
Nonlinear Vibrations of Aerospace Structures

L04

Unforced dynamics

(2DOF)

Modal analysis



Modes correspond to the deformation at resonance



Modal analysis provides key information

3

Symmetric wing
bending (5.2 Hz)

Symmetric wing
torsion (7.3 Hz)



What is a linear normal mode ?
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Cours de théorie des vibrations



How do we calculate linear normal modes ?

ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



How do we calculate linear normal modes ?
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

−𝜔2𝐴 + 2𝐴 − 𝐵 = 0
−𝜔2𝐵 + 2𝐵 − 𝐴 = 0

𝐵 = 𝐴 2 − 𝜔2

−𝜔2𝐵 + 2𝐵 − 𝐴 = 0
−𝜔2𝐴 2 − 𝜔2

+ 2𝐴 2 − 𝜔2 − 𝐴 = 0

𝜔4 − 4𝜔2 + 3 = 0
𝜔1= 1 rad/s with 𝐴 = 𝐵,

𝜔2= 3 rad/s with 𝐴 = −𝐵,

Linear modes are invariant



Link between natural and resonance frequencies
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Natural frequency (free 
response, modal analysis)

Resonance frequency
(forced response)



A linear mode is a time-periodic motion

NI2D – 2DOF\Modes_Linear

IN-PHASE MODE OUT-OF-PHASE MODE

Undamped and unforced system



It is also a straight line in displacement space

Undamped and unforced system

IN-PHASE MODE OUT-OF-PHASE MODE



Animation



In summary

Clear physical meaning: 

Important mathematical properties: 

► Orthogonality

► Decoupling of the equations of motion (modal superposition) 

► Structural deformation at resonance 

► Synchronous vibration of the structure



Outline of this lecture
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What are nonlinear modes ? 

What are their fundamental properties ?



The 1DOF case
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This highlights the frequency-
amplitude dependence of 
nonlinear ocillations

Very important concept:              
the backbone curve



The 1DOF case
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LINEAR
∞

∞



The MDOF case: nonlinear normal modes 
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𝑀 ሷ𝑥(𝑡) + 𝐾𝑥(𝑡) = 0

LNM: periodic 
motion.

NNM: periodic 
motion.

𝑀 ሷ𝑥 𝑡 + 𝐾𝑥 𝑡 + 𝑓𝑁𝐿 𝑥(𝑡) = 0

Definition due to Rosenberg (1960), couldn’t be simpler !



Is this a nonlinear mode ?
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NI2D – 2DOF\NNM_ShawSystem

+animation



Is this a nonlinear mode ?
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Is this a nonlinear mode ?
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[1  1] [1  1.19]







The 2DOF example
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ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

How do we calculate

nonlinear modes ?

Assumption of harmonic motion:



The 1-term harmonic balance method
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Fundamental difference between LNMs and NNMs
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝐴 = 𝐵, 𝜔1= 1 rad/s

𝐴 = −𝐵, 𝜔2= 3 rad/s

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

What do you

observe ?



Fundamental difference between LNMs and NNMs
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝐴 = 𝐵, 𝜔1= 1 rad/s

𝐴 = −𝐵, 𝜔2= 3 rad/s

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

Modal shapes depend on 

frequency

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



Fundamental difference between LNMs and NNMs
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝐴 = 𝐵, 𝜔1= 1 rad/s

𝐴 = −𝐵, 𝜔2= 3 rad/s

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

The natural frequency 

changes                                          

(but existence conditions !)

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



Fundamental difference between LNMs and NNMs
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ሷ𝑞1 + 2𝑞1 − 𝑞2 = 0
ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝐴 = 𝐵, 𝜔1= 1 rad/s

𝐴 = −𝐵, 𝜔2= 3 rad/s

𝑞1,2 = 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

𝜔1 ∈ 1, 2 rad/s

𝜔2 ∈ 3,+ ∞ rad/s

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

Existence conditions for NNM

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0



1. Frequency-energy

dependence



Useful graphical representation

Total energy =                  

initial potential energy :

Initial conditions:

A frequency-energy plot is calculated by 

- Selecting a frequency in the interval provided by the existence conditions,

- Calculating A and B according to the analytical formulas 

- Calculating the corresponding total energy

- Representing the frequency as a function of the total energy

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

𝑞1(0) 𝑞2(0) ሶ𝑞1(0) ሶ𝑞2(0) = 𝐴 𝐵 0 0

E = V =
𝐴2

2
+

𝐵 − 𝐴 2

2
+
𝐵2

2
+
0.5𝐴4

4



In Matlab



The in-phase NNM in the FEP

30
Energy (J)

Frequency 
(rad/s)

Modal shapes and frequencies 

depend on energy



The out-of-phase NNM in the FEP
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Energy (J)

Frequency 
(rad/s)



Experimental evidence of frequency-energy dependence
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M

m

k



C

y

v



What you see is a nonlinear mode
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Time series and time frequency analysis
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The in-phase NNM (1-term HB)

35
Energy (J)

Frequency 
(rad/s)

Something unexpected

for the modal shapes ?



How come ?

36

HB with 1 

harmonics

Numerical

simulation



Limitation of a 1-term harmonic balance method

𝐴 = ±
8 𝜔2 − 3 𝜔2 − 1

3 𝜔2 − 2

𝐵 =
𝐴

2 − 𝜔2

𝑞1,2 ≅ 𝐴, 𝐵𝑐𝑜𝑠𝜔𝑡

ሷ𝑞1 + 2𝑞1 − 𝑞2 + 0.5𝑞1
3 = 0

ሷ𝑞2 + 2𝑞2 − 𝑞1 = 0

Frequency-dependent linear relation 

imposed between 𝑥1 and 𝑥2

𝑞1 =
𝐴

𝐵
𝑞2 =

8 − 𝜔2

7
𝑞2



2. Harmonics



The mode curvature is induced by harmonics

𝑥1 = 𝐴𝑐𝑜𝑠𝜔𝑡+𝐵𝑐𝑜𝑠3𝜔𝑡

𝑥2 = 𝐶𝑐𝑜𝑠𝜔𝑡+𝐷𝑐𝑜𝑠3𝜔𝑡



In Matlab



What you see is a real nonlinear mode

Shaker

Acceleration (m/s²)

Time (s) Acceleration 

A
cc

el
er

at
io

n
 -60

60

100

-100
0 0.15

Nonlinear modes 

exhibit harmonics



The mode shapes evolve with time
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Shaker

Acceleration 

A
cc

el
er

at
io

n
 

Acceleration (m/s²)

Time (s)

-80

80

120

-120
0 14



The natural frequency decreases with time

Shaker

Fr
eq

u
en

cy
 (

H
z)

Acceleration (m/s²)

Time (s)

-80

80

120

-120
0 14

Time (s)
0 14

25

45



Numerical calculation
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NI2D – 2DOF\NNM_ShawSystem



« Curved » nonlinear modes are now obtained

45

10
-5

10
3

0

0.7

Energy (J)

Out-of-phase 
NNM

In-phase NNM

0.28

0.16

Frequency 
(Hz)

1 1
1 1

1

0.5 
(cubic)
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Do it yourself in NI2D: create a 2-DOF model

2

0
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Modify the 2-DOF model

7

Introduce a 

linear spring
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The final model
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In-phase mode: set appropriate parameters

49



50

In-phase mode: resonance frequency
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In-phase mode: mode shapes

CTRL + LEFT CLICK
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In-phase mode @ low energies

Double click + A
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In-phase mode @ high energies

Double click + A

THE MOTION IS NON 

SYNCHRONOUS ?!?
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Out-of-phase mode: set the parameters

Right click 
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Out-of-phase mode: frequency and mode shapes 
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Let’s go back to the in-phase mode

Right click

for mode 2 
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One new feature !

?

Energy (J)

1

2

Frequency 
(rad/s)

?
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Zoom around the loop

CTRL + LEFT CLICK
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Let’s go even further



60

Additional loops

?



61

Zoom around the loops

WHAT IS GOING ON ???



3. Bifurcations
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Energy (J)

Three in-phase modes at a specific energy

31 SOL. 1

1

2

Frequency 

(rad/s)

Nonlinear modes like nonlinear 

FRCs can bifurcate
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Modes on the branch present a third harmonic

Frequency 
(rad/s)

Energy (J)
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In-phase and out-of-phase modes “connected” !

CTRL + LEFT CLICK

Frequency 
(rad/s)

Out-of-phase 
mode 

In-phase 
mode 

In-phase 
mode 

Energy (J)



6666

No longer a synchronous motion
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In-phase and out-of-phase modes NOT “connected” !

In-phase 
mode branch

Out-of-phase 
mode branch

Frequency 
(rad/s)

Energy (J)

What’s going on ?
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In-phase and out-of-phase modes NOT “connected” !

In-phase 
mode branch

Out-of-phase 
mode branch

Frequency 
(rad/s)

Energy (J)

Hint: a nonlinear system responds

with an infinite series of harmonics !
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The missing piece of info of the FEP: harmonics

Harmonics #3 
of the in-phase mode

Frequency 
(rad/s)

Crossing

In-phase 
mode branch

Out-of-phase 
mode branch

X

Energy (J)

PostprocIM.m

Nonlinear modes can 

talk to each other
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Evidence of another 3:1 modal interaction

Frequency 
(rad/s)

Energy (J)

In-phase 
mode branch

Out-of-phase 
mode branch

X

X

X3 crossings

3:1

3:1

5:1

Harmonics #3 

X

X
3:1

3:1

In-phase 
mode branch

Out-of-phase 
mode branch

PostprocIM.m
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There should be a 5:1 modal interaction as well…

OOP

IP

IP-5

PostprocIM.m
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This figure can be explained with modal interactions 

Frequency 
(rad/s)

Energy (J)

7:1 9:1

5:1

11:1

13:1



This figure can be explained with modal interactions 

73



74

Neither abstract art nor a new alphabet



4. Stability
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Energy (J)

The in-phase mode loses stability

1

2

Frequency 

(rad/s)

Unstable

branch

Nonlinear modes 

can be unstable
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Open Matlab and load the file that contains the results

Let’s try to investigate what’s going on
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Initial conditions for an unstable mode

NI2D – 2DOF\NNM_Enseignement FEP
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Unstable nonlinear mode

E:\Enseignement\Cours\NonlinearVibrations\Lectures\
Matlab\L04_NNM\Simulation_Stability
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Initial conditions for a stable mode



81

Stable mode 



5. Numerical computation ?



Basic idea
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1. Look for periodic solutions !

An nonlinear mode is a periodic motion.



Naive approach
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Case 1:               and

Case 2:               and

Case 3:               and

Case 4:               and

Case 5:               and

Periodic solution

Periodic solution

Periodic solution

Periodic solution

Periodic solution !

1 1

1 1

0.5 

(cubic)

1



Shooting technique

Optimisation of the initial state of a system 𝐱0 ሶ𝐱0
𝑇 to obtain a 

periodic solution after time integration over a period 𝑇.

𝑇

« Angle » = 𝐱0
« Power » = ሶ𝐱0



A more robust approach

86



Newton-Raphson
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Example: find the zero of

𝑓 𝑥1 = 𝑓 𝑥0 + ቤ
𝑑𝑓 𝑥

𝑑𝑥
𝑥=𝑥0

𝑥1 − 𝑥0 = 0

1

2
𝑥0 − 1 2 + 𝑥0 − 1 𝑥1 − 𝑥0 = 0

𝑥1 = 𝑥0 +
−
1
2 𝑥0 − 1 2

𝑥0 − 1
= 𝑥0 −

1

2
𝑥0 − 1 =

𝑥0 + 1

2

𝑥𝑗+1 =
𝑥𝑗 + 1

2

𝑓 𝑥 =
1

2
𝑥 − 1 2



Matlab: homemade or fsolve
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Result

89

-3 -2 -1 0 1 2 3
-8

-6

-4

-2

0

2

4

6

8

x

f(
x
)

NewtonRaphsonIllustration.m
FsolveIllustration.m



State space formulation

State-space form

where



Shooting algorithm

91

Periodicity condition           

(2-point BVP)

Numerical solution through iterations:

2n x 12n x 2n ⎯ Monodromy matrix



Combining shooting with continuation

Frequency (Hz)

Energy (J)

0

0.7

0.28

0.16

10-5 103

1. Isolated mode = 

shooting or harmonic balance

2. Complete branch = 

continuation



More details

93



6. Existence ?



Do modal interactions exist in reality ?

95

VIDEO



It seems

96

2:1 modal 

interaction

Modal interaction

Lissajous:

sin t / sin 2t



Lissajous curves…
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Do they exist in complex systems ?

98

Front connection

Rear connection

Bolted connections 

between external fuel 

tank and wing tip



The testing campaign
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Softening nonlinearity in the bolted connections

100

Accelaration surface method Stiffness curve

Swept sine testing



Finite element model reduction

101

Finite element model                                

(2D shells and beams, 85000 DOFs) Reduced model accurate              

in [0-100] Hz, 548 DOFs

Craig-Bampton technique

8 remaining nodes

500 internal modes

Condensation of the linear 

components of the model



A close look at two modes

102

Wing bending

Wing torsion 

(symmetric)



The first wing bending mode is not affected

MAC = 1.00 MAC = 0.99

Freq.     

(Hz)

Energy (J)

Backbone computation time = 20 minutes 

with 100 time steps (2.67 GHz processor)

E:\NI2D\Marketing\DemosToolbox\Aircraft_ONERA\NNMcont



The first wing torsional mode is nonlinear

104

9:1

MAC = 1.00

MAC = 0.98

31.1

30.4

10-4 104

3:1

5:1

Decrease of the natural 

frequency

Internal resonances

Mode shape slightly 

affected

Freq.     

(Hz)

Energy (J)



Close-up of the 3:1 modal interaction
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(a) (b) (c)

(a)

(b) (c)

Energy (J)

Frequency 

(Hz)



No resemblance with any linear mode

106

Tank tip Horizontal tail
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5 20 30 70
-100

0

100

Accel.

Excitation frequency  (Hz)

Acc. 

(m/s2)

0.1 g

1 g
excitation 

Airbus Group satellite

New, unexpected 

resonance !

A dangerous nonlinear resonance
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It can be predicted using an updated FEM

30.5

31.5

28.5

29.5

Frequency (Hz)

Energy (J)

10-210-4 100 104102 106

2:1 interaction 

with NNM 12
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Clear physical meaning 

Important mathematical properties 

Orthogonality

Modal superposition 

Structural deformation at resonance 

Synchronous vibration of the structure

YES 

YES 

YES 

YES 

LNMs

YES, BUT…

NO 

NO 

YES 

NNMs

In summary
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Key lessons learned

1. Frequency-amplitude/energy dependence

2. Harmonics

3. Bifurcations (additional resonances)

4. Stability

! Both for FRCs and modes !
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Nonlinear modes and FRFs

+ =

Undamped-unforced

(mode)

Damped-forced

(FRF)
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