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Nonlinear System Identification: a Three-Step Process

Do I observe nonlinear effects? Yes.

Should I build a nonlinear model? Yes.

3

2

1

Detection

Characterisation

Estimation

Information

vs. complexity

Where is the nonlinearity located? At the joint.

What is the underlying physics? Dry friction.

How to model its effects? 𝑓𝑛𝑙 𝑞,  𝑞 = 𝑐 𝑠𝑖𝑔𝑛  𝑞 .

Model parameters? 

How uncertain are they?

𝑐 = 5.47.

𝑐 = 𝒩(5.47,1).

This lecture
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The Three Basic Ingredients in NL Parameter Estimation

Model:

OutputInput

Cost 

function

𝑜𝑢𝑡𝑝𝑢𝑡 = ℱ(𝑖𝑛𝑝𝑢𝑡)

Nonlinear 

system
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Outline of Lecture 9

The restoring force surface method.

Parameter estimation in linear structural models.

Nonlinear problem statement, state-space model structure and 

FNSI.

Numerical application to the SmallSat spacecraft.

Experimental application to a solar array structure.
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The Restoring Force Surface Method: Sdof Case

𝑚  𝑞 + 𝑓 𝑞,  𝑞 = 𝑓ext

𝑓 𝑞,  𝑞 = 𝑓ext −𝑚  𝑞

If one knows 𝑚, and measures 𝑓ext and either 𝑞,  𝑞 or

 𝑞, the restoring force 𝑓(𝑞,  𝑞) can be computed and

visualized as a surface in the (𝑞,  𝑞, 𝑓) space. This is

called the restoring force surface (RFS).

Newton’s second law for a single-degree-of-freedom

oscillator reads

i.e.
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The RFS for a Duffing Oscillator

Stiffness

Damping
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The RFS for Mdof Systems

𝐌  𝐪 + 𝐟 𝐪,  𝐪 = 𝐟ext

𝐟 𝐪,  𝐪 = 𝐟ext −𝐌  𝐪

If one knows 𝐌, and measures 𝐟ext and either 𝐪,  𝐪 or

 𝐪, the restoring force 𝐟(𝐪,  𝐪) can be computed.

However, 𝐟 cannot be plotted as a simple surface in

general since it depends on 2𝑁 variables.

For a multiple-degree-of-freedom system,

i.e.
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The RFS for Mdof Systems: Nonparametric Representation

𝐪 ≈ 𝛟𝜂

𝛟𝑇𝐟 𝛟𝜂,𝛟  𝜂 ≈ 𝛟𝑇𝐟ext −𝛟𝑇𝐌𝛟  𝜂

The (modal) restoring force 𝛟𝑇𝐟 𝛟𝜂,𝛟  𝜂 can now be

plotted as a surface in the (𝜂,  𝜂, 𝛟𝑇𝐟) space.

Around the resonance of a mode,

Projecting the equations of motion onto the mode

shape,
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The RFS with a Nonlinear Beam: Modal Force

Beam excited near mode 1 

(cf. Tutorial 06)
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The RFS for Mdof Systems: Justification for the ASM

𝐥𝑇𝐟 𝛟𝜂,𝛟  𝜂 ≈ 𝐥𝑇𝐟ext − 𝐥𝑇𝐌𝛟  𝜂

The projection can be arbitrary. If we know the location

of the nonlinearity, say, with a vector 𝐥 such that

Since 𝐪 ≈ 𝛟𝜂, any dof is proportional to 𝜂 and can be

used as a coordinate for the RFS.

𝐥 = [0,… , 0,1,0,… , 0] 𝐥 = [0,… , 0,−1,0,… , 0,1,0,… , 0]or
𝑖 𝑖 𝑗

we can project the equations using this vector

When 𝐥T𝐟ext = 0, this gives a more formal justification for 

the ASM.
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The RFS for Mdof Systems: Parametric Representation

 𝐟nl 𝐪,  𝐪 = 

𝑖=1

𝑀

𝑘𝑖𝐟𝑖(𝐪,  𝐪)

𝐟1(𝐪,  𝐪) ⋯ 𝐟𝑀(𝐪,  𝐪)
𝑘1
⋮
𝑘𝑀

= 𝐟ext −𝐌  𝐪 − 𝐂  𝐪 − 𝐊𝐪

The coefficients 𝑘1, ⋯ , 𝑘𝑀 can be estimated by fitting

measurements.

so

assumed

measured

The RFS can be used for nonlinear parameter

estimation if one assumes a functional form for 𝐟nl
(obtained e.g. from nonlinear characterization)
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The RFS for Mdof Systems: Least-Squares Fit

𝐟1 𝐪 𝑡1 ,  𝐪(𝑡1) ⋯ 𝐟𝑀 𝐪 𝑡1 ,  𝐪(𝑡1)
⋮

𝐟1 𝐪 𝑡𝑄 ,  𝐪(𝑡𝑄) ⋯ 𝐟𝑀 𝐪 𝑡𝑄 ,  𝐪(𝑡𝑄)

𝑘1
⋮
𝑘𝑀

=

𝐟ext 𝑡1 −𝐌  𝐪 𝑡1 − 𝐂  𝐪 𝑡1 − 𝐊𝐪 𝑡1
⋮

𝐟ext 𝑡𝑄 −𝐌  𝐪 𝑡𝑄 − 𝐂  𝐪 𝑡𝑄 − 𝐊𝐪 𝑡𝑄

and a least-squares solution is

If one has 𝑄 measurement points at times 𝑡1, … , 𝑡𝑄,

𝑘1
⋮
𝑘𝑀

=

𝐟1 𝐪 𝑡1 ,  𝐪 𝑡1 ⋯ 𝐟𝑀 𝐪 𝑡1 ,  𝐪 𝑡1
⋮

𝐟1 𝐪 𝑡𝑄 ,  𝐪 𝑡𝑄 ⋯ 𝐟𝑀 𝐪 𝑡𝑄 ,  𝐪 𝑡𝑄

†

𝐟ext 𝑡1 −𝐌  𝐪 𝑡1 − 𝐂  𝐪 𝑡1 − 𝐊𝐪 𝑡1
⋮

𝐟ext 𝑡𝑄 −𝐌  𝐪 𝑡𝑄 − 𝐂  𝐪 𝑡𝑄 − 𝐊𝐪 𝑡𝑄
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The RFS with a Nonlinear Beam

For the nonlinear beam, if one assumes the correct

nonlinearities, one retrives the correct coefficients from

measurements.

 𝑓𝑛𝑙 𝑥 = 8 × 109𝑥3 − 1.05 × 107𝑥2
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System with a Trilinear Stiffness

Consider the trilinear oscillator

 𝑥 + 0.01  𝑥 + 𝑥 + 𝑓nl 𝑥 = 𝑓ext(𝑡)

with

𝑓nl 𝑥 =  
1 + 𝑥,
0,

𝑥 − 1,

𝑥 ≤ −1
−1 < 𝑥 < 1

𝑥 ≥ 1

What happens if we do not know this functional form a priori?

𝑥

𝑓nl
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Let Us Try a Polynomial Fit

If we apply the RFS with polynomials of increasing order 

and consider the mean squared error (MSE)

MSE =
𝐟 𝐪,  𝐪 −  𝐟 𝐪,  𝐪

𝐟 𝐪,  𝐪

we obtain

The error goes up?!
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A Polynomial Fit of Order 9 Looks Alright

3rd order polynomial

MSE = 16.6%

9th order polynomial

MSE = 5.73%

Is this a good fit?
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Yes but… Be Careful About Overfitting!

3rd order polynomial

9th order polynomial

The MSE does not give the full picture.

Be careful about extrapolation!

Nonlinearity characterization is crucial for parameter

estimation.
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The Parametric RFS for Mdof Systems in Summary

The parametric RFS:

is a very simple method.

works well (provided nonlinear characterization is

correct).

requires to know the full 𝐌 and potentially 𝐂 and 𝐊
as well (not easy in experiments).

can work with 𝛟𝑇𝐌𝛟, which can be determined

more easily, but the method becomes approximate.
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Outline of Lecture 9

The restoring force surface method.

Parameter estimation in linear structural models.

Nonlinear problem statement, state-space model structure and 

FNSI.

Numerical application to the SmallSat spacecraft.

Experimental application to a solar array structure.
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 𝐱 𝑡 = 𝐀 𝐱 𝑡 + 𝐁 𝐮 𝑡
𝐲 𝑡 = 𝐂 𝐱 𝑡 + 𝐃 𝐮(𝑡)

State-Space Formulation of the Estimation Problem

measurement eq.

state eq.

forcing functionlinear system

𝐌  𝐪 + 𝐂𝑣  𝐪 + 𝐊 𝐪 = 𝐩

The state-space matrices

are now the parameters to be estimated.

𝐀 ∈ ℝ𝑛×𝑛 𝐁 ∈ ℝ𝑛×𝑖

𝐂 ∈ ℝ𝑜×𝑛 𝐃 ∈ ℝ𝑜×𝑖
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Why Use State-Space Models?

Most general representation of linear systems.

They are naturally applicable to the multi-input, multi-output case.

There exist efficient algorithms to solve linear state-space 

identification problems, e.g., subspace methods.
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Discrete-time Frequency-domain Representation

Discrete time

+

Frequency domain

 
 𝐱 𝑡 = 𝐀 𝐱 𝑡 + 𝐁 𝐮 𝑡
𝐲 𝑡 = 𝐂 𝐱 𝑡 + 𝐃 𝐮(𝑡)

 
𝑧𝑘 𝐗 𝑘 = 𝐀𝐝 𝐗 𝑘 + 𝐁𝐝 𝐔 𝑘

𝐘 𝑘 = 𝐂𝐝 𝐗 𝑘 + 𝐃𝐝 𝐔(𝑘)

z-transform variable: 𝑧𝑘 = 𝑒𝑗2𝜋𝑘/𝑁
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How to find the state-space matrices?

They can be calculated using a (nonlinear) optimization 

procedure. However, this problem

• is difficult to initialize

• can converge to local minima, or not at all

( 𝐀𝐝,  𝐁𝐝,  𝐂𝐝,  𝐃𝐝)

= argmin 

𝑘

𝐘 𝑘 − 𝐂𝐝 𝑧𝑘𝐈 − 𝐀𝐝
−1𝐁𝐝 + 𝐃𝐝 𝐔 𝑘 2

The state-space matrices can be found as a least-squares 

solution:

Other procedures, such as subspace methods or PolyMAX

can be used to overcome these issues. 

Measured Measured
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Linear Subspace Methods: the Case Without Input

 
𝑧𝑘 𝐗 𝑘 = 𝐀𝐝 𝐗 𝑘 + 𝐁𝐝 𝐔 𝑘

𝐘 𝑘 = 𝐂𝐝 𝐗 𝑘 + 𝐃𝐝 𝐔(𝑘)

𝑧𝑘
𝑙𝐘 𝑘

= 𝑧𝑘
𝑙−1𝐂𝐝𝐀𝐝𝐗 𝑘

= 𝑧𝑘
𝑙−1𝐂𝐝𝑧𝑘𝐗 𝑘

= 𝑧𝑘
𝑙−2𝐂𝐝𝐀𝐝

2𝐗 𝑘

= 𝐂𝐝𝐀𝐝
𝑙 𝐗 𝑘

= ⋯

= 𝑧𝑘
𝑙𝐂𝐝𝐗 𝑘
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Form a Hankel Matrix

𝐘 =
𝐘(1) ⋯ 𝐘(𝐹)
⋮ ⋱ ⋮

𝑧1
𝑙−1𝐘(1) ⋯ 𝑧𝐹

𝑙−1𝐘(𝐹)

𝑧𝑘
𝑙𝐘 𝑘 = 𝐂𝐝𝐀𝐝

𝑙 𝐗 𝑘

=
𝐂𝐝𝐗 1 ⋯ 𝐂𝐝𝐗 𝐹

⋮ ⋱ ⋮
𝐂𝐝𝐀𝐝

𝑙−1𝐗 1 ⋯ 𝐂𝐝𝐀𝐝
𝑙−1𝐗 𝐹

=

𝐂𝐝
⋮

𝐂𝐝𝐀𝐝
𝑙−1

𝐗 1 ⋯ 𝐗 𝐹
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Properties of the Hankel Matrix

𝐘 =

Now, recall that rank 𝐔𝐕 ≤ min(rank 𝐔 , rank 𝐕 )

So if 𝑜𝑙 ≥ 𝑛 and 𝐹 ≥ 𝑛, 

𝐗 1 ⋯ 𝐗 𝐹

𝐂𝐝
⋮

𝐂𝐝𝐀𝐝
𝑙−1

𝑛

𝑛

𝐹

𝑜𝑙

rank 𝐘 ≤ 𝑛

It is thus possible to find the order of the system 𝑛 in 

theory.
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The SVD is Used to Get the Rank of the Hankel Matrix

= 𝐔𝚺𝐕𝐻 = 𝐔1 𝐔2
𝚺1 𝟎
𝟎 𝟎

𝐕1
𝐻

𝐕2
𝐻 = 𝐔1𝚺1𝐕1

𝐻

rank 𝐘 ≤ 𝑛𝐘 =

𝐂𝐝
⋮

𝐂𝐝𝐀𝐝
𝑙−1

𝐗 1 ⋯ 𝐗 𝐹

Recalling that the states can be (re)defined arbitrarily, one can 

choose

𝐗 1 ⋯ 𝐗 𝐹 = 𝚺1
1/2

𝐕1
𝐻

𝐂𝐝
⋮

𝐂𝐝𝐀𝐝
𝑙−1

= 𝐔1𝚺1
1/2
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The State-space Matrices Can Be Retrieved from the SVD

𝐂𝐝
⋮

𝐂𝐝𝐀𝐝
𝑙−1

= 𝐔1𝚺1
1/2

= 𝚪

𝚪 =

𝐂𝐝𝐀𝐝

⋮
𝐂𝐝𝐀𝐝

𝑙−1
=

𝐂𝐝
⋮

𝐂𝐝𝐀𝐝
𝑙−2

𝐀𝐝 = 𝚪𝐀𝐝

 𝐀𝐝 = 𝚪
†
𝚪

The matrix 𝚪 has a special shift structure that can be exploited

So, using a pseudo-inverse,

The matrix  𝐂𝐝 is obtained from the first 𝑜 lines of 𝚪.
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What If There Are Nonzero Inputs?

 
𝑧𝑘 𝐗 𝑘 = 𝐀𝐝 𝐗 𝑘 + 𝐁𝐝 𝐔 𝑘

𝐘 𝑘 = 𝐂𝐝 𝐗 𝑘 + 𝐃𝐝 𝐔(𝑘)

𝑧𝑘
𝑙𝐘 𝑘

= 𝑧𝑘
𝑙−1𝐂𝐝𝐀𝐝𝐗 𝑘 + 𝑧𝑘

𝑙−1𝐂𝐝𝐁𝐝𝐔 𝑘 + 𝑧𝑘
𝑙𝐃𝐝𝐔(𝑘)

= 𝑧𝑘
𝑙−1𝐂𝐝𝑧𝑘𝐗 𝑘 + 𝑧𝑘

𝑙𝐃𝐝𝐔 𝑘

= 𝑧𝑘
𝑙−2𝐂𝐝𝐀𝐝

2𝐗 𝑘 +⋯

= 𝐂𝐝𝐀𝐝
𝑙 𝐗 𝑘 +  

𝑚=1

𝑙

𝑧𝑘
𝑙−𝑚𝐂𝐝𝐀𝐝

𝑚−1𝐁𝐝 + 𝑧𝑘
𝑙𝐃𝐝 𝐔(𝑘)
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Apply the Same Procedure and Remove the Effect of the 

Input

𝐘 =
𝐘(1) ⋯ 𝐘(𝐹)
⋮ ⋱ ⋮

𝑧1
𝑙−1𝐘(1) ⋯ 𝑧𝐹

𝑙−1𝐘(𝐹)

𝑧𝑘
𝑙𝐘 𝑘 = 𝐂𝐝𝐀𝐝

𝑙 𝐗 𝑘 +  

𝑚=1

𝑙

𝑧𝑘
𝑙−𝑚𝐂𝐝𝐀𝐝

𝑚−1𝐁𝐝 + 𝑧𝑘
𝑙𝐃𝐝 𝐔(𝑘)

= 𝚪𝐗 + 𝚲𝐔

𝐔𝐔⊥ = 𝟎

𝐘𝐔⊥ = 𝚪𝐗𝐔⊥

Now, compute 𝐔⊥ (e.g., with a QR decomposition) such that

and thus



31

Estimation of the Full State-Space Model

𝐘𝐔⊥ = 𝚪𝐗𝐔⊥

=> 𝚪 can be estimated with a SVD, and then one gets  𝐀𝐝 and  𝐂𝐝.

( 𝐁𝐝,  𝐃𝐝) = argmin 

𝑘

𝐘 𝑘 −  𝐂𝐝 𝑧𝑘𝐈 −  𝐀𝐝
−1
𝐁𝐝 +𝐃𝐝 𝐔 𝑘

2

Eventually,  𝐁𝑑 and  𝐃𝑑 are obtained as the solution of the linear 

least-squares problem

Measured MeasuredKnown Known
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Selecting the Model Order in a Practical Case

The singular values of the Hankel matrix can be used to select the 

model order.

We consider the linear beam model, excited between 1 and 500 Hz 

(the first three modes are excited).

A clear gap appears at the 

theoretical model order.

Although nonzero, most of the singular values can be discarded.
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The Effect of 1% Input and Output Noise

The singular values of the Hankel matrix can be used to select the 

model order.

We consider the linear beam model, excited between 1 and 500 Hz 

(the first three modes are excited).

With noise, this gap 

becomes unclear.

Model order selection with singular values can be complicated in 

practice.
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What are the Poles of the Estimated System?

We can compute the poles of the system for different orders.

We observe physical poles as well as spurious ones which do 

not persist as we increase the order model.
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The Stabilization Diagram: a Decision-making Tool

We can compare the poles of different orders (e.g., their

frequency and damping).

Those that do not change more than some tolerance are 

considered as stabilized poles, which are likely physical poles.

Plotting them yields the stabilization diagram.
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Outline of Lecture 9

The restoring force surface method.

Parameter estimation in linear structural models.

Nonlinear problem statement, state-space model structure and 

FNSI.

Numerical application to the SmallSat spacecraft.

Experimental application to a solar array structure.
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Nonlinear Problem Statement Assuming Characterisation

measured

assumed

measured

𝐌  𝐪 + 𝐂𝑣  𝐪 + 𝐊 𝐪 + 𝑘𝑛𝑙 𝐟𝑛𝑙= 𝐩

Relative displacement

R
e

s
to

ri
n

g
 f
o

rc
eASM
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Nonlinear Coefficients Are New Parameters to Estimate

Parameters to be estimated:

nonlinearity strength

underlying linear FRFs

𝑘𝑛𝑙

𝐆𝑝
−1(𝑗𝜔) = −𝜔2𝐌+ 𝑗𝜔𝐂𝑣 + 𝐊

measured

assumed

measured

𝐌  𝐪 + 𝐂𝑣  𝐪 + 𝐊 𝐪 + 𝑘𝑛𝑙 𝐟𝑛𝑙= 𝐩
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A Simple yet Powerful Reformulation

Move the nonlinear forces to the right-hand side of the EOM.

𝐌  𝐪 + 𝐂𝑣  𝐪 + 𝐊 𝐪 = 𝐩 − 𝑘𝑛𝑙 𝐟𝑛𝑙
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 𝐱 𝑡 = 𝐀 𝐱 𝑡 + 𝐁 𝐞 𝑡
𝐲 𝑡 = 𝐂 𝐱 𝑡 + 𝐃 𝐞(𝑡)

Equivalent Linear State-Space Identification Problem

measurement eq.

state eq.

extended

forcing function

underlying linear system

𝐌  𝐪 + 𝐂𝑣  𝐪 + 𝐊 𝐪 = 𝐩 − 𝑘𝑛𝑙 𝐟𝑛𝑙
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 𝐱 𝑡 = 𝐀 𝐱 𝑡 + 𝐁 𝐞 𝑡
𝐲 𝑡 = 𝐂 𝐱 𝑡 + 𝐃 𝐞(𝑡)

Reminder: the Extended Input Term Is Known

known

𝟎 𝟎
𝐌−1 𝑘𝑛𝑙𝐌

−1
𝐩(𝑡)

−𝐟𝑛𝑙(𝑡)

extended

forcing function

underlying linear system

𝐌  𝐪 + 𝐂𝑣  𝐪 + 𝐊 𝐪 = 𝐩 − 𝑘𝑛𝑙 𝐟𝑛𝑙
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Linear Subspace “Machinery” Can Be Applied to our Problem

extended

input

Frequency-domain 

nonlinear subspace 

identification

(FNSI) method

Discrete time

+

Frequency domain

 
 𝐱 𝑡 = 𝐀 𝐱 𝑡 + 𝐁 𝐞 𝑡
𝐲 𝑡 = 𝐂 𝐱 𝑡 + 𝐃 𝐞(𝑡)

 
𝑧𝑘 𝐗 𝑘 = 𝐀𝐝 𝐗 𝑘 + 𝐁𝐝 𝐄 𝑘

𝐘 𝑘 = 𝐂𝐝 𝐗 𝑘 + 𝐃𝐝 𝐄(𝑘)

z-transform variable: 𝑧𝑘 = 𝑒𝑗2𝜋𝑘/𝑁
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Outline of Lecture 9

The restoring force surface method.

Parameter estimation in linear structural models.

Nonlinear problem statement, state-space model structure and 

FNSI.

Numerical application to the SmallSat spacecraft.

Experimental application to a solar array structure.



44

SmallSat FEM with Experimental Nonlinearities

Reduced FE model

accurate between 0 – 100 Hz

Relative displacement

Restoring force (N)

-2 -20
-800

800

0

12 piecewise nonlinearities 

activated under a 200 N excitation

Experimental curve

Fitted trilinear model
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Model Order Selection via a Stabilisation Diagram

Frequency (Hz)

30205

Model order

0

20

40

60

5010 40

34

=  fully stabilised pole
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Accurate ID of the Lateral Nonlinear Coefficients

NC Exact value Real part Error (%) Log10 (R/I)

1 – X (neg.) 26.76 26.82 0.22 1.70

2 – X (pos.) 46.23 47.27 2.20 2.33

3 – Y (neg.) 26.76 26.78 0.05 2.06

4 – Y (pos.) 46.23 46.58 0.76 2.11
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Outline of Lecture 9

The restoring force surface method.

Parameter estimation in linear structural models.

Nonlinear problem statement, state-space model structure and 

FNSI.

Numerical application to the SmallSat spacecraft.

Experimental application to a solar array structure.
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Opening test

Complex connections

between panels

Gaps, friction, impacts, large displacements may be triggered.

Start of a study led by Thales Cannes and CNES (France).

Solar Array Dynamics in Folded Configuration
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Development of a Simplified Test Rig in Besançon, France

Panels in free-free conditions
Close-up of a solithane snubber
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Cubic Splines May Outperform Ordinary Polynomials

Complex NL mechanisms are commonly captured using

high-order polynomials that may not be stable throughout.

Cubic splines are simple, stable, flexible and intuitive.

The FNSI method can calculate a large number of parameters.
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Nonlinear Characterisation using Cubic Splines

Difficult to assume a 

functional form a priori

𝑓𝑛𝑙 𝑞 𝑠 = 2𝑠3 − 2𝑠2 + 1 𝑓𝑘 + (−2𝑠3 + 3𝑠2)𝑓𝑘+1

+ 𝑠3 − 2𝑠2 + 𝑠 (𝑞𝑘+1 − 𝑞𝑘)𝑓𝑘
′

+ (𝑠3 − 𝑠2)(𝑞𝑘+1 − 𝑞𝑘)𝑓𝑘+1
′

𝑞𝑘 𝑞𝑘+1

𝑓𝑘

𝑓𝑘+1

𝑓𝑛𝑙 𝑞 𝑠
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Nonlinearity Detection using FRFs at Low Frequency

Frequency (Hz)

75505 25 100

-20

40

Amplitude (dB)

-40

-60

+ 2 Hz

+ ~ 3 Hz

In-phase motionImpacts

0

20

0.16 N RMS

3.79 N RMS
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Nonlinearity Detection using FRFs at High Frequency

Frequency (Hz)

300250200 350

40

Amplitude (dB)

-20

-40

0.16 N RMS

3.79 N RMS

0

20

Softening of SP

in traction
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Stabilisation Diagram with Spline Nonlinearities

Frequency (Hz)

1501000
0

60

120

150

50

130

90

30

300250200 350

Model order
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Successful Reconstruction of FRFs Below 100 Hz

Frequency (Hz)

75505 25 100

-20

40

Amplitude (dB)

-40

-60

0

20

0.16 N RMS

3.79 N RMS

FNSI at 3.79 N RMS
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Bolt Loosening at High Frequency Is not Captured

Frequency (Hz)

300250200 350

40

Amplitude (dB)

-20

-40

0

20

0.16 N RMS

FNSI at 3.79 N RMS
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Spline-based Nonlinear Stiffness Force with 5 Knots

Relative displacement (mm)

0-0.1-0.2 0.1

2

Restoring force (N)

-1

-2

0

1

0.2

Severe hardening

of stacking points

Two-slope

impact zone
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Two-Slope Impacts Are Due to Snubber Misalignment

Relative displacement (mm)

0-0.1-0.2 0.1

2

Restoring force (N)

-1

-2

0

1

0.2

Two-slope

impact zone

Severe hardening

of stacking points
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The RFS is a simple method but requires a lot of information.

Linear systems can be identified with (e.g.) a subspace method, 

and this can be extended to nonlinear systems. 

The FNSI method can identify state-space models of complex 

nonlinear structures, assuming an accurate characterisation.

It can calculate accurately a great number of parameters. 

It is compatible with stabilisation diagrams and cubic splines.

Concluding Remarks and Learning Outcomes
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Further Readings

J.P. Noël, G. Kerschen, Frequency-domain subspace identification for 

nonlinear mechanical systems, Mechanical Systems and Signal 

Processing, 40, 701-717, 2013.

J.P. Noël, S. Marchesiello, G. Kerschen, Subspace-based identification 

of a nonlinear spacecraft in the time and frequency domains, 

Mechanical Systems and Signal Processing, 43, 217-236, 2014.

J.P. Noël, G. Kerschen, E. Foltête, S. Cogan, Grey-box identification of 

a nonlinear solar array structure using cubic splines, International 

Journal of Non-linear Mechanics, 67, 106-119, 2014.


