ¢ is between 0 and =/2.

u = F(¢p|m) =

ffP d¢’
/0 \/1 — nrsinch"
@]

N

_4E(5Im)
I'= ()
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The period can be calculated explicitly

T =

4F (%|m) _ 4K (m)

()

Function ellipke.m

@)

17.3. Complete Elliptic Integrals of the First
and Second Kinds

Referred to the canonical forms of 17.2, the ellip-
tic integrals are said to be complete when the
amplitude is 3= and so z=1. These complete in-
tegrals are designated as follows

17.3.1
(& (m)|=K~ [ [1—)a—me))-at
- f " (1—m sin? 6)~"do

17.3.2 K=F(@3xm)=F(r\e)
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The natural frequency of the Duffing oscillator

¥, [m]

1.4

— a_ =1
e}

1.2
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0.8

0.6
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Q = \/w0+0¢3y0
0 .
0.5 1 15

Frequency [rad/s])

This highlights the frequency-
amplitude dependence of
nonlinear ocillations

Very important concept:
the backbone curve
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l What if the nonlinear coefficient is negative ?

26



What if the nonlinear coefficient is negative ?

1.4

=
H"'H—-,‘ na:'l
., nJ:-U.E
12r Linear
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27T ()
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This highlights the frequency-
amplitude dependence of
nonlinear ocillations

Very important concept:
the backbone curve
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l The elliptic cosine looks like a pure cosine

y(t) +y(t) =0 () +y(t) + > () =0

08¢}

0.6

0.4F

0.2F

02F

0.4 F

06

08
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Time [s]

gt +yt)+y (1) =0

I~ X
=x0=0.5
i x0=1
Acceleration| signal x0=2
1 2 3 4 5 6 7 8 9

10

What do you
observe ?
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l Analytical expression of the acceleration signal

d d 4
ELH = —sndn, Esn = cndn, Edn — —kcnsn

y(t) = yoen (Qt|m)

() = yoOPen (Qt|m) |msn? (Qt|m) — dn® (O m)
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l Frequency analysis through FFT
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Relation
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Frequency analysis through FFT

1.8

1.6 |

1.4 F

1.2 |

FFT

08

0.6

0.4rF

0.2rF

1.317

6585

v.,uvm.,‘,.,xj PArAmAmsAR A
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|
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Nonlinear system
generates harmonics

An analysis based

on the first harmonic
only underestimates
the actual amplitude
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Response to an initial velocity




i Response to an initial velocity

y [m]

1.5

05|
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principle

34



l Beneficial or detrimental effect of nonlinearity
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l Free response: quite a number of lessons learned !

LINEAR NONLINEAR
1
y(0) = ¥o y(#) = yocos (wot) y(t) = yoen (Qt|m) (1)
wp = m O = \/C{)(z} 4+ Ui3y%
Y0 !
y(t) = y—USin (wot) y(t) = rel (Qt|m)
o= - 2 4 .2
wo = Vk/m a’_ w0+\/w0+2a¢3y0
' B 2

=

The response is no longer purely harmonic

N

No superposition principle

Frequency-amplitude dependence: concept of backbone curve

> W

Nonlinear systems generate harmonics




Jacobi elliptic functions: the way to go ?

Very useful for gaining insight into the dynamics of the
undamped, unforced Duffing oscillator.

However, they have very limited applicability:

ij + 2Ewoy(t) + w2y (t) + asy®(t) = 0 Elliptic functions do no longer represent

the exact analytical solution (which does
i+ 28woy(t) + wiy(t) +asy’(t) = fsinwt  not exist anyway...).

Even if it will necessarily be an approximation, can you think
of a simpler and more versatile mathematical function ?
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Use a combination of sinusoids !

|dea at the root of the harmonic balance method (HBM).

Rationale: one can get a reasonably accurate approximation
by keeping the first few terms (truncated Fourier series):

N” NII
y(t) = co+ Z (s sinkwt + ¢ cos kwt) = Z Ay sin (kwt — ¢y )
k=1 k=0
A = 1#5%4—(:% P = atanZ(—ck,sk)

Methodology:

1. Substitute the approximation in the equations of motion;
2. Equate the coefficients associated with a specific harmonic;

3. Compute the unknowns by solving a nonlinear algebraic system
with 2Ny +1 equations.
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Harmonic balance as a Galerkin method

Weighted residual method S P

-
[ rla@.a @) i) d =0 k=0,1,...
0

Galerkin method: take ansatz functions as weight functions

In our case, the ansatz functions are@ﬁz — e_"mf. We thus obtain:
-

[ rla@.a @) @ = o

0
T &O
0

£=0
2 50
/ RS R} o dr = 0 with 7=t

it il

= ° « © —ik7 _ 27

since / e™Tdr =

0 m#0

R, = 0

o

m € Z
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l So let's try...

—w

2

ij(t) + wiy(t) + azy’(t) =0
&
y(t) = Aqsin (wt — ¢)

sin(30) = — sin® 6 + 3 cos® fsin 6
— —4sin® 6+ 3siné

2

A
sin (wt — ¢1) + w§ sin (wt — ¢1) + m34 L (3sin (wt — ¢1) — sin (Bwt — 3¢;)) =0

Nonlinear systems
generate harmonics

What are our
2 options at this stage ?
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l Option 1: we look for an approximation

2
—w?sin (wt — ¢1) + wisin (wt — ) + m?’fl (3sin (wt — ¢n) —M) =0

y(0) = —Arsing; = yo

3a3y;

7(0) = Ajwcos¢; =0 y(t) = yocos (\/w% — 1 t)

Initial displacement A l-term HB
approximation
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Option 2: we enrich our assumption

y(t) = Ay cos wt + Az cos 3wt

Initial displacement
y(0) = A1+ Az = yo

—w? Aq cos wt — 9w? Az cos 3wt + w{%Al cos wt + ﬂ}%flg cos 3wt + ...

a3 (A? cos® wt + 3AT A3 cos” wt cos 3wt + 3A1 A3 cos wt cos” 3wt + A3 cos® Stut) =0

3 3 cos wt + cos 3wt
cos” wt = 7
cos 3wt cos wt + cos bwt
cos? wt cos 3wt 5 + ( Z )
cos wi cos2 3wt cozwx‘ N (cos 5wt:cos 7wt)

cos> 3wt

3 cos 3wt + cos 9wt

4
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l A 2-term HB approximation

Neglecting harmonics 5, 7 and 9:

—w® + wj + 3% (A% +A1Az + 2A§) = 0
X _ .
(—9w?* + w§) Az + 13 (A% +6A%2A5 + 3A§) = 0

y(0) =A1+A3=yp

23&:3 63a3y3 51;1—,3

A3 — 30a3yo AT + (Swﬁ +— ) Ay —8wiyy — ——y3 =0

This third-order polynomial can be solved in closed form but
the analytical expression is lengthy.
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Eventually...

(1) +y(t) + () =0

yo = 1

Elliptic
---------- Two-term HB

— — — One-term HB

f

Elliptic

— — — One-term HB

e Two-term HB || =
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l Enrich our assumption: an endless process

i(t) + wiy(t) +asy’(t) =0

y(t) = ¥ Ay cos (2K — Dawt)
k=1

The response of a nonlinear system should be expressed
as an infinite series of harmonics, highlighting the very rich
frequency content of nonlinear oscillations.

16.23. Series Expansions in Terms of the Nome
g=e¢~"*'/X and the Argument v=7u/(2K)

qn+ 1/2

2 ® ¢
16.23.1 sn (ulm)=—U§T(’§) f:—q-”—ﬂ sin (2n+1)v Indeed...

m

O @ qn+l/2
16.23.2 cn (u| m)=m§ g cos (2n+1)v
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Advantages and drawbacks of HB

v

Conceptual simplicity and physical insight
Usually accurate with a few harmonics
Efficient computational implementation of HBM (tomorrow)

Filtering property and focus on steady-state response

Analytical solutions only for very simple problems
Transient and nonperiodic responses

Less efficient for nonsmooth nonlinearies
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l Outline

Damped, unforced dynamics: linear vs. nonlinear
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Linear system: damped, unforced case

LINEAR DAMPING ?
§(t) +2Ewoy(t) + wiy(t) =0, 5(0) =0, ¥(0) = yo

b+ Ewo
tan~! < +wat = ¢ Find again a constant of motion called ¢
Wd (no longer the energy !)
wg = wo\/1—¢?

y(t) = Ye “of cos (wyt — @)

Jo + gwﬂyﬂ ? . b 1 Yowy
) = 2-|-(y'[J )g"*"”” sin | wyt + tan - .
y(t) \/y“ Wy ! Yo + Cwolo

The response of a damped linear

oscillator is a damped sine wave "



l Damped, unforced case (linear system)

1.5

y(t) [m]
o

15

N]]WW\

|

1

=~
Il

-
—-—

1

gt

S

[T /jyg+(

\Tr

Yo + EwoYo

N7

Wy

1

.

——

.

-

U

) e—Gwot

U

Time [s]

100

150

49



l Can you guess the time series ?

i + 28woy(t) + wiy(t) +asy’ () = 0

y(0) =0, y(0) = yo

Displacement ?

Time
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Usefulness of time-frequency analysis

Frequency [rad/s]

F

ok

Lad
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DemoFreeDuffing.m

A clear manifestation of
the frequency-
amplitude dependence
of nonlinear ocillations
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