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Modal testing and analysis is well-established for linear systems. The objective of this paper

is to progress toward a practical experimental modal analysis (EMA) methodology of

nonlinear mechanical structures. In this context, nonlinear normal modes (NNMs) offer a

solid theoretical and mathematical tool for interpreting a wide class of nonlinear dynamical

normal modes (LNMs). A nonlinear extension of force appropriation techniques is

developed in this study in order to isolate one single NNM during the experiments. With

the help of time–frequency analysis, the energy dependence of NNM modal curves and

their frequencies of oscillation are then extracted from the time series. The proposed

methodology is demonstrated using two numerical benchmarks, a two-degree-of-freedom

system and a planar cantilever beam with a cubic spring at its free end.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the virtual prototyping era, dynamic testing remains an important step of the design of engineering structures,
because the accuracy of finite element predictions can be assessed [1]. In this context, experimental modal analysis (EMA)
is indubitably the most popular approach and extracts the modal parameters (i.e., the mode shapes, natural frequencies
and damping ratios). The popularity of EMA stems from its great generality; modal parameters can describe the behavior of
a system for any input type and any range of the input.

The techniques available today for EMA are really quite sophisticated and advanced: eigensystem realization algorithm
[2], stochastic subspace identification method [3], polyreference least-squares complex frequency-domain method [4], to
name a few. Modal identification of complex industrial structures with high modal density and large modal overlap is now
within reach. Unification of the theoretical development of EMA algorithms was attempted in [5,6], which is another sign
of the maturity of this research field.

While the common practice is to assume linear behavior, nonlinearity is a frequent occurrence in engineering applications
and can drastically alter their behavior. For instance, in an aircraft, besides nonlinear fluid–structure interaction, typical
nonlinearities include backlash and friction in control surfaces and joints, hardening nonlinearities in engine-to-pylon
connections, and saturation effects in hydraulic actuators [7]. Satellites are other examples of aerospace applications where
nonlinearity may significantly impact the dynamic behavior [8,9].
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Finite element model

¨M x (t)+ Kx (t) + fnl {x (t)} = 0
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Fig. 1. Theoretical and experimental nonlinear modal analysis.

M. Peeters et al. / Journal of Sound and Vibration 330 (2011) 486–509 487
As reported in [10], a large body of literature exists regarding dynamic testing and identification of nonlinear structures,
but very little work addresses nonlinear phenomena during modal survey tests. Interesting contributions in this context
are [11–13]. The force appropriation of nonlinear systems (FANS) method extends linear force appropriation to nonlinear
structures [11]. A multi-exciter force pattern that includes higher harmonic terms is used to counteract nonlinear coupling
terms, which prevent any response other than the linear normal mode of interest. The nonlinear resonant decay (NLRD)
method applies a burst of a sine wave at the undamped natural frequency of a linear mode and enables small groups of
modes coupled by nonlinear forces to be excited [12]. A nonlinear curve fit in modal space is then carried out using the
restoring force surface (RFS) method. Another test strategy that identifies nonlinearities in modal space using the RFS
method is discussed in [13]. Alternatively, a nonlinear modal identification approach based on the single nonlinear
resonant mode concept [14,15] and on a first-order frequency-domain approximation is proposed and applied in [16–19].
The forced frequency responses are expressed as a combination of a resonant nonlinear mode response and of linear
contributions from the remaining modes. By a curve-fitting procedure, the amplitude-dependent nonlinear modal
parameters may be identified from experimental responses close to the resonance.

In this paper, an attempt is made to extend experimental modal analysis to a practical nonlinear analog using the nonlinear
normal mode (NNM) theory. NNMs offer a solid and rigorous mathematical tool for analyzing nonlinear oscillations, yet they
have a clear conceptual relation to the classical linear normal modes (LNMs) [20,21]. Another appealing feature of NNMs is that
they are capable of handling strong structural nonlinearity. Following the philosophy of force appropriation, the proposed
method excites the NNMs of interest, one at a time. To this end, the phase lag quadrature criterion is generalized to nonlinear
structures in order to locate single-NNM responses. Thanks to the invariance principle (i.e., if the motion is initiated on one
specific NNM, the remaining NNMs remain quiescent for all time), the energy dependence of the NNM modal curves and their
frequencies of oscillation can be extracted directly from experimental time data.

When used in conjunction with the numerical computation of the NNMs introduced in [22], the approach described
herein leads to an integrated methodology for modal analysis of nonlinear vibrating structures (see Fig. 1). This
methodology can, for instance, be used for validating dynamic models, as is routinely carried out for aerospace structures
(e.g., ground vibration testing of aircrafts [23,24]).

The present paper is organized as follows. In the next section, the definition of an NNM is briefly recalled. The
theoretical modal analysis consisting of the numerical NNM computation from a finite element model is also introduced. In
Section 3, the proposed procedure for nonlinear EMA is then presented. The different concepts are illustrated using a
nonlinear two-degree-of-freedom (2DOF) system. Finally in Section 4, the approach is demonstrated and assessed using
numerical experiments carried out on a nonlinear beam.
2. Theoretical modal analysis using nonlinear normal modes

A detailed description of NNMs and of their fundamental properties (e.g., frequency-energy dependence, bifurcations
and stability) is given in [20,21]. For completeness, the definition of an NNM is briefly reviewed in this section.

The free response of discrete conservative mechanical systems with n degrees of freedom (DOFs) is considered,
assuming that continuous systems (e.g., beams, shells or plates) have been spatially discretized using the finite element
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method. The general equations of motion are

M €xðtÞþKxðtÞþfnlfxðtÞg ¼ 0 (1)

where M is the mass matrix; K is the stiffness matrix; x, _x and €x are the displacement, velocity and acceleration vectors,
respectively; fnl is the nonlinear restoring force vector, including stiffness terms only.

In the present study, as in [21], an extension of Rosenberg’s definition [25–27] is considered. An NNM motion is
therefore defined as a (non-necessarily synchronous) periodic motion of the undamped mechanical system (1). This NNM
definition may appear restrictive in case of nonconservative systems. However, as shown in this paper and in [21], the
damped dynamics can often be interpreted based on the topological structure of the NNMs of the underlying conservative
system.

As evidenced in [22], this extended definition is particularly attractive when targeting a numerical computation of the
NNMs. The approach followed here for the theoretical modal analysis consists in the numerical computation of undamped
NNMs of nonlinear structures discretized by finite elements and governed by (1). The numerical method for the NNM
computation relies on two main techniques, namely a shooting procedure and a method for the continuation of periodic
solutions (i.e., NNM motions). A detailed description of the numerical algorithm is given in [22]. The NNMs are then
obtained accurately, even in strongly nonlinear regimes, and in a fairly automatic manner.

One typical dynamical feature of nonlinear systems is the frequency-energy dependence of their oscillations. As a result,
the modal curves and frequencies of NNMs depend on the total energy in the system. For illustration, a 2DOF system with a
cubic stiffness is considered in this paper. The conservative system is depicted in Fig. 2, and its motion is governed by the
equations

€x1þð2x1�x2Þþ0:5x3
1 ¼ 0

€x2þð2x2�x1Þ ¼ 0 (2)

Fig. 3 shows the time series, the configuration space, the power spectral density (PSD) and two-dimensional projections of
the phase space of three in-phase NNM motions of increasing energies. The NNM motion at low energy resembles that of
the in-phase LNM of the underlying linear system. The modal curve (i.e., the NNM motion in the configuration space) is a
straight line, there is one main harmonic component in the system response, and the motion in phase space is an ellipse.
For the motion at moderate energy, the NNM is now a curve, and the presence of two harmonic components can be
detected in the PSD. A clear departure from the LNM (harmonic) motion is observed. At high energy, this is even more
enhanced. For instance, the motion in phase space is a strongly deformed ellipse. When moving from the low- to
the high-energy NNM, the period of the motion decreases from 6.28 to 4.755 s. This is due to the hardening characteristic of
the cubic spring.

Due to frequency-energy dependence, the representation of NNMs in a frequency-energy plot (FEP) is particularly
convenient. An NNM motion is represented by a point in the FEP, which is drawn at the fundamental frequency of the
periodic motion and at the conserved total energy during the motion, which is the sum of the potential and kinetic
energies. A branch, represented by a solid line, is a family of NNM motions possessing the same qualitative features.

For illustration, the conservative 2DOF system (2) is considered. The underlying linear system possesses two (in-phase
and out-of-phase) LNMs. The FEP, computed using the numerical algorithm, is shown in Fig. 4. NNM motions in the
configuration space (i.e., the modal curves) are inset. The backbone of the plot is formed by two branches, which represent
in-phase (S 11+) and out-of-phase (S 11�) synchronous NNMs. The indices in the notations are used to mention that the
two masses vibrate with the same dominant frequency. These fundamental NNMs are the direct nonlinear extension of the
corresponding LNMs. The FEP clearly shows that the nonlinear modal parameters, namely the modal curves and
the corresponding frequencies of oscillation, have a strong dependence on the total energy in the system. The frequency of
both the in-phase and out-of-phase NNMs increases with the energy level, which reveals the hardening characteristic
of the cubic stiffness nonlinearity in the system.

Additional branches corresponding to internally resonant NNMs, as opposed to fundamental NNMs, bifurcate from the
backbone at higher energy as evidenced in [21]. However, these modal interactions occurring through internal resonances
are beyond the scope of the present study.
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Fig. 2. Schematic representation of the 2DOF system example.
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Fig. 4. Frequency-energy plot of the 2DOF system (2) computed with the numerical method. NNM motions depicted in the configuration space are inset.

The horizontal and vertical axes in these plots are the displacements of the first and second DOFs, respectively.
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3. Experimental modal analysis using nonlinear normal modes

There are two classical linear approaches for EMA. Phase separation methods excite several modes at once using either
broadband excitation (e.g., hammer impact and random excitation) or swept-sine excitation covering the frequency range
of interest. Phase resonance methods excite one mode at a time using multi-point sine excitation at the corresponding
natural frequency [28]. A careful selection of the shaker locations is required to induce single-mode behavior. This process
is also known as normal-mode tuning or force appropriation [29].
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Phase resonance methods have been used for decades, particularly in the aerospace industry (e.g., for ground vibration
testing of aircrafts [30] and modal survey of satellites [31,32]). They provide a very accurate identification of the modal
parameters, but they are time-consuming. In order to reduce the testing time, phase separation methods are now used in
conjunction with phase resonance methods [23,24]; these latter are reserved for modes that need a special attention
(e.g., closely spaced modes and important modes for flutter computations).
3.1. Proposed methodology

In this paper, an attempt is made to extend EMA to a practical nonlinear analog using the NNM theory. Realizing that
the general motion of a nonlinear system cannot be expressed as a superposition of NNMs, it is not clear how individual
NNMs can be extracted using phase separation methods. This is why our focus is on the extension of phase resonance
testing to nonlinear structures.

The present section introduces a two-step approach that extracts the NNM modal curves and their frequencies of
oscillation directly from experimental data. This method is summarized in Fig. 5.

First, the method consists in exciting the system to induce single-NNM behavior at a specific energy level. To this end,
an extension of force appropriation to nonlinear systems is developed. In particular, the phase lag of the response with
respect to the applied force is used as an indicator to assess the quality of the appropriation. This first step, referred to as
NNM force appropriation, is represented in the upper part of Fig. 5.

The second step turns off the excitation to track the energy dependence of the NNM of interest using the free damped
response resulting from the appropriated NNM motion. A schematic representation is presented in the lower part of Fig. 5.
During this NNM free decay identification, the frequency-energy dependence may be extracted using time–frequency
analysis. More details on the two steps of the procedure are given in the next sections.
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The methodology therefore consists in extracting one NNM at a time from the time series by means of this two-step
procedure. In order to relate the forced and free responses of the damped system to the NNMs of the underlying
conservative (i.e., undamped and unforced) system, the approach relies on three fundamental properties:
1.
 Forced responses of nonlinear systems at resonance occur in the neighborhood of NNMs [20].

2.
 According to the invariance property, motions that start out in the NNM manifold remain in it for all time [33].

3.
 For weak to moderate damping, its effect on the transient dynamics may be considered to be purely parasitic. The

damped invariant manifold can therefore be approximated by the undamped invariant manifold. The free damped
dynamics closely follows the NNM of the underlying undamped system [21,34,35].

From a practical viewpoint, the overall procedure for nonlinear EMA may be viewed as forced vibration testing where
the appropriate force is applied as a burst excitation through several exciters for inducing single-NNM decay response. The
philosophy of the resonant decay method [12] is then extended to the identification of NNMs of vibrating structures.

3.2. NNM force appropriation

For linear EMA, the force appropriation method generates appropriate harmonic forces at different locations on the
structure to isolate a single normal mode. The measurement of the single-mode response then allows to extract the
corresponding modal parameters.

Force appropriation is usually performed by adapting the frequency and the amplitude distribution of the multi-point
excitation. According to the phase lag quadrature criterion (also called phase resonance criterion) [28,36], a linear damped
structure vibrates according to one of the normal modes of the underlying conservative system if all degrees of freedom
vibrate synchronously with a phase lag of 901 with respect to the harmonic excitation. Hence, if the phase quadrature
criterion is verified during the experimental testing, a single undamped normal mode is isolated, and the natural frequency
and the mode shape can be identified.

The NNM framework is used herein to extend force appropriation to nonlinear structures in order to isolate and extract
a single NNM at a time. To this end, the forced response of a nonlinear structure with linear viscous damping is considered

M €xðtÞþC _xðtÞþKxðtÞþfnlfxðtÞg ¼ pðtÞ (3)

where p(t) is the external excitation and C is the damping matrix. It is assumed that the nonlinear restoring force contains
only stiffness nonlinearities.

In what follows, the necessary and sufficient conditions for isolating a single NNM are formulated. In this context, the
excitation that induces a single NNM, termed appropriate excitation, is first examined in Section 3.2.1. A generalization of
the phase lag quadrature criterion to nonlinear structures is next introduced in Section 3.2.2. It is important to note that
when an ‘NNM’ is referred to in this paper, it stands for the NNM of the underlying conservative (no damping and no
external force) system (1), i.e., the undamped NNM.

3.2.1. Appropriate excitation

Extracting a given NNM motion xnnm(t) of the underlying conservative system by means of appropriate excitation is
equivalent to assume

xðtÞ ¼ xnnmðtÞ (4)

in the equations of motion of the forced and damped system (3). It leads to

M €xnnmðtÞþC _xnnmðtÞþKxnnmðtÞþfnlfxnnmðtÞg ¼ pnnmðtÞ (5)

where pnnm(t) is the corresponding appropriate excitation.
Because an undamped NNM motion xnnm(t) is defined as a periodic solution of the underlying conservative system, it

follows that

M €xnnmðtÞþKxnnmðtÞþfnlfxnnmðtÞg ¼ 0 (6)

Substituting expression (6) in Eq. (5), the excitation vector achieving a perfect appropriation (i.e., x(t)=xnnm(t)) of the
damped system (3) is given by

pnnmðtÞ ¼ C _xnnmðtÞ (7)

It expresses that the applied excitation has to compensate for the damping terms. This relationship shows that the appropriate
excitation is periodic and has the same frequency components as the corresponding NNM motion (i.e., generally including
multi-harmonic components).

An NNM motion is now expressed as a Fourier cosine series

xnnmðtÞ ¼
X1

k ¼ 1

Xnnm
k cosðkotÞ (8)
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where o is the fundamental pulsation of the NNM motion and Xk is the amplitude vector of the kth harmonic. In this paper,
this type of motion is referred to as monophase NNM motion due to the fact that the displacements of all DOFs reach their
extreme values simultaneously. Regarding the monophase NNM motion (8), the expression of the corresponding
appropriate excitation is given by

pnnmðtÞ ¼ �
X1

k ¼ 1

CXnnm
k kosinðkotÞ (9)

Comparing Eqs. (8) and (9), the excitation of a monophase NNM is thus characterized by a phase lag of 901 of each
harmonic with respect to the displacement response.

For illustration, the 2DOF system represented in Fig. 2 is considered. Linear viscous damping is now taken into account
to model dissipative effects in the structure. The forced response of the damped system is governed by the equations of
motion

€x1þ0:03 _x1þð2x1�x2Þþ0:5x3
1 ¼ p1

€x2þ0:01 _x2þð2x2�x1Þ ¼ p2 (10)

which corresponds to moderate damping and where p1(t) and p2(t) represent the forces applied to this system.
Fig. 6 shows the time series and the configuration space of an undamped in-phase NNM motion at low energy (see point

(a) in Fig. 14). This free motion of the underlying undamped system (2) resembles that of the in-phase LNM. The modal
curve represented in the configuration space is a straight line. The appropriate excitation corresponding to this NNM
motion calculated using expression (7) is depicted in Fig. 7. The steady-state forced response of the damped system (10)
under this appropriate excitation is shown in Fig. 8. The response is in perfect agreement with the undamped and unforced
NNM motion in Fig. 6. The Fourier coefficients of the forced response and of the appropriate excitation are represented in
Fig. 9. There is one main harmonic component in the excitation and in the response: this fundamental frequency
corresponds to the linear natural frequency of the in-phase LNM. A phase lag of 901 is observed between the excitation and
the response. At this low energy level, the nonlinear terms are negligible and the results are therefore consistent with the
linear theory.

Similarly, an undamped in-phase NNM motion at high energy (see point (d) in Fig. 14) is considered. The time series and
the configuration space of this NNM motion are depicted in Fig. 10. The related appropriate excitation is illustrated in
Fig. 11. Fig. 12 shows that the corresponding steady-state forced response of the damped system (10) agrees very well with
the undamped NNM motion of Fig. 10. The Fourier coefficients are presented in Fig. 13. For this strongly nonlinear regime,
multi-harmonic components are observed. In addition to the fundamental frequency, higher harmonic terms are necessary
to induce exactly this high-energy NNM motion. Fig. 13 also reveals the phase lag of 901 of each harmonic of the excitation
with respect to that of the response.

One important feature of the appropriate excitation is that it is energy-dependent. In particular, it is characterized by
the same frequency-energy dependence as the corresponding NNM. As evidenced in (7), both signals possess the same
frequency components. This is illustrated for the 2DOF example in Fig. 14 where the FEP of the in-phase NNM is depicted.
The appropriate excitation and the resulting NNM motion are depicted for four different energy levels. Their Fourier
coefficients are also represented. Clearly, when progressing from low to high energies, the fundamental frequency of the
appropriate excitation increases, which is due to the hardening behavior of the system. In addition, multiple harmonics are
necessary to induce single-NNM behavior.
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3.2.2. Phase lag quadrature criterion for NNM force appropriation

The previous section has demonstrated that nonlinear systems can successfully be forced according to a given NNM
at a specific energy level through force appropriation. Specifically, if the applied force obeys Eq. (7), an NNM can be
isolated. Because limited knowledge of the damping matrix is available in practical applications, a direct application of
Eq. (7) is generally not possible, and one has to resort to an iterative force appropriation. In this context, an indicator
highlighting that the NNM appropriation has effectively been achieved would be particularly useful. This is why the
objective of the present section is to generalize the phase lag quadrature criterion (or phase resonance criterion) to
nonlinear systems.

The forced response of the damped system (3) is examined when it vibrates according to a monophase periodic motion
with a phase lag of 901 of each harmonic with respect to the periodic excitation, i.e.,

xðtÞ ¼
X1

k ¼ 1

XkcosðkotÞ (11)

and

pðtÞ ¼
X1

k ¼ 1

PksinðkotÞ (12)
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As the response is even with respect to the time, the nonlinear restoring forces can be written as a cosine series

fnlðxðtÞÞ ¼
X1

k ¼ 1

Fnl,kcosðkotÞ (13)

where Fnl,k=Fnl,k(Xr) is a function of the harmonic coefficients Xr (r¼ 1, . . . ,1).
In addition, the velocity and the acceleration vectors are computed by time differentiation

_xðtÞ ¼�
X1

k ¼ 1

koXksinðkotÞ

€xðtÞ ¼�
X1

k ¼ 1

k2o2XkcosðkotÞ (14)
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By inserting all these expressions into the equations of motion (3), we obtain

�M
X1

k ¼ 1

k2o2XkcosðkotÞ�C
X1

k ¼ 1

koXksinðkotÞþK
X1

k ¼ 1

XkcosðkotÞþ
X1

k ¼ 1

Fnl,kcosðkotÞ ¼
X1

k ¼ 1

PksinðkotÞ (15)

By balancing the coefficients of respective harmonics, it follows that

�k2o2MXkþKXkþFnl,kðXrÞ ¼ 0

�koCXk ¼ Pk (16)

for k¼ 1, . . . ,1. So, the external force is given by

pðtÞ ¼
X1

k ¼ 1

PksinðkotÞ ¼�
X1

k ¼ 1

koCXksinðkotÞ ¼ C _xðtÞ (17)

and the periodic response x(t) is a solution of the underlying conservative system (1). The response x(t) is therefore an
undamped NNM motion of the system: the NNM force appropriation is realized.

In conclusion, the phase lag quadrature criterion, valid for linear systems, can be generalized to monophase NNM motions of

nonlinear structures, where the phase lag is defined with respect to each harmonic of the monophase signals.
In other words, if the response (in terms of displacements or accelerations) across the structure is a monophase periodic

motion in quadrature with the excitation, the structure vibrates according to a single NNM of the underlying conservative
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system. The phase lag of the generated monophase excitation with respect to the response can thus be used as an indicator
of the NNM appropriation.

No direct constructive method exists to determine the appropriate excitation of a given NNM. Such an excitation has to
be derived through successive approximations based on this indicator. For nonlinear structures, in addition to the spatial
distribution of the multi-point excitation, the amplitude distribution of harmonic terms has also to be tuned. In fact, the
frequency-energy dependence of nonlinear systems prevents the direct separation of space and time in the governing
equations of motion, which may complicate the experimental realization of force appropriation from a theoretical
viewpoint.

The phase resonance feature has been highlighted in the previous section. For NNM motions of the damped 2DOF
system, a phase lag of 901 of the displacement response with respect to the monophase appropriate excitation has been
shown (see Figs. 7 and 11). The phase lag quadrature criterion is now used for estimating the quality of the NNM
appropriation. The periodic forced responses of the damped 2DOF system (10) to a harmonic force of frequency o and
amplitude F applied to the first DOF

€x1þ0:03 _x1þð2x1�x2Þþ0:5x3
1 ¼ FsinðotÞ

€x2þ0:01 _x2þð2x2�x1Þ ¼ 0 (18)

are analyzed. An imperfect force appropriation (i.e., p2(t)=0 and purely harmonic excitation) is purposely considered to
investigate the robustness of the proposed procedure.

The nonlinear frequency responses close to the resonance of the in-phase mode were computed using shooting and
continuation methods and are depicted in Fig. 15. They are given in terms of amplitude and phase lag (of the fundamental
frequency component) of the displacement response for increasing forcing amplitudes. It is observed that the phase
quadrature criterion is almost verified close to the forced resonance. For F=0.2 N, i.e., at the point marked by a square, the
phase lag is equal to 901 and 911 for the first and second DOFs, respectively. Fig. 16 represents the time series of the
displacement response for F=0.2 N. Clearly, the displacement is practically monophase with a phase lag around 901 with
respect to the excitation p1ðtÞ ¼ FsinðotÞ.

These results also confirm that forced responses of nonlinear systems at resonance occur in the neighborhood of NNMs.
The backbone of the in-phase undamped NNM (represented in Fig. 4) is expressed in terms of amplitude and is displayed
using a dashed line in Fig. 15. This backbone curve traces the locus of the frequency response peaks. In addition, the
undamped NNM motion corresponding to the same frequency as the point marked by a square in Fig. 15 is shown in
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Fig. 10. An excellent agreement is observed between the time series of Figs. 10 and 16, the mean-square error (MSE) being
around 0.01 percent.

It is interesting that no forcing on the second DOF and no higher harmonic terms were necessary to isolate this high-
energy NNM motion. This is an appealing feature for future practical realizations, at least for structures with relatively
well-separated modes. A constructive method for inducing single-NNM behavior could be to perform successive
adjustments of a stepped sine excitation until the phase lag criterion is verified. This approach is considered in Section 4
where the proposed methodology is demonstrated using simulated experiments of a nonlinear beam.

It is worth pointing out that the phase lag quadrature criterion, demonstrated here for linear viscous damping, still
holds in case of nonlinear damping provided that the damping force fd,nl is an odd function of the velocity only,
i.e., fd,nlð _xÞ ¼�fd,nlð� _xÞ. For monophase motion (11), the damping terms are indeed expressed as a sine series and therefore
have to be compensated by the applied force (12). However, if the stiffness and damping nonlinearities are coupled
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(i.e., fnl ¼ fnlðx, _xÞ), this criterion generally disappears at the same time as the concept of NNMs of the underlying
conservative system.

3.3. NNM free decay identification

By means of nonlinear force appropriation, the forced response of the damped system (3) may be restricted to a single
undamped NNM at a specific energy level. In view of the frequency-energy dependence, successive appropriate excitations
at different force levels have to be considered to provide a complete characterization of the NNM of interest. This may
complicate the experimental realization.

The alternative strategy proposed here consists in exploiting the NNM invariance property. When a high-energy NNM
motion is isolated using force appropriation, the excitation is stopped to obtain the resulting free damped response. Due to
invariance, this free decay response initiated on the undamped NNM remains close to it when energy decreases. Using this
procedure, the energy dependence of the NNM modal curves and the corresponding frequencies of oscillation may easily
be extracted from the single-mode free damped response at each measurement location.

As mentioned above, according to invariance, the resulting free damped response closely follows the corresponding
undamped NNM provided that the damping is moderate [21]. The relation between the two responses is only
phenomenological, nevertheless it enables one to interpret the damped response in terms of NNM motions of the
underlying undamped system. In fact, the damped manifold corresponds to the exact invariant manifold of the damped
dynamics. However, for lightly damped structures, the latter may be approximated by the undamped NNM that can be
viewed as an attractor of the free damped response. For illustration, the 2DOF system (10) is considered. From the
appropriated in-phase undamped NNM motion of Fig. 12, the resulting free damped response when the excitation is
removed is depicted in Fig. 17. Fig. 18 compares the manifold corresponding to the in-phase undamped NNM with the free
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damped response represented in the same projection of phase space. Clearly, it confirms that the free damped response
traces the NNM manifold of the underlying undamped system with very good accuracy when energy decreases.

NNM extraction: As a result, the NNM modal curves may be extracted directly from the single-NNM free decay response.
They are obtained by representing the time series in the configuration space for one oscillation around specific time
instants, associated with different energy levels. It is illustrated in Fig. 19 for the 2DOF system around four distinct instants.

To compute the oscillation frequency of NNMs, time–frequency analysis is considered. Time–frequency analysis is a
versatile tool for analyzing nonstationary signals; i.e., signals whose spectral contents vary with time. It has been
successfully exploited in structural dynamics, e.g., for linear and nonlinear system identification [37–39]. The continuous
wavelet transform (CWT) [40] is used in this paper. In contrast to the Fourier transform, which assumes signal stationarity,
the CWT involves a windowing technique with variable-sized regions. Small time intervals are considered for high-
frequency components, whereas the size of the interval is increased for lower-frequency components. The CWT can
therefore track the temporal evolution of the instantaneous frequencies, which makes it an effective tool for analyzing
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nonlinear signals. Using the CWT, the oscillation frequency of the NNM may then be extracted from the time series of the
free damped response. The usual representation of the transform is to plot its modulus as a function of time and frequency
in a three-dimensional or contour plot. For illustration, the CWT of the free decay response of the 2DOF system represented
in Fig. 17 is shown in Fig. 20. The instantaneous frequency decreases with time, and hence with energy, which reveals the
hardening characteristic of the system.

Reconstructed FEP: When the total energy (i.e., the sum of the kinetic and potential energies) in the system can be
determined, the experimental FEP can be reconstructed in a straightforward manner by substituting the instantaneous
energy in the system for time: (i) the backbone expressing the frequency-energy dependence of the NNM is provided by
the CWT, (ii) the obtained modal curves around different energy levels are superposed in the plot.

For the 2DOF example, the experimental FEP calculated from the time series of the free damped response is represented
in Fig. 21. It displays the experimental backbone determined through the CWT and the experimental modal curves. For
comparison, the theoretical FEP of the undamped NNM computed in Section 2 from the equations of motion is also
illustrated. Except the CWT edge effects, a perfect agreement is obtained between the two FEPs, which shows again that
the undamped NNM is an attractor for the damped trajectories. In the present case, the linear modal damping ratios are
1 and 0.6 percent, but we note that this result holds for higher damping ratios.

In summary, it is thus validated that the free damped dynamics can be interpreted based on the topological structure of
the NNM of the underlying conservative system. As a result, one can fully reconstruct the FEP and extract the modal curves
together with the oscillation frequencies of the NNM using the proposed procedure.
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4. Numerical experiments of a nonlinear beam

The proposed methodology is now demonstrated using simulated experiments of an existing nonlinear beam. This
structure was used as a benchmark for nonlinear system identification during the European action COST F3 [41] and
consists of a cantilever beam with geometrical nonlinearity. The finite element model considered herein is represented in
Fig. 22. The main beam is modeled with 14 beam elements and the thin part with three beam elements. An additional
rotational stiffness is used to model the junction between the two beams. As shown in [42,43], the nonlinear behavior of
the thin beam can be modeled using a grounded cubic spring at the junction of the main and the thin beams. The cubic
term takes the geometrical stiffening effect of the thin part into account. The geometrical and mechanical properties of the
structure are listed in Tables 1 and 2.

4.1. Theoretical modal analysis

The NNMs of the underlying conservative system are computed using the numerical algorithm mentioned previously [22].
The theoretical FEPs of the first and second NNMs are represented in Figs. 23 and 24, respectively. The backbone of the plots
corresponds to fundamental synchronous NNM motions. The NNM frequency undergoes a strong increase with increasing
energy levels, which reveals the hardening behavior of the cubic stiffness nonlinearity. The evolution with energy of the
modal shapes of the main beam, expressed in terms of displacement amplitudes, is also superposed. The FEPs highlight the
presence of two other branches, termed tongues, emanating from the NNM backbone. These tongues reveal the existence of
internal resonances. For instance, a 9:1 internal resonance between the first and third NNMs appears on the tongue in Fig. 23.
As mentioned previously, this type of motions is addressed in [21] and is beyond the scope of this paper.

4.2. Experimental modal analysis

The proposed approach for EMA is now utilized. In this context, Newmark’s numerical time integration scheme [36] is used.
Linear proportional damping is considered to model dissipative forces in the structure. The damping matrix C is given by

C¼ 3� 10�7Kþ5M (19)

which corresponds to moderate damping; for instance, the modal damping ratio is equal to 1.28 percent for the first linear
normal mode. We note that the identified modal damping ratio is much smaller for the existing beam. Nevertheless, damping is
deliberately chosen larger in order to ensure the applicability of the methodology to moderately damped structures.

4.2.1. NNM force appropriation procedure

Imperfect force appropriation: From a practical viewpoint, it is useful to study the quality of imperfect force appropriation
consisting of a single-point mono-harmonic excitation, i.e., using a single shaker with no harmonics of the fundamental
Table 2
Mechanical properties of the nonlinear beam.

Young’s modulus (N/m2) Density (kg/m3) Nonlinear coeff. knl (N/m3)

2.05�1011 7800 8�109

Table 1
Geometrical properties of the nonlinear beam.

Length (m) Width (m) Thickness (m)

Main beam 0.7 0.014 0.014

Thin beam part 0.04 0.014 0.0005

knl

kr

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 22. Finite element model of the nonlinear beam.
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frequency. The harmonic force pðtÞ ¼ FsinðotÞ is applied to node 4 of the main beam (see Fig. 22). The nonlinear forced
frequency responses of the damped system close to the first resonance are numerically determined. They are represented in
terms of displacement amplitudes for increasing forcing amplitudes F in Fig. 25. The backbone of the undamped NNM of
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Fig. 25) and the corresponding undamped NNM motion (– – –). (a) Time series of the displacements of the main beam. (b) Motion in the configuration

space composed of the displacements at nodes 10 and 14.
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Fig. 23, expressed in terms of amplitude, is also superposed. Fig. 26 shows the forced damped response close to the resonance
for F=4 N (marked by a square in Fig. 25) and the corresponding undamped NNM motion at the same frequency. Results
similar to those of Section 3.2 are obtained.
�

Fig
the

Fig
resp
The phase lag quadrature criterion is fulfilled close to resonant frequencies.

�
 Forced responses at resonance occur in the neighborhood of NNMs.

�
 Imperfect appropriation can isolate the NNM of interest (the beam has well-separated modes).
These findings also hold for the second beam NNM.
Practical realization of force appropriation: An assumption made throughout this paper is that the forced response at

resonance can be reached (i.e., no instable, quasi-periodic and chaotic motions). Unlike the linear case, nonlinear systems
possess coexisting stable solutions with their own domains of attraction. A procedure relying on stepped sine frequency
response measurements is examined herein to study the practical feasibility of the force appropriation methodology for
nonlinear structures. It gradually changes the frequency of the excitation pðtÞ ¼ FsinðotÞ to track the change of the forced
frequency responses until the NNM force appropriation is achieved.

From the rest position, the structure is forced at the natural frequency of the undamped linear normal mode. After some
transients, steady-state periodic forced response is obtained. Depending on the nonlinearities, the excitation frequency is
then gradually increased or decreased to approach phase resonance. The phase lag indicator is continuously monitored
during this process to assess the quality of the NNM force appropriation. The process is carried out until sufficiently good
approximation of the phase quadrature criterion is achieved. In view of the basins of attraction of the coexisting forced
responses, this procedure needs to adapt the frequency increments carefully. While quite large increments are initially
suitable, smaller changes of the excitation frequency are required near the resonance to remain on the frequency response
branch of interest. This stepped excitation frequency procedure is illustrated in Fig. 27 for a constant force amplitude
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F=4 N. The frequency responses obtained through this sequential process are represented by circles. The evolution of the
phase response is also shown for four specific frequencies: the complex Fourier coefficients of the displacement responses
corresponding to the fundamental frequency are illustrated. Since the excitation force pðtÞ ¼ FsinðotÞ is characterized by a
phase of 901, the NNM force appropriation is achieved when the phase of the displacements tends to 01. This is performed
for a frequency of 43.6 Hz, which corresponds to point (d) in Fig. 27. The imperfect appropriated response of Fig. 26 is then
reached, and the NNM is therefore isolated. The second fundamental NNM may be appropriated in the same way.

4.2.2. NNM free decay identification

Now that an NNM vibrates in isolation, its energy dependence is determined by turning off the excitation and tracking
the single-NNM free damped response. The resulting response at the main beam tip is depicted in Fig. 28. The dynamics
closely follows the corresponding undamped NNM.
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The FEP determined from the numerical experiments and computed through the CWT is illustrated in Fig. 29.
The ridge of the transform provides the corresponding backbone. For comparison, the theoretical FEP computed
from the conservative equations of motion is also represented. Apart from the CWT edge effects, a very good agreement is
obtained between the two backbones. The relative error of the frequency is lower than 0.2 percent for the complete energy
range.

The modal curves extracted from the time series at different energy levels (marked by circles in Fig. 29) are displayed in
Fig. 30. The left plots represent the motions in a two-dimensional projection of the configuration space while the right
plots depict the modal shapes. The theoretical undamped NNM motions are superposed using dashed lines. The theoretical
modal curves and those extracted from the time series agree to the point where the motions cannot be distinguished. The
MSE between the time series is consistently lower than 0.1 percent.

Similar results are obtained for the second NNM. For illustration, the FEPs are depicted in Fig. 31.
5. Conclusion and future work

Realizing that nonlinearity is a frequent occurrence in engineering structures and that linear EMA is of limited
usefulness in this context, the present paper is an attempt to develop nonlinear EMA by targeting the extraction of NNMs
from time series.

Because modal superposition is no longer valid, dynamic testing of nonlinear structures is realized through a nonlinear
phase resonance method, which relies on the extension of the phase lag quadrature criterion. Specifically, if the forced
response across the structure is a monophase periodic motion in quadrature with the excitation, an NNM vibrates in
isolation. Once the NNM appropriation is achieved, the complete frequency-energy dependence of that nonlinear mode can
be identified during the free decay response using time–frequency analysis. Eventually, an experimental FEP for one
specific NNM can be obtained, and the procedure can be applied for all NNMs of interest. To relate the NNMs of the
underlying undamped system to those extracted from the experimental data, the procedure assumes moderately damped
systems possessing elastic nonlinearities.

This two-step methodology paves the way for a practical nonlinear analog of EMA, which may be applied to strongly
nonlinear systems. For instance, it can certainly be a solid basis for extending standard ground vibration testing to
nonlinear aircrafts. Through the combination of EMA with theoretical modal analysis, finite element model updating and
validation of nonlinear structures are also within reach.

The objective of this paper was to lay down the foundations for a rigorous experimental identification of NNMs.
However, several issues still need to be addressed before the methodology can be applied to large-scale, real-life
structures. Unlike LNMs, which are neutrally stable, NNMs can be stable or unstable, which may complicate their practical
realization. NNMs also possess basins of attraction which may shrink or expand along the backbone branch of the FEP.
Sensitivity to measurement noise and uncertainty might therefore render nonlinear force appropriation more challenging
than its linear counterpart. Experimental demonstration of these results is the next logical step and is currently under way
using the existing nonlinear beam [42,43].
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