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IRREVERSIBLE PASSIVE ENERGY TRANSFER IN COUPLED
OSCILLATORS WITH ESSENTIAL NONLINEARITY∗
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Abstract. We study numerically and analytically the dynamics of passive energy transfer from
a damped linear oscillator to an essentially nonlinear end attachment. This transfer is caused by ei-
ther fundamental or subharmonic resonance capture, and in some cases is initiated by nonlinear beat
phenomena. It is shown that, due to the essential nonlinearity, the end attachment is capable of pas-
sively absorbing broadband energy at both high and low frequencies, acting, in essence, as a passive
broadband boundary controller. Complicated transitions in the damped dynamics can be interpreted
based on the topological structure and bifurcations of the periodic solutions of the underlying un-
damped system. Moreover, complex resonance capture cascades are numerically encountered when
we increase the number of degrees of freedom of the system. The ungrounded essentially nonlinear
end attachment discussed in this work can find application in numerous practical settings, including
vibration and shock isolation of structures, seismic isolation, flutter suppression, and packaging.
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1. Introduction. We study passive and irreversible energy transfer from a lin-
ear oscillator to an essentially nonlinear attachment, which, in essence, acts as a
nonlinear energy sink (NES); such energy transfer we refer to as nonlinear energy
pumping. In previous works (Vakakis and Gendelman (2001), Vakakis et al. (2003))
grounded and relatively heavy nonlinear attachments were considered, a feature that
limits their attractiveness in practical applications. To eliminate these restrictions,
an ungrounded and light nonlinear attachment is considered in this work, which, in
addition, possesses the feature of modularity. As shown in Lee et al. (2005), even
though the system considered has a simple configuration, it possesses a very compli-
cated structure of undamped periodic orbits, which, in turn, give rise to a complicated
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series of transitions and energy exchange phenomena in the damped dynamics. We
aim to show that in this system there are at least three different mechanisms for en-
ergy pumping, based either on fundamental and subharmonic resonance captures or
on nonlinear beat phenomena.

Previous works examined targeted energy transfer in systems of coupled nonlinear
oscillators through energy exchanges between donor and acceptor discrete breathers
due to nonlinear resonance (Kopidakis, Aubry, and Tsironis (2001), Aubry et al.
(2001), Morgante et al. (2002)). In Vainchtein et al. (2004) resonant interactions be-
tween monochromatic electromagnetic waves and charged particles were studied, lead-
ing to chaotization of particles and transport in phase space. In Khusnutdinova and
Pelinovsky (2003) the processes governing energy exchange between coupled Klein–
Gordon oscillators were analyzed; the same weakly coupled system was studied in
Maniadis, Kopidakis, and Aubry (2004), and it was shown that, under appropriate
tuning, total energy transfer can be achieved for coupling above a critical threshold.
In related work, localization of modes in a periodic chain with a local nonlinear disor-
der was analyzed (Cai, Chan, and Cheung (2000)); transfer of energy between widely
spaced modes in harmonically forced beams was analytically and experimentally stud-
ied (Malatkar and Nayfeh (2003)); and a nonlinear dynamic absorber designed for a
nonlinear primary was analyzed (Zhu, Zheng, and Fu (2004)).

In this work we consider the two-degree-of-freedom (DOF) system

m1ÿ + k1y + c1ẏ + c2(ẏ − v̇) + k2(y − v)3 = P (t)

⇒ ÿ + ω2
0y + λ1ẏ + λ2(ẏ − v̇) + C(y − v)3 = F (t),

m2v̈ + c2(v̇ − ẏ) + k2(v − y)3 = 0 ⇒ εv̈ + λ2(v̇ − ẏ) + C(v − y)3 = 0,

(1)

where ω2
0 = k1/m1, C = k2/m1, ε = m2/m1, λ1 = c1/m1, λ2 = c2/m1, and F (t) =

P (t)/m1. Our basic aim is to study the dynamics of irreversible energy transfer
(“energy pumping”) from the linear oscillator (which will be directly excited) to the
nonlinear attachment (which will be assumed to be initially at rest). We show that
there are at least three dynamic mechanisms that can initiate or cause such energy
transfer in the damped system, and these can be studied and understood by first
considering the dynamics of the underlying undamped system.

2. Review of the dynamics of the undamped system (Lee et al., 2005).
Since the structure and bifurcations of the periodic orbits of the undamped and un-
forced system play an essential role in energy transfer phenomena in the damped
and forced system, we start with a brief review of the dynamics of system (1) with
λ1 = λ2 = F (t) = 0; for a more detailed discussion we refer to Lee et al. (2005).

In Figure 1 we present the various branches of periodic solutions in a frequency-
energy plot. A periodic orbit is represented by a point in the plot, and a branch,
represented by a solid line, is a collection of periodic orbits possessing the same qual-
itative features. For instance, the branch S11+ gathers all the periodic orbits for
which the linear and nonlinear oscillators vibrate with the same frequency and in
an in-phase fashion. There are two general classes of solutions: symmetric solutions
Snm± correspond to orbits that satisfy the initial conditions v̇(0) = ±v̇(T/2) and
ẏ(0) = ±ẏ(T/2), where T is the period, n is the number of half-waves in v, and m the
number of half-waves in y in a half-period interval; unsymmetric solutions Unm are
orbits that fail to satisfy the initial conditions of the symmetric orbits, with the same
notation for the two indices. We adopt the following convention regarding the place-
ment of the various branches in the frequency domain: we assign to a specific branch
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Fig. 1. Frequency-energy plot of the periodic orbits: for the sake of clarity, no stability is
indicated; special orbits are denoted by bullets (•) and are connected by dashed-dot lines; other
symbols indicate bifurcation points (stability-instability boundaries): (+) four Floquet multipliers
at +1, and (©) two Floquet multipliers at +1 and two at −1 (see Lee et al. (2005)).

of solutions a frequency index equal to the ratio of its indices; e.g., S21± is represented
by the frequency index ω = 2/1 = 2, as is U21; S13± is represented by ω = 1/3;
etc. This convention rule holds for every branch except S11±, which, however, are
particular branches forming the basic backbone of the entire plot. On the energy
axis we depict the (conserved) total energy of the system when it oscillates in the
corresponding periodic motion. Transitions between certain branches seem to involve
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Fig. 2. Detailed plot of branch S11+ in the frequency index-logarithm of energy plane. A dot
(•) represents the initial condition of the motion depicted in Figure 4. (At certain points of the
branch the corresponding motions in the configuration plane (y, v) are depicted.)

“jumps,” but this is only due to the frequency convention adopted, and no actual dis-
continuities in the dynamics occur. (By definition, branches S(kn)(km)±, k integer,
are identified with Snm±.) Periodic orbits that correspond to synchronous motions
of the two particles of the system, and correspond to curves in the configuration plane
(y, v), will be termed nonlinear normal modes (NNMs) (Vakakis et al. (1996)).

The main backbone of the frequency-energy plot is formed by the branches S11±,
which represent in- or out-of-phase NNMs possessing one half-wave per half-period.
Moreover, the natural frequency of the linear oscillator ω0 = 1 (which we identify
with a frequency index equal to unity, ω = 1) naturally divides the periodic solutions
into higher- and lower-frequency modes. A close-up of S11+ is presented in Figure 2
together with some modal curves depicted in the configuration plane (y, v) of the
system. The horizontal and vertical axes in the plots in the configuration plane are the
nonlinear and linear, respectively, oscillator responses, and the aspect ratios in these
plots are set so that equal tick mark increments on the horizontal and vertical axes are
equal in size, enabling one to directly deduce whether the motion is localized in the
linear or the nonlinear oscillator. Figure 2 clearly highlights the energy dependence of
the NNMs; the NNMs become strongly localized to the nonlinear attachment as the
total energy in the system decreases. This observation shows how useful a frequency-
energy plot can be for the interpretation of the dynamics. For the out-of-phase branch
S11−, the NNMs become localized to y or v as ω → 1+ or ω � 1, respectively.

There is a sequence of higher- and lower-frequency periodic solutions bifurcating
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Fig. 3. Detailed plot of tongues S13± in the frequency index-logarithm of the energy plane.
Points G1, G2, G3 refer to the text, and the special periodic orbit is represented by triple stars (∗ ∗ ∗);
the dot (•) represents the initial condition of the motion depicted in Figure 5. (At certain points of
the branch the corresponding motions in the configuration plane (y, v) are depicted.)

or emanating from branches S11±, which we will denote as tongues. Each tongue
occurs in the neighborhood of an internal resonance between the linear oscillator and
the nonlinear attachment, and corresponds to either symmetric (S-tongue; e.g., S13±)
or unsymmetric (U -tongue; e.g., U21±) periodic motion of the system.

Considering first the symmetric solutions, the branches S1(2k+1)±, k = 1, 2, . . . ,
appear in the neighborhoods of frequencies ω = 1/(2k+1), i.e., at progressively lower
frequencies with increasing k. For fixed k, each of the two branches S1(2k + 1)±
is linked through a smooth transition with its neighboring branches S1(2k − 1)± or
S1(2k + 3)± and exists over a finite interval of energy. The pair S1(2k + 1)± is
eliminated through a saddle-node bifurcation at a higher energy value (cf. Figure 3
for branches S13±). The pairs of branches S1(2k)±, k = 1, 2, . . . , bifurcate out of
S1(2k + 1)± and exist over finite energy intervals. Branches Sn1±, n = 2, 3, . . . ,
appear in the neighborhoods of frequencies ω = n, i.e., at progressively higher fre-
quencies with increasing n; the pair of branches Sn1± emanates from S11− and
coalesces with S11+ through a saddle-node bifurcation. Consider the subharmonic
NNMs on tongues S13± (similar results hold for the other S-branches), which corre-
spond to motions where the linear oscillator oscillates “three times faster” than the
nonlinear attachment. We refer to Figure 3, where a detailed frequency-energy plot
for this branch is depicted.

We now discuss the evolution of the motion along S13−. As point G1 is reached in
the neighborhood of ω = 1/3, it holds that v(t) � y(t), and the nonlinear attachment
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vibrates nearly independently, in essence “driving” the linear oscillator; moreover, at
that regime of the motion the force generated by the essentially nonlinear coupling
spring is approximately equal to that generated by the linear spring. As the energy
increases towards point G2 the nonlinear attachment still “drives” the primary mass,
but now the force generated by the linear spring tends to overcome that of the non-
linear spring; this means that the motion of the linear oscillator is less influenced
by the motion of the nonlinear attachment. Once point G2 is reached (with initial
displacements v(0) = 0.0915, y(0) = 0.013 and zero initial velocities), both the linear
oscillator and the nonlinear attachment approximately vibrate as a set of uncoupled
linear oscillators with natural frequencies at ratio 1/3,

v̈ +

(
1

9

)
v = 0, ÿ + y = 0.

This means that in the neighborhood of point G2 of S13− the system oscillates ap-
proximately as a system of two uncoupled linear oscillators, a result which explains
why the branches S13± appear as horizontal straight line segments at frequency
index 1/3 of the frequency-energy plot of Figure 1. As energy increases towards
point G3 of Figure 2, the situation is reversed; because the force generated by the
nonlinear spring is now negligible compared to that generated by the linear spring, the
linear oscillator vibrates nearly independently and drives the nonlinear attachment.
Eventually point G3 is reached, where the periodic motion is approximately given by
y(t) ≈ Y cosωt, v(t) ≈ V cosωt, and there occurs triple coalescence of branches S13±
and S33− (which is identical to S11−).

Focusing now on the unsymmetric branches, we observe a family of U(m + 1)m
branches bifurcating from branch S11− that exist over finite energy levels and are
eliminated through saddle-node bifurcations with other branches of solutions. The
transition of branches U21 and U32 to S11+ seems to involve jumps, but this is
only due to the frequency convention adopted, and no actual discontinuities in the
dynamics occur. It should be mentioned that periodic motions on the U -tongues are
not NNMs because nontrivial phases between the two oscillators are realized. The
motion on these tongues is represented by Lissajous curves in the configuration plane,
whereas motion on S-tongues corresponds to one-dimensional curves. Localization
phenomena are also detected at certain regions of U -tongues (Lee et al. (2005)).

It turns out that certain periodic orbits (termed special orbits and depicted by
dots in Figure 1) are of particular importance concerning the passive and irreversible
energy transfer from the linear to the nonlinear oscillator. These special orbits satisfy
the initial conditions v(0) = v̇(0) = y(0) = 0 and ẏ(0) �= 0, which happen to be
identical to the state of the undamped system (1) at t = 0+ (being at rest at t = 0−)
after application of an impulse of magnitude ẏ(0) to the linear oscillator. Moreover,
certain stable special orbits are localized to the nonlinear oscillator (Lee et al. (2005))
which implies that if the system initially at rest is forced impulsively and one of the
stable, localized special orbits is excited, the major portion of the induced energy is
channeled directly to the invariant manifold of that special orbit, and hence the mo-
tion is rapidly and passively transferred (“pumped”) from the linear to the nonlinear
oscillator. Therefore, the impulsive excitation of one of the stable special orbits is one
of the triggering mechanisms initiating (direct) passive energy pumping in the system.

In the following section we discuss in detail three mechanisms for passive energy
pumping in system (1). In addition to the mechanism based on excitation of special
orbits, we analyze two energy pumping mechanisms that rely on the spatial localiza-



654 KERSCHEN, LEE, VAKAKIS, McFARLAND, AND BERGMAN

tion of the mode shapes of certain NNMs of Figure 1 as the energy of oscillation of
the system decreases due to damping dissipation.

3. Energy pumping mechanisms in the damped system. In this section,
the impulsively forced, damped system (1) is considered, and three basic mechanisms
for the initiation of nonlinear energy pumping are studied. The first mechanism (fun-
damental energy pumping) is realized when the motion takes place along the backbone
curve S11+ of the frequency-energy plot of Figure 1, occurring for relatively low fre-
quencies ω < ω0. The second mechanism (subharmonic energy pumping) resembles
the first and occurs when the motion takes place along a lower frequency branch Snm,
n < m. The third mechanism (energy pumping initiated by nonlinear beat), which
leads to stronger energy pumping, involves the excitation of a special orbit with main
frequency ωSO greater than the natural frequency of the linear oscillator ω0; in this
case energy pumping is initiated by a nonlinear beat phenomenon, as discussed in the
previous section. In what follows we discuss each mechanism separately, and provide
numerical simulations that demonstrate passive and irreversible energy transfer from
the linear oscillator to the nonlinear attachment in each case.

3.1. Fundamental energy pumping. The first mechanism for energy pump-
ing involves excitation of the branch of in-phase synchronous periodic solutions S11+,
where the linear oscillator and the nonlinear attachment oscillate with identical fre-
quencies in the neighborhood of the fundamental frequency ω0. Although energy
pumping is considered only in the damped system, in order to gain an understanding
of the governing dynamics it is necessary to consider the case of no damping.

In Figure 2 we depicted a detailed plot of branch S11+ of the undamped sys-
tem and noted that, at higher energies, the in-phase NNMs are spatially extended
(involving finite-amplitude oscillations of both the linear oscillator and the nonlin-
ear attachment). However, the nonlinear mode shapes of solutions on S11+ depend
essentially on the level of energy, and at low energies they become localized to the
attachment. Considering now the motion in phase space, this low-energy localization
is a basic characteristic of the two-dimensional NNM invariant manifold correspond-
ing to S11+; moreover, this localization property is preserved in the weakly damped
system, where the motion takes place in a two-dimensional damped NNM invariant
manifold. This means that when the initial conditions of the damped system are
such that they excite the damped analogue of S11+, the corresponding mode shape
of the oscillation, initially spatially extended, becomes localized to the nonlinear at-
tachment with decreasing energy due to damping dissipation. This, in turn, leads to
passive, continuous, and irreversible transfer of energy from the linear oscillator to the
nonlinear attachment which acts, in essence, as an NES. The underlying dynamical
phenomenon governing fundamental energy pumping was proven to be a resonance
capture on a 1:1 resonance manifold of the system (Vakakis and Gendelman (2001)).

Numerical evidence of fundamental energy pumping is given in Figure 4 for the
system with parameters ε = 0.05, ω2

0 = 1, C = 1, and λ1 = λ2 = 0.0015. Small
damping is considered in order to better highlight the energy pumping phenomenon,
and the motion is initiated near the black dot of Figure 2. Comparing the transient
responses of Figures 4(a)–(b), we note that the response of the primary system de-
cays faster than that of the NES. The percentage of instantaneous energy captured
by the NES versus time is depicted in Figure 4(e) and confirms the assertion that
continuous and irreversible transfer of energy from the linear oscillator to the NES
takes place; this is more evident by computing the percentage of total input energy
that is eventually dissipated by the damper of the NES (cf. Figure 4(f)), which in this
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Fig. 4. Fundamental energy pumping. Shown are the transient responses of the (a) linear
oscillator and (b) NES; WTs of the motion of (c) NES and (d) linear oscillator; (e) percentage of
instantaneous total energy in the NES; (f) percentage of total input energy dissipated by the NES;
transition of the motion from S11+ to S13+ at smaller energy levels using the (g) NES (observe
the settlement of the motion at frequency 1/3) and (h) linear oscillator.
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particular simulation amounts to 72%; the energy dissipated at the NES is computed
by the relation

ENES(t) = λ2

∫ t

0

[v̇(τ) − ẏ(τ)]
2
dτ.

The evolution of the frequency components of the motions of the two oscilla-
tors as energy decreases can be studied by numerical wavelet transforms (WTs) (Lee
et al. (2005)) of the transient responses, as depicted in Figures 4(c)–(d). These plots
highlight that a 1:1 resonance capture is indeed responsible for energy pumping. Be-
low the value of −4 of the logarithm of energy level, the motion of the linear oscillator
is too small to be analyzed by the particular windows used in the WT; however, a
more detailed WT over smaller energy regimes (cf. Figures 4(g)–(h)) reveals a smooth
transition from S11+ to S13+, in accordance with the frequency-energy plot of Fig-
ure 1. This transition manifests itself by the appearance of two predominant frequency
components in the responses (at frequencies 1 and 1/3) as energy decreases.

3.2. Subharmonic energy pumping. Subharmonic energy pumping involves
excitation of a low-frequency S-tongue. As mentioned previously, by low-frequency
tongues we mean the particular regions of the frequency-energy plot where the NES
engages in m:n (m,n integers such that m < n) resonance captures with the linear
oscillator. Another feature of lower tongues is that in these regions the frequency
of the motion remains approximately constant with varying energy; as a result, the
tongues are represented by horizontal lines in the frequency-energy plot, and the
response of system (1) resembles locally that of a linear system (see also discussion
about the tongues S13± in section 2). In addition, at each specific m:n resonance
capture there appears a pair of closely spaced tongues corresponding to in- and out-
of-phase oscillations of the two subsystems.

To discuss the dynamics of subharmonic energy pumping we now focus on a
particular pair of lower tongues, say S13±, and refer to Figure 3. As discussed in
section 2, at the extremity of a lower pair of tongues, the curve in the configuration
plane is strongly localized to the linear oscillator. However, as for the fundamental
mechanism for energy pumping, the decrease of energy by viscous dissipation leads
to curves in the configuration plane that are increasingly localized to the NES, and
nonlinear energy pumping to the NES occurs. In this case, the underlying dynamical
phenomenon causing energy pumping is resonance capture in the neighborhood of
an m:n resonance manifold of the dynamics. Specifically, for the pair of tongues
S13±, a 1:3 resonance capture occurs that leads to subharmonic energy pumping
with the linear oscillator vibrating with a frequency three times that of the NES. It
is emphasized that due to the stability properties of the tongues S13±, subharmonic
energy pumping involves excitation of S13− but not of S13+.

The transient dynamics when the motion is initiated at the extremity of S13−
(cf. the initial condition denoted by the black dot in Figure 3) is displayed in Fig-
ure 5. The same parameters as in section 3.1 are considered. Until 500 s, subharmonic
energy pumping takes place: despite the presence of viscous dissipation, the NES re-
sponse grows continuously, with simultaneous rapid decrease of the response of the
linear oscillator. A substantial amount of energy is transferred to the NES (cf. Fig-
ure 5(e)), and eventually nearly 70% of the energy is dissipated by the NES damper
(cf. Figure 5(f)). A prolonged 1:3 resonance capture is nicely evidenced by the WT of
Figures 5(c)–(d), and the motion follows the whole lower tongue S13− from the right
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Fig. 5. Subharmonic energy pumping initiated on S13−. Shown are the transient responses
of the (a) linear oscillator and (b) NES; WTs of the motion of (c) the NES and (d) the linear
oscillator; (e) percentage of instantaneous total energy in the NES; (f) percentage of total input
energy dissipated by the NES.

to the left. Once escape from resonance capture occurs (around 620–630 s), energy is
no longer transferred to the NES.

3.3. Energy pumping initiated by nonlinear beating. The previous two
mechanisms cannot be activated with the NES at rest, since in both cases the motion
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is initialized from a nonlocalized state of the system. This means that these energy
pumping mechanisms cannot be activated directly after the application of an impul-
sive excitation to the linear oscillator with the NES initially at rest. Such a forcing
situation, however, is important from a practical point of view; indeed, this is the
situation where local NESs are utilized to confine and passively dissipate unwanted
vibrations from linear structures that are forced by impulsive (or broadband) loads.

Hence, it is necessary to discuss an alternative, third energy pumping mechanism
capable of initiating passive energy transfer with the NES being initially at rest. This
alternative mechanism is based on the excitation of a special orbit (as defined and
discussed in section 2) that plays the role of a “bridging orbit” for activation of either
fundamental or subharmonic energy pumping. Excitation of a special orbit results in
the transfer of a substantial amount of energy from the initially excited linear oscillator
directly to the NES through a nonlinear beat phenomenon. In that context, the
special orbit may be regarded as an initial bridging orbit or trigger, which eventually
activates fundamental or subharmonic energy pumping, once the initial nonlinear
beat initiates the energy transfer. Indeed, as shown below, the third mechanism
for energy pumping represents an efficient initial (triggering) mechanism for rapid
transfer of energy from the linear oscillator to the NES at the crucial initial stage of
the motion, before activating either one of the (fundamental or subharmonic) main
energy pumping mechanisms through a nonlinear transition (jump) in the dynamics.

To study the dynamics of this triggering mechanism, we first formulate the follow-
ing conjecture: Due to the essential (nonlinearizable) nonlinearity, the NES is capable
of engaging in an m:n resonance capture with the linear oscillator, m and n being a
set of integers. Accordingly, in the undamped system there exists a sequence of spe-
cial orbits (corresponding to nonzero initial velocity of the linear oscillator with all
other initial conditions zero), aligned along a one-dimensional smooth manifold in the
frequency-energy plot. As a first step to test this conjecture, a nonlinear boundary
value problem (NLBVP) was formulated to compute the periodic orbits of system (1)
with no forcing and damping, and the additional restriction for the special orbits was
imposed. (For a detailed formulation of the NLBVP, we refer to Lee et al. (2005).)
The numerical results in the frequency-energy plane are depicted in Figure 6 for pa-
rameters ε = 0.05, ω2

0 = 1, C = 1. Each triangle in the plot represents a special orbit,
and a one-dimensional manifold appears to connect the special orbits (though a rigor-
ous proof of the existence of this manifold is not given here). In addition, it appears
that there exists a countable infinity of special orbits, occurring in the neighborhoods
of the countable infinities of internal resonances m:n (m,n integers) of the system, but
again no rigorous proof of this conjecture is given in this paper. We note that a subset
of high-frequency branches (for ω > 1) possesses two special orbits instead of one (for
example, all U(p + 1)p branches with p ≥ 3). To distinguish between the two special
solutions in such high-frequency branches we partition them into two subclasses: the
a-special orbits, which exist in the neighborhood of ω = ω0 = 1, and the b-special
orbits, which occur away from this neighborhood (cf. Figure 6); it was numerically
proven in Lee et al. (2005) that the a-special orbits are unstable, whereas the b-special
orbits are stable. As shown below, it is the excitation of the stable b-special orbits
that activates the third mechanism for energy pumping.

Representative special orbits are given in Figure 7. By construction, all special
orbits have a common feature; namely, they pass with vertical slope through the
origin of the configuration plane (y, v). This feature renders them compatible with
an impulse applied to the linear oscillator, which corresponds to a nonzero velocity of
the linear oscillator with all other initial conditions zero. The curves corresponding to
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Fig. 6. Manifold of special orbits (represented by triangles) in the frequency-energy plot.

the special orbits in the configuration plane can be either closed or open, depending
upon the differences between the two indices characterizing the orbits; specifically,
odd differences between indices correspond to closed curves in the configuration plane
and lie on U -branches, whereas even differences between indices correspond to open
curves on S-branches. In addition, higher-frequency special orbits (with frequency
index ω > ω0) in the upper part of the frequency-energy plot (i.e., m > n) are
localized to the nonlinear oscillator; conversely, special orbits in the lower part of the
frequency-energy plot (with frequency index ω < ω0) tend to be localized to the linear
oscillator. This last observation is of particular importance since it directly affects
the transfer of a significant amount of energy from the linear oscillator to the NES
through the mechanism discussed in this section: indeed, there seems to be a well-
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Fig. 7. Representative special orbits in the configuration plane (y, v). Closed curves correspond
to special orbits on U-branches, and open curves to special orbits on S-branches.
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defined critical threshold of energy that separates high- from low-frequency special
orbits, i.e., those that do or do not localize, respectively, to the NES (cf. Figure 6).
The third mechanism for energy pumping can be activated only for input energies above
the critical threshold, since below that the (low-frequency) special orbits are incapable
of transferring significant amounts of input energy from the linear oscillator to the
NES; in other words, the critical level of energy represents a lower bound below which
no significant energy pumping can be initiated through activation of a special orbit.
Moreover, combining this result with the topology of the one-dimensional manifold
of special orbits of Figure 6, it follows that it is the subclass of stable b-special orbits
that is responsible for activating the third energy pumping mechanism, whereas the
subclass of unstable a-special orbits does not affect energy pumping. This theoretical
insight will be fully validated by the numerical simulations that follow.

We now proceed to analyze in detail the nonlinear beat phenomenon that takes
place when a special orbit is excited by the initial conditions. When the NES engages
in an m:n resonance capture with the linear oscillator, a nonlinear beat phenomenon
takes place. Due to the essential (nonlinearizable) nonlinearity of the NES and the
lack of any preferential frequency, the considered nonlinear beat phenomenon does
not require any a priori “tuning” of the nonlinear attachment, since at the specific
frequency-energy range of the m:n resonance capture the nonlinear attachment adjusts
its amplitude (“tunes itself”) to fulfill the necessary conditions of internal resonance.
This represents a significant departure from the classical nonlinear beat phenomenon
observed in coupled oscillators with linearizable nonlinear stiffnesses (e.g., spring-
pendulum systems), where the defined ratios of linearized natural frequencies of the
component subsystems dictate the type of internal resonances that can be realized
(Golnaraghi (1991), Salemi, Golnaraghi, and Heppler (1997)). As an example, in
Figure 8 we depict the exchanges of energy during the nonlinear beat phenomena
corresponding to the special orbits of branches U21 and U54 for parameters ε = 0.05,
ω2

0 = 1, C = 1 and no damping. As expected, energy is continuously exchanged
between the linear oscillator and the NES, so the energy transfer is not irreversible as
is required for energy pumping; we conclude that excitation of a special orbit can only
initiate (trigger) energy pumping, but not cause it in itself. The amount of energy
transferred during each cycle of the beat varies with the special orbit considered; for
U21 and U54, as much as 32% and 86% of energy, respectively, can be transferred to
the NES. It can be shown that, for increasing integers m and n with corresponding
ratios m/n → 1+, the maximum energy transferred during a cycle of the special orbit
tends to 100%; at the same time, however, the resulting period of the cycle of the beat
(and, hence, of the time needed to transfer the maximum amount of energy) should
increase as the least common multiple of m and n.

We note at this point that the nonlinear beat phenomenon associated with the
excitation of the special orbits can be studied analytically using the complexification-
averaging method first introduced by Manevitch (1999). To demonstrate the analyti-
cal procedure, we analyze in detail the special orbit on branch U21 of the system with
no damping. In Lee et al. (2005), the periodic motions on this entire branch were
studied, and it was shown that the responses of the linear oscillator and the nonlinear
attachment can be approximately expressed as

y(t) = Y1 sinωt + Y2 sin 2ωt ≡ y1(t) + y2(t),

v(t) = V1 sinωt + V2 sin 2ωt ≡ v1(t) + v2(t),
(2)

where
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Fig. 8. Exchanges of energy during nonlinear beat phenomena corresponding to special orbits
on (a), (b) U21, and (c), (d) U54.
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Hence, a two-frequency approximation is satisfactory for this family of periodic
motions. The frequency ωSO at which the special orbit appears is computed by
imposing the initial conditions y(0) = v(0) = v̇(0) = 0, which leads to the relation

B = −2G (special orbit).
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The instantaneous fraction of total energy in the linear oscillator during the non-
linear beat phenomenon is estimated to be

Elinear(t) =

[
(ω2

0 − 4ω2
SO) sinωSOt− 2(ω2

0 − ω2
SO) sin 2ωSOt

]2
9ω2

SOω
2
0

+

[
(ω2

0 − 4ω2
SO) cosωSOt− 4(ω2

0 − ω2
SO) cos 2ωSOt

]2
9ω4

0

.(3)

The nonlinear coefficient C has no influence on the fraction of total energy trans-
ferred to the NES during the nonlinear beat ; this means that, during the beat, the
instantaneous energies of the linear oscillator and the NES are directly proportional
to the nonlinear coefficient. Moreover, as the mass of the NES tends to zero, the
frequency where the special orbit is realized tends to the limit ωSO → ω0, and, as a
result, Elinear(t) → 1, and the energy transferred to the NES during the beat tends
to zero. However, we note that this is a result satisfied only asymptotically, since,
as indicated by the results depicted in Figure 8, even for very small mass ratios, i.e.,
ε = 0.05, as much as 86% of the total energy can be transferred to the NES during a
cycle of the special orbit of branch U54.

Considering now the damped system, we will show that following an initial non-
linear beat phenomenon, either one of the main (fundamental or subharmonic) energy
pumping mechanisms can be activated through a nonlinear transition (jump) in the
dynamics. It was previously mentioned that the two main energy pumping mech-
anisms are qualitatively different from the third mechanism, which is based on the
excitation of a nonlinear beat phenomenon (special orbit); indeed, damping is a pre-
requisite for the realization of the two main mechanisms, leading to an irreversible
energy transfer from the linear oscillator to the NES, whereas a special orbit is capa-
ble of transferring energy without dissipation, though this transfer is not irreversible
but periodic. This justifies our earlier assertion that the third mechanism does not
represent an independent mechanism for energy pumping, but rather triggers it, and
through a nonlinear transition activates either of the two main mechanisms. This will
become apparent in the following numerical simulations.

The following simulations concern the transient dynamics of the damped sys-
tem (1) with parameters ε = 0.05, ω2

0 = 1, C = 1, λ1 = λ2 = 0.0015 and an impulse
of magnitude Y applied to the linear oscillator (corresponding to initial conditions
y(0+) = v(0+) = v̇(0+) = 0, ẏ(0+) = Y ). By varying the magnitude of the im-
pulse we study the different nonlinear transitions that take place in the dynamics and
their effects on energy pumping. The responses of the system to the relatively strong
impulse Y = 0.25 are depicted in Figure 9. Inspection of the WTs of the responses
(cf. Figures 9(c)–(d)), and of the portion of total instantaneous energy captured by
the NES (cf. Figure 9(e)), reveals that at the initial stage of the motion (until ap-
proximately t = 120 s) the (stable) b-special orbit on branch U32 is excited (since
the NES response possesses two main frequency components at 1 and 3/2 rad/s), and
a nonlinear beat phenomenon takes place. (Note the continuous exchange of energy
between the two subsystems—reversibility in this initial stage of the motion.) For
t > 120 s, the dynamics undergoes a transition (jump) to branch S11+, and fun-
damental energy pumping to the NES occurs on a prolonged 1:1 resonance capture
(cf. Figures 9(c)–(d)); eventually, 84% of the input energy is dissipated by the damper
of the NES (cf. Figure 9(f)).

Lowering the magnitude of the impulse to Y = 0.11 gives rise to a different set of
nonlinear transitions, as the simulations of Figure 10 indicate. In this case the (stable)
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Fig. 9. Energy pumping by nonlinear beat, transition to S11+. Shown are transient responses
of (a) the linear oscillator and (b) NES; WTs of the motion of (c) NES and (d) the linear oscil-
lator; (e) percentage of instantaneous total energy in the NES; (f) percentage of total input energy
dissipated by the NES.

b-special orbit of branch U43 is initially excited, which then activates subharmonic
energy pumping through a nonlinear transition to the tongue S13−. In other words,
the lower tongue appears to act as “bait” and activates energy pumping through
1:3 resonance capture, i.e., by capturing locally the transient dynamics in its domain
of attraction. Figure 10(e) reveals that a nonlinear beat phenomenon occurs until
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Fig. 10. Energy pumping by nonlinear beat, transition to S13−. Shown are transient responses
of (a) the linear oscillator and (b) NES; WTs of the motion of (c) NES and (d) the linear oscil-
lator; (e) percentage of instantaneous total energy in the NES; (f) percentage of total input energy
dissipated by the NES.

t = 150 s approximately, and in turn activates 1:3 subharmonic energy pumping to
the NES (cf. Figures 10(c)–(d)); eventually, 94% of the input energy is dissipated by
the NES (cf. Figure 10(f)).

Comparing the two simulations, we conclude that excitation of the b-special orbit
of U43 leads to more effective energy pumping compared to the b-special orbit of
U32. The reason rests with the localization properties of the special orbits, i.e.,
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their capacity to transfer a larger fraction of the total energy to the NES during a
cycle of the oscillation. Indeed, the localization properties of the b-special orbits of
branches U(p+1)p are enhanced as the order p increases, i.e., as their second frequency
component, ω = (p + 1)/p, approaches that of the first, ω = 1, and the special orbits
topologically approach the branch S11− (Lee et al. (2005)). In that context, the
b-special orbit of U43 is capable of transferring a larger fraction of the input than
that being transferred by the b-special orbit of U32 (compare Figures 9(e) and 10(e)),
and hence the enhanced energy pumping results of the second simulation. We note
at this point that the (unstable) a-special orbits of these branches are localized in the
linear oscillator and do not affect energy pumping.

We now test the previous theoretical finding that, for sufficiently small impulse
magnitudes, no energy pumping can occur, i.e., none of the three aforementioned
energy pumping mechanisms can be activated. The simulations for Y = 0.08 are
depicted in Figure 11. The WT of the NES response of Figure 11(c) shows the
presence of a frequency component below ω = 1 at the initial stage of the motion,
which indicates excitation of a low-frequency special orbit in the lower part (ω < 1)
of the frequency-energy plot (i.e., U12). As explained previously, those orbits are
localized to the linear oscillator and, as a result, cannot transfer a sufficient amount
of energy to the NES in the initial stage of the motion. Accordingly, neither the
fundamental nor the subharmonic energy pumping mechanism is eventually activated,
leading to a much smaller amount of energy dissipated by the NES (around 45% in
this case). This result confirms our previous assertion that energy pumping through
nonlinear beat can be activated only above a critical energy threshold (cf. Figure 6).

To demonstrate more clearly the effect of the b-special orbits on energy pumping,
in Figure 12 we depict the percentage of input energy eventually dissipated at the
NES for varying magnitudes of the impulse for the system with parameters ε = 0.05,
ω2

0 = 1, C = 1, λ1 = λ2 = 0.01. In the same plot we depict the positions of
the special orbits of the undamped system and the critical threshold predicted in
Figure 6. We conclude that strong energy pumping is associated with the excitation
of b-special orbits of the branches U(p + 1)p in the neighborhood above the critical
threshold, whereas excitation of a-special orbits below the critical threshold does not
lead to rigorous energy pumping. As mentioned previously, in the neighborhood of
the critical threshold the b-special orbits are strongly localized to the NES, whereas
a-orbits are nonlocalized. We also note from Figure 12 the deterioration of energy
pumping as we increase the magnitude of the impulse well above the critical threshold,
where high-frequency special orbits are excited; this is a consequence of the fact
that well above the critical threshold the special orbits are weakly localized to the
NES.

Extending the previous result, in Figure 13 we depict the contours of energy
eventually dissipated at the NES, but now for the case of two impulses of magnitudes
ẏ(0) and εv̇(0) applied to both the linear oscillator and the NES, respectively. The
system parameters used were identical to those of the previous simulation of Figure 12.
Superimposed on contours of energy dissipated at the NES are certain high- and low-
frequency U - and S-branches of the undamped system together with their special
orbits, in order to confirm for this case the essential role of the high-frequency special
orbits in energy pumping. Indeed, high levels of energy dissipation are encountered
in neighborhoods of contours of high-frequency U -branches, whereas low values are
noted in the vicinity of low-frequency branches. These results agree qualitatively with
our earlier theoretical and numerical findings and enable us to assess and establish
the robustness of energy pumping when the NES is not initially at rest.
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Fig. 11. Absence of energy pumping for low excitation. Shown are transient responses of
(a) the linear oscillator and (b) NES; WTs of the motion of (c) NES and (d) the linear oscilla-
tor; (e) percentage of instantaneous total energy in the NES; (f) percentage of total input energy
dissipated by the NES.

In the next section we provide analytical studies of the fundamental and subhar-
monic energy pumping mechanisms encountered in the damped system; since excita-
tion of nonlinear beats is merely a means for activating the main two energy pumping
mechanisms, it will not be analyzed below. We show that in each case we can reduce
the governing dynamics of energy pumping to low-order slow-flow dynamical systems.
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Fig. 12. Percentage of input energy eventually dissipated at the NES for varying magnitudes
of the impulse (the positions of certain special orbits are indicated).

4. Slow-flow analysis. We now focus on the resonance capture dynamics that
governs energy pumping in the damped system. This can be studied by performing a
reduction of the dynamics, an approximate partition between slow and fast dynamics,
and considering the evolution of the slow-flow dynamics when energy pumping takes
place. We show that even though the system of coupled oscillators possesses essential
(nonlinearizable) stiffness nonlinearities, analytical modeling of its dynamics at certain
motion regimes can still be performed.

The theory of resonance processes for multifrequency systems was developed by
Neishtadt (1997), (1999), where capture into and scattering on the resonance were
discussed by considering them as random events and computing probabilities of cap-
ture and probabilistic distributions of the scattering amplitudes. By assuming small
perturbations (e.g., weak nonlinearities), action-angle formulations and the averaging
theorem were applied to provide analytical asymptotic validity of the approximations.
Also, by introducing a mapping (called the in-out function) from a state of resonance
capture to that of escape, glued averaging approximation was utilized to analytically
describe motions when they are away from, captured into, and escaped from the
resonance manifold.

Similar formulations were considered in Vakakis and Gendelman (2001), where the
slow-flow equations were established also by the complexification/averaging technique.
This method does not necessarily require the perturbations to be small, although
it is similar to the (classical) averaging method; once the proper ansatz regarding
the frequency content of the response is included, it is numerically verified that the
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Fig. 13. Contours of percentages of input energy eventually dissipated at the NES for the case
when both oscillators are excited by impulses: superimposed are contours of high- and low-frequency
branches of the undamped system (solid line: in phase, dashed line: out of phase branches); special
curves in high- and low-frequency branches are denoted by (©) and (Δ), respectively.

slow-flow model provides good approximation of the original dynamics and the entire
resonance processes as well.

In this study, we show that even though the system of coupled oscillators possesses
essential (nonlinearizable) stiffness nonlinearities, analytical modeling of its dynamics
at certain motion regimes can still be performed by means of the multifrequency
complexification/averaging method.

Focusing first on the fundamental energy pumping mechanism, we again consider
system (1) and introduce the new complex variables

ψ1(t) = v̇(t) + jv(t) ≡ ϕ1(t) e
jt,

ψ2(t) = ẏ(t) + jy(t) ≡ ϕ2(t) e
jt,

(4)

where ϕi(t), i = 1, 2, represent slowly varying complex amplitudes and j = (−1)1/2.
By writing (4) we introduce a partition of the dynamics into slow and fast components
and seek slowly modulated fast oscillations at frequency ω = ω0 = 1. As discussed
previously, fundamental energy pumping is associated with this type of motion in
the neighborhood of branch S11+ in the frequency-energy plot of the undamped
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dynamics. Expressing the system responses in terms of the new complex variables,
y = (ψ2 − ψ∗

2)/2j, v = (ψ1 − ψ∗
1)/2j (where (∗) denotes complex conjugate); substi-

tuting into (1) with P (t) = 0; and averaging over the fast frequency, we derive a set
of approximate slow modulation equations that govern the evolutions of the complex
amplitudes,

ϕ̇1 +

(
j

2

)
ϕ1 +

(
λ

2

)
(ϕ1 − ϕ2) −

(
3jC

8ε

)
|ϕ1 − ϕ2|2 (ϕ1 − ϕ2) = 0,

ϕ̇2 −
(
ελ

2

)
(ϕ1 − ϕ2) −

(
3jC

8

)
|ϕ2 − ϕ1|2 (ϕ2 − ϕ1) +

(
ελ

2

)
ϕ2 = 0.

(5)

For the sake of simplicity, we have assumed that λ1 = λ2 = λ in (1). To derive
a set of real modulation equations, we express the complex amplitudes in polar form,
ϕi(t) = ai(t) e

jβi(t), i = 1, 2, substitute into (5), and separately set equal to zero the
real and imaginary parts. We then reduce (5) to an autonomous set of equations
that govern the slow evolution of the two amplitudes a1(t) and a2(t) and the phase
difference φ(t) = β2(t) − β1(t):
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(6)

This reduced dynamical system governs the slow-flow dynamics of fundamental energy
pumping. In particular, 1:1 resonance capture (the underlying dynamical mechanism
of fundamental energy pumping) is associated with non–time-like behavior of the phase
variable φ or, equivalently, failure of the averaging theorem in the slow-flow (6). In-
deed, when φ exhibits time-like, nonoscillatory behavior, one can apply the averaging
theorem over φ and prove that the amplitudes a1 and a2 decay exponentially with
time and that no significant energy exchanges (energy pumping) can take place. In
Figure 14(a) we depict 1:1 resonance capture in the slow-flow phase plane (φ̇, φ) for
system (6) with ε = 0.05, λ = 0.01, C = 1, ω0 = 1 and initial conditions a1(0) = 0.01,
a2(0) = 0.24, φ(0) = 0. The oscillatory behavior of the phase variable in the neighbor-
hood of the in-phase limit φ = 0+ indicates 1:1 resonance capture (on branch S11+
of the frequency-energy plot of Figure 1) and leads to energy pumping from the linear
oscillator to the NES, as evidenced by the build-up of amplitude a1 (cf. Figure 14(b)).
Escape from resonance capture is associated with time-like behavior of φ and rapid
decrease of the amplitudes a1 and a2 (as predicted by averaging in (6)). A compar-
ison of the analytical approximation (4)–(6) and direct numerical simulation for the
previous initial conditions confirms the accuracy of the analysis.

Considering subharmonic energy pumping, we will focus on energy pumping in
the neighborhood of tongue S13− (similar analysis can be applied for other orders of
subharmonic resonance captures). Due to the fact that motions in the neighborhood
of S13− possess two main frequency components, at frequencies 1 and 1/3, we express
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Fig. 14. Fundamental energy pumping: (a) 1:1 resonance capture in the slow flow, (b) ampli-
tude modulations, (c) comparison between analytical approximation (dashed line) and direct numer-
ical simulation (solid line) for v(t), (d) transient responses of the system.
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the responses of system (1) as

y(t) = y1(t) + y1/3(t), v(t) = v1(t) + v1/3(t),(7)

where the indices represent the frequency of each term. As in the previous case, we
introduce new complex variables,

ψ1(t) = ẏ1(t) + jωy1(t) ≡ ϕ1(t) e
jωt, ψ3(t) = ẏ1/3(t) + j(ω/3)y1/3(t) ≡ ϕ3(t) e

j(ω/3)t,

ψ2(t) = v̇1(t) + jωv1(t) ≡ ϕ2(t) e
jωt, ψ4(t) = v̇1/3(t) + j(ω/3)v1/3(t) ≡ ϕ4(t) e

j(ω/3)t,

(8)

where ϕi(t) represent slowly varying modulations of fast oscillations of frequencies 1
or 1/3. Expressing the system responses in terms of the new complex variables,
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2
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,(9)

substituting into (1) with P (t) = 0, and averaging over each of the two fast frequencies,
we derive the slow modulation equations that govern the evolutions of the complex
amplitudes,

ϕ̇1 +

(
jω

2
− j

2ω

)
ϕ1 +

(
ελ

2

)
(2ϕ1 − ϕ2) +

(
jC

8ω3

){
3
[
9ϕ3

3 − 27ϕ2
3ϕ4 − 9ϕ3

4

− (ϕ1 − ϕ2) |ϕ1 − ϕ2|2 + 27ϕ3ϕ
2
4 − 18 (ϕ1 − ϕ2) |ϕ3 − ϕ4|2

]}
= 0,

ϕ̇3 +

(
jω

6
− 3j

2ω

)
ϕ3 +

(
ελ

2

)
(2ϕ3 − ϕ4)

+

(
jC

8ω3

){
−9

[
ϕ1

(
2 (ϕ3 − ϕ4) (ϕ∗

1 − ϕ2) − 3 (ϕ∗
3 − ϕ∗

4)
2
)

+ ϕ2

(
2 (ϕ4 − ϕ3) (ϕ∗

1 − ϕ2) + 3 (ϕ∗
3 − ϕ∗

4)
2
)

+ 9 (ϕ3 − ϕ4) |ϕ3 − ϕ4|2
]}

= 0,

ϕ̇2 +

(
jω

2

)
ϕ2 +

(
λ

2

)
(ϕ2 − ϕ1) −

(
jC

ε8ω3

){
3
[
9ϕ3

3 − 27ϕ2
3ϕ4 − 9ϕ3

4

− (ϕ1 − ϕ2) |ϕ1 − ϕ2|2 + 27ϕ3ϕ
2
4 − 18 (ϕ1 − ϕ2) |ϕ3 − ϕ4|2

]}
= 0,

ϕ̇4 +

(
jω

6

)
ϕ4 +

(
λ

2

)
(ϕ4 − ϕ3)

−
(

jC

ε8ω3

){
−9

[
ϕ1

(
2 (ϕ3 − ϕ4) (ϕ∗

1 − ϕ2) − 3 (ϕ∗
3 − ϕ∗

4)
2
)

+ ϕ2

(
2 (ϕ4 − ϕ3) (ϕ∗

1 − ϕ2) + 3 (ϕ∗
3 − ϕ∗

4)
2
)

+ 9 (ϕ3 − ϕ4) |ϕ3 − ϕ4|2
]}

= 0,

(10)

where again it was assumed that λ1 = λ2 = λ in (1). To derive a set of real modulation
equations, we express the complex amplitudes in polar forms ϕi(t) = ai(t) e

jβi(t)

and derive an autonomous set of seven slow-flow modulation equations that govern
the amplitudes ai = |ϕi|, i = 1, . . . , 4, and the phase differences φ12 = β1 − β2,
φ13 = β1 − 3β3, and φ14 = β1 − 3β4.
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The equations of the autonomous slow flow will not be reproduced here, but it
suffices to state that they are of the form
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φ̇13 + f13(a) + g13(a, φ) = 0,

φ̇14 + f14(a) + g14(a, φ; ε) = 0,

(11)

where the functions gi and gij are 2π-periodic in terms of the phase angles φ =
(φ12 φ13 φ14)

T and by a we denote the (4 × 1) vector of the amplitudes ai. In this
case (as for the fundamental energy pumping mechanism), strong energy transfer
between the linear and nonlinear oscillators can occur only when a subset of phase
angles φij does not exhibit time-like behavior; that is, when some phase angles possess
oscillatory (nonmonotonic) behavior with respect to time. This can be seen from the
structure of the slow flow (11) where, if the phase angles exhibit time-like behavior and
the functions gi are small, averaging over these phase angles can be performed to show
that the amplitudes ai decrease monotonically with time; in that case no significant
energy exchanges between the linear and nonlinear components of the system can take
place. It follows that subharmonic energy pumping is associated with non–time-like
behavior of (at least) a subset of the slow phase angles φij in (11).

In Figure 15 we present the results of the numerical integration of the slow-flow
(10)–(11) for the system with parameters ε = 0.05, λ = 0.03, C = 1, ω0 = 1. The
motion is initiated on branch S13− with initial conditions v(0) = y(0) = 0 and
v̇(0) = 0.01499, ẏ(0) = −0.059443 (it corresponds exactly to the simulation of Fig-
ure 5). The corresponding initial conditions and the value of the frequency ω of
the reduced slow-flow model were computed by minimizing the difference between
the analytical and numerical responses of the system in the interval t ∈ [0, 100]:
ϕ1(0) = −0.0577, ϕ2(0) = 0.0016, ϕ3(0) = −0.0017, ϕ4(0) = 0.0134, and ω = 1.0073.
This result indicates that, initially, nearly all energy is stored in the fundamental fre-
quency component of the linear oscillator, with the remainder confined to the subhar-
monic frequency component of the NES. In Figures 15(a)–(b) we depict the temporal
evolution of the amplitudes ai, from which we conclude that subharmonic energy
pumping in the system is mainly realized through energy transfer from the (fun-
damental) component at frequency ω of the linear oscillator, to the (subharmonic)
component at frequency ω/3 of the NES (as judged from the build-up of the ampli-
tude a3 and the diminishing of a1). A smaller amount of energy is transferred from
the fundamental frequency component of the linear oscillator to the corresponding
fundamental component of the NES (as judged by the evolution of the amplitude a2).

These conclusions are supported by the plots of Figures 15(c)–(e), where the
temporal evolutions of the phase differences φ12 = β1 − β2, φ13 = β1 − 3β3, and
φ14 = β1 − 3β4 are shown. Absence of strong energy exchange between the funda-
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Fig. 15. Subharmonic energy pumping: (a), (b) amplitude modulations; (c), (d), (e) phase
modulations.
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Fig. 16. Transient response of NES for 1:3 subharmonic energy pumping: comparison between
analytical approximation (dashed line) and direct numerical simulation (solid line).

mental and subharmonic frequency components of the linear oscillator is associated
with the time-like behavior of the phase difference φ13, whereas energy pumping from
the fundamental component of the linear oscillator to the two frequency components
of the NES is associated with oscillatory early-time behavior of the phase differences
φ12 and φ14. Oscillatory responses of φ12 and φ14 correspond to 1:1 and 1:3 res-
onance captures, respectively, between the corresponding frequency components of
the linear oscillator and the NES; as time increases, time-like responses of the phase
variables are associated with escapes from the corresponding regimes of resonance
capture. In addition, we note that the oscillations of the angles φ12 and φ14 take
place in the neighborhood of π, which confirms that, in this particular example, sub-
harmonic energy pumping is activated by the excitation of an antiphase branch of
periodic solutions (such as S13−). The analytical results are in full agreement with
the wavelet transforms depicted in Figures 5(c)–(d), where the response of the lin-
ear oscillator possesses a strong frequency component at the fundamental frequency
ω0 = 1, whereas the NES oscillates mainly at frequency ω0/3.

The accuracy of the analytical model (10)–(11) in capturing the dynamics of
subharmonic energy pumping is confirmed by the plot depicted in Figure 16, where
the analytical response of the NES is found to be in satisfactory agreement with
the numerical response obtained by the direct simulation of (1). It is interesting to
note that the reduced analytical model is capable of accurately modeling the strongly
nonlinear, damped, transient response of the NES in the resonance capture region.
The analytical model fails, however, during the escape from resonance capture since
the ansatz (7)–(8) is not valid in that regime of the motion. Indeed, after escape
from resonance capture, the motion approximately evolves along the backbone curve
of the frequency-energy plot; eventually S15 is reached, the motion of which cannot
be described by the ansatz (7)–(8), thereby leading to the failure of the analytical
model.

The results presented so far provide a measure of the complicated dynamics en-
countered in the two-DOF system under consideration. It is logical to assume that by
increasing the degrees of freedom of the system the dynamics will be even more com-
plex. That this is indeed the case is evidenced by the numerical simulations presented
in the next section, where resonance capture cascades are reported in multi-degree-
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of-freedom (MDOF) linear systems with essentially nonlinear end attachments. By
resonance capture cascades we denote complicated sudden transitions between dif-
ferent branches of solutions (modes), which are accompanied by sudden changes in
the frequency content of the system responses. As shown in previous works (Vakakis
et al. (2003)), such multifrequency transitions can drastically enhance energy pumping
from the linear system to the essentially nonlinear attachment.

5. Increasing the DOF of the linear system: Resonance capture cas-
cades. To provide an indication of the complex multifrequency transitions that can
take place in coupled oscillators with essentially nonlinear local attachments, we now
increase the number of DOF of the linear subsystem to two and examine the system

ÿ2 + ω2
0y2 + λ2ẏ2 + d(y2 − y1) = 0,

ÿ1 + ω2
0y1 + λ1ẏ1 + λ3(ẏ1 − v̇) + d(y1 − y2) + C(y1 − v)3 = 0,

εv̈ + λ3(v̇ − ẏ1) + C(v − y1)
3 = 0.

(12)

The system parameters are chosen as ω2
0 = 136.9, λ1 = λ2 = 0.155, λ3 = 0.544,

d = 1.2× 103, ε = 1.8, and C = 1.63× 107, with linear natural frequencies ω1 = 11.68
and ω2 = 50.14.

In Figure 17(a) we depict the relative response v(t) − y1(t) of the system for
initial displacements y1(0) = 0.01, y2(0) = v(0) = −0.01 and zero initial velocities.
The multifrequency content of the transient response is evident and is quantified in
Figure 17(b), where the instantaneous frequency of the time series is computed by
applying the numerical Hilbert transform (Huang et al. (1998)).

As energy decreases due to damping dissipation, a series of eight resonance cap-
ture cascades is observed, i.e., of transient resonances of the NES with a number of
nonlinear modes of the system. The complexity of the nonlinear dynamics of the
system is evidenced by the fact that of these eight captures only two (labeled IV
and VII in Figure 17(b)) involve the linearized in-phase and out-of-phase modes of
the linear oscillator, with the remaining involving essentially nonlinear interactions
of the NES with different low- and high-frequency nonlinear modes of the system.
During each resonance capture the NES passively absorbs energy from the nonlinear
mode involved, before escape from resonance capture occurs and the NES transiently
resonates with the next mode in the series. In essence, the NES acts as a passive,
broadband boundary controller, absorbing, confining, and eliminating vibration energy
from the linear oscillator. Similar types of resonance capture cascades were reported
in previous works where grounded NESs, weakly coupled to the linear structure, were
examined (Vakakis et al. (2003)). The capacity of the NES to resonantly interact
with linear and nonlinear modes in different frequency ranges is due to its essential
nonlinearity (i.e., the absence of a linear term in the nonlinear stiffness characteristic),
which precludes any preferential resonant frequency.

Finally, we note that the complex nonlinear transitions between modes depicted
in Figure 17 can be interpreted and understood by studying the topology and bifurca-
tions of periodic orbits of the corresponding undamped system. As shown in previous
sections, the weakly damped, forced dynamics is expected to depend on the periodic
dynamics of the underlying undamped system.

6. Concluding remarks. Even though the systems considered in this work pos-
sess rather simple configurations and small numbers of DOF, they exhibit interesting
passive energy transfer properties. Indeed, under rather general conditions, it is pos-
sible to transfer passively, irreversibly, and robustly a significant portion of the energy
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Fig. 17. Resonance capture cascades in the 2-DOF system with nonlinear end attachment:
(a) relative transient response v(t) − y1(t); (b) instantaneous frequency (resonance captures indi-
cated).

of the linear oscillator to the nonlinear attachment; confine it; and passively dissipate
it locally without “radiating back” the transferred energy to the primary system.
Moreover, this nonlinear energy pumping occurs over low- as well as high-frequency
ranges, and involves broadband disturbances. This last feature clearly distinguishes
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the present configuration from previous classical vibration absorber designs, where
energy absorption was limited to narrowband disturbances, and the absorbers were
effective only in the vicinity of a single frequency.

Three mechanisms for energy pumping were discussed in this work. Two of them
rely on resonance capture of the damped dynamics on either fundamental or sub-
harmonic resonant manifolds in phase space. Viewed from a different perspective, in
these cases irreversible energy transfer from the linear oscillator to the nonlinear at-
tachment takes place when the dynamics is restricted to a damped nonlinear normal
mode invariant manifold, whose mode shape becomes strongly localized to the nonlin-
ear attachment as the energy deceases due to damping dissipation. A third mechanism
relies on nonlinear beats to initiate (but not cause) strong energy pumping; these beats
act as “bridging orbits” (or “catalysts”) for facilitating energy transfer by activating
either one of the previously mentioned mechanisms. It is interesting that all these
phenomena occur despite the lightness of the nonlinear attachment compared to the
linear oscillator and the complete absence of any active (energy source) element in
the system.

The considered nonlinear attachment holds promise as an efficient, robust, and
modular passive absorbing device for eliminating undesired broadband disturbances
of small- or large-scale structures. As such it can find application in diverse problems
in engineering and physics, including vibration and shock isolation of machines and
structures, seismic mitigation, packaging, and instability (such as limit cycle oscilla-
tion or flutter) suppression.
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