
Photo Credit: NASA, NanoRacks

CubeSats: 
• From student satellites to interplanetary missions
• OUFTI-1
• QARMAN

Amandine Denis
14 December 2022
AERO0025 – Satellite Engineering



My background
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von Karman Institute for Fluid Dynamics

International Center for Advanced Education and 

Research in Fluid Dynamics

• Post-graduate education

• World unique test facilities

• Consulting and research

• QB50 project

• QARMAN re-entry CubeSat

• DRACO, EARS, ….

→ www.vki.ac.be

For you:
- Master thesis

- Internships
- Master after master



«CubeSats» ?
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CubeSats P-POD

= Space for students !

1. « CubeSats » ?



CubeSats - Specification1. « CubeSats » ?



CubeSats - Deployers

Deployer provides with decoupling from launcher:
- mechanically
- programmatic
- risk (technical, schedule)

1. « CubeSats » ?



1999: Standard issued by CalPoly + Stanford (Prof. Twiggs)

2003: 1st launch (Eurockot, Russia)

2012: 1st deployment from ISS

2014: 1st constellation (PlanetLabs)

Now: 1897 CubeSats launched

? in development

1. « CubeSats » ?



CubeSats – In numbers1. « CubeSats » ? – In numbers
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CubeSats – In numbers1. « CubeSats » ? – In numbers



CubeSats – Not only a standardized size

• Agile development

• Hardware oriented (flatsat)

• Risk accepting

• No/little redundancy

• COTS subsystems widely

available

• (often) protoflight model 

philosophy

… but also a specific development approach: 

1. « CubeSats » ?



CubeSats – A few remarkable projects

Planet (previously Planet Labs):

- Private company, commercial

- Earth imaging, monitoring applications

- 519 3U CubeSats launched

- Launching every 3-4 months

- 3-5 m resolution

- Now imaging the entire Earth’s landmass every day!

1. « CubeSats » ? – A few remarkable examples



Credits: NASA/JPL-Caltech



Credits: NASA/JPL-Caltech

1. « CubeSats » ? – A few remarkable examples



CubeSats – A few remarkable projects

Mars Cube One (MarCO)

- Two 6-U CubeSats

- Launched with NASA InSight mission to Mars (May 2018)

- Navigated to Mars independently

- Communications relay during entry, descent, & landing of Insight (Nov. 2018)

Credits: NASA/JPL-Caltech

1. « CubeSats » ? – A few remarkable examples



CubeSats – A few remarkable projects

M-ARGO

- ESA

- 12U CubeSat

- Deep space

- Small asteroid (NEO)

- Stand alone

- Targeting 2024-2025

1. « CubeSats » ? – A few remarkable examples



1. « CubeSats » ? – A few remarkable examples

• An international project aiming at developing a constellation 
of CubeSats to investigate the Earth Mid/Lower 
Thermosphere

• VKI was project leader and coordinates the work of 50+ 
partners and teams around the world

• A project funded by the European Commission under the FP7 
Framework

➔Constellation of 36 CubeSats deployed into Space:

28 from the 
International Space Station

8 with the 
PSLV indian rocket

+



1. « CubeSats » ? – A few remarkable examples



Amandine Denis (VKI), Xavier Werner (ULiège)
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Decrease size,
Increase interactions!

1. Objectives



→ Hands-on satellite experience for students

Primary Goal

1. Objectives



→ Hands-on satellite experience for students

Primary Goal

Long-term Goal

→ Series of CubeSats for scientific experiments

Granular materialsFormation flying

1. Objectives



Long-term Goal

→ Series of CubeSats for scientific experiments

→ Hands-on satellite experience for students

Primary Goal

Short-term Goal

Orbital Utility For Telecommunication Innovation

1. Objectives
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• Digital-Smart Technology for Amateur Radio  

• Simultaneous data and voice digital transmission

• Complete routing capacity, including roaming

• 3 frequencies and 2 data rates

- VHF: 144 MHz (2m)  4.8 kbit/sec

- UHF: 435 MHz  (70cm) 4.8 kbit/sec

- SHF: 1.2 GHz  (23cm) 4.8 kbit/sec or 128kbit/sec

• Data : 1200 bps  - Voice : 3600 bps

• Open protocol (! AMBE)

• GMSK modulation

2.1 Payloads – D-STAR



• High-performance solar cells (30% GaAs triple junction)

2.1 Payloads – solar cells



• Technology demonstration (…)

• Imaging

• Communications

• Earth remote sensing

• Biology

• Re-entry

• Debris removal

• Security (AIS, ADS-B…)

• Deep Space

• …

Payloads – More and more applications!
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CubeSats = secondary payloads

➔ Orbit imposed by primary payload

➔ Mission analysis 

=

Analyze impact of this imposed orbit

designed for Vega maiden flight

1447 x 354 km, i = 71°

Very demanding!

But finally:

Soyuz VS14

437 x 683 km, i = 98°

More comfortable!

2.2 Orbit and mission analysis



2.2 Orbit and mission analysis
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2.2 Orbit and mission analysis
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2.3 Platform



• Payloads: no specific pointing requirement

• COMM: max 10°/s (avoid signal modulation)

• Mass, volume, and power constraints

Passive control is sufficient!

2.3 Platform – ADCS: requirements



2.3 Platform – ADCS: passive magnetic

A permanent magnet interacts with the geomagnetic 
field, producing a restoring torque, which align satellite 
axis with Earth’s magnetic field.

The spacecraft will oscillate around energy minima

The oscillation are damped out by hysteretic rods.



2.3 Platform – ADCS: orientation



2.3 Platform – ADCS: final design



2.3 Platform – ADCS: flight model
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ADCS – State of the Art

Actuators:

- Magnetorquers
- Reaction wheels

Sensors:
- Magnetometers

- Star trackers

- Sun/Earth sensors
- Gyroscopes

➔ Pointing accuracy << 1°

+ propulsion (cold gas thrusters, pulsed plasma thrusters)



2.3 Platform – COMM: requirements

ITU:



2.3 Platform – COMM: IARU

• All links must be located within the agreed ham band 
specific space allocations

• Coordination process



2.3 Platform – COMM: frequency bands

Uplink: 70-cm band (435 MHz, UHF) 

Downlink: 2-m band (145 MHz, VHF)



2.3 Platform – COMM: 3 channels

• Payload:
D-STAR (GMSK, 4800 bauds)

• TC/TM: 
AX.25 telecommunication protocol:

• simple and standard within the ham community

• 2FSK, 9600 bauds.

• Beacon: 
extreme reliability (Morse code).



ADF 7021
Demod D-STAR
Zone 1 et 2

ADF 7021
Demod AX.25

BEACON

MSP430
Codec
D-STAR

MSP430 OBC
TC/TM
Processing

ADF 7021
Modulation
AX.25  / D-STARRF

RF

RX:
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TX:
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2.3 Platform – COMM: block diagram



2.3 Platform – COMM: low-gain antennas

Two monopole (quarter-wave) antennas : 17 and 50 cm



→ Too short !
(non-radiating parts)

➔Re-dimensionning
➔Impact on MECH

2.3 Platform – COMM: low-gain antennas

Two monopole (quarter-wave) antennas : 17 and 50 cm



2.3 Platform – COMM: propagation



2.3 Platform – COMM: prototypes



2.3 Platform – COMM: flight model



© ISIS

COMM: State of the art

• Mainly VHF & UHF

• S-band 

• X-band (COTS available)

• Limitations: licensing, power, 

ground segment

• Inter-satellites link



COMM: State of the art



2.3 Platform – EPS: requirements

• Defined by other subsystems

• Power needed by client

• Voltage required by hardware

• Influenced by orbit

• Eclipse duration

• Influenced by the mission

• Payload operation

→ Power budget



Power 
Source

Power Storage Unit

Power Conditioning Unit

Users

2.3 Platform – EPS: block diagram



2.3 Platform – EPS: solar cells

GaInP/GaAs/Ge on 
Ge substrate

Triple junction solar 
cells

At 28ºC



2.3 Platform – EPS: solar arrays



Kokam SLB 603870H

2.3 Platform – EPS: 2 Kokam batteries



2.3 Platform – EPS: batteries test



2.3 Platform – EPS: batteries support



2.3 Platform – EPS: conditioning

• Direct energy transfer

• Choice of unregulated bus with three DC/DC 
converters:

• 5 V

• redundant 3,3 V

➔ Design validated by Thales Alenia Space ETCA



Solar cells
protection

Dissipation system

MECH circuit

Battery-charger 
module

MHP ( T, V, I )

Battery protection 
module

5V 3,3 V (A)
3,3 V (B)

MHP protection

2.3 Platform – EPS: engineering model



2.3 Platform – EPS: flight model



EPS: State of the art

• High efficiency solar cells (28-30 % efficiency)

• Li-Ion batteries (200 Wh/kg)

• MPPT: Maximum Power Point Tracking



2.3 Platform – MECH: requirements

CubeSat Design Specification:
“ 2.4.2. All deployables such as booms, antennas, and 
solar panels shall wait to deploy a minimum of 30 
minutes after the CubeSat’s deployment switch(es) are 
activated from P-POD ejection.”

• Antennas are wound around 
a guide before deployement

• Dyneema retention wire is 
used

• Retention wire is melted by 
a thermal knife



© ULg – JL Wertz

2.3 Platform – MECH: flight model
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Antenna – State of the art

• Mostly burned wire and spring material

• Patch antennas for higher frequencies (S, X)

• Inflatable devices under development



I/Os

Texas

Instruments

MSP430

Periodic « heartbeat » signal

2.3 Platform – OBC: hardware

Reliability and simplicity

• One central processor, handles all tasks

• Doubled for redundancy: only one active at a time



2.3 Platform – OBC: software



2.3 Platform – STRU: launch environment



→ accelerations, low frequencies

2.3 Platform – STRU: requirements



→ Engines, wind ; high frequencies

2.3 Platform – STRU: requirements



→ Fairing jettison, stages separation

→ Engines, turbulences

2.3 Platform – STRU: requirements



2.3 Platform – STRU: models vs reality



Modes 1 & 2

2.3 Platform – STRU: models vs reality



2.3 Platform – STRU: electronic cards



STRU – State of the art

• Aluminum

• COTS or homemade structures, very similar

• Composites, 3D printed

• 3U, 6U, 12U and more



2.3 Platform – THER: requirements



2.3 Platform – THER: hot and colds cases



Determination of the frame 
contact resistance: face 6 is 
heated up

Face 1 Face 3

2.3 Platform – THER: measurements



2.3 Platform – THER: measurements



Battery is too 
cold !

2.3 Platform – THER: analysis (cold)



2.3 Platform – THER: analysis (hot)



Hot spot due to dissipation transistor !

2.3 Platform – THER: analysis (hot)



The available surface on the satellite panels is very limited.

 Difficult to control the overall energy balance between the spacecraft and its 
environment.

2.3 Platform – THER: thermal control



Copper angle bracket

Thermal control can be achieved by an appropriate study and design of the conductive 
links within the satellite.

2.3 Platform – THER: conductive links



2.3 Platform – THER: conductive links



2.3 Platform – THER: batteries issue



• Mechanical thermostats

• 2 thermostats per battery, in series

• 7.2°C 23.9°C

• 1 heater per battery 

• 2 x 250mW patch heaters

• 26.3 

• 59.4 x 35.6 mm

Heaters + Thermostats

2.3 Platform – THER: active control



POM spacers

2.3 Platform – THER: tests



THER – State of the art

• Passive means (MLI, coating, cold finger, …)

• Heaters for sensitive equipment



2.3 Platform – Configuration

UHF antenna

Thermal knives

VHF antenna

Pumpkin structure

Solar cells

COMM
Beacon
Batteries
EPS
MAIN OBC
BACKUP OBC (FM430)
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Engineering model → qualification tests
+ Flight model → acceptance tests + Space

Protoflight model → protoflight tests + Space
(= qualification levels with acceptance duration)

2.4 Protoflight model: philosophy



2.4 Protoflight model



• Write, test, and correct 
integration procedures

• Perform integration at

Centre Spatial de Liège (CSL) of ULg

2.4 Protoflight model



© ESA

Tests at ESA/ESTEC thanks to ESA Fly Your Satellite! program

2.4 Protoflight model: TVC



2.4 Protoflight model: TVC



Tests at ESA/ESTEC thanks to 
ESA Fly Your Satellite! program

2.4 Protoflight model: vibration tests 



2.4 Protoflight model: vibration tests 



2.4 Protoflight model: vibration tests 



X-rays at ESA/ESTEC thanks to ESA Fly Your Satellite! program

2.4 Protoflight model: X-rays

EM FM



2.4 Protoflight model: ready for launch!



2.4 Protoflight model: P-POD integration



2.4 Protoflight model: on ASAP-S



Soyuz Flight VS14
Centre Spatial Guyanais, Kourou
25 April 2016

2.4 Protoflight model: Launched!



> 500 Beacon messages received from HAM operators

2.4 Protoflight model: signal received
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3. Ground segment

TCP / IP

D-Star

Repeater

Satellite

Extension

Ground Station

Control segment D-STAR segment

Mission 

Control Center

12:05:49

TC / TM 

channel 

(AX.25)

User 

channel   

(D-STAR)
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QARMAN, the VKI fearless CubeSat!



Why QARMAN?

• 2 main goals:

• Demonstrate the feasibility of a CubeSat as a re-entry 
platform

• Investigate the scientific phenomena related to re-entry

• 2 main challenges:

- Thermal environment

- Communication black-out

➔ A unique and ambitious mission!



QARMAN in orbit

Detumbling & 
Commissioning

Panels 
deployment

Re-entry

Data 
transmission

Preparation
for re-entry

Time + 1 week + 1 month + 6-9 months + 25 min



Re-entry phase

?

Data
storage

Data
compression

Data
prioritization

Data
Transmission

Re-entry Black-out
18’

Transmission
4.5’

« Minutes of Terror! »150km 45km 0km



QARMAN design

137



QARMAN design



QARMAN design



QARMAN design



2018-19: Integration and tests

•11-12 April 2015: radiation test (Switzerland)

Bunker Test chamber

2 axis test 

table

QARMAN 

test setup Proton 

direction

Collimator

attenuator



•4 April 2019: vibration test (Liège)

2018-19: Integration and tests



•24/4 – 13/5/19: Bake-out and TVAC (Toulouse)

• 8 days
• 4 cold & hot cycles
• -10°C → +45°C
• Functional tests
• Antenna deployment

at -10°C

2018-19: Integration and tests



•29/5 – 3/6/19: final ambient tests

2018-19: Integration and tests



145

•April 2018: SCIROCCO full scale test campaign
(dedicated model)

2018-19: Integration and tests



• April 2018: SCIROCCO full scale test campaign (dedicated model)

2018-19: Integration and tests



Launch & deployment

147

•October 2019: integration into the deployer



•October 2019: integration into the deployer

Launch & deployment
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•5 Dec. 2019: launch from Cape Canaveral

Launch & deployment
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•8 Dec. 2019 : docking of Dragon at ISS

(credit: NASA)

Launch & deployment



151

•19 Feb. 2020 : release of QARMAN into orbit

Launch & deployment



Operations

•From VKI ground station 

•Receiving data (« beacons »)

•Sending out commands (trying to…)

152



Mission timeline

•From 19 Feb. : daily reception of beacons

•24 March: 

- Successful deployment of solar panels

- First successful commands

•Routine operations

•14 July: transmission stopped

153



Situation / symptoms

• No beacon received since 14 July 9:22 UTC

• Last beacons show increasing temperatures

• Similar temperature raise also observed in May

154
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Investigation & analysis

•Sunlight conditions:
•Typically 60 min sunlight / 30 min eclipse

•15/5/20: 63h34min of continuous sunlight

•13/7/20: 97h39min of continuous sunlight

155



Failure analysis – signal loss

•Temperatures seem to follow sunlight duration:

156



Failure analysis – signal loss

➔Thermal issue? Batteries (LiPo) thermal runaway?

157



Failure analysis – signal loss

➔ Thermal analysis, including model correlation (TVAC + orbital 
data)

158



Failure analysis – signal loss

• TVAC correlation

159



Failure analysis – signal loss

• Orbital correlation (May peak): scarce data, unknown attitude

160



Failure analysis – signal loss

• Correlated model used for July peak

161



Failure analysis – signal loss

•Correlated model used for July peak

•No equipment out of operationnal range

•Batteries are the closest to their limit, but non-
destructive (cfr. ESTEC tests)

➔ Difficult to conclude with certainty

162



Failure analysis – signal loss

•Consequences on mission:
• Battery failure ➔ OBC not powered ➔ end of mission

• UHF transceiver failure

➔ mission continue autonomously

➔ Ground station and Iridium server kept listening until re-
entry

163



Other orbital data: V_bat
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23/3: panels deployment
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Re-entry: 5 February 2022
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Re-entry: 5 February 2022



✓ Demonstrate the feasibility of a CubeSat 
as a re-entry platform:
✓ Designed
✓ Built
✓ Tested
✓ Qualified for launch
✓ Complying with international regulations
✓ Launched
✓ Nominal functioning of main subsystems
✓ Scale 1 test at Scirocco

✓Technical heritage:
✓AeroSDS reached TRL9
✓Overall architecture (mechanical + avionics) validated, flight-qualified, 
operated for 5 months
✓TPS + survival units: validated through ground testing + qualified for flight

168

Outcome & achievements



So many thanks!
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• ESA, for their relentless support
• BELSPO
• CIRA, ULiège, ISAE-SUPAERO, ESTEC, amongst other labs
• NanoRacks
• The radioamateur community, UBA, SatNOGS
• The QARMAN team: Isil, Vincent, Cem, Thorsten, Paride, 

Lamberto, Davide, Gilles, Alessandro, Damien, Remy, 
Jimmy, Filip, Terence, Ertan & so many VKI colleagues!
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