Nonlinear Vibrations of Aerospace Structures

Tutorial 09 Estimating Parameters using FNSI

T09 Nonlinear Vibrations Course at ULiège

A Numerical Beam with a Geometric Nonlinearity

Create a New Model at 0.1 N based on Measured Signals

Use the FNSI data for this. Y includes the sensor signals while the shaker signal is saved in *u*.

7 Displacements and 1 Shaker are Represented

Transient Analysis to Avoid Leakage in FD Identification

 Go to the 'Measure' tab and play 'Signal cut'

 Display the Periodicity of the signal

Nonparametric FRF Analysis Before Estimating Parameters

Calculation over the Input Band (Number of Points Is Fixed)

Choose the frequency range of interest and compute the FRFs.

The Input Band Encompasses the First Three Beam Modes

FNSI Can Be Used for Linear System Identification!

File Measure Identify Model User Help										
🗅 🎏 🖬 🛛		C								
	FNSI stabilisation diagram FNSI identification FNSI postprocessing									
2.	▶ FNSI stabilsation diagram parameters - □ ×									
	Frequency min: 5 Hz									
	Frequency max: 500 Hz									
	Max order: 20									
	noise weighting									
	Matrix block rows: 22 auto									
	Apply Start (F5) Cancel									
Internal FNSI parameter: should be at least = $n + 1$.										
Measure Ider	ntify Model User									

The Three Beam Modes Are Clearly Distinguished

Identification: Select Model Order 6 and Parameter Estimation

Modal Properties are Accurately Estimated

FRF Calculation based on the Identified State-space Model

2.		- 🕅	?	$ \triangleleft$	\triangleright		$A \mid \mathbf{II}$			
	N FNSI	post-pr	ocessing parameters	;						×
		Sensors/o	lofs indices for FRFs:	\square		7				
			Frequency min:		:	5		Hz		
			Frequency max:		5	00		Hz	:	
		Appl	у	Si	art (F5)			Car	ncel	

Compare the computed FRFS in a curve stack

Nonparametric and parametric FRFs match very well!

Compare the computed FRFS in a curve stack

Nonparametric and parametric FRFs match very well!

Nonlinear Identification at High Level (15 N)

Create a new model with the displacement series obtained using a higher forcing amplitude.

NI2D: New model							\times
User models	Spring/mass system	MCK matrices	Finite element model	DAQ model	Measu	red signals	
	Sensor signals:		[7x327680]		2	Num.	
O Accelerations							
	Shaker(s) signal:		[1x327680]		2		
Shake	r/sensor connections:	2					
	Sampling frequency:	3000					
Numbe	er of points per period:		32768]		
	Continue >		Abort				

Get Rid of Transients

And Compute the FRF

Compare the FRF to the FRF for a forcing amplitude of 0.1 N by saving them in the same curve stack. You can copy data from one curve stack to another by 'right click' and 'copy'.

Fitting a Linear Model to Nonlinear Data

Accurate Stabilisation of Linearised Modal Properties

Go to the 'Identify' tab and compute the stabilisation diagram, using the same parameters as before.

The First Mode Exhibits an Important Hardening

Physical Reasoning Suggests a Cubic Nonlinearity

22

Inaccurate Stabilisation of Mode 1.

Set the FNSI Identification Parameters

More than Three Modes Are Identified

The Nonlinear Coefficient

A few hints:

- Check the stabilisation of the first mode.
- Check the modal parameters compared to linear identification.
- Check the stability of the nonlinear coefficients versus frequency.
- Check the magnitude of the imaginary parts of the coefficients.

Accurate Nonlinear Stabilisation

Nonlinear Coefficient with Virtually no Frequency Dependence

Successful Identification of the Nonlinear Coefficients

NI2D software makes the use of FNSI intuitive and effective (selection of nonlinear basis functions, stabilisation diagram, ...).

Similar steps are followed to apply FNSI to linear and NL data.

A successful characterisation remains of utmost importance towards accurately estimating model parameters.