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N-body problem

http://upload.wikimedia.org/wikipedia/commons/c/c2/Solar_sys.jpg
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Precise orbit propagation:

Elaborate models are necessary to compute the motion 

of satellites to the high level of accuracy required for 

many applications today (e.g., the GPS system). The 2-

body problem is not helpful in that context.

Interest in the Two-Body Problem ?

http://www.clker.com/clipart-3592.html
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Interest in the Two-Body Problem ?

Qualitative understanding:

The main features of satellite and planet orbits can be 

described by a reasonably simple approximation, the 

two-body problem.

Interplanetary transfer: 

In lecture 6, we will use a sequence of 2-body problems 

to approximate a complex interplanetary mission.

Mission design:

Some important quantities (ΔV and C3) can be computed 

fairly accurately using the two-body assumption.

http://images.google.be/imgres?imgurl=http://www.clker.com/cliparts/e/2/a/d/1206574733930851359Ryan_Taylor_Green_Tick.svg.thumb.png&imgrefurl=http://www.clker.com/clipart-10842.html&usg=__jqf8IsgHUAEnbuCtn1f9HK1ChkU=&h=99&w=86&sz=3&hl=fr&start=38&um=1&itbs=1&tbnid=4q3qiyQTj_yiyM:&tbnh=82&tbnw=71&prev=/images%3Fq%3Dclipart%2B%2522green%2Bcheck%2Bmark%2522%26ndsp%3D18%26hl%3Dfr%26rlz%3D1T4GGLJ_enBE316BE316%26sa%3DN%26start%3D36%26um%3D1
http://images.google.be/imgres?imgurl=http://www.clker.com/cliparts/e/2/a/d/1206574733930851359Ryan_Taylor_Green_Tick.svg.thumb.png&imgrefurl=http://www.clker.com/clipart-10842.html&usg=__jqf8IsgHUAEnbuCtn1f9HK1ChkU=&h=99&w=86&sz=3&hl=fr&start=38&um=1&itbs=1&tbnid=4q3qiyQTj_yiyM:&tbnh=82&tbnw=71&prev=/images%3Fq%3Dclipart%2B%2522green%2Bcheck%2Bmark%2522%26ndsp%3D18%26hl%3Dfr%26rlz%3D1T4GGLJ_enBE316BE316%26sa%3DN%26start%3D36%26um%3D1
http://images.google.be/imgres?imgurl=http://www.clker.com/cliparts/e/2/a/d/1206574733930851359Ryan_Taylor_Green_Tick.svg.thumb.png&imgrefurl=http://www.clker.com/clipart-10842.html&usg=__jqf8IsgHUAEnbuCtn1f9HK1ChkU=&h=99&w=86&sz=3&hl=fr&start=38&um=1&itbs=1&tbnid=4q3qiyQTj_yiyM:&tbnh=82&tbnw=71&prev=/images%3Fq%3Dclipart%2B%2522green%2Bcheck%2Bmark%2522%26ndsp%3D18%26hl%3Dfr%26rlz%3D1T4GGLJ_enBE316BE316%26sa%3DN%26start%3D36%26um%3D1
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Motion of two bodies due solely to their own mutual 

gravitational attraction. Also known as Kepler problem.

Assumption: two point masses (or equivalently spherically 

symmetric objects).

Definition of the 2-Body Problem

?

?
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Bodies with Spatial Extent

Up to now, point masses were considered.

But an object with a spherically-symmetric distribution of 

mass exerts the same gravitational attraction on external 

bodies as if all the object's mass were concentrated at a 

point at its centre. 

Sphere of mass MPoint mass M

=
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Spherically Symmetric Mass Distribution
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Spherically Symmetric Mass Distribution
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Gravitational Force

The law of universal gravitation is an 

empirical law describing the 

gravitational attraction between bodies 

with mass. 

It was first formulated by Newton in 

Philosophiae Naturalis Principia 

Mathematica (1687). He was able to 

relate objects falling on the Earth to 

the motion of the planets.
Isaac Newton (1642-1727)

http://upload.wikimedia.org/wikipedia/commons/b/b2/Isaac_Newton.jpeg
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Gravitational Force

Every point mass attracts every other point mass by a force 

pointing along the line intersecting both points. The force is 

proportional to the product of the two masses and inversely 

proportional to the square of the distance between the point 

masses: 

http://upload.wikimedia.org/wikipedia/commons/0/0e/NewtonsLawOfUniversalGravitation.svg
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The Quest of a Unifying Theory

What is the relationship between the gravitational force 

and other known fundamental forces ? 

That one body may act upon another at a distance 

through a vacuum without the mediation of anything else, 

by and through which their action and force may be 

conveyed from one another, is to me so great an 

absurdity that, I believe, no man who has in philosophic 

matters a competent faculty of thinking could ever fall 

into it. (Newton, 1692) 

The question is not yet fully resolved today !
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The Quest of a Unifying Theory

Peter Higgs and François Englert were awarded the Nobel Prize in 

physics for their work in identifying and discovering the Higgs boson, 

the so-called "God particle" that could explain how the universe's 

elementary particles obtained their mass shortly after the Big Bang.

http://upload.wikimedia.org/wikipedia/commons/7/7f/Particle_overview.svg
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Gravitational Constant

By measuring the mutual attraction of 

two bodies of known mass, the 

gravitational constant G can directly 

be determined from torsion balance 

experiments. 

Due to the small size of the 

gravitational force, G is presently only 

known with limited accuracy and was 

first determined many years after 

Newton’s discovery:

(6.67428 ± 0.00067) × 10−11 m3.kg-1.s-2 

(http://www.physics.nist.gov/cgi-bin/cuu/Value?bg)

2

G m M
k L

r
 =

http://upload.wikimedia.org/wikipedia/commons/9/91/Cavendish_Torsion_Balance_Diagram.svg
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Gravitational Parameter of a Celestial Body

G M =

The gravitational parameter of the Earth has been 

determined with considerable precision from the analysis of 

laser distance measurements of artificial satellites:

398600.4418 ± 0.0008 km3.s-2. 

The uncertainty is 1 to 5e8, much smaller than the 

uncertainties in G and M separately (~1 to 1e4 each). 
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Satellite Laser Ranging

Lasers measure ranges from ground stations to satellite borne retro-reflectors. 

Because the events of sending and receiving a pulse can be registered within a few 

picoseconds, the distance between the ground station and the satellite is determined 

within a few millimeters.

LAGEOS-1TIGO (Concepcion, Chile)

http://upload.wikimedia.org/wikipedia/commons/7/78/LAGEOS-NASA.jpg
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Acceleration of Gravity

2

GM
g

r
=

We sense our own weight by feeling contact forces acting 

on us in opposition to the force of gravity: W=mg.

If planetary gravity is the only force acting on a body, then 

the body is said to be in free fall. There are, by definition, no 

contact forces, so there can be no sense of weight.

A person in free fall experiences weightlessness: gravity is 

still there, but he cannot feel it.
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Newton’s second law: 

F=ma where F is the gravitational force

2-Body Problem: Governing Equations



Newton’s second law: 

F=ma where F is the gravitational force

2-Body Problem: Governing Equations



2-Body Problem: Governing Equations

Newton's law is still an excellent approximation of the 

effects of gravity if:

2

2 2
1,  an d  1

G M v

c rc c

  
=   

 
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General Relativity: Earth-Sun Example

22

8 8

2 2

2
~ 1 0 ,  an d  ~ 1 0

1 year.

sun o rb it

o rb it

G M rv

c r c c c

− −   
= =   

   

G=6.67428 × 10−11 m3.kg-1.s-2 

rorbit=1.5 × 1011 m (1 AU)

Msun=1.9891 × 1030 kg

c=3e8 m.s-1

OK !
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Motion of the Center of Mass
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The c.o.m. of a 2-body 

system may serve as the 

origin of an inertial frame.
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Equations of Relative Motion
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μ is the gravitational 

parameter 

The motion of m2 as seen 

from m1 is the same as the 

motion of m1 as seen from m2. 



Equations of Relative Motion

3r


= −r r

How to solve it and find                ?



Equations of Relative Motion



Equations of Relative Motion
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Energy Conservation

3r


= −r r
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Constant Angular Momentum
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The Motion Lies in a Fixed Plane

r
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The fixed plane is the 

orbit plane and is normal 

to the angular momentum 

vector. 
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Azimuth Component of the Velocity

ˆˆ ˆ ˆ( )r r rr v v rv⊥ ⊥ ⊥=  =  + =h r r u u u h

2h rv r ⊥= =

r r
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The angular momentum depends only on the 

azimuth component of the relative velocity


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First Integral of Motion

30
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e lies in the orbit plane (e.h)=0: the line defined by e is 

the apse line. Its norm, e, is the eccentricity.



Note: demonstrate the Identity 
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Οrbit Equation
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Conic Section in Polar Coordinates

2 1

1 cos 1 cos

h p
r

e e  
= =

+ +

Independent variable: true 

anomaly (=0 at the periapsis)

Constant: eccentricity

Constant: angular 

momentum

Constant: gravitational 

parameter

Semi-latus rectum



34

Conic Section

e=0e=1 0<e<1 e>1

http://upload.wikimedia.org/wikipedia/commons/4/48/Conic_sections_2.png
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Possible Motions in the 2-Body System

ellipse

circle

parabola
hyperbola

http://images.google.be/imgres?imgurl=http://images.easyart.com/i/prints/rw/lg/1/5/Anonymous-The-Earth-15829.jpg&imgrefurl=http://www.easyart.fr/posters/Anonymous/The-Earth-15829.html&usg=__cRtFS9GMdmMBiNGfvgXS11FhRMM=&h=400&w=400&sz=24&hl=fr&start=7&um=1&tbnid=HyxNN2_c2BDk1M:&tbnh=124&tbnw=124&prev=/images%3Fq%3Dearth%26hl%3Dfr%26rlz%3D1T4GGLJ_enBE316BE316%26sa%3DN%26um%3D1
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Two-Body Problem: Matlab Example

Two identical masses:

  One is at rest at the origin of the inertial frame of reference.

  The other one has a velocity directed upward to the right making 

 a 45 degrees angle with the X axis.

m1

m2

v0

X

Y
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In Summary

+ We can calculate r for all values of the true anomaly.

The orbit equation is a mathematical statement of Kepler’s first law.+

Do we have 6 independent constants ?

The solution of the “simple” problem of two bodies cannot be 

expressed in a closed form, explicit function of time. 
-

The two vector constants h and e provide 

only 5 independent constants: h.e=0
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Circular Orbits (e=0)
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Orbital Speed
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Two Particular Cases

1. 7.9 km/s is the first cosmic velocity; i.e., the minimum 

velocity (theoretical velocity, r = 6378 km) to orbit the 

Earth.

2. 35786 km is the altitude of the geostationary orbit. 

* A sidereal day, 23h56m4s, is the time it takes the Earth to complete one rotation relative to inertial space. A 

synodic day, 24h, is the time it takes the sun to apparently rotate once around the earth. They would be 

identical if the earth stood still in space.

                                                                                         It is 

the orbit at which the satellite angular velocity is equal to 

that of the Earth, ω=ωE=7.292 10-5 rad/s, in inertial 

space (*). 
2/3

2

circ
GEO

T
r




=

 
  
 



A sidereal day

1 solar day= 1.00273781191135448 

sidereal day

http://upload.wikimedia.org/wikipedia/commons/1/1d/Tiempo_sid%C3%A9reo.en.png
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Geometry of the Elliptic Orbit

rpra

a

b

p

θ

apse line
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Elliptic Orbits (0<e<1)

θ=0, minimum separation, periapse

θ=π, greatest separation, apoapse

θ=π/2, semi-latus rectum p

2 1

1 cos

h
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2
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h
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e
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The relative position vector 

remains bounded.
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r r
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r r
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Energy of an Elliptical Orbit

2

(1 )
p

h
r

e
=

+

2(1 )h a e= −

Link between energy 

and the other 

constants h and e!

See next slide

See part 1
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2 1

1 cos

h
r

e 
=

+

Orbit equation

2(1 )

1 cos

a e
r

e 

−
=

+

Polar equation of an ellipse               

(a, semimajor axis)

2(1 )h a e= −

Note: Angular Momentum
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Velocity in an Elliptical Orbit

2 1
v

r a

 
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Kepler’s Second Law

( )tr

( )t dt+r

dtr

1

2
Area AB AC= 

reminder

1 1 1

2 2 2
dA dt dt hdt=  = =r r h

21
constant

2 2

dA h d
r

dt dt


= = =

The line from the sun to a 

planet sweeps out equal 

areas inside the ellipse in 

equal lengths of time.
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Kepler’s Third Law

enclosed area 2 ab

/
T

dA dt h


= =

2(1 )h a e= − 21b a e= −

3

2ellip

a
T 


=

The elliptic orbit period depends 

only on the semimajor axis and is 

independent of the eccentrivity.

The squares of the orbital periods 

of the planets are proportional to 

the cubes of their mean distances 

from the sun.

2 3
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2 2

T a
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Satellite in Elliptic Orbit

354 6378 6732kmpr = + = 1447 6378 7825kmar = + =

0.075,   7278.5km
2
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a p

r r r r
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r r

− +
= = = =

+

3
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T 
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2 1
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r a

 
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7.98km/spv =

6.86 km/sav =
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GTO and GEO

For an orbit with a perigee at 320 km and an apogee at 

35786 km, what is the velocity increment required to reach 

the geostationary orbit ?

2 1
v

r a

 

= − 
 
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GTO and GEO

For an orbit with a perigee at 320 km and an apogee at 

35786 km, what is the velocity increment required to reach 

the geostationary orbit ?

24430 km
2

a pr r
a

+
= =

10.13km/spv =

1.61km/sav =

GTO GEO

398000

35786 6378

     3.07km/s

circv =
+

=

Answer: 1.46 km/s 

(apogee motor)
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GTO and GEO
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(1460,0.391)
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Parabolic Orbits (e=1)

2 1
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The satellite will coast to 

infinity, arriving there with 

zero velocity relative to the 

central body.

( )
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1
1 0

2
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
 = − − =

The satellite has just enough 

energy to escape from the 

attracting body.
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Escape Velocity, Vesc

11.2 km/s is the second cosmic velocity; i.e., the minimum 

velocity (theoretical velocity, r = 6378km) to escape the Earth.

circv
r


=

2
parabv

r


=

11.2km/s 2 7.9km/s= 
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Hyperbolic Orbits (e>1)
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C3 Velocity

2

2 2

v

a r

 
 = = − v

a


 =

2 2

2 2

v v

r

 = − 2 2 2 2

3esc escv v v C v= + = +

C3 is a measure of the energy for an 

interplanetary mission:

16.6 km2/s2 (Cassini-Huygens)

 8.9 km2/s2 (Solar Orbiter, phase A)

Hyperbolic 

excess speed
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Soyuz ST v2-1b (Kourou Launch)
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Proton
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What have we achieved so far ?

Closed-form solution from which we deduced Kepler’s laws.

Analytic formulas for orbital energy, velocity and period. 

Two-body propagator available in STK. Often used in early 

studies to perform trending analysis.

But … 

We have lost track of the time variable !



Newton’s laws

1 2

2
ˆ

g r

m

m m
G

r

=

=

F a

F u
3r


= −r r

Relative motion Energy conserv.

2 1

1 cos

h
r

e 
=

+

2

2

v

r


 = −

Kepler’s 1st lawAngular mom.

= h r r

Azim. velocity

/v h r⊥ =

Kepler’s 2nd law

/ / 2dA dt h=

The orbit 

equation

Kepler’s 3rd law

1.5 0.52 /T a =

We have lost track of the time 

variable ! We must relate true 

anomaly to time
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Time Since Periapsis

2 1

1 cos

h
r

e 
=

+

21
constant

2 2

dA d h
r

dt dt


= = =

Orbit equation

Kepler’s second 

law

( )

2

23
1 cos

d
dt

h e

 


=

+

( )
( )

2

23 0 1 cos
p

d
t t

h e

 


− =

+


Sixth missing 

constant (tp=0)

What is the time required to fly 

between any two true anomaly ?

( )

2

23 0 1 cos

d
t

h e

 


=

+

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Good news

( )

2

23 0 1 cos

d
t

h e

 


=

+

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Circular Orbits

( )

2

23 0 1 cos

d
t

h e

 


=

+


2

3 0
t d

h


= 

3 3/ 2

2 2

h r T
t   

 
= = =

Obvious, because the angular velocity is constant.

2
t

T


→ =
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Elliptic Orbits

( )

( )

2

23 0

20 1
1

3/ 2
2

1 cos

1 1 1 sin
     2 tan tan

1 2 1 cos1

e

d
t

h e

e e e

e ee

 



 



 
−

=
+

  − −
= −   + + −   



Because the angular velocity of a spacecraft along an 

eccentric orbit is continuously varying, the expression of 

the angular position versus time is no longer trivial.

Mean anomaly, M

( )
2

3/ 2
2

3

2
1M e t t nt

h T

 
= − = =

2(1 )h a e= −

3

2ellip

a
T 


=
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Mean Anomaly Is Related to Time

For circular orbits, the mean M and true anomalies θ are 

identical.

For elliptic orbits, the mean anomaly represents the 

angular displacement of a fictitious body moving around 

the ellipse at the constant angular speed n.
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Eccentric Anomaly Is Related to Position

θ

ae

E

r

a
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Eccentric Anomaly: Relation with Mean Anomaly ?

cos cosa E ae r = + cos
cos

1 cos

e
E

e





+
=

+
21

1 cos

e
r a

e 

−
=

+
L2

Graph 21 sin
sin

1 cos

e
E

e





−
=

+

2 2cos sin 1E E+ =

1 1
2 tan tan

1 2

e
E

e

−
 −

=   + 

cos
cos

1 cos

e
E

e





+
=

+

21 sin
sin

1 cos

e
E

e





−
=

+

trig. id.
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Kepler’s Equation

2
1 1 1 sin

2 tan tan
1 2 1 cos

e e e
M

e e

 



−
 − −

= −  + + 

sinM nt E e E= = −

It relates time, in terms of M=nt, to 

position, in terms of E, r=a(1-e.cosE).

1 1
2 tan tan

1 2

e
E

e

−
 −

=   + 
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Usefulness of Kepler’s Equation

θ and orbit are given

1 1
2 tan tan

1 2

e
E

e

−
 −

=   + 

sinM E e E= −

2

M
t T


=

Practical application: 

Determine the time at which a 

satellite passes from sunlight 

into the Earth’s shadow (the 

location of this point is known 

from the geometry).
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Example

A geocentric elliptic orbit has a perigee radius of 9600 km 

and an apogee radius of 21000 km. Calculate the time to 

fly from perigee to a true anomaly of 120.
21000 9600

0.37255
21000 9600

a p

a p

r r
e

r r

− −
= = =

+ +

L2

1 1
2 tan tan 1.7281rad

1 2

e
E

e

−
 −

= =  + 

sin 1.3601radM E e E= − =

3
3

2 2 / 18834s
2

p ar ra
T   



+ 
= = = 

 

1.3601
18834 4077s=1h07m57s

2 2

M
t T

 
= = =
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Usefulness of Kepler’s Equation

t is given

2 t
M

T


=

sinM E e E= −

Transcendental equation !!! 

(with a unique solution)

Practical application: 

Perform a rendez-vous with the 

ISS (ATV, STS, Soyuz, Progress).
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Numerical Solution: Newton-Raphson

Algorithm for finding approximations to the zeros of a 

nonlinear function.

 Recursive application of Taylor series truncated after 

the first derivative.

 The initial guess should be close enough to the actual 

solution.
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Numerical Solution: Newton-Raphson

Example: find the zero of f(x)=0.5(x-1)2

-3 -2 -1 0 1 2 3
-8

-6

-4

-2

0

2

4

6

8

x

f(
x
)
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Analytic Solution: Lagrange

1

n

n

n

E M a e


=

= +

( )
( )

( ) ( )
( / 2)

1

1
0

1 1
1 2 sin 2

2 ! !

floor n
k n

n n
k

a n k n k M
n k k

−

−
=

= − − −  −


Convergence if e<0.663.

For small values of the eccentricity a good agreement with 

the exact solution is obtained using a few terms (e.g., 3).
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Analytic Solution: Bessel Functions

( )
1

2
sinn

n

E M J ne nM
n



=

= +

( )

( )

2

0

1
( )

! ! 2

k n k

n

k

x
J x

n k k

+

=

−  
=  

+  


Convergence for all values of the eccentricity less than 1.
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Prediction of the Position and Velocity

If the position and velocity r0 and v0 of an orbiting body are 

known at a given instant t0, how can we compute the 

position and velocity r and v at any later time t ?

Concept of f and g function and series:

0 0 0 0 0 0 0 0( ) ( , , , ) ( , , , )t f t t g t t= +r r v r r v v

 0

0

1 1 cos( )
a

f E E
r

= − − −

( ) ( )
3

0 0 0sin( )
a

g t t E E E E


= − − − − −  

Prussing and Conway

J.E. Prussing, B.A. Conway, Orbital 

Mechanics, Oxford University Press
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Prediction of the Position and Velocity

Some form of Kepler’s equation must still be solved by 

iteration. However, Gauss developed a series expansion in 

the elapsed time parameter t-t0, and there is no longer the 

need to solve Kepler’s equation:

0 0 0 0 0 0 0 0( ) ( , , , ) ( , , , )t f t t g t t= +r r v r r v v

( ) ( )
2 30 0

0 03 5

0 0

.
1 ...

2 2
f t t t t

r r

  
= − − + − + 
 

r v

( ) ( ) ( )
3 40 0

0 0 03 5

0 0

.
...

6 4
g t t t t t t

r r

  
= − − − + − + 
 

r v
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Did you Know ?

Compactness of the solar system: measured by the ratio of 

the distance a of a planet from the Sun to the radius R of 

the Sun.

Compactness of the hydrogen atom: measured by the ratio 

of the distance a of an electron from the nucleus to the 

radius R of the nucleus.

200
a

R

5 4
a

e
R

~

~
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