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AERO0025 – Satellite Engineering

Lecture 2

Satellite orbits



2

Can the Orbit Affect …

Mass of the satellite ?

Power generation ?

Space radiation environment ?

Revisit time of satellite to a point on Earth ?

Thermal control ?

Launch costs ? YES !
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1. Two-body 

problem

Satellite Orbits
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Motion of two bodies due solely to their own mutual 

gravitational attraction. Also known as Kepler problem.

Assumption: two point masses (or equivalently spherically 

symmetric objects).

1. Definition of the 2-Body Problem

?

?



5

1. Gravitational Force

Every point mass attracts every other point mass by a force 

pointing along the line intersecting both points. The force is 

proportional to the product of the two masses and inversely 

proportional to the square of the distance between the point 

masses: 

http://upload.wikimedia.org/wikipedia/commons/0/0e/NewtonsLawOfUniversalGravitation.svg
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Gravitational Constant

By measuring the mutual attraction of 

two bodies of known mass, the 

gravitational constant G can directly 

be determined from torsion balance 

experiments. 

Due to the small size of the 

gravitational force, G is presently only 

known with limited accuracy and was 

first determined many years after 

Newton’s discovery:

(6.67428 ± 0.00067) × 10−11 m3.kg-1.s-2 

(http://www.physics.nist.gov/cgi-bin/cuu/Value?bg)

2

GmM
k L

r
 =

2.2.1 Newton’s law of universal gravitation

http://upload.wikimedia.org/wikipedia/commons/9/91/Cavendish_Torsion_Balance_Diagram.svg
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1. Gravitational Parameter of a Body

GM =

The gravitational parameter of the Earth has been 

determined with considerable precision from the analysis of 

laser distance measurements of artificial satellites:

398600.4418 ± 0.0008 km3.s-2. 

The uncertainty is 1 to 5e8, much smaller than the 

uncertainties in G and M separately (~1 to 1e4 each). 



Newton’s second law: 

F=ma where F is the gravitational force

2-Body Problem: Governing Equations



Newton’s second law: 

F=ma where F is the gravitational force

2-Body Problem: Governing Equations



2-Body Problem: Governing Equations

Newton's law is still an excellent approximation of the 

effects of gravity if:

2

2 2
1,  and 1

GM v

c rc c

  
=   

 
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General Relativity: Earth-Sun Example

22

8 8

2 2

2
~ 10 ,  and ~ 10

1 year.

sun orbit

orbit

GM rv

c r c c c

− −   
= =   

   

G=6.67428 × 10−11 m3.kg-1.s-2 

rorbit=1.5 × 1011 m (1 AU)

Msun=1.9891 × 1030 kg

c=3e8 m.s-1

OK !

2.2.3 Gravity models and geoid
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1. Motion of the Two Bodies
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1. Equations of Relative Motion

G
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3r


= −r r

μ is the gravitational 

parameter 

The motion of m2 as seen 

from m1 is the same as the 

motion of m1 as seen from m2. 
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1. Equations of Relative Motion

3r


= −r r

How to solve it and find                ?𝐫 = 𝐫(t)
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1. How many initial conditions ?
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1. Find constants of the motion 
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1. Constant Angular Momentum

3r


= −r r

3
0

r

 
 =  − = 

 
r r r r

0 constant=
d

dt
= →  =

h
r r h

r

= h r r
d
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=  +  = 

h
r r r r r r

Specific angular momentum 

(rotational analog of linear 

momentum)

/d dt
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1. The Motion Lies in a Fixed Plane

r

r

r

r

ˆ
h

=
h

h

ˆ
h

=
h

h

constant= =r r h

The fixed plane is the 

orbit plane and is normal 

to the angular momentum 

vector. 
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1. Azimuth Component of the Velocity

ˆˆ ˆ ˆ( )r r rr v v rv⊥ ⊥ ⊥=  =  + =h r r u u u h

2h rv r ⊥= =

r r

rv

v⊥

The angular momentum depends only on the 

azimuth component of the relative velocity


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1. First Integral of Motion

3r


= −r r ( )3 3r r
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r h r r r r r r

( ) ( ) ( ). .  = −a b c b a c c a b

h
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r

  − =
r

r h e

( ) ( )3 2
. .

r d
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
 
   

 = − = − =      
   

r r r
r h r r r r r r

𝐫. ሶ𝐫 = 𝑟 ሶ𝑟



e lies in the orbit plane (e.h)=0: the line defined by e is 

the apse line. Its norm, e, is the eccentricity.



Note: demonstrate the Identity 𝐫. ሶ𝐫 = 𝑟 ሶ𝑟

𝐫. 𝐫 = 𝑟2

𝑑

𝑑𝑡
𝐫. 𝐫 = 𝐫.

𝑑𝐫

𝑑𝑡
+
𝑑𝐫

𝑑𝑡
. 𝐫 = 2𝐫.

𝑑𝐫

𝑑𝑡
= 2𝐫. ሶ𝐫

𝑑

𝑑𝑡
𝐫. 𝐫 = 2𝑟

𝑑𝑟

𝑑𝑡
= 2𝑟 ሶ𝑟

𝐫. ሶ𝐫 = 2𝑟 ሶ𝑟
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1. Οrbit Equation

r


= +

r h r
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Closed form of the nonlinear 

equations of motion ( is the 

true anomaly)
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h
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1. Energy Conservation (Redundant)

ሷ𝐫. ሶ𝐫 =
1

2

𝑑
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1. Conic Section

e=0e=1 0<e<1 e>1

1 cos

p
r

e 
=

+

http://upload.wikimedia.org/wikipedia/commons/4/48/Conic_sections_2.png
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1. Possible Motions in the 2-Body System

ellipse

circle

parabola
hyperbola

http://images.google.be/imgres?imgurl=http://images.easyart.com/i/prints/rw/lg/1/5/Anonymous-The-Earth-15829.jpg&imgrefurl=http://www.easyart.fr/posters/Anonymous/The-Earth-15829.html&usg=__cRtFS9GMdmMBiNGfvgXS11FhRMM=&h=400&w=400&sz=24&hl=fr&start=7&um=1&tbnid=HyxNN2_c2BDk1M:&tbnh=124&tbnw=124&prev=/images?q%3Dearth%26hl%3Dfr%26rlz%3D1T4GGLJ_enBE316BE316%26sa%3DN%26um%3D1
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1. How Many Variables to Define An Orbit ?

3r


= −r r

Useful parametrization 

of the orbit ?

ISS cartesian parameters on March 4, 

2009, 12:30:00 UTC (Source: Celestrak)

6
3 ODEs of second-order
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1. Cartesian Coordinates ?

r and    do not directly yield much information about the 

orbit. 

We cannot even infer from them what type of conic the 

orbit represents or what is the orbit altitude !

Another set of six variables, which is much more 

descriptive of the orbit, is needed.

r



28

1. e: shape of the orbit

2. a: size of the orbit

3. i: orients the orbital plane with 

respect to the ecliptic plane

4. Ω: longitude of the intersection

of the orbital and ecliptic planes

5. ω: orients the semi-major axis 

with respect to the ascending 

node 

6. : orients the celestial body in 

space 

1. Six Orbital (Keplerian) Elements

definition of the orbital plane

definition of the ellipse

orientation of the ellipse within 

the orbital plane

position of the satellite on the 

ellipse



Orbital plane
orientation of 

the ellipse

position of 

the satellite

Equatorial plane 



http://upload.wikimedia.org/wikipedia/en/e/eb/Orbit1.svg


1. In Summary

+ We can calculate r for all values of the true anomaly.

The orbit equation is a mathematical statement of Kepler’s first law.+

Do we have 6 independent constants ?

The solution of the “simple” problem of two bodies cannot be 

expressed in a closed form, explicit function of time. 
-

The two vector constants h and e provide 

only 5 independent constants: h.e=0
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1. Two-body 

problem

Satellite Orbits

2. Orbit types
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2.1 Circular Orbits (e=0)

2

Constant
h

r


= =
circularh rv rv⊥= =

circv
r


=

3/ 22
2circT r r

r
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


= =
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2.1 Orbital Speed Decreases with Altitude
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2.1 Two Important Cases

1. 7.9 km/s is the first cosmic velocity; i.e., the minimum 

velocity (theoretical velocity, r = 6378 km) to orbit the 

Earth.

2. 35786 km is the altitude of the geostationary orbit. 

* A sidereal day, 23h56m4s, is the time it takes the Earth to complete one rotation relative to inertial space. A 

synodic day, 24h, is the time it takes the sun to apparently rotate once around the Earth. They would be 

identical if the earth stood still in space.

                                                                                         It is 

the orbit at which the satellite angular velocity is equal to 

that of the Earth, ω=ωE=7.292 10-5 rad/s, in inertial 

space (*). 
2/3

2

circ
GEO

T
r




=

 
  
 
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2.2 Geometry of the Elliptic Orbit

rpra

a

b

p

θ

apse line
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2.2 Elliptic Orbits (0<e<1)

θ=0, minimum separation, periapse

θ=π, greatest separation, apoapse

2 1

1 cos

h
r

e 
=

+

2

(1 )
p

h
r

e
=

+

2

(1 )
a

h
r

e
=

−

The relative position vector 

remains bounded.

a p

a p

r r
e

r r

−
=

+
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2.2 Energy of an Elliptical Orbit

𝑣2

2
−
𝜇

𝑟
= 𝐸

𝑣𝑝
2

2
−

𝜇

𝑟𝑝
= 𝐸𝑝𝑒𝑟𝑖𝑔𝑒𝑒

ℎ2

2𝑟𝑝
2 −

𝜇

𝑟𝑝
= 𝐸𝑝𝑒𝑟𝑖𝑔𝑒𝑒

2

(1 )
p

h
r

e
=

+

−
1

2

𝜇2

ℎ2
1 − 𝑒2 = 𝐸𝑝𝑒𝑟𝑖𝑔𝑒𝑒

2(1 )h a e= −

−
𝜇

2𝑎
= 𝐸𝑝𝑒𝑟𝑖𝑔𝑒𝑒

ℎ = 𝑣𝑝𝑟𝑝

Link between energy

and the other

constants h and e!

See next slide

See part 1
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2 1

1 cos

h
r

e 
=

+

Orbit equation

2(1 )

1 cos

a e
r

e 

−
=

+

Polar equation of an ellipse               

(a, semimajor axis)

2(1 )h a e= −

2.2 Note: Angular Momentum
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2.2 Velocity in an Elliptical Orbit

𝑣2

2
−
𝜇

𝑟
= 𝐸 −

𝜇

2𝑎
= 𝐸𝑝𝑒𝑟𝑖𝑔𝑒𝑒

𝑣2

2
−
𝜇

𝑟
= −

𝜇

2𝑎

2 1
v

r a

 

= − 
 
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2.2 Kepler’s Second Law

( )tr

( )t dt+r

dtr

1

2
Area AB AC= 

reminder

1 1 1

2 2 2
dA dt dt hdt=  = =r r h

21
constant

2 2

dA h d
r

dt dt


= = =

The line from the sun to a 

planet sweeps out equal 

areas inside the ellipse in 

equal lengths of time.
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2.2 Kepler’s Third Law

enclosed area 2 ab

/
T

dA dt h


= =

2(1 )h a e= − 21b a e= −

3

2ellip

a
T 


=

The elliptic orbit period depends 

only on the semimajor axis and is 

independent of the eccentrivity.

The squares of the orbital periods 

of the planets are proportional to 

the cubes of their mean distances 

from the sun.

2 3

1 1

2 3

2 2

T a

T a
=
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2.2 Example (1447km x 354km)

354 6378 6732kmpr = + = 1447 6378 7825kmar = + =

0.075,   7278.5km
2

a p a p

a p

r r r r
e a

r r

− +
= = = =

+

3

2 6179.79s 103min
a

T 


= = =

2 1
v

r a

 

= − 
 

7.98km/spv =

6.86 km/sav =
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2.3 Parabolic Orbits (e=1)

2 1

1 cos

h
r

 
=

+
,  r → →

2
parabv

r


=

The satellite will coast to 

infinity, arriving there with 

zero velocity relative to the 

central body.
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2.3 Escape Velocity, Vesc

11.2 km/s is the second cosmic velocity; i.e., the minimum 

velocity (theoretical velocity, r = 6378km) to escape the 

gravitational attraction of the Earth.

circv
r


=

2
parabv

r


=

11.2km/s 2 7.9km/s= 
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2.4 Hyperbolic Orbits (e>1)

2 1

1 cos

h
r

e 
=

+
rp 2a

ra

v
a


 =

2 2 2 2

3esc escv v v C v= + = +

C3 is a measure of the energy for an 

interplanetary mission:

16.6 km2/s2 (Cassini-Huygens)

 8.9 km2/s2 (Solar Orbiter, phase A)

Hyperbolic 

excess speed
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2.4 Soyuz ST v2-1b (Kourou Launch)
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2.4 Proton
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What Do you Think ?

Assume we have a circular or elliptic 

orbit for our satellite.

Will it stay there ???
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1. Two-body 

problem

Satellite Orbits

2. Orbit types

3. Orbit 

perturbations
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3.1 Non-Keplerian Motion

In many practical situations, a satellite experiences 

significant perturbations (accelerations).

These perturbations are sufficient to cause predictions of 

the position of the satellite based on a Keplerian approach 

to be in significant error in a brief time.



Montenbruck and Gill, Satellite 

orbits, Springer, 2000

Satellite 

dependent !

Different Perturbations ?

LEO ? GEO ?
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3.1 Respective Importance

400 kms 1000 kms 36000 kms

SRP

Oblateness

Drag Sun and moon

OblatenessOblateness

Sun and moon
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3.2 The Earth is not a Sphere…
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3.2 Physical Interpretation

The force of gravity is no longer within the orbital plane: 

non-planar motion will result.

The equatorial bulge exerts a force that pulls the satellite 

back to the equatorial plane and thus tries to align the 

orbital plane with the equator.

Due to its angular momentum, the orbit behaves like a 

spinning top and reacts with a precessional motion of the 

orbital plane (the orbital plane of the satellite rotates in 

inertial space).
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3.2 What Do You See ?

Two-body propagator J2 propagator
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3.3 The Earth Has an Atmosphere

Atmospheric forces represent the largest nonconservative 

perturbations acting on low-altitude satellites.

The drag is directly opposite to the velocity of the satellite.

The lift force can be neglected in most cases.
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3.3 Effects of Atmospheric Drag
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3.4 Third-Body Perturbations

For an Earth-orbiting satellite, the Sun and the Moon 

should be modeled for accurate predictions.

Their effects become noticeable when the effects of drag 

begin to diminish. 



60

3.4 Effects of Third-Body Perturbations

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

The Sun’s attraction 

tends to turn the 

satellite ring into the 

ecliptic. The orbit 

precesses about the 

pole of the ecliptic.
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3.5 Solar Radiation Pressure

It produces a nonconservative perturbation on the 

spacecraft, which depends upon the distance from the sun. 

It is usually very difficult to determine precisely, but the 

effects are usually small for most satellites.

800km is regarded as a transition altitude between drag and 

SRP.

Solar radiation 

(photons)

Solar wind 

(particles)
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1. Two-body 

problem

Satellite Orbits

2. Orbit types

3. Orbit 

perturbations

4. Orbit transfer
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4. Motivation

Without maneuvers, satellites could not go beyond the 

close vicinity of Earth.

For instance, a GEO spacecraft is usually placed on a 

transfer orbit (LEO or GTO).
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4. From GTO to GEO: Ariane V

Ariane V is able to place heavy GEO satellites in GTO:               

perigee: 200-650 km and apogee: ~35786 km.

GTO

GEO
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4. Delta-V Budget: GEO
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4. How to Go to Saturn ? 

V

V

E

J

G

A
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4. Gravity Assist 

Also known as planetary flyby trajectory, slingshot 

maneuver and swingby trajectory.

Useful in interplanetary missions to obtain a velocity 

change without expending propellant.

This free velocity change is provided by the gravitational 

field of the flyby planet and can be used to lower the 

delta-v cost of a mission.
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4. Basic Principle

SOI

Planet’s sun 

relative velocity

Resultant Vin

Resultant Vout

, ,out in = −Δv v v

http://upload.wikimedia.org/wikipedia/commons/e/e2/Jupiter.jpg
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4. Basic Principle

Inertial frame

Frame attached to 

the train

Inertial frame

Frame attached to 

the train

A gravity assists looks like an elastic collision, although 

there is no physical contact with the planet.
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V
V

E

J
S

4. Cassini: Swingby Effects
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1. Two-body 

problem

Satellite Orbits

2. Orbit types

3. Orbit 

perturbations

4. Orbit transfer
5. Conclusions
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Satellite Orbits

Gentle introduction to satellite orbits; more details in the 

astrodynamics course.

Closed-form solution of the 2-body problem from which we 

deduced Kepler’s laws.

Orbit perturbations cannot be ignored for accurate orbit 

propagation and for mission design.

Orbit transfers are commonly encountered. Satellite must 

often have their own propulsion.



METEOSAT 6-7, HST, OUFTI-1, SPOT-5, MOLNIYA

GEO LEO LEO (LEO) SSO Molniya

i=0 i=28.5 i=71 i=98.7 i=63.4
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