Nonlinear Vibrations of Aerospace Structures

L04	Modal analysis
	Unforced dynamics (2DOF)

Modes correspond to the deformation at resonance

Modal analysis provides key information

Mode 3: 4.8668 Hz, 0.66 % Low level (8N)

2.2. Modes normaux de vibration

Pour résoudre les équations des petites oscillations libres (2.1.12)

$$M\ddot{q} + Kq = 0$$

cherchons une solution particulière dans laquelle toutes les coordonnées généralisées suivent, à un facteur près, la même loi temporelle

$$\mathbf{q} = \mathbf{x} \ \phi(t) \tag{2.2.1}$$

où x est un vecteur de constantes constituant la forme propre du mouvement, propre dans ce sens que le rapport de deux coordonnées est indépendant du temps et est toujours égal au rapport des éléments correspondants de x. L'essai d'une solution de ce type fournit

$$\ddot{\phi}(t)\mathbf{M}\mathbf{x} + \phi(t)\mathbf{K}\mathbf{x} = \mathbf{0}$$
(2.2.2)

Cours de théorie des vibrations

How do we calculate linear normal modes ?

$$\ddot{q}_1 + (2q_1 - q_2) = 0$$

$$\ddot{q}_2 + (2q_2 - q_1) = 0$$

How do we calculate linear normal modes ?

$$\begin{aligned} \ddot{q}_{1,2} &= A, Bcos\omega t \\ \ddot{q}_{1} + (2q_{1} - q_{2}) &= 0 \\ \ddot{q}_{2} + (2q_{2} - q_{1}) &= 0 \end{aligned} \qquad -\omega^{2}A + 2A - B &= 0 \\ -\omega^{2}B + 2B - A &= 0 \end{aligned}$$
$$\begin{aligned} -\omega^{2}A(2 - \omega^{2}) \\ + 2A(2 - \omega^{2}) - A &= 0 \end{aligned} \qquad B &= A(2 - \omega^{2}) \\ -\omega^{2}B + 2B - A &= 0 \end{aligned}$$
$$\begin{aligned} \omega_{1} &= 1 \text{ rad/s with } A &= B, \\ \omega_{2} &= \sqrt{3} \text{ rad/s with } A &= -B, \end{aligned}$$

Linear modes are invariant

Link between natural and resonance frequencies

A linear mode is a time-periodic motion

It is also a straight line in displacement space

Animation

In summary

Clear physical meaning:

- Structural deformation at resonance
- Synchronous vibration of the structure

Important mathematical properties:

Orthogonality

Decoupling of the equations of motion (modal superposition)

What are nonlinear modes ?

What are their fundamental properties ?

The 1DOF case

The 1DOF case

 $\ddot{y}(t) + y(t) + y^{3}(t) = 0.01 \sin \omega t$

Definition due to Rosenberg (1960), couldn't be simpler !

$$M\ddot{x}(t) + Kx(t) = 0$$
 $M\ddot{x}(t) + Kx(t) + f_{NL}[x(t)] = 0$

LNM: periodic motion.

NNM: periodic motion.

Is this a nonlinear mode ?

Is this a nonlinear mode ?

Is this a nonlinear mode ?

$$\ddot{q}_1 + (2q_1 - q_2) + 0.5q_1^3 = 0$$

$$\ddot{q}_2 + (2q_2 - q_1) = 0$$

How do we calculate nonlinear modes ?

Assumption of harmonic motion: $q_{1,2} \cong A, Bcos\omega t$

The 1-term harmonic balance method

$$\begin{array}{l}
\left(\omega_{1}30 = 4\omega_{1}^{3}0 - 3\omega_{2}0\right) \\
= \omega_{1}^{3}0 = \frac{4}{4}\left(\omega_{3}30 + 3\omega_{2}0\right) \\
\left(u_{1}^{3} + 2q_{1}-q_{1} + \frac{4}{2}q_{1}^{3} = 0 \\
= -\omega_{1}^{2}B + 2B - B + \frac{3}{8}A^{3} = 0 \\
\left(u_{1}^{3}B + 2B - A = 0\right) = B = \frac{A}{2-\omega_{1}^{2}}\left(e\right) \\
\left(u_{1}^{3}b_{1}(2) = -\omega_{1}^{2}A + 2A - \frac{A}{2-\omega_{1}^{2}} + \frac{3}{8}A^{3} = 0 \\
= -\omega_{1}^{2} + 2 - \frac{1}{2-\omega_{1}^{2}} + \frac{3}{8}A^{2} = 0 \\
= -2\omega_{1}^{2} + \omega_{1}^{4} + 4 - 2\omega_{1}^{2} - 1 + \frac{3}{8}A^{2} - \frac{3}{8}A^{2}\omega_{1}^{2} = 0 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{1}^{2}\right) = -\omega_{1}^{4} + 4\omega_{1}^{2} - 3 \\
= A^{2}\left(\frac{3}{4} - \frac{3}{8}\omega_{$$

$$\ddot{q}_{1} + (2q_{1} - q_{2}) = 0$$

 $\ddot{q}_{2} + (2q_{2} - q_{1}) = 0$
 $q_{1,2} = A, Bcos\omega t$

$$\ddot{q}_{1} + (2q_{1} - q_{2}) + 0.5q_{1}^{3} = 0$$

 $\ddot{q}_{2} + (2q_{2} - q_{1}) = 0$
 $q_{1,2} \cong A, Bcos\omega t$
 $A = B, \ \omega_{1} = 1 \text{ rad/s}$
 $A = -B, \ \omega_{2} = \sqrt{3} \text{ rad/s}$
 $A = A$
 $A = \frac{A}{2 - \omega^{2}}$

What do you observe ?

$$\ddot{q}_{1} + (2q_{1} - q_{2}) = 0$$

 $\ddot{q}_{2} + (2q_{2} - q_{1}) = 0$
 $q_{1,2} = A, Bcos\omega t$

$$\ddot{q}_{1} + (2q_{1} - q_{2}) + 0.5q_{1}^{3} = 0$$

 $\ddot{q}_{2} + (2q_{2} - q_{1}) = 0$
 $q_{1,2} \cong A, Bcos\omega t$
 $A = B, \ \omega_{1} = 1 \text{ rad/s}$
 $A = -B, \ \omega_{2} = \sqrt{3} \text{ rad/s}$
 $A = -B, \ \omega_{2} = \sqrt{3} \text{ rad/s}$
 $A = \frac{A}{2 - \omega^{2}}$

Modal shapes depend on frequency

= 0

$$\ddot{q}_{1} + (2q_{1} - q_{2}) = 0$$

$$\ddot{q}_{2} + (2q_{2} - q_{1}) = 0$$

$$q_{1,2} = A, Bcos\omega t$$

$$A = B, \ \omega_{1} = 1 \text{ rad/s}$$

$$A = -B, \ \omega_{2} = \sqrt{3} \text{ rad/s}$$

$$\ddot{q}_{1} + (2q_{1} - q_{2}) + 0.5q_{1}^{3} = 0$$

$$\ddot{q}_{2} + (2q_{2} - q_{1}) = 0$$

$$q_{1,2} \cong A, Bcos\omega t$$

$$A = \pm \sqrt{\frac{8(\omega^2 - 3)(\omega^2 - 1)}{3(\omega^2 - 2)}}$$
$$B = \frac{A}{2 - \omega^2}$$

The natural frequency changes (but existence conditions !)

$$\ddot{q}_{1} + (2q_{1} - q_{2}) = 0$$

$$\ddot{q}_{2} + (2q_{2} - q_{1}) = 0$$

$$q_{1,2} = A, Bcos\omega t$$

$$\ddot{q}_{1} + (2q_{1} - q_{2}) + 0.5q_{1}^{3} = 0$$

$$\ddot{q}_{2} + (2q_{2} - q_{1}) = 0$$

$$q_{1,2} \cong A, Bcos\omega t$$

$$A = \pm \sqrt{\frac{8(\omega^2 - 3)(\omega^2 - 1)}{3(\omega^2 - 2)}}$$
$$B = \frac{A}{2 - \omega^2}$$

$$\omega_1 \in \left[1, \sqrt{2}\right[\text{ rad/s}$$

 $\omega_2 \in \left[\sqrt{3}, +\infty\right[\text{ rad/s}\right]$

Existence conditions for NNM

$$A = B$$
, $\omega_1 = 1 \text{ rad/s}$

$$A = -B$$
, $\omega_2 = \sqrt{3}$ rad/s

26

1. Frequency-energy dependence

Useful graphical representation

$$\ddot{q}_1 + (2q_1 - q_2) + 0.5q_1^3 = 0$$

$$\ddot{q}_2 + (2q_2 - q_1) = 0$$

Initial conditions: $[q_1(0) \ q_2(0) \ \dot{q_1}(0) \ \dot{q_2}(0)] = [A \ B \ 0 \ 0]$

Total energy =
initial potential energy :
$$E = V = \frac{A^2}{2} + \frac{(B-A)^2}{2} + \frac{B^2}{2} + \frac{0.5A^4}{4}$$

A frequency-energy plot is calculated by

- Selecting a frequency in the interval provided by the existence conditions,
- Calculating A and B according to the analytical formulas
- Calculating the corresponding total energy
- Representing the frequency as a function of the total energy

In Matlab

```
HB1_2DOF_FEP.m 🛛 🕂
    clear all
    close all
    cpt=1;
  _ for omeg=1.00001:0.001:sqrt(2)
        A=sqrt(8*(omeg^2-3)*(omeg^2-1)/3/((omeg^2-2)));
-
        B=A/(2-omeg^2);
        NRJ(cpt)=(A-B)^2/2+A^2/2+B^2/2+0.5*A^4/4;
_
-
        freq(cpt)=omeg;
        AIP(cpt)=A;
        BIP(cpt)=B;
         cpt=cpt+1;
     end
_
    semilogx(NRJ,freq,'k')
    cpt=1;
   - for omeg=sqrt(3)+0.0000001:0.001:4
-
        A=sqrt(8*(omeg^2-3)*(omeg^2-1)/3/((omeg^2-2)));
        B=A/(2-omeg^2);
-
        NRJ2(cpt) = (A-B)^{2/2}+A^{2/2}+B^{2/2}+0.5*A^{4/4};
-
        freq2(cpt)=omeg;
        AOP(cpt)=A;
         BOP(cpt)=B;
         cpt=cpt+1;
    ∟end
     hold on
    semilogx(NRJ2,freq2,'k')
```

The in-phase NNM in the FEP

The out-of-phase NNM in the FEP

Experimental evidence of frequency-energy dependence

$$M\ddot{y} + \epsilon\lambda_1\dot{y} + \epsilon\lambda(\dot{y} - \dot{v}) + \epsilon(y - v) + ky = 0$$
$$m\ddot{v} + \epsilon\lambda_2\dot{v} + \epsilon\lambda(\dot{v} - \dot{y}) + \epsilon(v - y) + Cv^3 = 0$$

ı

What you see is a nonlinear mode

Time series and time frequency analysis

The in-phase NNM (1-term HB)

HB with 1 harmonics

Limitation of a 1-term harmonic balance method

$$\ddot{q}_{1} + (2q_{1} - q_{2}) + 0.5q_{1}^{3} = 0$$

$$\ddot{q}_{2} + (2q_{2} - q_{1}) = 0$$

$$q_{1,2} \cong A, Bcos\omega t$$

$$A = \pm \sqrt{\frac{8(\omega^2 - 3)(\omega^2 - 1)}{3(\omega^2 - 2)}}$$
$$B = \frac{A}{2 - \omega^2}$$


```
Frequency-dependent linear relation imposed between x_1 and x_2
```

2. Harmonics

-

The mode curvature is induced by harmonics

 $x_1 = Acos\omega t + Bcos3\omega t$

 $x_2 = Ccos\omega t + Dcos3\omega t$

In Matlab

```
f=input('l=sin/sin 2=cos/cos: ');
wl=input('Enter harmonics 1:');
w2=input('Enter harmonics 2:');
temps=[0:0.01:50];
if f==1
    for k=1:6
        xl=rand(l)*sin(wl*temps)+rand(l)*sin(w2*temps);
        x2=rand(1)*sin(w1*temps)+rand(1)*sin(w2*temps);
        subplot(3,2,k)
        plot(x1,x2)
        xlabel('x l');
        ylabel('x 2');
        set(gcf,'uni','nor','pos',[0.2 0.2 0.6 0.6])
    end
else
    for k=1:6
        xl=rand(1)*cos(wl*temps)+rand(1)*cos(w2*temps);
        x2=rand(1)*cos(wl*temps)+rand(1)*cos(w2*temps);
        subplot(3,2,k)
        plot(x1,x2)
        xlabel('x l');
        ylabel('x 2');
        set(gcf,'uni','nor','pos',[0.2 0.2 0.6 0.6])
    end
end
```

What you see is a *real* nonlinear mode

Acceleration (m/s²)

Nonlinear modes exhibit harmonics

The mode shapes evolve with time

Acceleration (m/s²)

42

The natural frequency decreases with time

Acceleration (m/s²)

Numerical calculation

« Curved » nonlinear modes are now obtained

Do it yourself in NI2D: create a 2-DOF model

Modify the 2-DOF model

The final model

mode 1: 0.159155 Hz mode 2: 0.616404 Hz

In-phase mode: set appropriate parameters

NNM continuation parameters				
Starting point:	0.15915	Hz		
Hz Min:	0	Hz		
Max:	Inf	Hz		
Direction:	- • +			
Stability	Half-period	Sensitivity analysis		
Stepsize:	0.01			
daptative Min:	1e-006			
Мах:	10			
Optimal number of iterations:	3			
Max. number of iterations:	10			
Precision:	1e-006			
Maximum number of points:	15			
Beta max. angle:	90	•		
Scaling factor:	0.0001			
Number of points:	360			
Newmark param Apply Start Cancel				

In-phase mode: resonance frequency

In-phase mode: mode shapes

In-phase mode @ low energies

In-phase mode @ high energies

Double click + A

THE MOTION IS NON SYNCHRONOUS ?!?

1

_ D X

Out-of-phase mode: set the parameters

NNM continuation parame	ters		
Starting point:	0.6164	Hz 🔶	Right click
Hz Min:	0	Hz	
Max:	Inf	Hz	
Direction:	• • • +		
Stability H	lalf-period 🔽 S	ensitivity analysis	
Stepsize:	0.01		
Adaptative Min:	1e-006		
Max:	10		
Optimal number of iterations:	3		
Max. number of iterations:	10		
Precision:	1e-006		
Maximum number of points:	20		
Beta max. angle:	90	•	
Scaling factor:	0.0001		
Number of points:	360		
Newmark param)	y Start	Cancel	

Out-of-phase mode: frequency and mode shapes

Let's go back to the in-phase mode

NNM continuation parameters		- 🗆 X	
Starting point:	0.15915	Hz ←	Right click
Hz Min:	0	Hz	for mode 2
Max:	Inf	Hz	
Direction:	○ - [●] +		
Stability Ha	alf-period Sens	sitivity analysis	
Stepsize:	0.01		
Adaptative Min:	1e-06		
Max:	10		
Optimal number of iterations:	3		
Max. number of iterations:	10		
Precision:	1e-06		
Maximum number of points:	50		
Beta max. angle:	90	•	
Scaling factor:	0.0001		
Number of points:	360		

One new feature !

Zoom around the loop

Let's go even further

NNM continuation parameters		- 🗆 X
Starting point:	0.15915	Hz
Hz Min:	0	Hz
Max:	Inf	Hz
Direction:	○- ◎ +	
Stability	alf-period	Sensitivity analysis
Stepsize:	0.01	
Adaptative Min:	1e-06	
Max:	10	
Optimal number of iterations:	3	
Max. number of iterations:	10	
Precision:	1e-06	
Maximum number of points:	500	
Beta max. angle:	90	•
Scaling factor:	0.0001	
Number of points:	360	

Additional loops

Zoom around the loops

3. Bifurcations

Three in-phase modes at a specific energy

Modes on the branch present a third harmonic

In-phase and out-of-phase modes "connected" !

No longer a synchronous motion

In-phase and out-of-phase modes NOT "connected" !

In-phase and out-of-phase modes NOT "connected" !

The missing piece of info of the FEP: harmonics

Evidence of another 3:1 modal interaction

There should be a 5:1 modal interaction as well...

This figure can be explained with modal interactions

Energy (J)
This figure can be explained with modal interactions

Neither abstract art nor a new alphabet

4. Stability

The in-phase mode loses stability

Let's try to investigate what's going on

Open Matlab and load the file that contains the results

FILE	VARIABLE		CODE	MULINK	ENVIRONMENT	RESOURCES	
🗢 🔶 🔁 🔀 🖡 🔸 d: 🕨 Trash 🔸 N	NMTuto 🕨 results 🕨 res0000	001					
Current Folder	$\overline{\mathbf{O}}$	Command Window					
🗋 Name 🔺		>>	cd d:\Trash	NNMTuto	\results\re	s000001	
🖽 res.mat		>>	load res				
		>>	res				
		re	s =				
			Sol	[4x500	double]		
			Amplitude	: [2x500	double]		
			Pulsation	: [1x500	double]		
			Energy	: [1x500	double]		
			Prediction	[5x500	double]		
			Stepsize	: [1x500	double]		
			Itnumber	[1x500	double]		
			Angle_beta	: [1x500	double]		
			Floq	[4x500	double]		
			Stab	: [1x500	double]		
			list_dofs	: []			
			_				
		$f_{x} >>$					

Initial conditions for an unstable mode

>> log10(res.Energy) ans = Columns 1 through 10 -4.0000-3.5355 -3.0114 -2.4511 -1.8710 -1.4370-1.0721-0.7467-0.4459-0.1596Columns 11 through 20 0.1225 0.4141 0.7460 1.1054 1.2869 1.4251 1.4983 1.5359 1.5526 1.5525 Columns 21 through 30 1.5215 1.4604 1.3731 1.2651 1.1511 1.0705 1.1176 1.3035 1.5701 1.8719 Columns 31 through 40 3.1036 3.2386 2.1140 2.3121 2.5284 2.7065 2.8575 2.9883 3.3569 3.4621 Columns 41 through 50 3.5862 3.6958 3.8244 3.9723 4.1396 4.2933 4.3316 4.3422 4.3508 4.3539

Unstable nonlinear mode

E:\Enseignement\Cours\NonlinearVibrations\Lectures\ Matlab\L04_NNM\Simulation_Stability

Initial conditions for a stable mode

>> log10(res.Energy) ans = Columns 1 through 10 -3.5355 -3.0114 -2.4511 -1.8710 -1.4370 -4.0000-1.0721-0.7467-0.4459 -0.1596Columns 11 through 20 0.1225 0.4141 0.7460 1.1054 1.2869 1.4251 1.4983 1.5359 1.5526 1.5525 Columns 21 through 30 1.5215 1.4604 1.3731 1.2651 1.1511 1.0705 1.1176 1.3035 1.5701 1.8719 Columns 31 through 40 2.3121 2.5284 2.7065 2.9883 2.1140 2.8575 3.1036 3.2386 3.3569 3.4621 Columns 41 through 50 3.5862 3.6958 3.8244 3.9723 4.1396 4.2933 4.3316 4.3422 4.3508 4.3539

Stable mode

5. Numerical computation ?

An nonlinear mode is a periodic motion.

1. Look for periodic solutions !

Naive approach

$$\begin{vmatrix} 1 \\ - 1$$

 $z_0 \rightarrow z(t, z_0)$ using numerical time integration

Case 1: $x_1(0) = 1$ and $x_2(0) = 1$ \longrightarrow Periodic solution Case 2: $x_1(0) = 1$ and $x_2(0) = 1.08$ \longrightarrow Periodic solution Case 3: $x_1(0) = 1$ and $x_2(0) = 1.16$ \longrightarrow Periodic solution Case 4: $x_1(0) = 1$ and $x_2(0) = 1.24$ \longrightarrow Periodic solution Case 5: $x_1(0) = 1$ and $x_2(0) = 1.19$ \longrightarrow Periodic solution !

Shooting technique

Optimisation of the initial state of a system $[\mathbf{x}_0 \ \dot{\mathbf{x}}_0]^T$ to obtain a periodic solution after time integration over a period *T*.

A more robust approach

Newton-Raphson

Example: find the zero of $f(x) = \frac{1}{2}(x-1)^2$

$$f(x_1) = f(x_0) + \frac{df(x)}{dx}\Big|_{x=x_0} (x_1 - x_0) = 0$$

$$\frac{1}{2}(x_0 - 1)^2 + (x_0 - 1)(x_1 - x_0) = 0$$
$$-\frac{1}{2}(x_0 - 1)^2 \qquad 1$$

$$x_1 = x_0 + \frac{-\frac{1}{2}(x_0 - 1)}{(x_0 - 1)} = x_0 - \frac{1}{2}(x_0 - 1) = \frac{x_0 + 1}{2}$$

$$x_{j+1} = \frac{x_j + 1}{2}$$

Matlab: homemade or fsolve

```
function NewtonRaphsonIllustration
clear all;close all;clc
plot([-3:0.01:3],0.5*([-3:0.01:3]-1).^2,'k',[-3:3],[0 0 0 0 0 0],'k--');hold on;pause
StartingPoint=-2;
while abs(0.5*(StartingPoint-1)^2)>0.0001
plot([-3:0.01:3],0.5*(StartingPoint-1)^2+(StartingPoint-1)*([-3:0.01:3]-StartingPoint))
StartingPoint=0.5*(StartingPoint+1),pause
end
SolutionFound=[StartingPoint 0.5*(StartingPoint-1)^2]
```

```
- function FsolveIllustration
clear all;close all;clc
StartingPoint=-2;
SolutionFound=fsolve('Quadratic',StartingPoint)- function y=Quadratic(x)
y=0.5*(x-1)^2
```

Result

State space formulation

$$M\ddot{x}(t) + Kx(t) + f_{nl}\{x(t), \dot{x}(t)\} = 0$$

 $\dot{z} = g(z, t)$

State-space form

where
$$z^{T} = \begin{bmatrix} x^{T} & \dot{x}^{T} \end{bmatrix}$$
$$g(z) = \begin{bmatrix} \dot{x} \\ -M^{-1}[Kx + f_{nl}(x, \dot{x})] \end{bmatrix}$$

$$\mathbf{H}(\mathbf{z}_{p0},T) \equiv \mathbf{z}_p(T,\mathbf{z}_{p0}) - \mathbf{z}_{p0} = \mathbf{0}$$

Periodicity condition (2-point BVP)

Numerical solution through iterations:

$$\mathbf{H}\left(\mathbf{z}_{p0}^{(0)}, T^{(0)}\right) + \frac{\partial \mathbf{H}}{\partial \mathbf{z}_{p0}}\Big|_{(\mathbf{z}_{p0}^{(0)}, T^{(0)})} \Delta \mathbf{z}_{p0}^{(0)} + \frac{\partial \mathbf{H}}{\partial T}\Big|_{(\mathbf{z}_{p0}^{(0)}, T^{(0)})} \Delta T^{(0)} + \mathbf{H} \mathbf{e} \mathbf{T} = 0$$

$$\frac{\partial \mathbf{H}}{\partial \mathbf{z}_{0}}\left(\mathbf{z}_{0}, T\right) = \frac{\partial \mathbf{z}(t, \mathbf{z}_{0})}{\partial \mathbf{z}_{0}}\Big|_{t=T} - \mathbf{I}$$

$$\frac{\partial \mathbf{H}}{\partial T}\left(\mathbf{z}_{0}, T\right) = \frac{\partial \mathbf{z}\left(t, \mathbf{z}_{0}\right)}{\partial t}\Big|_{t=T} = \mathbf{g}\left(\mathbf{z}\left(T, \mathbf{z}_{0}\right)\right)$$

2n x 2n — Monodromy matrix

Combining shooting with continuation

Energy (J)

Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques

M. Peeters, R. Viguié, G. Sérandour, G. Kerschen^{*}, J.-C. Golinval

Structural Dynamics Research Group, Department of Aerospace and Mechanical Engineering, University of Liège, 1 Chemin des Chevreuils (B52/3), B-4000 Liège, Belgium

Mechanical Systems and Signal Processing 23 (2009) 195-216

6. Existence ?

Do modal interactions exist in reality ?

Lissajous curves...

>> LissajousNNM
l=sin/sin 2=cos/cos: 1
Enter harmonics 1:1
Enter harmonics 2:2

97

Do they exist in complex systems ?

Bolted connections between external fuel tank and wing tip

Front connection

Rear connection

The testing campaign

IMG_1679.avi

IMG_1680.MOV

Softening nonlinearity in the bolted connections

Swept sine testing

Finite element model reduction

Finite element model (2D shells and beams, 85000 DOFs)

Condensation of the linear components of the model

Craig-Bampton technique

- 8 remaining nodes
- 500 internal modes

Reduced model accurate in [0-100] Hz, 548 DOFs

A close look at two modes

Mode	Freq.	Mode	Freq.
	(Hz)		(Hz)
1	0.0936	13	21.2193
2	0.7260	14	22.7619
3	0.9606	15	23.6525
4	1.2118	16	25.8667
5	1.2153	17	28.2679
6	1.7951	18	29.3309
7	2.1072	19	31.0847
8	2.5157	20	34.9151
9	3.5736	21	39.5169
10	8.1913	22	40.8516
11	9.8644	23	47.3547
12	16.1790	24	52.1404

The first wing bending mode is not affected

The first wing torsional mode is nonlinear

Close-up of the 3:1 modal interaction

No resemblance with any linear mode

A dangerous nonlinear resonance

It can be predicted using an updated FEM

Clear physical meaning	LNMs	NNMs
Structural deformation at resonance	YES	YES
Synchronous vibration of the structure	YES	YES, BUT
Important mathematical properties		
Orthogonality	YES	NO
Modal superposition	YES	NO

Key lessons learned

- 1. Frequency-amplitude/energy dependence
- 2. Harmonics
- 3. Bifurcations (additional resonances)
- 4. Stability

! Both for FRCs and modes !

Nonlinear modes and FRFs

Forcing frequency (Hz)