
Formation sur les non-linéarités en 

dynamique des structures

L02 Fundamental properties

Review of linear dynamics

Breakdown of linear properties 

& new phenomena

Nonlinear FRCs
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Resonance, a key concept in vibration theory

Numerical

Analytical

ANIM
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Resonance, a key concept in vibration theory

https://www.youtube.com/watch?v=10lWpHyN0Ok
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Resonance, a key concept in vibration theory

https://www.youtube.com/watch?v=JiM6AtNLXX4
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The concept of a FRF

► Voir DSM

► Input/output
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FRF: important properties

► The FRF is a constant system properties for a linear system 

► FRF can be easily estimated from measured data

► Very convenient way of locating resonance frequencies
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Outline 

Undamped, unforced dynamics: linear vs. nonlinear

Damped, unforced dynamics: linear vs. nonlinear

Undamped/damped, harmonic forcing: linear vs. nonlinear

Going beyond…

Focus on a 1DOF oscillator

Linear vs. nonlinear
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Superposition principle

Linear system: damped, harmonic forcing

Interest in the steady

state response

1. As 𝜔 → 𝜔0, the steady-state response amplitude gets very large (or infinite) 

even for small forcing amplitudes. This phenomenon is known as resonance.

2. The steady-state response does not depend on the initial conditions. 

3. Evidence of the principle of superposition (𝑦𝑝 scales linearly with f)



9

The FRF concept

FRF
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The Bode plots: amplitude
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The Bode plots: phase
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Illustration

https://www.youtube.com/watch?v=cfKwnTfNhog
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The undamped, harmonically-forced Duffing oscillator

What are our

2 options at this stage ?

Nonlinear systems

generate harmonics

To be determined

Absence of damping (phase is trivial)
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A one-term harmonic balance approximation

What are the possible roots

for a 3rd order polynomial?

One real root                                  

2 complex conjugates

Three real roots

Nonlinear systems

undergo bifurcations
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Can you guess the nonlinear FRF ? Draw it !

LINEAR
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The nonlinear frequency response: hardening

Roots of the third-

order polynomial

Bode

plot

Bode

plot
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The resonance frequency really goes to infinity

∞
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Increasing forcing amplitudes

0.01

0.05

0.2
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Nonlinear FRF ? Divide by the forcing amplitude

0.01

0.05

0.2

The nonlinear FRF changes 

with the forcing amplitude

It is no longer a function:     

we call it nonlinear FRC
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Comparison with the linear case

LINEAR
∞

∞

Red dashed curve ?
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The natural frequency of the Duffing oscillator

The backbone curve is the 

backbone of the nonlinear

FRCs (hence its name !)
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The nonlinear frequency response: softening
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The damped, harmonically-forced Duffing oscillator

To be determined

…
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Cantilever beam with a very thin beam at the tip

l=4cm 

t=0.05cm

l=70cm 

t=1.4cm

Beam @ ULiège
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0.289 ሷ𝑥 + 0.1357 ሶ𝑥 + 11009𝑥 + 2.37.109 𝑥3 = 𝐹𝑠𝑖𝑛𝜔𝑡

A 1DOF model of the first beam mode
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HBM for the linear system 

0.0022 OK !

E:\NI2D\Marketing\DemosToolbox\AcademicSystems\1DOF\ModalBeam

\LinearModel\Newmark_FRF_HB

# harmonics=1

F=0.06N

Adaptative
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HBM for the nonlinear system 

# harmonics=1

F=0.06N

Stepsize=30

Scaling=1e-6

0.0022 OK !

# harmonics=1

F=0.06N

Adaptative

< 0.0022 NICE !
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Fast convergence of HBM in this case
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Importance of harmonics
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Nonlinear frequency response curves (FRCs)

UNSCALED

SCALED 

BY THE 

INPUT
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Bifurcations generate multi-valued response

x (m)

Frequency (Hz)

1 SOL. 3 SOL.
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How to know which solution will be excited ?

x (m)

Frequency (Hz)

Excitation 

@ 32 Hz

6.56e-4

5.68e-4

9.10e-5
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Dependence on initial conditions

x (m)

Frequency (Hz)

34 Hz

36 Hz

32 Hz
The steady-state response          

depends on the initial conditions. 

Init. displ.

Init. vel.
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2
x 10
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Dependence on initial conditions

x (m)

Frequency (Hz)

34 Hz

36 Hz

32 Hz

Why do we see 

only 2 solutions ? 

Init. displ.

Init. vel.
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Bifurcations change stability

x (m)

Frequency (Hz)

Stable
Stable

Stable

Unstable

Nonlinear systems

undergo stability changes
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What is stability/instability ?
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Starting from a stable/unstable solutions

x (m)

Frequency (Hz)

Excitation 

@ 32 Hz

6.56e-4

5.68e-4

9.10e-5
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Starting from a stable/unstable solution
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Starting from a perturbed stable solution

Time (s)

x (m)

6.6e-4 

(stable sol.)
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Starting from a perturbed unstable solution

Time (s)

6.6e-4 

(stable sol.)

x (m)
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Forced response: new lessons learned

No superposition principle

Frequency-amplitude dependence: concept of backbone curve

Nonlinear systems generate harmonics: harmonic balance

+

FREE

FORCED

Properties Tools 

Solutions of nonlinear systems may undergo bifurcations: 

concept of nonlinear FRC and its link with the backbone curve

The steady-state reponse depends on initial conditions: 

basin of attraction

The responses can be stable/ unstable: nonlinear FRC
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Outline 

Undamped, unforced dynamics: linear vs. nonlinear

Damped, unforced dynamics: linear vs. nonlinear

Undamped/damped, harmonic forcing: linear vs. nonlinear

Going beyond…

Focus on a 1DOF oscillator
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Going back to the cantilever beam model

l=4cm 

t=0.05cm

l=70cm 

t=1.4cm

Beam @ ULiège
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HB parameters
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What’s going on @ 1N (far from resonance) ?

11 harmonics

Adaptative stepsize
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The new resonance has disappeared !

1 harmonics

Adaptative stepsize
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More resonances @ 10N

11 harmonics

Stepsize=2
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Superharmonic resonances
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How to explain this result ?

What are our

2 options at this stage ?

Nonlinear systems

generate harmonics

To be determined

Absence of damping (phase is trivial)
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Option 2: we enrich our assumption
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A nonlinear algebraic system to solve

To be determined
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HB 1 term vs. HB 2 terms.

HB1

HB2

What’s going on ?

HB1 ∞

∞∞
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This is a 3:1 superharmonic resonance

𝜔0/3
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One more branch ???

E:\TheoryComputationTestingNlVib\Matlab\Chapter 3\DuffingForcedUndamped
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How to capture it ?

What is a correct 

assumption ?
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Option 2: we enrich our assumption

Etc. Etc.

Superharmonic resonances Subharmonic resonances
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The complete picture

ሷ𝑦 + 0.01 ሶ𝑦 + 𝑦 + 𝑦3 = 3𝑠𝑖𝑛 𝜔𝑡

Frequency (rad/s)

𝑥 (𝑚)

0

20

0 18

7: 3
3: 2

2:1
3:1

1: 3

1: 2

3: 5

1: 1
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Gradual appearance of complexity

0.01N 0.25N

1N 3N
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Close-ups: superharmonic/subharmonic resonances
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Lessons learned

+
Sub- or superharmonic resonances (even isolated !)

FORCED @ ≠

No superposition principle

Frequency-amplitude dependence: concept of backbone curve

Nonlinear systems generate harmonics (harmonic balance)

The response is no longer purely harmonic

Solutions of nonlinear systems may undergo bifurcations: 

concept of nonlinear FRC and its link with the backbone curve

The steady-state reponse depends on initial conditions      

(basin of attraction)

The responses can be stable or unstable

+

FREE

FORCED @ 
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