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l The spring-mass-damper oscillator




l Important dynamical quantities

mij(t) + cy(t) + ky(t) = F(8),  9(0) = yo, ¥(0) = o

j(t) 4+ 28woy (t) + wiy(t) = £(t),  ¥(0) = yo, ¥(0) = yo

C F(t)
wo = Vk/m, — , t A
: 2vkm J0 ==,
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frequency ratio forcing



l Free vibration of 1DOF oscillators

() +28woy (t) + wiy(t) = 0,  y(0) = yo, y(0) = yo
LINEAR

y(t) + f(y(6),5(t)) =0, y(0) = o, ¥(0) =yo
NONLINEAR



l Nonlinear functions for mechanical systems

LINEAR NONLINEAR
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Historical perspective (from Kovacic and Brennan)

Leonhard Euler (1707-1783) was the first person to write down the
equation of motion of a harmonically forced, undamped linear oscillator.

Euler formally introduced the nondimensional driving frequency Q and
noted that the response becomes infinite when Q2=1. He was the first
person to explain the phenomenon of resonance.

More than 100 years later, Helmholtz (1821-1894) was the first person
to add a nonlinear stiffness term to Euler’s equation of motion. He
postulated that the eardrum behaved as an asymmetric oscillator, such
that the restoring force was f = kx + k,x?2.

Rayleigh investigated a symmetrical force—deflection characteristic
given by f = kx + ksx3 (Duffing systems)



Exact solutions of undamped, unforced oscillators

1. The linear (harmonic) oscillator:

Motivation
Exact solution
Key findings

2. The Duffing oscillator

Motivation
Exact solution
Key findings

3. The Helmholtz oscillator

Motivation
Exact solution
Key findings




l Colored boxes




1. The linear (harmonic)
osclillator

i(t) + wgy(t) =0



Motivation for linear systems

Mechanical
2 Vibrations

3rd Edition

Undamped Vibrations of
n-Degree-of-Freedom Systems

From the theory and examples discussed in Chapter 1 one should remember that the descrip-
tion of the dynamics of a mechanical system as obtained from Hamilton’s principle, from the
Lagrange equations or from the principle of virtual work generally leads to a set of nonlinear
equations. Solving such nonlinear equations usually requires applying time-integration tech-
niques as those described later in Chapter 7. Nevertheless, for many practical applications,
dynamical behaviour manifests itself only as time-varying perturbation around a static solu-
tion. Indeed systems can often be described as being in an statical equilibrium configuration,
around which they undergo only small dynamic motion, namely vibrations.

In that case, the description of the system can be significantly simplified and a lineariza-
tion around an equilibrium position of the generally nonlinear dynamic equations is possible.
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Small displacements and rotations

— 1 (()Mf aMJ‘ a”m a”nz)

£, == + +
72\ dx;  ox;  dx; Ox;

Green’s strain tensor

A particular case: linear deformation

The geometric linearity assumption may be split into two parts:

1. The extension strains remain infinitesimal:

a .
i o1 i=1.2.3 (4.4)

ax;

2. The rotations have small amplitudes:

dut;
i{{l [#] (4.5)

axj

This leads to the linear expression of the infinitesimal strain tensor

Ju:  ou;
5---—1( iy ;) (4.6)

A




Linear material: steel, aluminum, titanium

A material has linear elastic properties when the stress state remains strictly proportional to the
strain state. Owing to the symmetry of the tensors o;; and £, such a material is characterized

in the general case by 21 distinct coefficients Cjjy; so that:

iy

o = Cyu €

» F
g
C
B E
A D

O

Linear  Perfect plastic Strain Necking
region  or yielding hardening

(4.14)

Mild
steel
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How to find the exact solution ?

j(t) + wpy(t) =0, ¥(0) = o, y(0) = yo
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l Exact solution by integration

j(t) + wiy(t) =0, y(0) = yo, ¥(0) = yo
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Exact solution by integration

y
wot =+ ay
2 _ .2
Yo /as — Y

Handbook of Mathematical Functions
With

. &
3.3.44 f 3 :c’ 53 —aresin —
Formulas, Graphs, and Mathematical Tables (a ) a

Edited by
Milton Abramowitz and Irene A. Stegun

https://personal.math.ubc.ca/~cbm/aands/abramowitz_and_stegun.pdf
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l The exact solution of the linear oscillator

y d
wot ==+ Y
2 2
Yo /as— Yy
.
2 _ .2 Yo
a _yﬂ_l_w_%

L 1 L 1
wopt = &+ |sin 1 J — sin~ ! 0
W7 -2
2, ¥ 2 . Yo
] Yo + 22 Yo + =y
sin !(x) = tan! _
(x) T
. 4w
wot = + |sin~ 1 J = | —tan 1 2050
2y Yo
Yo+ ;Ug

2
Yo . _1 WolYo
t —1/12+—51n(wt+tan — )
y() J(] % 0 10
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Newmark’'s method for linear systems

M1 C1 K q01 qO
v
Compute (o
|

Time incrementation

A 4

tn+1:tn+h

v

Prediction
Unt1 =4 +(1_7/)h dy
q9r€1+1 =(dn +h qn +(0-5_ﬂ) h2 qn

'

Computation of accelerations
S:M+h7C+h2,BK

S qn+1 =Pnu -C q;+1 -K q’rk1+1

A

Co*rrection
Ona =Unathydnn

Uni = q’rkl+1 + h2 ﬂ qn+1

Newmark integration
scheme for linear systems

Mechanical
Vibrations
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l Verification using numerical simulation (Newmark)
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First important findings

y(t) =

%)
y% + y—% sin (wgt + tan
W

Vk/m

_1 WoYo
1 J) W

Yo

The response of a linear oscillator takes the form
of harmonic motion at the natural frequency w,

The natural frequency w, does not depend on the
initial conditions but depends only on k and m.
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Second important finding

Response to Yp.and yp

2—I—ﬁsm(wt—l—‘rﬁu‘l gyo)
Yo

2
— 2 Yo (g —1 “@oYo : —1 “wolYo
Yot o, (sm wot cos (tan 7o ) + cos wyt sin (tan Vo ))

W{IF{]
= 3 {yﬂ + y sin wpl ———= + Cos wot ——2—=—
V \J 1s"n
= S:; sin wot + Yo cos wot 1
cos(Arctan(x)) = ¥ 1+x2

X

sin(Arctan(x))= 1+

Response to  Response to
Yo only 0. only



The principle of superposition

The principle of superposition is the cornerstone of
linear theory:

The response caused by two or more inputs is the
sum of the responses that would have been
caused by each input individually.

LIN
A+B X+Y
LIN

LIN
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l Response to different initial displacements (wy = 1)

2T
T =— = 6.28s
Wy
< >
2 : —
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l Key findings for a linear oscillator

wol
y(t) = [y5+ =5 sin (wgt +tan™! FUD)

Yo

The response of a linear oscillator takes the form of
harmonic motion at the natural frequency w, = \/k/m.

The natural frequency depends only on k and m.

The principle of superposition is the cornerstone of linear
theory.
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2. Undamped, unforced
cubic oscillator

j(t) + wy(t) +azy(t) =0



l The so-called Duffing oscillator

D

The
Duffing-Equation

Nonlinear Oscillators ™,
and their Behaviour K

hY

Editors lvana Kovacic and Michael J Brennan

Why focus on cubic
stiffness ?
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Motivation for cubic nonlinearity (positive coefficient

Tor illustrate the concept of nonlinear effects, let us consider the one-dimensional system con-
sisting af a central mass particle fived to a cable { Figure 4.7). If the cable is not stretched, we
will see that the transverse motion is conditioned only by nonlinear effects.

To analyze the transverse motion of the mass particle M in the (x,¥) plane, let us assume
that the cable is massless so that it remains straight on both sides of the mass. The cable is
subjected to no initial stress and the diameter of the mass is negligible compared to the cable
length £. We may thus write:

I
d_L = _;'” when 0<x< i
. 2 (E4.2.)
T when 4 <x<f
dx £ 2

e n—

Figure 4.7 Cable with central mass particle.

where vy, the transverse displacement of mass M, is the only independent variable of the
problem. If the analysis is limited to the transverse motion, the axial strain can be expressed by:

&= %(3—3 (E4.2.b)

The kinetic and potential energies take the form:

T = =My,

1 £
Tt = :./D EAey dx

(E4.2.c)

Let us now apply Hamilton's principle to obtain the equation of motion in the absence of
external forces:
I i
/ Moy by, +/ EAe e dx p dt=10
n i}

and next, by making use of Equation (E4.2.b),

Iy £ 3
- . EA fdvn7 _du
Moy éigy + — =) 6— a ft =0
—[| omotm _é T (55) 95 @ <

Taking account of the application rules of the principle, integrating by parts the first term and
making use of relationships (E4.2.a) vields:

£ 3 i 3
. TEA 2o\ 2 EA [ 2oy 2
Miiy b — . Zsu . == L s -
.fL,Hoalw+£ > ( 7 ) {51;” re‘.=.+/;E 3 ( 7 F&M de=10

and thus:

a \3
Miy + {% (—‘}"") Sy =0

Since dvyy is arbitrary, the equation governing the free transverse motion takes the final form:

o 33
2p
Miiy, + .54( F'“ ) =0 (E4.2.d)

The relationship above expresses equilibrium of mass M when the restoring force is due to
non-linear effects only. In other words, when the mass particle M moves in the perpendicular
direction to x, the cable is stretched. This is commonly called the cable effect. Let us notice
the nonlinear form of the restoring force versus vy.

Mechanical
Vibrations

3rd Edition

WILEY




l Motivation for cubic nonlinearity (positive coefficient)

Clamped-clamped beam
(length: 46cm, width: 2cm, thickness: 0.08cm)

27



l Motivation for cubic nonlinearity (positive coefficient)

Lo

2 springs excited
transversally

X
Force = 2F, = 2Fsina = 2k(l; — lo)l— = 2kx
1

lO 2 3x
=l-—=+-73
\/xz 41,2 21,% 81,
2 kx3 .
Force =~ 2kx (1 -1+ ;—2) ~ liz Hardening
0 0

28



l Motivation for cubic nonlinearity (negative coefficient)

q / ]_ ]_ .
l / T = —'r.rzfu,ﬁ1 = —ml?h?

fo 2 2
/ V = —mgy = —mglcost

1 .
L=T-V = Emﬂgﬁ’? + mglcost

d (oL 0L _
dt \og, ] Oq, "

mi%6 + mglsinf =0

— = mz29.
00
oL
o0

= —mgl sin 0

. g 03
d+2(p -2+ ..
+l< =+

)-o

Softening
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l Springs with positive/negative stiffness

Spring force (N)

flx) =x+x3

0.8

0.6

0.4

0.2

0

02

0.4

Displacement (m)

0.6

0.8

fix) =x
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Spring stiffness: df/dy

Spring stiffness difdy

flx) =x+x3

-1 0.8 0.6 0.4 0.2 0 02 0.4 0.6 08
y [m]

The stiffness increases:
spring

Spring stiffness dif/dy [N/m]

flx) =x—x3

-0.8

0.6 0.4 0.2 0 02 04 06 08 1
y [m]

The stiffness decreases:
spring
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Small vs. large displacements

V BZ ; 2.37et 00.x°

x=1mm, Fy,=2.4 N~ F;y =11 N

0.1387x

X:].Mm, FNL =2.4e-9 N << FLIN =1.1e-2 N
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l Exact solution by integration

j(t) + wiy(t) +azy’(t) =0 5(0) =0, y(0) = yo

2 2 * 4 2 + 4
Next t_/y _dy
e =) (B + 5 (5 +0%)
pages
Y = Yocos¢
O = /w?+ azy3
. \/ 0 T a3Y

m = azys/20?
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l Detalls of the proof

2
2.2 2 2
) = wolYp — Woy~ +

&

(

X34 _ %8 4 dt =

_dy

Y
/‘f” V@B =) (@E+ % (B +12))

Yosing

¢
f:][.:u 2 i b (02 1 83 (12 1 12 ceva?
\/ynsm ¢ (wj+ 5 (v5 + ygcos? 9))

d¢

¢
=),
0 V+ %

Y5 + y5 cos? )

Y = Yo cos ¢
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Detalls of the proof

2 2 2 2 2
2, Yo%3 | Yo%3 | Yoik3 (2 _ 2 Y043 2. 2 Yo%3 . 2
wot =5+ +75 (CUb qb—l)_{] — = sin ¢ = (’l—znzbm cP)

v do
= [ 2
O 01 %562y

2

. /:p d¢p
" R+ 6+ vheosty)

R _ (7 d¢
o fn\/1 msinzfp

QO = \/w(z)+a:3y%
m = azy;/20?
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l Let’'s compare the linear and nonlinear cases

j(t) + wiy(t) +azy’(t) =0 5(0) =0, y(0) = yo

LINEAR NONLINEAR

Yy ¢ d¢’
wot = f 4y Qt:/ ¢
Yo \/(2 ,?-%)_yz 70 \/1—msin2gb’

wo = Vk/m ) = \/wéJraig,y%

What can you conclude ?
Compare wy, and Q
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The solution is expressed as an elliptic cosine

Fm / \/1 m sin? ¢’

= Ot

cn(u|m) = cos ¢

y(t)

Y = Yocos¢

= ygcn (Qt|m)

Handbook of Mathematical Functions
With
Formulas, Graphs, and Mathematical Tables

Edited by
Milton Abramowitz and Irene A. Stegun

The Jacobian elliptic functions can also be
defined with respect to certain integrals. Thus if

16.1.3

e de
“=J:, (I—msin?6)7*
the angle ¢ is called the amplitude
16.1.4 ¢=am u
and we define
16.1.5

sn %=§in ¢, cn Y=COos g,

See Appendix A
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l The exact solution of the Duffing oscillator

j(t) + wiy(t) +azy’(t) =0 5(0) = yo, ¥(0) = yo

y(t) = yoen (Qt|m) with Q = \/w§+a3y%
The response does not take the

form of a harmonic function.

The frequency depends on k and m but also on
the initial displacement and nonlinear coefficient.
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Newmark’s method for nonlinear systems

M, f,p,S dg, 9 Newmark integration scheme

: for nonlinear systems
Compute (g

to =M~ (9o — (4. do))

A

Time incrementation

Mechanical
Vi‘bra‘tions

Convergence ?

A

tn+1 - 1:n +h Hrn+1H <& an+1H
Prediction
A =Un+(1-»)hd, Calculation of the correction
. 2 .. S(q n+l) AQ =—Thyq
qn+1:qn+hqn+(o-5_:8)h Un I
d,41=0 Correction

! Un+ :qn+1+Aq
Residual vector evaluation oy =0 g + e Aq
. + N+

rma=MAna+fha—9nu ph

1
qn+1 = qn+1+ ,th AQ

\ 4
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l Verification using numerical simulation

Function ellipj.m

L

Mewmark

— — — Exact solution |
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l Let’'s compare the linear and nonlinear cases

j(t) +y(t) =0 ij(t) +y(t) +y°(t) =0

08¢}

0.6

0.4rF

0.2F

02

0.4 F

06

08|

What do you observe ?
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l The period depends on the nonlinear coefficient

08F

0.6

0.4 F

0.2F

02F

0.4 F

0.6 -

0.8 F

j(t) +y(t) +asy’(t) = 0

—_— 3=1
— 3:-0 5
Linear

10

12

Hardening case,

« More stiffness »

Softening case
« Less stiffness »

Linear case
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l The period depends on the initial displacement

y(t) [m]

AN

ij(t) +y(t) =0 j(t) +y(t) +y°(t) =0
: \ | | / \ | I y,=2 I i \H'.,I | / \Hﬁ,l | [ I x0=05
I \ :zjj ) ] 5 '. / x0=1 | |

15 1\ III\\
/
VARV
: : ) Ti:ne[s] : N * Time [s]
What can you conclude ? Failure of superposition
principle
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The period can be calculated explicitly

The period is equal to 4 times the time to move from
the initial position to the equilibrium position. The
corresponding variation of ¢ is between 0 and =/2.

u = F(¢p|m

Referred to the canonical forms of 17.2, the ellip-
tic integrals are said to be complete when the
amplitude is 3 and so z=1. These complete in-
tegrals are designated as follows

¢ d¢’
) — 0 > 17.3. Complete Elliptic Integrals of the First
= ()t

17.3.1
[K(m)|=K= f 11— 3 (1—mez))-vadt

4F (5|m) 4K (m)
() N ()

T = - f " (1—m sin? 6)-"2ds
17.3.2 K=F(3r|m)=F(r\a)

Function ellipke.m
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l The natural frequency of the Duffing oscillator

1.4

o, =1
e}

Linear | _

2t 7Q)
T  2K(m)

) =

QO = \/w(z]Jracgy%

15
Frequency [rad/s])

Frequency-amplitude
dependence of nonlinear
ocillations

Very important concept:
the backbone curve

What if the cubic coefficient
IS negative ?
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l The natural frequency of the Duffing oscillator

2?‘{_ 77()
T ZK(m)

0.4 w p—

O = \/w§+a3y%

02 04 06 08 1 12 14 16
Frequency [rad/s])




l Let’'s compare the linear and nonlinear cases

j(t) +y(t) =0 ij(t) +y(t) +y°(t) =0

08¢}

0.6

0.4rF

0.2F

02

0.4 F

06

08|

What do you observe ?
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Does the elliptic cosine look like a pure cosine ?

09rf

Fourier

07r
transform __|

k

0.4F

03F

02F

01r

o

0.1

05

What do you
observe ?

4 5 6 7 ]
Frequency [rad/s]
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l Fourier expansion of elliptic functions

16.23. Series Expansions in Terms of the Nome
g=e¢~ X'/ and the Argument v=7u/(2K)

2,'. > qn+l/3 ¢
16.23.1 sn (ulm)=m Z% [— gt sin (2n+1)v
ne=

O ® qu+l/2
16.23.2 cn (u m)—ml ”K,g, [ g cos (2n+1)v

Infinite number of harmonics to
represent an elliptic cosine/sine.
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Harmonics more visible in the acceleration signal

10 1.8 .
8T 161 1.317
T 14} -
ar o)
12}
a2
0 1t
E of n
é 5 08 s
06
_4 -
6 04
-8 02r
6.585
10 ' 0 . ' . .
1 2 3 4 10 1 2 7 8
Time [s] Frequency [rad/s]
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l Key findings for a Duffing oscillator

LINEAR NONLINEAR
y(0) = vy y(t) = yo cos (wpt) y(t) = yoen (Qt|m)
. . Yo . Yo
— t) = =— t — JY
y(0) = vo y(t) W sin (wot) y(t) oon (Qt|m)

1. The response is no longer purely harmonic
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l Key findings for a Duffing oscillator

LINEAR

NONLINEAR

y(t) = yoen (Qm)

y(0) = yo y(t) = yo cos (wot)
en (u|m)=-— ”Ka 1—_%!,“; cos (2n+1)v
. y(t) = Sﬂ (Qt|m)
. . Yo
90 =30 | ¥(®) = sin (@t

® n+1/2

sn (ulm)=a?7:'7{§ 1—9;7!,—,-;‘ sin (2n+1)v

2. Nonlinear systems generate harmonics
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l Key findings for a Duffing oscillator

LINEAR

NONLINEAR

y(t) = yoen (Qtm)

y(0) = yo y(t) = yo cos (wot)
) = \/w% + 063]/%
| y(1) = Lsn (0 |m)
: : Yo
7(0) = yo y(t) = - sin (wot)

2 1 2
wi + 1/ wy + 2a3y

3. No superposition principle
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i Key findings for a Duffing oscillator

LINEAR NONLINEAR
y(t) = yocn (Qt|m)
y(0) = yo y(t) = yo cos (wot)
O = \/wg + a3y}
. y(t) = —Sﬂ (Qt|m)
Yo
y(0) = o y(t) = = sin (wot)
wy J w% + \/wg -+ Zacgy'%
N - 2

4. Frequency-amplitude dependence: backbone curve
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Appendix A: elliptic functions

We recall that trigonometric functions can be defined in terms of
the functional inverse of specific integrals. For example,

= arcsiny — sinf =y (3.63)

o / y o dy
0 /1 — ‘1},;2
Similarly, Jacobi elliptic functions result from the inversion of the
elliptic integral of the first kind. For instance,

[F dy’
M = -
Jo /(1—y")(1—Kk>y?)

—sn(u, k) =y (3.64)

or, it ¥ = sin ¢,

— sn(u, k) = sin¢ (3.65)

= [ \/1 k2 sin” ¢’
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While trigonometric functions are defined with reference to a cir-
cle, the previous section has shown that the Jacobi elliptic functions
refer to the ellipse. But their geometrical interpretation is similar:

X
r

en(u, k) = %, sn(u,k) =: (3.67)

=

cost = —, sinf = (3.66)

- = o=

with ¥ = 1 on the unit circle whereas r varies along the unit ellipse.
Finally, Jacobi elliptic functions include trigonometric and hyper-
bolic functions as special cases

k=0 : sn(u,0)=sin(u), ecn(u,0) = cos(u) (3.68)
k=1 : sn(u,1)=tanh(u), en(u,1) = sech(u) (3.69)

and
cn(0,k) =1, sn(0,k) =0 (3.70)
en?(u, k) +sn?(u, k) =1 (3.71)
d d d
ar_n = —sndn, ESH = cndn, adn = —kcnsn (3.72)
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l Appendix B: Analytical expression of the acceleration

d d d
—ccn = —sndn, —sn=cndn, —dn = —kcnsn

du du du

y(t) = yocn (Qt|m)

i(t) = yoQ2en (Qt|m) [m. sn? (Qt|m) — dn? (Qﬂm)]
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l Appendix C: response to an initial velocity

() + wiy(t) +azy’(t) =0

y(t) = Lsn (2t|m)

o JW%JF\/G)SJFZ%%
B 2

)
—a3Yy

wg + ﬂég]]% + wg \/wg + 2&33}%

¥(0) = yo, y(0) =0
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l Appendix C: response to an initial velocity

1.5

05}

05

-15

3

1.414

i

\dot{x)=0. 5
\dot{x)=1
\dot{x)=2

Time [s]

10

15

Failure of superposition
principle
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l Appendix D: beneficial/detrimental effect of nonlinearity

0.9

0.8}
Softening

0.7

= =
L o

Amplitude {m)
i
i=%

Linear case

=
£

<
ha

01F

0 01 02 03 04 05 06 0.7
dot(y)(t) (m/s)
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3. Undamped, unforced
Helmholtz oscillator

i(t) + wiy(t) + azy®(t) = 0



l Motivation for quadratic nonlinearity

When we apply Taylor series to an odd function, it has
nonzero coefficients only for odd degree terms. The first
nonlinear term is a cubic term (see the pendulum example).

When we apply Taylor series to a function which is not odd,
the first term is a quadratic term.

A function which is not odd: absence of symmetry
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Motivation for quadratic nonlinearity

Helmholtz postulated that the eardrum (prestressed membrane)
behaved as an asymmetric oscillator, with f = kx + k,x?2.

symmetric beam. The two other examples, as shown
in Fig. 8b and c, are arches: the first one is shallow,
while the third one is non-shallow. Adding curvature
has two important effects. First, flexural and in-plane
modes are no longer linearly uncoupled. Second, the
curvature renders the restoring force asymmetric and
an important quadratic nonlinearily appears belween
the bending modes. This example illustrates the fact




Motivation for quadratic nonlinearity

2 2 2
. (0] my7 + @
Xl+uﬁxl+7'(3X$+X§)+m§X1X2+ '2 2Xi(X7 + X7) =0,
. 2 W3 . o 2 2 o + 03 2 2
X2—|—l’.{}2X2—|—?(3X2 +X|)+fﬂ|X1X2+ 2 XZ(X] —I—XE)ZU
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Exact solution by integration

Closed-form solutions for the quadratic mixed-parity nonlinear
oscillator

. 2. . 2 . 2 o 3 , < 2
A Beléndez'?* , A Hernandez' , T Beléndez' , E Arribas and M L Alvarez!

d%x
dr?

2
+ aix + arx” = 0.
with 1nitial conditions

dx

¥(0) =x0.  —(0) =0.
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Main steps of the proof

Ch_

\/Hl (.,1{1; — xz) +2a, (A?} — 1'3)

dr = +

3 X0 dx _
H(x) = “—/ , Factorize the cubic
| 2ar Jx  /(x0 — x)(x — x1)(x — x2) polynomial

/“ du 2 F(7.p) Fo.m) = ]“” do
= /P 2 M) = ——
X \/(_Ef —u)(u —b)(u—c) va—c f 0 V1 —msin*0

)

_ _ ) _ a— X
F is the incomplete elliptic integral of the first kind 4= HI'CSIH(\/H )

a—>b

p = :
a—c
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l The exact solution of the Helmholtz oscillator

ij(t) + wiy(t) + aay*(t) = 0 y(0) =0, y(0) =yo
y(t) = yo — asn*(Qt|m)

B 30,% + 619 — ¢
- 4&12

a

(P — \/5\/3(,0% — 4wgﬂt2yg — 4&%y5

\/31:1,% + 6as10 + ¢
— e
o 3(1,% + 60«12y0 — ¢
3w§ + 62y + ¢

@)
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l Verification using numerical simulation

0.6

y(t) [m]

7.7s

— — — Exact solution

Mewmark

() +y(0) + (1) =0

8

10
Time [35]

12

14

16

18

Something
special with the
time series ?
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l Asymmetry of the time series

0.6

Mewmark
= = = Exact solution

0.4

02

0k

y(t) [m]

02

04

06

(6 +y(0) +y2(0) = 0

'ﬂ.ﬂ 1 L ] 1
0 2 4 B 8 10 12 14 16 18

Time [s]



l The stiffness decreases for negative displacements

25T

1.5

05

Spring stiffness df/dy [N/m]

05 F
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A greater initial displacement

y{t) [m]

10

15+

20

ij(t) +y(t) +y*(t) =0 1(0)=0.6

Newmark Exact solution
«10%
-
Error using ellipj (line 36)
Input arguments must be real.
rror in CalculateEllipticHelmholtz (line 3)
[SN,CH,DN] = ellipj (Omeg*temps,EllipParam);
rror in ICdep ValidationExactSolutionHelmholtz (line 34)
SN=CalculateEllipticHelmholtz (Alph,m, temps) ;
0 1 2 3 4 5 6 7

Time [g]

WHY ?
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l Mathematical explanation

B 3@% + 621y — ¢ Existence condition
4= 4oy for the square root:
P = \/g\/ng — dwoaryp — 4&1%y% 3&)5 — dwourl — 4&%}/3 >0
\/3w§ + 6ty + ¢
) = 1
2v/6 Yo < 74

. 3&)3 + 6asyg — ¢
3(.0% + 61‘112%3 + ¢
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Physical explanation: potential energy

Potential energy: yzfzﬂ.rgfﬂ

F-9

L

P

Nonlinear systems may have
more than one equilibrium

Unstable
equilibrium

g Stable
. .equilibrium
-2 -1.5 -1 0.5 0 05 1 15
¥

When y, >0.5 or y, <-1,
unbounded motion

Newmark:
s YO=-1

0 2 4 6 8

10 12 14 16 18 20
Time [s]

When y, =1,
equilibrium position
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l Potential energy and associated phase space

4
E, /
E, C ¢ 1(6¢3) D/

i/ : I 4

) =

unbounded
motion



l The stiffness is negative when y(t)<-0.5m

25T

1.5

05

Spring stiffness df/dy [N/m]

05 F
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The period can be calculated explicitly

¥, [m]

0.6

05F

0.4

03F

02r

01f

0

4
T = V6 K(m)
\/ng + 60210 + ¢
Linear
Helmholtz

Backbone curve

0

0.2 0.4 0.6

0.8 1 12 14 16 1.8
Freqguency [rads/s]

2

Complete elliptic
integral of the first kind

The natural frequency tends
to 0 as y, tends to 0.5

The Helmholtz oscillator with
positive coefficient is
softening
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Frequency content

y(t) [m]

0.6

Time [g]

0 2 4 6 8 10 12 14 16 18 20

Fourier

| transform

0.45

What do you
observe ?
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Frequency [rad/s]
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l Zero, first, second, third harmonics generated

0.4 F
0.3

0.2F

FFT

01

01 F

082

-

1.64

2.46

0.5

0.5

1 15
Frequency [rad/s]

2

2.5
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l Key findings

ij(t) + wiy(t) + aay*(t) = 0 y(0) =0, y(0) = yo

y(t) = yo — asn?(Qt|m)

A nonlinear system can possess multiple equilibrium
positions.

From a theoretical perspective, a nonlinear system can
exhibit unbounded motion.

Quadratic nonlinearity gives rise to even and odd harmonics
whereas cubic nonlinearity gives rise to odd harmonics.
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Exact solutions of damped, unforced oscillators

4. The linear damped oscillator:

Motivation
Exact solution
Key findings

5. Coulomb friction

Motivation
Exact solution
Key findings
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4. The linear damped
oscillator

j(t) + 2¢woy(t) + wiy(t) = 0



Motivation for linear damping

Case Mounting
point

Seal

N T T T 7 )
\ ________
& _ _ -

Mounting

point Orifice }_'x“)

Figure 1.8 A schematic of a dashpot that produces a damping force f.(f) = cx(1),
where x(7) is the motion of the case relative to the piston.
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Motivation for linear damping

A simple way to construct a damping matrix C that guarantees diagonal modal damping
consists of making a weighted sum of the mass and stiffness matrices:

C =aK+bM (3.19)

This matrix is commonly known as a proportional damping (or Rayleigh damping) matrix and
results in a diagonal modal damping matrix with coefficients:

B, = ay, + bu, Mechanical
Vibrations

and the associated modal damping ratios are:

3rd Edition




Exact solution by integration

() + 28wy (f) + wiy(t) =0, (0) = o, y(0) = yo

y
+ Swp . . .
tan 1L 7 4 wat = ¢ Find again a constant of motion called ¢
W (no longer the energy !)
Wy — woy/ 1— 62

y(t) = Ye 5@t cog (wyt — @)

jo + §Wuyu ? . b 1 Yowy
) = 2-|-(yu )e’v""” sin | wyt + tan - .
() \/y” Wy ! Yo + Cwolo

The response of a damped linear oscillator is an
exponentially-damped sine wave
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Detalls of the proof

As for the undamped case, the exact analytical solution can be

derived by finding a constant of motion, i.e., without assuming a
trial solution. Posing 1 = %, we have i = 1y + yu, and Equation

(2.6) is transformed into
i+ u? + 2Cwou + w% —0 (2.22)

or equivalently into

du
u? + 2¢wou + wj

— —dt (2.23)

Upon integration4 and provided that ¢ < 1, the following conserva-
tion law is obtained:

U+ Ccw
tam_1 A

t = .
o, + wgt = ¢ (2.24)

where wy; = wpy/1 — 2 is the damped natural frequency, and ¢ is
an integration constant. The cases ¢ > 1 and ¢ = 1 correspond to
aperiodic motions; they can also be tackled 5, but they are of less
practical interest and are not detailed herein.
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Detalls of the proof

Recalling that 1 = y/y, we have

d
?H = [~Gwy — wg tan (wat — ¢)] dt (2.25)

Equation (2.25) can be further integrated to provide the general
solution to Equation (2.6)

y(t) = Ye 59! cos (wyt — @) (2.26)

where Y is the second integration constant. Both Y and ¢ can be
determined from the knowledge of the initial conditions vy and
Jo. Equation (2.26) expresses that the free response of a viscously-
damped oscillator takes the form of harmonic motion of frequency

w, with exponentially decaying amplitude which can be seen as a
damped sine wave.
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Exponentially-damped sine wave

Displacement [m]

o

==

y(t) = \/y%+ (

Yo + Cwoyo
Wy

2
) e twol gin (mdt+tan 1_ et )
Yo + ¢wolo

j+01y+y=0, y(0)=2y(0)=0

¢ = 0.05wy =1rad/s,wy = 0.999rad/s,

Time [s]

30 35 40

45 50
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5. Coulomb friction

ij(t) + wy(t) + ngsign(y(t)) = 0



Motivation for Coulomb friction: interfacial damping

Right missile

Connection with the wing

Force

Velocity
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l System with Coulomb friction

}—P x(1)
L “uN £>0
—\VVNV— m f.=FE(x) = 0 x=0
N x=10
AN URNNNNSONNNONNINNNNNY H . '

mij(t) + ky(t) + pmgsign(y(t)) =0 y(0) = o, ¥(0) = yo

ij(t) + why(t) + pgsign(y(t)) =0



l System with Coulomb friction

Y/,

—A\N VNV m

}—P x(t)

k

IO H

by —-———

W = myg

- X(t)

—_—

-

:.E':—---—

mij(t) + ky(t) + umg sign(y(t)) =0

—uN
f. = F(x) = 0

N
f,= uN .

= \wmig

y(0) = Yo, y(0) = yo

ij(t) + why(t) + pgsign(y(t)) =0

x =10
x=10
x =0
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l Exact solution

y(0) = yo, y(0) =
7 <0

ij(t) + wiy(t) — pg =0

Superposition principle

y(t) = A cos wyt + yg
a5
HE z«tg Valid until
— — | coswpt + —&
y(t) = (y wﬂ) ot + 2 bt

y(t): (]/UE) SiIl(UDt:Owhenf:i
w

0 wo -



l Exact solution

o

When t = X, y=—y0+il—ﬁgandy:0

> 0

j(t) + wiy(t) + ug =0

y(t) = Acoswyt — g
0
- 3;13,' 1g Valid until
y(t) = (yowg) Coswof—w—% 7 >0

. 318\ 27t
) = —w — —2 | sinwgpt = 0 when t = —
y(t) 0 (]/0 wg ) 0 Wy 93



l In summary

l
U y(t) = (yo - }‘%) cos wot + —Wé
2 _ HE
[(fg’ w?;] y(t) (

27T 37T 5
w—u’w_u] y(t) = (yoﬂg

Wy’ wy

7
37 4—?1'] y(t) = (yg — ng) coS wyt — ‘u—%

This procedure is repeated until the motion stops, I.e., when the velocity
IS zero and the spring force is insufficient to overcome the frictional force.

The motion can thus stop at a potentially different equilibrium position
than the rest position. There are thus multiple equilibrium positions !



Verification using numerical simulation

0.5 1%
|
04l | Newmark
0.3} \u Exact solution |
\ \ (colors)
ozt | \
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£ II|| \ 4 ~
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\ \ f
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l What is the period of the motion ?

0, & K8 / 734

[ 0 y(t) = (y —wﬂ) cos wyt + —wo
3

T 27 o _ OHE B }“8

Ly wl Y= (ﬂ’ W2 ) coswol = 2
27T 37 5

w_u’w_g] y(t) = (joa‘f) COs wy f+i§
7

371 47 _THE B ﬁg

wp’ w_ﬂ] y(t) = (]/0 wo ) cos wo a)o

One half of a cycle every m/w,; the full period is 2/ w,.

Linear frequency



l Linear decay of the amplitude

T _ H8 K8

0, 5 y(t) = (yo - —w{%) coswot + 2
[T 27] y(t) = (yo— SHE Y s cont — M8
wp’ wy Wy w3

27 37 Sp Hg

’ ) = _ t 1o

wy (UU] y( ) (}/U wg ) COS wot + (,J%

7
31 41 _ _THE K8
wo’ wﬂ] y(t) = (]/0 w% ) cos wot w%

Every cycle, the decrease in amplitude is 4ug/w§.

Contrast with the exponential decay of the linear oscillator.
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