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The spring-mass-damper oscillator
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Important dynamical quantities

Natural 

frequency

Damping 

ratio

Mass-normalized 

forcing

Divide by m
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Free vibration of 1DOF oscillators

LINEAR

NONLINEAR
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Nonlinear functions for mechanical systems

Force

Displacement

Velocity

Force

Displacement

Velocity

Force

Displacement

Velocity

LINEAR NONLINEAR
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Historical perspective (from Kovacic and Brennan)

Leonhard Euler (1707–1783) was the first person to write down the

equation of motion of a harmonically forced, undamped linear oscillator. 

Euler formally introduced the nondimensional driving frequency  and 

noted that the response becomes infinite when =1. He was the first 

person to explain the phenomenon of resonance.

More than 100 years later, Helmholtz (1821–1894) was the first person 

to add a nonlinear stiffness term to Euler’s equation of motion. He 

postulated that the eardrum behaved as an asymmetric oscillator, such 

that the restoring force was 𝑓 = 𝑘𝑥 + 𝑘2𝑥2.

Rayleigh investigated a symmetrical force–deflection characteristic 

given by 𝑓 = 𝑘𝑥 + 𝑘3𝑥3 (Duffing systems)
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Exact solutions of undamped, unforced oscillators

1. The linear (harmonic) oscillator: 

Motivation

Exact solution

Key findings

2. The Duffing oscillator

Motivation

Exact solution

Key findings

3. The Helmholtz oscillator

Motivation

Exact solution

Key findings
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Colored boxes

Important take-away 

message

I need your opinion



1. The linear (harmonic) 

oscillator
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Motivation for linear systems
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Small displacements and rotations

Green’s strain tensor
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Linear material: steel, aluminum, titanium

Mild 

steel
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How to find the exact solution ?
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Exact solution by integration

Multiply by velocity & integrate
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Exact solution by integration

https://personal.math.ubc.ca/~cbm/aands/abramowitz_and_stegun.pdf
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The exact solution of the linear oscillator

EXACT SOLUTION
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Newmark’s method for linear systems

Compute 0q

Time incrementation
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Verification using numerical simulation (Newmark)

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

2\LinearFreeUndamped\ExactSolutionLinear
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First important findings

The response of a linear oscillator takes the form 

of harmonic motion at the natural frequency 𝜔0

The natural frequency 𝜔0 does not depend on the 

initial conditions but depends only on k and m.

Amplitude Frequency Phase
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Second important finding

Response to                                    

only

Response to                                    

only

Response to      and                                   
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The principle of superposition

The principle of superposition is the cornerstone of 

linear theory:

The response caused by two or more inputs is the 

sum of the responses that would have been 

caused by each input individually. 

A X

B Y

A+B X+Y
LIN

LIN

LIN
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Response to different initial displacements (𝜔0 = 1)

𝑇 =
2𝜋

𝜔0
= 6.28𝑠
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Key findings for a linear oscillator

The response of a linear oscillator takes the form of 

harmonic motion at the natural frequency ω0 = k/m.

The natural frequency depends only on k and m.

The principle of superposition is the cornerstone of linear 

theory.



2. Undamped, unforced 

cubic oscillator
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The so-called Duffing oscillator

Why focus on cubic 

stiffness ?
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Motivation for cubic nonlinearity (positive coefficient)
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Motivation for cubic nonlinearity (positive coefficient)

Clamped-clamped beam                                

(length: 46cm, width: 2cm, thickness: 0.08cm)
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Motivation for cubic nonlinearity (positive coefficient)

𝑙0
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Motivation for cubic nonlinearity (negative coefficient)

ሷ𝜃 +
𝑔

𝑙
𝜃 −

𝜃3

6
+ ⋯ = 0

Softening
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Springs with positive/negative stiffness

𝑓 𝑥 = 𝑥 + 𝑥3

𝑓 𝑥 = 𝑥 − 𝑥3

𝑓 𝑥 = 𝑥
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Spring stiffness: df/dy

𝑓 𝑥 = 𝑥 + 𝑥3 𝑓 𝑥 = 𝑥 − 𝑥3

The stiffness decreases: 

softening spring

The stiffness increases: 

hardening spring
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Small vs. large displacements

x=1mm, 𝐹𝑁𝐿=2.4 N  𝐹𝐿𝐼𝑁 =11 N

x=1m, 𝐹𝑁𝐿 =2.4e-9 N <<< 𝐹𝐿𝐼𝑁 =1.1e-2 N
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Exact solution by integration

Multiply by the 

velocity and integrate

Next 

two 

pages
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Details of the proof

→
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Details of the proof

→

→
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Let’s compare the linear and nonlinear cases

What can you conclude ? 

Compare 𝜔0 and 

LINEAR NONLINEAR
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The solution is expressed as an elliptic cosine

See Appendix A
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The exact solution of the Duffing oscillator

The response does not take the 

form of a harmonic function.

The frequency depends on k and m but also on 

the initial displacement and nonlinear coefficient.

with

EXACT SOLUTION
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Newmark’s method for nonlinear systems

Compute 0q

Time incrementation
htt nn +=+1

Prediction
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Verification using numerical simulation

Function ellipj.mE:\TheoryComputationTestingNlVib\Matlab\Chapter 

3\DuffingFreeUndamped\\ExactSolutionDuffing
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Let’s compare the linear and nonlinear cases

Linear NL

What do you observe ? 
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The period depends on the nonlinear coefficient

Hardening case, 

« More stiffness »

Softening case

« Less stiffness »

Linear case
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The period depends on the initial displacement

Failure of superposition 

principle
What can you conclude ? 
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The period can be calculated explicitly

The period is equal to 4 times the time to move from 

the initial position to the equilibrium position. The 

corresponding variation of  is between 0 and /2.

EXACT EXPRESSION Function ellipke.m
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The natural frequency of the Duffing oscillator

Frequency-amplitude 

dependence of nonlinear 

ocillations

Very important concept:              

the backbone curve

What if the cubic coefficient 

is negative ?
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The natural frequency of the Duffing oscillator
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Let’s compare the linear and nonlinear cases

Linear NL

What do you observe ? 
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Does the elliptic cosine look like a pure cosine ?

Fourier 

transform

What do you 

observe ?

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

3\DuffingFreeUndamped\ExactSolutionDuffing
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Fourier expansion of elliptic functions

Infinite number of harmonics to 

represent an elliptic cosine/sine.
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Harmonics more visible in the acceleration signal

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

3\DuffingFreeUndampedICdep_ValidationExactSolution

1.317

3.951

6.585
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Key findings for a Duffing oscillator

LINEAR

1. The response is no longer purely harmonic

NONLINEAR
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Key findings for a Duffing oscillator

LINEAR NONLINEAR

2. Nonlinear systems generate harmonics
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Key findings for a Duffing oscillator

LINEAR

3. No superposition principle

NONLINEAR
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Key findings for a Duffing oscillator

LINEAR

4. Frequency-amplitude dependence: backbone curve

NONLINEAR
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Appendix A: elliptic functions
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More on elliptic functions
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Appendix B: Analytical expression of the acceleration
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Appendix C: response to an initial velocity
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Appendix C: response to an initial velocity

Failure of superposition 

principle

0.474

0.856

1.414
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Appendix D: beneficial/detrimental effect of nonlinearity

Hardening

Softening

Linear case



3. Undamped, unforced 

Helmholtz oscillator
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Motivation for quadratic nonlinearity

When we apply Taylor series to an odd function, it has 

nonzero coefficients only for odd degree terms. The first 

nonlinear term is a cubic term (see the pendulum example).

When we apply Taylor series to a function which is not odd, 

the first term is a quadratic term.

A function which is not odd: absence of symmetry
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Motivation for quadratic nonlinearity

Helmholtz postulated that the eardrum (prestressed membrane) 

behaved as an asymmetric oscillator, with 𝑓 = 𝑘𝑥 + 𝑘2𝑥2.
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Motivation for quadratic nonlinearity
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Exact solution by integration
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Main steps of the proof

F is the incomplete elliptic integral of the first kind

Factorize the cubic 

polynomial
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The exact solution of the Helmholtz oscillator

EXACT SOLUTION
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Verification using numerical simulation

7.7s

Something 

special with the 

time series ?

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

3\HelmholtzFreeUndamped\ExactSolutionHelmholtz



69

Asymmetry of the time series
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The stiffness decreases for negative displacements
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A greater initial displacement

Newmark Exact solution

WHY ?
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Mathematical explanation

Existence condition 

for the square root:
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Physical explanation: potential energy

When 𝑦0 >0.5 or 𝑦0 <-1, 

unbounded motion

Unstable 

equilibrium

Stable 

equilibrium

Newmark:

y0=-1

Nonlinear systems may have 

more than one equilibrium

When 𝑦0 =1, 

equilibrium position
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Potential energy and associated phase space

unbounded 

motion
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The stiffness is negative when y(t)<-0.5m
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The period can be calculated explicitly

Complete elliptic 

integral of the first kind

Backbone curve

The natural frequency tends 

to 0 as 𝑦0 tends to 0.5

Helmholtz

Linear

The Helmholtz oscillator with 

positive coefficient is 

softening
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Frequency content 

Fourier 

transform

What do you 

observe ?

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

3\HelmholtzFreeUndamped\ExactSolutionHelmholtz
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Zero, first, second, third harmonics generated

0.82
0

1.64

2.46
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Key findings 

A nonlinear system can possess multiple equilibrium 

positions.

From a theoretical perspective, a nonlinear system can 

exhibit unbounded motion.

Quadratic nonlinearity gives rise to even and odd harmonics 

whereas cubic nonlinearity gives rise to odd harmonics.
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Exact solutions of damped, unforced oscillators

4. The linear damped oscillator: 

Motivation

Exact solution

Key findings

5. Coulomb friction

Motivation

Exact solution

Key findings



4. The linear damped 

oscillator
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Motivation for linear damping
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Motivation for linear damping
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Exact solution by integration

The response of a damped linear oscillator is an 

exponentially-damped sine wave

Find again a constant of motion called 

(no longer the energy !)

EXACT 

SOLUTION
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Details of the proof
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Details of the proof
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Exponentially-damped sine wave



5. Coulomb friction
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Motivation for Coulomb friction: interfacial damping 
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System with Coulomb friction

Divide by m
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System with Coulomb friction

Divide by m
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Superposition principle

Exact solution

Valid until
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Exact solution

Valid until
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In summary

This procedure is repeated until the motion stops, i.e., when the velocity 

is zero and the spring force is insufficient to overcome the frictional force. 

The motion can thus stop at a potentially different equilibrium position 

than the rest position. There are thus multiple equilibrium positions !
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Verification using numerical simulation

E:\TheoryComputationTestingNlVib\Matlab\Chapter 

3\HelmholtzFreeUndamped\ExactSolutionFriction

Newmark

Exact solution 

(colors)
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What is the period of the motion ?

One half of a cycle every 𝜋/𝜔0; the full period is 2𝜋/𝜔0. 

Linear frequency
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Linear decay of the amplitude 

Every cycle, the decrease in amplitude is 4𝜇𝑔/𝜔0
2.

Contrast with the exponential decay of the linear oscillator.
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In summary

Unbounded 

motion

Multiple 

equilibria

Even/odd 

harmonics

Elliptic 

functions

Backbone curve 

(frequency-amplitude 

dependence)

Hardening/softening

Decay rate change
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