
C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

dSpacecraft
On Board Software

November 2020

November 2020 On Board Software Overview for ULg

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

November 2020 On Board Software Overview for ULg

● On Board Software

● Overview

● Characteristics

● Processes

● Architectures

● Environments

● Trends

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

November 2020 On Board Software Overview for ULg

● On Board Software

● Overview

● Missions

● Functions

● Interfaces

● Overall Architecture

● Characteristics

● Processes

● Architectures

● Environments

● Trends

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

November 2020 On Board Software Overview for ULg

● On Board Software

● Characteristics

● Constraints

● Criticality

● Dependability

● Safeguarding

● Properties

● Processes

● Architectures

● Environments

● Trends

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

November 2020 On Board Software Overview for ULg

● On Board Software

● Characteristics

● Process

● Phases

● Lifecycle

● Verification

● Standards

● Documentation

● Architectures

● Environments

● Trends

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

November 2020 On Board Software Overview for ULg

● On Board Software

● Characteristics

● Process

● Architectures

● Functional Architecture

● Static Architecture

● Interfaces & Data Flows

● Dynamic Architecture

● Deployement Architecture

● Environments

● Trends

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

November 2020 On Board Software Overview for ULg

● On Board Software

● Purposes

● Characteristics

● Processes

● Architectures

● Environments

● Development Environment

● Validation Environment

● Execution Environment

● Trends

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

November 2020 On Board Software Overview for ULg

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Overview

November 2020 On Board Software Overview for ULg

● Purposes

● Missions

● Functions

● Overview

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Missions
● Earth Observation

● Exploration

● Science

● Meteo

● Communication

● Radionavigation

● Spacecrafts
● Satellites

● Space Station

● Space Probes

● Launchers

● Vehicules

● Rovers

Missions

November 2020 On Board Software Overview for ULg

On Board Software > Purpose > Missions

● Platform

● Payload

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Functions
On Board Softyware > Overviews > Functions

November 2020 On Board Software Overview for ULg

● Command, Monitoring and Control
● Observability, Commandability, Autonomy

● Operations
● Ground command and Control through Telecommands and Telemetries

● Platform Management
● Thermal, Power, Communication, Antenna, Attitude and Orbit Control subsystems

● Equipment Management
● Command and Control, Configuration, Fault Detection, Redundancy

● Payload Management
● Command and Control, Configuration

● Data Management
● Acquisition, Storage, Download

● Mode Management
● Mission Phases, Spacecraft Operational Modes, Equipment States

● Mission Timeline
● Time Triggered or Position Based Actions

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Interfaces & Data Flows
On Board Software > Architecture > Interfaces & Data Flow

November 2020 On Board Software Overview for ULg

OBSW

Telecommands

•High Priority commands
→ Hardware

•Nominal commands
→ Software

•Macro commands
→ Expanding

•Time tagged commands
→ Scheduling

Telemetry

•Housekeeping (Platform & Payload)
Temperature, Pressure, Voltage and Current, Statuses

•Science Data (Payload)
e.g. Raw or compressed imagesGND

Control Center

Space Ground
Interface

T
e

le
m

e
tr

y

T
e

le
c
o

m
m

a
n

d

PF
Equipments

Equipment
Interfaces

PL
Instruments

Payloads
Interfaces

Science Data

Control

Command

Command (Actuations)

Control (Acquisitions)

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Overall Architecture
Board Software > Overview> Big Picture

November 2020 On Board Software Overview for ULg

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

The Characteristics

November 2020 On Board Software Overview for ULg

● Constraints

● Criticality

● Dependability

● Safeguarding

● Properties

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Constraints
On Board Softyware > Characteristics > Contraints

November 2020 On Board Software Overview for ULg

● Embedded Software
→ Cross Development Environment, Constrained Execution Environment (limited Memory and Processing)

● On Board Software
→ Single Event Effects (Upset, Latch Up), Memory Scrubbing

● Real Time Software
→ Processor load, tasking issues, deadlines

● Deterministic Software
→ No dynamic thread creation or memory allocation, budget and schedulability analysis

● Remote Software
→ Need for autonomy (all the more for deep space)

● Critical Software (see further down)

→ Possible catastrophic consequences of failure

● Dependable Software (see further down)

→ Need for high Reliability, Availability, Maintainability and Safety

On Board Software has to cope with constraints stemming from its execution environment in space:

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Software is part of the System

Software requirements are derived from System requirements

Software properties must be derived from System properties.

e.g.

● End-to-end system response time will result into a

→ software schedulability property.

● System availability property will result into

→ Software safeguarding mechanisms.

● System performance property may result in a

→ Software numerical accuracy property.

On Board Sofgtware > Characteristics > Propoerties

November 2020 On Board Software Overview for ULg

Properties

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Criticality
On Board Software > Characteristics > Criticality

November 2020 On Board Software Overview for ULg

Critical Software
is a Software that if not executed or if not correctly executed or whose anomalous behaviour

could cause or contribute to a System Failure resulting in :

A:
Catastrophic
Consequences

Loss of Life, life threatening, personnel injuries, permanently disabling injury or occupational illness,
Loss of an element of an interfacing manned flight system. Damage to other equipment. Loss of launch
site facility facilities or loss of system. Severe detrimental environmental effects.

B:
Critical

Consequences

Permanent or non-recoverable loss of the satellite’s capability to perform its planned mission
Temporarily disabling but not life-threatening injury or occupational illness.
Major damage to flight system or loss or major damage to ground facilities.
Major damage to public or private property or major detrimental environmental effects.

C:
Major

Consequences

Negligible or minor effect on the satellite’s mission and operability
A detailed definition is left on a project by project basis and reported in its risk policy. Example is
Mission Simulation Software

D:
Minor

Consequences

A detailed definition is left on a project by project basis and reported in its risk policy. Example is Test
Software

In the DO-178-C (Software Considerations in Airborne Systems),
the Design Assurance Level (DAL) is determined from the safety assessment process and hazard analysis by examining the effects of a failure condition in the system.

The failure conditions are categorized by their effects on the aircraft, crew, and passengers (catastrophic, severe/hazardous, major, minor, no effect).

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Dependability
On Board Software > Characteristics > Dependability

November 2020 On Board Software Overview for ULg

RAMS

•Reliability:
continuity of correct service.

•Availability:
readiness for usage.

•Maintainability:
easiness of repair/upgrade.

•Safety:
non-occurrence of catastrophic failure

Strategies

•Fault Prevention
avoidance and reduction of fault causes

•Fault Tolerance
avoidance and reduction of fault consequences

•Fault Removal
removal of fault occurrences

•Fault Forecasting
prediction of behaviour in presence of faults

FDIR

•Fault
hardware or software

•Detection
e.g. through monitoring

•Isolation
determination of the cause

•Recovery
e.g through redundancy

Analysis

•SCA:
Software Criticality Analysis (see next slide)

•HSIA:
Hardware Software Interaction Analysis

•FMECA:
Failure Mode Effects and Criticality Analysis

•…

•Safety
Protection against Hazards

•Security
Protection against Threats

•Integrity
Maintenance of consistency

•Certifiability
Ability to get stamp from certification body

Troubles

•Error:
A wrong or missing action

•Fault:
An incorrect step, process or data definition in a program

•Failure:
The inability of the software to perform its required functions.

Achieving mission objectives and ultimate mission success
relies on dependability of the space systems and of the software.

As software plays more and more a prominent role in space
systems, its contribution to the overall system dependability
becomes a vital aspect of system development

FDIR is imperative to
guarantee a dependable

and autonomous
systemwith a minimal
risk of ruinous failure

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Safeguarding
On Board Software > Characteristics > Safeguarding

November 2020 On Board Software Overview for ULg

Level 3
Handled by Reconfiguration Unit

in On Board Computer HW
Hardware Induced Alarms

Multiple EDAC alarms, S/C Power Failure …

Level 2
Handled by Spacecraft

System SW
System Malfunction

Attitude Computation Inconsistencies, …

Level 1
Handled by Unit Manager

Subsystem SW
Subsystem Malfunction

Subsystem Equipment or Intercommunication Failure …

Level 0
Handled Internally by Unit

(transparent to SW)

Unit Internal Malfunction
internally recoverable, requiring instant reaction

shiort current protection, bus retries, single EDAC …

Level 4
Handled by Operators

on GND
Major Overall System Failure

Communication Failure, Deployment Failure …

FDIR design relies on a clear hierachy defining
which type of failure is to be identified and managed

on which level

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Safegarding (cont.)

November 2020 On Board Software Overview for ULg

Ground Control

FDIR Level 4

Reconfiguration

Unit

FDIR Level 3

System

Software

FDIR Level 2

Application

Software

FDIR Level 1

Unit

Internal

Reconfiguration by Ground Procedure

High Priority Telemetry

HousekeepingTelemetry

HousekeepingTelemetry

Unit Telemetry

Unit Reconfiguration

Subsystem Reconfiguration

System Reconfiguration

Hardware Alarms

Software Alarms

Reconfiguration Requests

On Board Software > Characteristics > Safeguarding

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

The Process

November 2020 On Board Software Overview for ULg

● Phases

● Lifecycle

● Verification and Validation

● Standards

● Documentation

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Phases
On Board Software > Process > Phases

November 2020 On Board Software Overview for ULg

On Board Software usually comes (too) late in the overall Spacecraft development:

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Lifecycle
On Board Software > Process > Lifecycle

November 2020 On Board Software Overview for ULg

Validation
Testing

Integration
Testing

Unit
Testing

Qualification
Testing

Source Code, Executable, Makefiles, Scripts

PMP, PAP, CMP, SDP, SVVPRFI, RFQ, RFP, ITT, SOW

SVR, VCD, SUM

SITR

SUTR

SVS-RB

SVS-TS

SITP

SUTP

Phase A Phase B Phase C Phase D Phase E

On Board Software Development

V Lifecycle

TRR TRB DRB(SWRR) PDR (DDR) CDR QR ARSRR

Requirement
Baseline

Software
Specification

Detailed
Design

Coding

Preliminary
Design

SDD-AD, ICD’

SRS, ICD

SDD-DD

SSS,IRS

OIRD

Implementation

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Production
On Board Software > Process > Lifecycle > Development

November 2020 On Board Software Overview for ULg

First half of the Lifecycle

Through Refinment Process

Requirements
System and mission needs and constraints

Specification
Software functionality and

Architecture
components and interfaces

Design
Algorithms and data structure

Coding
Source and object code

Supported by Development Environment
(methods and tools)

Requirement Engineering

Software Modeller

Code Generator

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Validation
On Board Software > Process > Lifecycle > Validation

November 2020 On Board Software Overview for ULg

Second half of the Lifecycle
After the Development

Through Tests Campaign

Unit Tests
against Detailed Design
On Target

Integration Tests
against Architecture and Interface Definition

Validation Tests*
against Technical Specification
on Software Vailidation Facility

Qualification Tests
against Requirement Baseline
on Hardware Model

Supported by Test Facilities

Software Test Benches*

Hardware Models

Hybrid Facilities

*some requirement may alternatively be validated
by Analogy,
by Analysis of Design,
by Inspection of Code

*also known as
Software Validation Facility

Independent Sofware Verification and Validation (required for Cat B)
must be performed by an independent team or company

in addition to normal Verification and Validation

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Vérification
On Board Software > Process > Lifecycle > Verification

November 2020 On Board Software Overview for ULg

All along the lifecycle

Supported by Software Engineering Tools

Model Verifiers

Static Code Analyzer

Traceability Matrices

Through Reviews and Analysis

Peer Review

Cross Reading

Static Code Analysis

Schedulability Analysis

Independent Sofware Verification and Validation (required for Cat B)
must be performed by an independent team or company

in addition to normal Verification and Validation

On Board Software Verification and Validation represent a very significant part of the total development effort

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Standards
On Board Software > Process > Standards

November 2020 On Board Software Overview for ULg

European Cooperation for Space Standardization

Standards:
Management Standards
→ ECSS-M-XXX
Product Assurance Standards
→ ECSS-Q-XXX
Engineering Standards
→ ECSS-E-XXX

Reports:
Blue: Recommended Standards
Magenta: Recommended Practices
Green: Informational Reports
Orange: Experimental or ongoing research
Yellow: Record, but not Historical
Silver: Historical

Consultative Committee for Space Data Systems

See also D0-178-C, ANSI / IEEE, …

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Documentation
OBSW > Process > Documentation

November 2020 On Board Software Overview for ULg

Related file DRL item

(e.g. Plan, document, file, report, form, matrix)

DRL item having a DRD SRR PDR CDR QR AR ORR

RB Software system specification (SSS)
✓

Interface requirements document (IRD)
✓

Safety and dependability analysis results for lower level suppliers
✓

TS Software requirements specification (SRS)
✓

Software interface control document (ICD)
✓ ✓

DDF Software design document (SDD)
✓ ✓

Software configuration file (SCF)
✓ ✓ ✓ ✓ ✓

Software release document (SRelD)
✓ ✓

Software user manual (SUM)
✓ ✓ ✓

Software source code and media labels
✓

Software product and media labels
✓ ✓ ✓

Training material
✓

DJF Software verification plan (SVerP)
✓

Software validation plan (SValP)
✓

Independent software verification & validation plan
✓ ✓

Software integration test plan (SUITP)
✓ ✓

Software configuration
management plan
(DRD in ECSS-M-ST-40)

Software review plan

...

Software system
specification

Software interface
requirements document

...

Software design
document
Software configuration file
(DRD in ECSS-M-ST-40)
Software release
document

...
Software user manual

Maintenance plan
(without DRD)
Migration plan
(without DRD)
...

PAF
Product Assurance

File

TS
Technical

Specification

DJF
Design Justification

File

OP
Operational

Software product
assurance plan
Software product assurance
milestone report

Software product assurance
requirements for suppliers
...

Software requirements
specification
Interface control
document
...

Software validation plan
Software verification plan
Software unit and
integration plan

...

Software reuse file

Operational plan

Operational testing
specification
...

Software development
plan

MF
Maintenance

File

MGT
Management File

DDF
Design Definition

File

Software validation
specification

Software verification report

RB
Requirements

Baseline

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

The Architectures

November 2020 On Board Software Overview for ULg

● Functional Architecture

● Static Architecture

● Dynamic Architecture

● Deployment Architecture

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Functional Architecture: Functions
On Board Software > Architecture > Functional Architecture > Functional Breakdown

November 2020 On Board Software Overview for ULg

TM/TC Telemetry & Telecommand

space/ground communications or

communications between spacecraft

HK Housekeeping

Gathering, filtering and reporting of

on board acquired data

MON Monitoring

detection of on board events based on

ranges or thresholds or trends

OBT On-Board Time Management

For the synchronization of the on-board

clock with ground time,

FDIR Fault Detection Isolation and Recovery

for the on board software and system dependability

GNC/AOCS/ACNS Attitude and Orbit Control Software

Computes the actuators commands from the sensors measurement in

order to control the spacecraft attitude and position.

Control the propulsion system.

RF Radio Frequency Management

for the communications with ground

or with other sapcecrafts

e.g. through S-Band or X-Band links.CM Context Management

Saves the context (failure history buffer,

GNC states, OBSW patches, equipment

table, mission timeline) in case of

processor failure.

SM Storage Management

for the storage of TM in case of

Earth link unavailability

THERM Thermal Management

for the temperature control of the spacecraft

e.g. through thermal heater lines,

PWR Electrical Power Supply Management

distributes the power coming from the battery and

the solar arrays

and manages battery charge / discharge,

SADM Solar Array Drive Mechanisms Management

for the optimal alignment of a satellite's solar panels towards the Sun.

RDP/HRM Release, Deployment and Pyrotechnic Activation Management

for solar arrays/antenna deployment,

for propulsion arming sequence before firing, or

for specific needs like shield jettison or spacecrafts composites dispatching,

PL Payload Management

for scientific payload or

additional units

(very mission specific)

EQPT Equipment Management

for the maintain of the equipment table

as the reflect of the actual equipment

status, and the management of

equipment interface,

ACQ Data Acquisition

Acquisition of on board data

e.g. according to polling sequence table

and depending on mode

Note: interactions between functions are not depicted

SMGT Spacecraft Modes Management

handles the on-board system through the different

mission phases

defines the level of autonomy,

MMGT Mission Management

for the execution of the mission timeline

ETC … And Many Others

And many other functions depending on the platform bus and on the mission

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Static Architecture (2/4): Structure
On Board Software > Architecture > Static Architecture > Generiic Structure

November 2020 On Board Software Overview for ULg

Platform
Dependent

Avionics
Dependent

Operation
Dependent

Mission
Dependent

Thermal
Mgr

Power
Mgr

FDIR AOCS SC
Mgr

…

INTERFACESMODULES

VARIABILITY
LAYERS

Coherent
Abstraction

Level

FUNCTIONAL
CHAINS

Coherent Functionality

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Static Architecture (3/4): Components
OBSW :> Architectures > Statoc Architecure > Component

November 2020 On Board Software Overview for ULg

On Board Software > Architecture > Static Architecture > Component

COMPONENT
MODULE

UNIT
OBJECT

Provided Interface

Required Interface

Functions
Procedures

Methods

Data Structures

State Machines

Algorithms

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Static Architecture (4/4): Paradigms
On Board Software > Architecture > Static Architecture > Design Decision

November 2020 On Board Software Overview for ULg

VS

Central Data Pool Distributed Data Flow

Impact on Deployment over Multi Processors, Multi Cores, Multi Partition
(see Deployment Architecture further down)

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Shared Resources
(memory, inputs/outputs, …)

Shared Executable
(reentrance of code …)

Scheduling
Periodicity
Priorities,

Preemption

Synchronisation
Semaphores
Mutexes
Critical Sections

Execution Flow Execution Flow

Communications
Pipes, sockets
message queues,
mailboxes, …

Several interrupts and periodic and sporadic tasks
with different periods and priorities

Leading to possibly complex schedulability issues

Interrupts
Hardware Interrupts
Software Traps

Tasking
Periodic Tasks

Tasking
Sporadic Tasks

Dynamic Architecture (2/6) : Concepts
On Board Software > Architecture > Dynamic Architecture > Concepts

November 2020 On Board Software Overview for ULg

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Dynamic Architecture (3/6) : Example
On Board Software > Architecture > Dynamic Architecture > Example

November 2020 On Board Software Overview for ULg

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Computational Models

● RMA: Rate Monotonic Algorithm
Static priority preemptive scheduling. Applies to cyclic jobs. Shorter cycle get higher priority

● DMA: Deadline Monotonic Algorithm
Static priority preemptive scheduling. Applies also to sporadic jobs. Shorter deadline get higher priority

● EDF: Earliest Deadline First Algorithm
Dynamic priority preemptive scheduling. process closest to its deadline get highest priority

● RCM: Ravenscar Computational Model
Fixed-priority preemptive system with tight restrictions on tasking and synchronisation such as priority ceiling that optimally bound priority

inversion, to achieve lock-free mutual exclusion and to avoid deadlocks. Warrants static analysability of the source code and predictability

of execution

● TSP: Time and Space Partitioning
hierarchical superposition of two computational models :

round robin scheduling of partitions and

fixed priority scheduling of tasks within partitions

On Board Software > Architecture > Dynamic Architecture > Computational Models

November 2020 On Board Software Overview for ULg

Dynamic Architecture (4/6): Computational Model

See also Schedulability Analysis

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Proof of software schedulability (determism)

● Dynamic Testing at Run Time (how to prove exhaustivity?)

● Static Analysis (superior to testing)

● Selected Computational Model (see dynamic architecture)

● Implementation is assumed to comply to model

● Mathematical schedulability criteria

● Software Budget Report (estimated – a priori - or measured – a posteriori)

● Processor Utilization

● Worst Case Execution Times (WCET)

● (See also Memory Footprint and Stack Usage)

On Board Software > Architecture > Dynamic Architecture > Schedulability

November 2020 On Board Software Overview for ULg

Dynamic Architecture (5/6): Schedulability

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Formal
Proof

Dynamic Architecture (6/6): Schedulability
On Board Software > Architecture > Dynamic Architecture > Schedulability

November 2020 On Board Software Overview for ULg

Architecture

Implementation

Validation

Static Analysis

Mathematical

Model

Execution

Measurements

Computational

Model

Compliant

Implementation

•Rate Monotonic Scheduling

•Deadline Monotonic Scheduling

•Earliest Deadlin First

•Ravenscar Profile

(See Dynamic Architectures)

Processor Utilization

Worst Case Execution Time

(Based on realistic

operational scenarios)

•Programming Model

•Design and Coding Rules

•Code Generation

Schedulability Condition

(Rate Monotonic Only !)

Compliance to a selected Computational Model allows for Static Analysis and Formal Check of Schedulability Conditions, based on corresponding
Mathematical Model fed by actual Measurement from execution of realistic scenarios.

To this respect, Static analysis is superior to testing, which faces exhaustivity issue in real-scale systems.

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Deployment Architecture (3/3): SCM
On Board Software > Architecture > Reference Architecture > Software Component Model

November 2020 On Board Software Overview for ULg

Component

Container

Component

Container

Connector

Design Level Implementation Level

Functional Concerns
(algorithms)

Non Functional Concerns
(tasking, timing, config, init,

security, …)

Platform Independent Model Platform Specific Model

Provided InterfaceRequired Interface

Separation of Concern

Pairing up

Composition Reusability Replaceability

Execution Platform

Computational Model

Software Component Model

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Deployment Architecture (2/3): Mapping
On Board Software > Architecture > Deployment Architecture > Mapping

November 2020 On Board Software Overview for ULg

A deployment architecture depicts the mapping

of a logical architecture
(software components)

to a physical environment
(hardware resources).

The physical environment includes the computing nodes,
processors, memory, storage devices, and other hardware
and communication devices

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

The Environments

November 2020 On Board Software Overview for ULg

● Cross Development

● Development Environment

● Validation Environment

● Execution Environment

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Environments: Cross Environment

November 2020 On Board Software Overview for ULg

Development
Environment

Execution
Environment

Cross
Development
Environment

Development
Environment:

Powerfull Development Workstations
Confortable Operating System
User Friendly Production Tools

Execution
Environment:

On Board Computer with Limited Resources
Real Time Operating System with Constraints

Embedded Executable Software Image

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Development Environment: Modeling
On Board Software > Environment > Development Environment > Modelling

November 2020 On Board Software Overview for ULg

Software has the rare property that it allows us
to directly evolve models into fully-fledged

implementations without changing the
engineering medium, tools, or methods

The software model may evolve into the system it was
modeling in a seamless process.

non available

not locked
locked

buffer ready

link available

not locked

set to unavailable

set to available

locked

start transfer

buffer ready

set to available

set to unavailable

/*! Note: This function is only called from the event manager sporadic activities.
* Extraction of the event data is performed within EVTM_execute_sporadic_activities. */
TM_DECLARE_NEW_MESSAGE (TM_room, TM_ptr, TM_FIXED_SIZE + EVT_MAX_EVENT_DATA_LENGTH)

uint32 data_size;
uint8 * data_ptr = TM_get_data(TM_ptr);

/*! Verify event_id input. It must be less than EVT_NB_EVENTS. Note that this only protects from table overflow:
* This should indeed never happen as the data has been checked when it was put in the queue.
* Therefore only return to avoid overflowing, no report is generated. */
if (event_id >= EVT_NB_EVENTS)
{

return;
}

/*! The event must be enabled for reporting: If the event id is disabled, return without generating a report. */
if (EVTR_config[event_id].reported == False)
{

return;
}

/*! Event data size is limited by the maximum event length. If the generation of this report would create
* a telemetry packet with data size larger than EVT_MAX_EVENT_DATA_LENGTH, truncate to EVT_MAX_EVENT_DATA_LENGTH. */
data_size = sizeof(EVT_RID_t) + event_data_length;
if (data_size > EVT_MAX_EVENT_DATA_LENGTH)
{

data_size = EVT_MAX_EVENT_DATA_LENGTH;
}

GU_memcpy(data_ptr , &event_id , sizeof(EVT_RID_t));
data_ptr += sizeof(EVT_RID_t);
if (event_data != NULLPTR)
{

GU_memcpy(data_ptr, event_data, data_size - sizeof(EVT_RID_t));
}

/*! Generate the event by creating the corresponding service 5 packet. The PUS subtype (between 1 and 4)
* is obtained from the EVTR_config configuration table. */
TM_create(TM_ptr,

application_id,
TMTC_ERS,
EVTR_config[event_id].event_subtype,
0, /* data are already at the correct place */
data_size,
ROUTE_GROUND_ID);

TM_send_telemetry (TM_ptr,
data_size + TM_FIXED_SIZE,
True,
False);

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Development Environment: Modeling
On Board Software > Environment > Development Environment > Modelling

November 2020 On Board Software Overview for ULg

● Paradigm Shift
● From Programming to Modelling

● Model Based Software Engineering

● Modeling Domains
● Requirements

● Architecture Modeling,

● Data Modeling,

● Behaviour Modeling

● Modelling Languages
● UML, SYSML, AADL, AAML, SDL, …

● Model Verification
● Strong Syntax, Formal Verification

● Automatic Generation
● Code

● Documents

ECLIPSE
Integrated Development Environment (IDE) and

Eclipse Modelling Frameworl (EMF)

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Languages
● C:

procedural language, widely used, poor expressivness but good control,
well suited to system programming, efficient code but error prone

● Ada:
strong typing, well suited to embedded and real-time programming, mainly
used in launchers

● C++ :
object oriented, based on C, less efficient due to object oriention, not used
or poorly used on board so far

● Java :
object oriented, interpreted language, under investigation, possibly for
OBCP

● Assembler
low level language, for specific usage

On Board Software > Environment > Development Environment > Languages

November 2020 On Board Software Overview for ULg

Development Environment: Programming

Main programming paradigms are
Procedural programming vs

Object Oriented programming (not used so far in on board software)

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Cross Environment (remember – see above)
● → Cross Compiler

On Board Software > Environment > Development Environment > Debugging

November 2020 On Board Software Overview for ULg

Development Environment: Generating

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Cross Environment (remember – see above)
● → Cross Compiler

On Board Software > Environment > Development Environment > Debugging

November 2020 On Board Software Overview for ULg

Development Environment: Compiling

Compiling
is the process of translating computer code written in one programming language (the source language)

into another language (the target language).

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Cross Environment (remember – see above)
● → Remote Debugging

● → Debug Support Unit

On Board Software > Environment > Development Environment > Debugging

November 2020 On Board Software Overview for ULg

Development Environment: Debugging

Debugging
is the process of finding and resolving defects or problems within a computer program

that prevent correct operation of computer software or a system (wikipedia)

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Development Environment: Production
On Board Software > Environment > Development Environmernt > Production Tool

November 2020 On Board Software Overview for ULg

OBSW

Configuration

Files

OBCP

Configuration

Files

User Manual
Interface Control

Document

System

Data Base

Central

Configuration

Data Base

SVF

Configuration

Files

Production Tools

• Support Automatic generation of …
Configuration Files and
Documentation

• Allow for easy configuration

Centralised Database

● Contains …
On-board software configuration,
Constant values, and
Parameters useful for ground

tasks, message queues, observable parameters, events, actions associated with events,
default housekeeping, default monitoring, patch areas, Drivers commands, TC function ID’s
(PUS 8, 1), Memory partitions, File partitions, On-board stores, Default on-board storage
allocation, PUS services and sub-services, Types of the parameters in the PUS TC/TM, Error
codes, Application ID …

● Ensure coherency between …
the different outputs

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

Validation Environment: Testing
On Board Software > Environment > Validation Environment

November 2020 On Board Software Overview for ULg

OBSW

Drivers

Applications

Data Handling Software

RF PWRAOCS

DHS
PUS

DHS
CORE

SYS
MGT

TTM SIM DAM RECU

APP
SVC

MPM

OBCP

FDIR

Generic
SVF Component

Platform dependent
SVF Component

Test
Conducting

S
im

u
la

ti
o

n
C

o
n

tr
o

ll
e
r
s

Simulation Core

Environment

Graphical
User

Interface

Script
Language
Interpreter

Integrated
Symbolic
Debugger

Instruction Set
Simulator

Engine

Discrete Event
&Time

Simulator
Engine

Ground

Equipments

Communications

Memory
Simulation

Marker/
Breakpoints/

Coverage

Processor
Registers
Simulation

ST GPS MM RWMT

SIM DAM RECUTTM

Instrum LYRADistributed
Simulation
Interface

Configuration

Calibration

Test Conducting Script

Message
Parsing &
Formatting

Synchro-
nisation

MPM

RWM

M
u

lt
i

C
o

n
tr

o
ll
e
r
s
 S

u
p

p
o

r
t

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Hardened Space Qualified processors
1990: 1750 – 16 Bits – 2 MIPS
2000 : ERC32 – SPARC V7 - 32 Bits – 20 Mhz – 14 MIPS
2010 : LEON2 – SPARC V8 - 32 Bits – Cache – 5 Stages Pipeline - 100 Mhz – 84 MIPS
2105 : LEON3 – Dual Core LEON – 7 Stages Pipeline - MMU -100 Mhz – 84 MIPS
2105 : LEON4 – Quad Core LEON

● Commercial of the Shelf
● ARM

● Power PC (1600 MIPS but sensitive to SEEs)

● Coming

● RISC V

See Avionics Overview

On Board Software > Environments > Execution Environment > Processorxs

November 2020 On Board Software Overview for ULg

Execution Environment: µP

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● RTOS: Real Time Operating Systems

● VxWorks (Commercial)

● RTEMS (Open Source)

● Linux RT (Not widely used … in OBSW)

● FreeRTOS

● …

● TSP: Time and Space Partitionning

● Hypervisor

● µKernel

On Board Software > Environment > Execution Environment > Real Time Operating Systems

November 2020 On Board Software Overview for ULg

Execution Environment: RTOS

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

The Trends

November 2020 On Board Software Overview for ULg

● Hardware Software Co Engineering

● Cyber Security

● Artificial Intelligence

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Files and file systems
Also On Board spacecrafts

● Applications
● Store Housekeeping and Science Data in Files and File Systems

● And Download to ground

● Process Command from Files
● And Upload from Ground

● Techniques
generic approach instead of ad hoc mechanisms

● File Aware Services

● File System on Board

● File Transfer Protocols

On Board Software > Trends > File Based Operations

November 2020 On Board Software Overview for ULg

File Based Operation

Xilinx - Zynq – Zybo – ARM+FPGA

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Field Programmable Gate Arrays (FPGA),
System on a Chip (SoC) …
Also On Board spacecrafts

● Applications
● µP in FPGA

e.g. Prototyping

● Heavy Processing Algorithms
e.g. Image Processing, Feature Extraction, Vision Based Navigation

● Techniques
● Programmable HW (Is this HW or SW?)

● Need Space Hardened FPGA

● Specific Language VHDL (but possible translation from C)

● Specific Development Environment (but increasingly combined)

On Board Software > Trends > HW SW Co Engineering

November 2020 On Board Software Overview for ULg

HW SW Co Engineering

Xilinx - Zynq – Zybo – ARM+FPGA

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● General Concern,
also in Space Business,
also On Board Spacecraft

● Applications
● Space Communication Security

● Telecommands Authentication
(to protect at the minimum the commanding link to the spacecraft)

● Telemetry Encryption
(to protect mission products from unauthorized access)

● Techniques
● Cryptographic and Key Management algorithms and protocols

● Specific Hardware Support

On Board Software > Trends > Cyber Security

November 2020 On Board Software Overview for ULg

Cyber Security

C
o
p

y
ri

g
h

t
©

 2
0

1
7

 b
y
 S

P
A

C
E

B
E

L
 –

A
ll
 r

ig
h

ts
 r

e
s
e

rv
e

d

● Global Trend
also in Space Business,
also On Board Spacecraft

● Applications
● On Board Decision: Mission Planning

● On Board Detection: Faults, Image Processing.
Cloud Detection, Fire Detection …

● Techniques
● Big Data (Volume, Velocity and Variety, Veracity and Value)

● Machine Learning / Deep Learning (supervised, unsupervised, semi supervised, reinforcement)
set of techniques that allow computers to learn from data without being explicitly programmed

● VPU or GPU support

On Board Software > Trend > Artificial Intelligence

November 2020 On Board Software Overview for ULg

Artificial Intelligence

