MECA0025 - Sattelite Engineering

Space propulsion devices

Koen Hillewaert

Design of turbomachines and propulsors (\dot{p}) koen.hillewaert@uliege.be

Outline

Introduction

Classification

Rockets and thrusters

Gas expansion thrusters

Introduction

Thermal rockets

Cold gas rocket

Thermonuclear rocket

Chemical rockets

Solid propellant rocket

Monopropellant liquid rocket

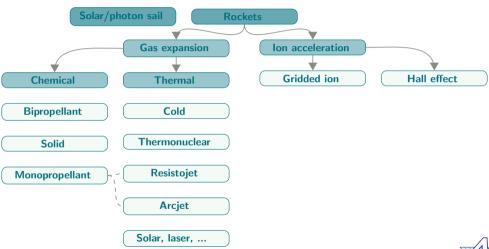
Bipropellant liquid rocket

Ion acceleration thrusters

Introduction

Gridded ion thrusters

Hall effect thrusters


Outline Introduction

Introduction
Classification
Rockets and thrusters

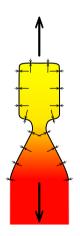
Gas expansion thrusters

Ion acceleration thrusters

Introduction Classification

Rockets and thrusters: thrust \mathcal{T} , effective velocity c_e and specific impulse \mathcal{I}_{sp}

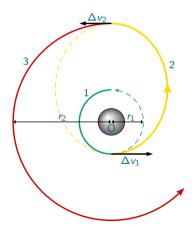
▶ thrust = reaction to acceleration of the propellant


$$\mathcal{T} = \dot{m}_e c_e \, [N]$$

effective exhaust velocity

$$c_e = rac{\mathcal{T}}{\dot{m}} \; [m/s]$$

specific impulse


$$\mathcal{I}_{sp} = rac{\mathcal{T}}{\dot{m}g} = rac{c_e}{g} \; [s]$$

Introduction

Rockets and thrusters: Δv , \mathcal{T} and \mathcal{I}_{sp} requirements

► Hohmann transfer: single use *perigee* and *apogee* motors

$$\Delta v_1 = \sqrt{\frac{GM}{r_1}} \sqrt{\frac{2r_2}{r_1 + r_2} - 1}$$

$$\Delta v_2 = \sqrt{\frac{GM}{r_2}} \ \sqrt{1 - \frac{2r_1}{r_1 + r_2}}$$

extremely short (ideally = instantaneous) duration "kick" \rightarrow very high thrust

► Launch: overcome gravity

$$\Delta v = \int \frac{g(y) \, dy}{v}$$

short duration \rightarrow high thrust

deep space missions: very long duration → low the specific impulse

Introduction Rockets and thrusters: mission requirements

Mission	Δv	\mathcal{T}	duration	
Launch to low orbit	\geq 9500 m/s	200 tons	8 min	continuous
Low to high orbit (kick motors)	\approx 4200 m/s	few tons	seconds	continuous
High orbit to Mars	\approx 3400 m/s	-	-	continuous
Escaping solar system	$+ = 8500 \ m/s$	-	-	continuous
Control and positioning	$\approx 20 \dots 400 \ m/s$	mN to 10 N	-	pulsed

Introduction

Rockets and thrusters: Rocket equation (Tsiolkowski): propellant mass for Δv

payload m_l , engine m_m and propellant mass m_p

$$m(t) = m_l + m_m + m_p(t)$$

 \Rightarrow

$$\frac{dm}{dt} = \frac{dm_p}{dt} = -\dot{m}_e$$

Tsiolkowski equation

$$m\frac{dv}{dt} = g\mathcal{I}_{sp}\dot{m}_e = -g\mathcal{I}_{sp}\frac{dm_p}{dt} = -g\mathcal{I}_{sp}\frac{dm}{dt}$$

 \Rightarrow

$$m(t) = m(0) e^{-\frac{\Delta v}{\mathcal{I}_{spg}}}$$

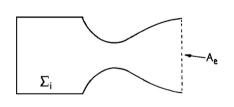
Propellant mass for given Δv

$$m_{p,\Delta v} = m(0) - m(t) = m(0) \left(1 - e^{-\frac{\Delta v}{g\mathcal{I}_{Sp}}}\right)$$

high $\mathcal{I}_{sp}
ightarrow$ higher payload

Introduction Rockets and thrusters: Considerations

- which $\Delta v \rightarrow$ integrated thrust $\mathcal{T}\Delta t$
- lacktriangle over short or long time span ightarrow low or high ${\mathcal T}$
- lacktriangle how much propellant weight can we afford ightarrow specific impulse \mathcal{I}_{sp}
- ► single burn *or* multiple burns
- lacktriangle variation of thrust required ightarrow can we pulse the thruster
- ▶ dry weight of the motor and its auxiliaries (e.g. reservoir, power generator)


Outline Gas expansion thrusters

Introduction

Gas expansion thrusters Introduction Thermal rockets Chemical rockets

lon acceleration thrusters

Gas expansion thrusters Introduction: thrust

Thrust

$$\mathcal{T} = \dot{m}_e v_e + (p_e - p_a) A_e$$

Separate contributions of nozzle and gas/conditions

$$c_e = rac{\mathcal{T}}{\dot{m}_e} = rac{\mathcal{T}}{\displaystyle \stackrel{p^{\circ}A_t}{\mathcal{C}_{\mathcal{T}}}} \stackrel{p^{\circ}A_t}{\displaystyle \stackrel{\dot{m}_e}{\mathcal{C}^*}}$$

- ▶ thrust coefficient C_T : performance of nozzle;
- characteristic velocity C: propellant properties and feed conditions.

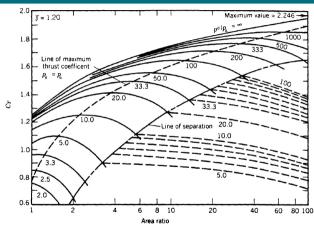
Gas expansion thrusters Introduction: thrust coefficient

In attached regime of the de Laval nozzle, i.e.

- underexpanded
- overexpanded with oblique shocks outside nozzle

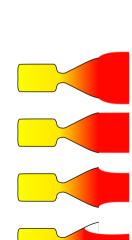
we find

$$\mathcal{T} = \dot{m}_e v_e + (p_e - p_a) A_e \quad \Rightarrow \quad \mathcal{C}_{\mathcal{T}} = \frac{\mathcal{T}}{p^{\circ} A_t} = \left(\left(1 + \gamma M_e^2 \right) \frac{p_e}{p^{\circ}} - \frac{p_a}{p^{\circ}} \right) \frac{A_e}{A_t}$$


 $\mathcal{C}_{\mathcal{T}}$ depends on

- ightharpoonup area ratio A_e/A_t
- ightharpoonup pressure ratio $NPR = p^{\circ}/p_a$
- ightharpoonup heat capacity ratio γ

In separated regime (= heavily overexpanded), the nozzle is "shortened" to the location of separation/shock



Gas expansion thrusters Introduction: thrust coefficient

Altitude \sim pressure ratio, nozzle geometry \sim area ratio

for each altitude (pressure ratio), there is an optil (area ratio) → choice for launcher will be compre

MECA0025 - Space propulsion devices

Gas expansion thrusters Introduction: characteristic velocity

$$\mathcal{C}^* = \frac{p^{\circ}A_t}{\dot{m}_e} = \frac{p^{\circ}A_t}{\rho^*a^*A_t} = \frac{1}{\gamma} \frac{p^{\circ}}{p^*} \sqrt{\frac{T^*}{T^{\circ}}} \sqrt{\gamma \mathcal{R} T^{\circ}} = f(\gamma) \sqrt{\frac{\gamma \mathcal{R}^* T^{\circ}}{\mathcal{M}}}$$

Characteristic velocity depends on

- ightharpoonup chamber/combustion temperature T°
- ▶ molar mass M

Hence

- ▶ lighter molecules have higher c_e / \mathcal{I}_{sp} for same T°
- lacktriangle combustion rockets: T° determined by reaction o \mathcal{C}^* is material property

Gas expansion thrusters Introduction: impact of molecular weight

Assuming constant C_T , p° and T° , the molar mass \mathcal{M} impacts

► specific impulse → favor light gases

$$\mathcal{I}_{\textit{sp}} = rac{\mathcal{C}_{\mathcal{T}}\mathcal{C}^*}{g} \sim rac{1}{\sqrt{\mathcal{M}}}$$

ightharpoonup thrust to power ightharpoonup favor heavy gases

$$rac{\mathcal{T}}{\mathcal{P}} \sim rac{\dot{m}_e c_e}{\dot{m}_e c_e^2/2} \sim \sqrt{\mathcal{M}}$$

ightharpoonup thrust to volume flow (or size) ightharpoonup favors heavy gases

$$rac{\mathcal{T}}{\mathcal{Q}} \sim rac{\dot{m}_e v_e}{v_e} \sim \sqrt{\mathcal{M}}$$

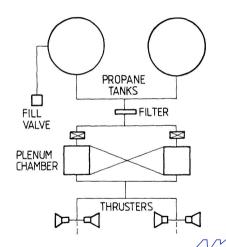
Gas expansion thrusters Introduction: impact of area ratio and feed pressure

Specific impulse variations

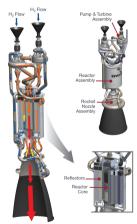
- \triangleright $\mathcal{C}_{\mathcal{T}}$ increases with pressure ratio, *i.e.* with altitude and feed pressure p°
- $ightharpoonup \mathcal{C}_{\mathcal{T}}$ maximal and independent of feed pressure in vacuum
- \triangleright characteristic velocity independent of p°
- ightharpoonup mass flow per unit area $\sim p^{\circ}$

Launchers

- high feed pressure to maximise thrust coefficient and mass flow
- area ratio is chosen via compromise over altitudes


Space thrusters

- $ightharpoonup \mathcal{I}_{sp}$ independent of feed pressure p°
- lacktriangle very high area ratios to maximise $\mathcal{C}_{\mathcal{T}}$
- ▶ feed pressure determined by size / engine weight considerations

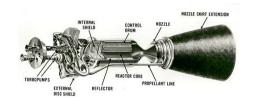

Gas expansion thrusters Thermal rockets: Cold gas rocket

- ▶ non-reacting gas: N_2 , Ar, Fr, C_3H_8
- temperature controlled high pressure reservoir
- low specific impulse $\sim 50s$
- ▶ thrust levels $\sim 20 \ mN$
- pulsed for modulation of average thrust
- precise control of position

Gas expansion thrusters Thermal rockets: Thermonuclear rocket

- pressurized gas heated by nuclear reactor
- ▶ very high specific impulse $\mathcal{I}_{sp} = 500 \ s \dots 900 \ s$
 - ▶ low mass gases such as $H_2 \rightarrow \text{high } \mathcal{R}$
 - temperature not determined by combustion
- ▶ high thrust $T \approx 100 \ kN$
- currently investigated concept for space exploration, orbit insertion, ...

NASA's Nuclear Thermal Propulsion Engine System, of which BWXT is providing support for reactor and fuel design and analysis.



Gas expansion thrusters

Thermal rockets: Thermonuclear rocket- NERVA XE

Nuclear Engine for Rocket Vehicle Application (NERVA)

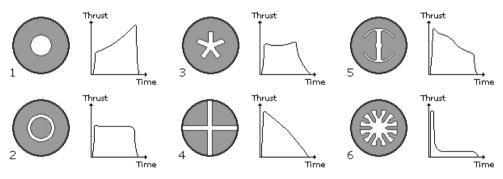
- research engine at NASA
- ▶ vacuum thrust T = 246kN
- ► Chamber pressure $p^{\circ} = 3.861 MPa$
- ▶ vacuum $\mathcal{I}_{sp} = 710...841 s$ (SLS vs vacuum)
- dry weight: 18 tonnes
- ▶ thermal power: $P = 1.1 \; MW$

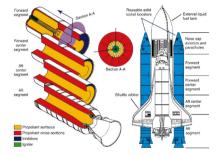
Gas expansion thrusters Chemical rockets: Solid propellant rocket

- ▶ grain: paste of premixed oxidiser and fuel
- pyrotechnic start to single step burn
- thrust variation determined by grain shape
- ► thermo-acoustic instabilities

Solid Propellant Rocket

Gas expansion thrusters Chemical rockets: Solid propellant rocket- grain shape

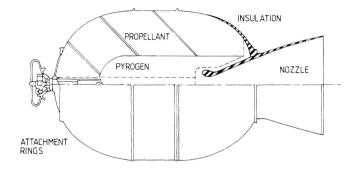



Figure 1.14

Gas expansion thrusters

Chemical rockets: Solid propellant rocket- space shuttle booster

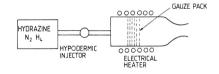
- ropellant mass $m_p = 500$ tonne
- empty mass $m_m = 91$ tonne
- ightharpoonup T = 15 MN
- $I_{sp} = 242 \ s$
- reusable



Gas expansion thrusters

Chemical rockets: Solid propellant rocket- apogee kick motor

Intelsat V


- $\triangle v = 2000 m/s$
- ▶ payload $m_l \approx 1000 \text{ kg}$
- ▶ propellant mass $m_p \approx 900 \ kg$
- engine mass $m_m \approx 1000 \ kg$
- $ightharpoonup T = 70 \ kN \ during 40 \ s$
- $ightharpoonup \mathcal{I}_{sp} pprox 280s$

Gas expansion thrusters Chemical rockets: Monopropellant liquid rocket

- operating principle
 - ightharpoonup main propellant hydrazine N_2H_4
 - pressurized reservoir
 - pulsed expansion over regulation valve
 - decomposition over heated catalyst bed
 - \blacktriangleright decomposition products N_2 , H_2 and NH_3
- can be combined with thermal heating (arcjet/resistojet)
- $ightharpoonup \mathcal{T} > 10N$ modulated by pulsing
- ightharpoonup $\mathcal{I}_{sp} \approx 200 \ s$
- attitude control and station keeping (geostationary)

Gas expansion thrusters

Chemical rockets: monopropellant - Astrium hydrazine

- $ightharpoonup \mathcal{T} = 1 N$
- $ightharpoonup \mathcal{I}_{sp} = 210 \ s$
- $\dot{m}_e = 0.44g/s$
- ► Burn time = 50 hours
- ightharpoonup length = 17 cm
- $A_e/A_t = 80$
- ► applications: small sattelites and deep space probes
 - ► attitude and orbit control
 - station keeping

Gas expansion thrusters

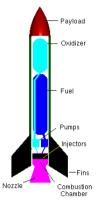
Chemical rockets: monopropellant - Astrium hydrazine

 $ightharpoonup \mathcal{T} = 400N$

ightharpoonup $\mathcal{I}_{sp}=220s$

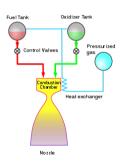
▶ Burn time : 30 minutes

► Length: 32 cm

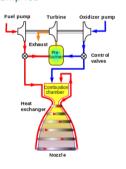

attitude control Ariane V

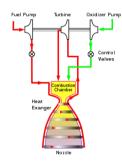
Gas expansion thrusters Chemical rockets: Bipropellant liquid rocket

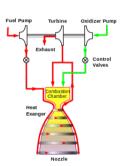
- combustion of pressurized fuel and oxidiser
- variants
 - pressure fed
 - pump fed
- $I_{sp} = 300 \dots 400s$
- applications
 - launch (pump fed)
 - kick engines (pressure fed)
 - orbit and attitude control (pressure fed)
- pogo instabilities
- complex starting procedure



Liquid Propellant Rocket




Gas expansion thrusters Chemical rockets: Bipropellant liquid rocket- cycles


Pressure fed

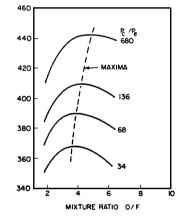
Pump fed

Gas generator cycle

Expander cycle

Expander cycle with bleed

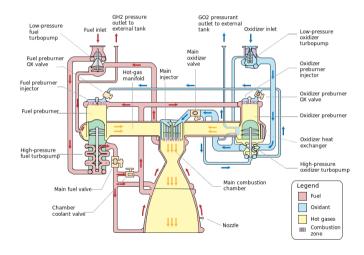
Gas expansion thrusters


Chemical rockets: Bipropellant liquid rocket- mixture ratio

Mixture ratio

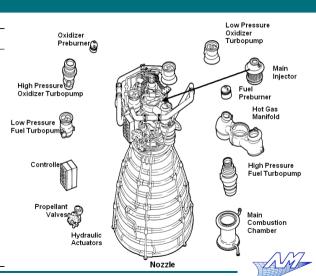
oxidizer to fuel ratio

$$MR = \frac{\dot{m}_o}{\dot{m}_f}$$


- optimal MR compromises
 - ▶ high combustion temperature
 - low average molecular weight of combustion product
- ► (almost?) never stoechiometric

Specific impulse in function of MR for given p°/p_{α}

Gas expansion thrusters


Chemical rockets: Bipropellant liquid rocket- space shuttle main engine

Gas expansion thrusters Chemical rockets: Bipropellant liquid rocket- space shuttle main engine

Space shuttle main engine			
Thrust (kN) vacuum	2090		
Sea level	1700		
Specific impulse(s) vacuum	455		
Sea level	363		
Mixture ratio	6:1		
(cf. 8:1 stochiometric	$2H_2 + O_2 \rightarrow 2H_2O$		
Chamber pressure (bar)	207		
Nozzle area ratio	77		
Flow rates (kg/s) Engine	468		
Gas generator	248		
Pump discharge pressure (bar)			
LOX	309		
LH2	426		
Length (m)	4.24		
Nozzle exit diameter (m)	2.39		
Burn time(s)	480		
Mass (kg)	3022		

Gas expansion thrusters Chemical rockets: Bipropellant liquid rocket- Astrium S400

- pressure fed
- $\sim T = 400 N$
- ▶ $I_{sp} = 318 \ s$
- ▶ propellants: MMH / N₂O₄
- apogee orbit injection (geostationary)
- orbit manoeuvers (deep space probes: Venus express, Artemis)

Gas expansion thrusters Chemical rockets: Bipropellant liquid rocket- Astrium S10

- pressure fed
- $ightharpoonup \mathcal{T} = 10N$
- $ightharpoonup \mathcal{I}_{sp}=291s$
- ▶ propellants: MMH / N₂O₄
- nozzle expansion ratio : 150
- ► attitude/orbit control (large satellites: Arabsat)
- ▶ attitude/orbit control (deep space probes: Venus Express)

Outline Ion acceleration thrusters

Introduction

Gas expansion thrusters

Ion acceleration thrusters Introduction Gridded ion thrusters Hall effect thrusters

Ion acceleration thrusters Introduction: particles and electromagnetic forces

Electric field generated by particle charge Depends on charge density ρ_{α}

$$\nabla \cdot \mathbf{E} = \frac{\rho_q}{\epsilon_0} = \frac{\sum_i n_i q_i}{\epsilon_0}$$

with n_i number density and q_i charge for particle i (electrons / ions) Electric field and potential

$$\mathbf{E} = -\nabla V$$

Lorentz force on particle with charge a in electric E and magnetic field B

$$m\frac{d\mathbf{v}}{dt}=q\left(\mathbf{E}+\mathbf{v}\times\mathbf{B}\right)$$

Linear acceleration subject to electric field E

$$m\frac{\partial \mathbf{v}}{\partial t} = q\mathbf{E} = -q\nabla V$$
 \Rightarrow $m\mathbf{v} \cdot \frac{\partial \mathbf{v}}{\partial t} = -q\mathbf{v} \cdot \nabla V$ \Rightarrow $m\Delta \frac{v^2}{2} = -q\Delta V$

$$\Rightarrow$$

$$m \mathbf{v} \cdot \frac{\partial \mathbf{v}}{\partial t} = -q \mathbf{v} \cdot \nabla V$$

$$\Rightarrow$$

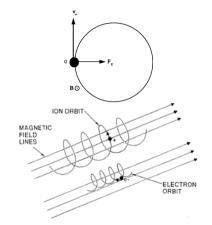
$$m\Delta \frac{v^2}{2} = -q\Delta V$$

Particle energy expressed in eV

Introduction: particle and electromagnetic forces

Larmor precession: helicoidal motion subject to magnetic field

$$\frac{\partial \mathbf{v}_{p,\parallel}}{\partial t} = 0 \qquad \Rightarrow \mathbf{v}_{p,\parallel}(t) = \mathbf{v}_{p,\parallel}(0)
\frac{\partial \mathbf{v}_{p,\perp}}{\partial t} = \frac{q_p}{m_p} \mathbf{v}_{p,\perp} \times \mathbf{B} \qquad \Rightarrow \mathbf{v}_{p,\perp}(t) = e^{i\omega_{\lambda}t} \mathbf{v}_{p,\perp}(0)$$


with (Larmor) frequency and radius

• frequency
$$\omega_{\lambda} = \frac{|q_p|B}{m_p}$$

radius
$$r_{\lambda} = \frac{|v_{\perp}|}{\omega_{\lambda}}$$

Drift velocity: if $\mathbf{E}\bot\mathbf{B}\to\mathsf{steady}$ state velocity in equilibrium with Lorentz force

$$\mathbf{v}_{p,d} = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$$

Ion acceleration thrusters Introduction: EM thrusters

General principles

- ► ionise propellant gas
- accelerate heavy ions by electrostatic field
- ▶ thrust = reaction force
- ► thrust determined by ion flux, which is determined by
 - ▶ potential difference of field
 - possibly charge saturation (when electric field generated by charge density compensates external electric field)

Applications

Very high specific impulse

- orbital insertion
- deorbitalisation (demise)
- station keeping
- deep space missions

Ion acceleration thrusters Introduction: Impact of particle mass

Suppose same particle charge q, thruster potential ΔV Effective ejection speed/specific impulse

$$v_{
m e} \leq \sqrt{rac{2q\Delta V}{m_p}} \sim rac{1}{\sqrt{m_p}}$$

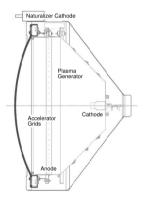
Thrust to power

$$rac{\mathcal{T}}{\mathcal{P}} \sim rac{\dot{m} v_e}{\dot{m} v_e^2/2} \sim rac{1}{\mathcal{I}_{sp}} \sim \sqrt{m_p}$$

Power determines generator mass \rightarrow favor "lower" \mathcal{I}_{sp} and therefore "heavy" gases (Xenon, Krypton, Iodine) **Thrust to area**: suppose charge density saturated / fixed

$$rac{\mathcal{T}}{A} = rac{\dot{m}_e}{A} v_e \sim rac{m_p v_e^2}{\sim} Cte$$

not impacted by particle mass


Ion acceleration thrusters Gridded ion thrusters: operating principle

Principle: electrostatic acceleration of ions

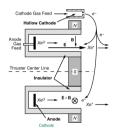
- upstream generation of plasma stream
- screen grid removes electrons from plasma stream
- $ightharpoonup \Delta V$ between screen and accelerator grids $ightharpoonup \mathbf{E}
 ightharpoonup$ ion acceleration
- ► thrust limited by
 - ightharpoonup maximum potential difference ΔV
 - ▶ ion charge density saturation (Child-Langmuir)
- naturaliser cathode: electron flux neutralises ion flux outside to ensure thruster charge neutrality

Characteristics

- $\blacktriangleright \quad \mathcal{I}_{sp} \approx 2000 \dots 10000 \ s \ (v_e \approx 20 \dots 100 \ km/s \ !)$
- $ightharpoonup \mathcal{T} \sim 10 mN \dots 1N$

Ion acceleration thrusters Gridded ion thrusters: Astrium RITA

- T = 150 mN
- ► $I_{sp} = 4000 \ s$
- $\triangleright \mathcal{P} = 4kW$
- ▶ propellant : Xenon
- ▶ beam voltage : $\Delta V = 1200 \ V$
- ► run time ≥ 20000 h
- ► thruster mass : 154 kg
- applications
 - ► Station keeping
 - orbit transfer
 - deep space missions

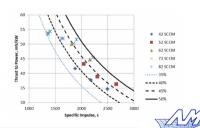

Ion acceleration thrusters Hall effect thrusters: operating principle

Principle:

- \triangleright external radial magnetic field B_r between annular poles
- ▶ electrons "feel" Br while ions don't
- Larmor precession and drift confine electrons to bounce between poles and rotate fast in annular space
 - ightharpoonup electron concentration \rightarrow axial electric field E_a
 - ► collision w/ neutrals → ionisation
- \triangleright ions accelerated by axial electric field E_a
- \blacktriangleright no ion charge saturation due to presence of electrons \rightarrow higher flux density \rightarrow compact system
- axial migration of electrons to anode not fully understood
- electrons recombine outside with ions (thruster charge neutrality)

Characteristics

- $ightharpoonup \mathcal{I}_{sp} pprox 1000 \dots 8000 \ s \ (v_e pprox 10 \ km/s \dots 80 \ km/s)$
- $ightharpoonup \mathcal{T} \sim 40 mN \dots 5N$



Ion acceleration thrusters Hall effect thrusters: Busek BHT-1500

Tentative performances (tbc ?)

- ▶ Discharge Power: 1 kW . . . 2 kW
- efficiency $\sim 0.4 \dots 0.5 \rightarrow$ consumed power 2.5 $kW \dots 5 \ kW$
- ► thruster Mass: 6.3 kg
- $ightharpoonup \mathcal{T} = 70 \dots 180 \ mN$
- $ightharpoonup I_{sp} = 1600...1860 s$

