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Chapter 1
Introduction

Any process in nature involves to a certain extent some type of energy transfer. From
an engineering point of view, certain processes of energy transfer are undesired but
still inevitable, as, for instance, energy dissipation in electromechanical systems;
whereas other processes are desired and highly beneficial to the design objectives,
the classical example from mechanical engineering being the addition of a vibration
absorber to a machine for eliminating unwanted disturbances.

Targeted energy transfers (TETs), where energy of some form is directed from
a source (donor) to a receiver (recipient) in a one-way irreversible fashion, gov-
ern a broad range of physical phenomena. One basic example of TET in nature, is
resonance-driven solar energy harvesting governing photosythesis (Jenkins et al.,
2004), where energy from the Sun is captured by photobiological antenna chro-
mophores and is then transferred to reaction centers through a series of interactions
between chromophore units (van Amerongen et al., 2000; Renger et al., 2001). In
addition, basic problems in biopolymers concern energy self-focusing, localization
and transport (Kopidakis et al., 2001), with applications in photosynthesis (Hu et
al., 1998) and bioenergetic processes (Julicher et al., 1997).

From the engineering point of view, the scaling down of engineering applica-
tions from macro- to micro- and nano-scales dictates an understanding of the mech-
anisms governing TET and energy exchanges between components possessing dif-
ferent characteristic lengths and time-scales. For example, as pointed out by Wang
et al. (2007) in applications such as molecular electronic devices where the scales
of the dynamics are at the level of individual molecules, classical concepts of heat
transport do not apply, and heat is transported by energy transfer through discrete
molecular vibration excitations. Hence, understanding and analyzing energy trans-
fer mechanisms in molecular dynamics (such as, resonance energy transfer) is key
in conceiving devices or processes for specific macromolecular applications, such
as, for example, in the area of photophysics (Andrews, 2000; Jenkins and Andrews,
2002, 2003). Moreover, molecular dynamic simulations of energy transfers (for ex-
ample, through solitonic waves) in mechanistic molecular or atomistic models have
been used to study thermodynamic processes, such as, melting of polymer crystals
and phase transitions in polymer-clay nanocomposites (Ginzburg and Manevitch,
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1991; Berlin et al., 1999; Ginzburg et al., 2001; Berlin et al., 2002; Gendelman et
al., 2003). In Musumeci et al. (2003) issues related to nonlinear mechanisms for
energy transfer and localization in biological macromolecules and related applica-
tions to biology are discussed. Moreover applications of nonlinear energy transfer
in a broad area of applications ranging from cancer detection (Meessen, 2000; Ve-
druccio and Meessen, 2004) to wireless power transfer (Kurs et al., 2007) have been
reported in the recent literature.

Therefore, it is not surprising that TET phenomena have received much atten-
tion in applications from diverse fields of applied mathematics, applied physics, and
engineering. Representative examples are the works by Aubry and co-workers on
passive targeted energy transfer (TET) between nonlinear oscillators and/or discrete
breathers (Kopidakis et al., 2001; Aubry et al., 2001; Maniadis et al., 2004; Mem-
boeuf and Aubry, 2005; Maniadis and Aubry, 2005), on breather-phonon resonances
(Morgante et al., 2002), and on quantum TET between nonlinear oscillators (Ma-
niadis et al., 2004). The dynamical mechanisms considered in these works were
based on imposing conditions of nonlinear resonance between interacting dynam-
ical systems in order to achieve TET from one to the other, and then ‘breaking”
this condition at the end of the energy transfer to make it irreversible. A mecha-
nism of TET along a line or surface by means of coherent traveling solitary waves
is examined in Nistazakis et al. (2002); specifically, the transfer of a solitary wave
to a targeted position was studied in the nonlinear Schrödinger (NLS) equation, the
underlying nonlinear dynamical mechanism being resonance energy transfer from
an ac drive to the solitary wave. Applications of energy localization and TET in di-
verse applications, such as, biological macromolecules – proteins and DNA, arrays
of Josephson junctions in superconductivity applications, and molecular crystals are
given in Dauxois et al. (2004), including analytical, computational and experimental
results.

In other complex phenomena, such as turbulence and chaotic dynamics, multi-
scale energy transfers between different spatial and temporal scales govern the dy-
namics. Perhaps the best known example is turbulence, where mechanical energy
is supplied to a fluid system at relatively large length scales, peculiar spatiotempo-
ral coherent structures are formed at intermediate scales, and dissipation of energy
occurs at short scales (Bohr et al., 1998). Hence, energy transfer between these
scales is what makes turbulence possible. Examples of works on multi-scale energy
transfers in fluids are the works by Kim et al. (1996) and Tran (2004) who studied
nonlinear energy transfers in fully developed turbulence, and by Brink et al. (2004)
who studied nonlinear interactions and multi-scale energy transfers among inertial
modes of a rotating fluid, modeling it as a network of coupled oscillators.

All nonlinear energy transfers involve to a certain extent some type of nonlin-
ear resonance between a donor and a receptor. Resonance energy transfer has been
identified as an important mechanism for energy and electronic excitation transports
in the area of photophysics of macromolecules (Jenkins and Andrews, 2002, 2003;
Andrews and Bradshaw, 2004), and has been recognized as the principal mecha-
nism for electronic energy transport in molecular chains following initial excitations
(Daniels et al., 2003). Esser and Henning (1991) analyzed energy transfer and bi-
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furcations in a condensed molecular system. Fluorescence resonance energy transfer
(FRET) where fluorescent energy from an excited fluorophore is transferred to light-
absorbing molecules lying in close proximity, has been well studied; FRET has been
applied as an optical microscopy technique for developing biosensors and examin-
ing physiological processes with highly temporal and spatial resolution (Cardullo
and Parpura, 2003; Berland et al., 2005). Additional applications of FRET range
from in vivo medical diagnosis of infections (Hwang et al., 2006), to detection of
targeted DNA sequences (Xu et al., 2005), and development of biosensors and med-
ical probes (Yesilkaya et al., 2006).

Dodaro and Herman (1998) studied analytically energy transfers in liquids
through resonant vibration interactions, using a molecular dynamics approach to
study the probability of vibration energy transfer between atoms. An example of a
study of laser-assisted resonance energy transfer is provided in Allcock et al. (1999),
and application of TET in the field of molecular motors of cochlear cells was con-
sidered in Spector (2005).

An important additional application of TET is in the area of energy harvesting,
that is, of the development of efficient and reliable energy harvesters capable of ef-
ficiently capturing ambient energy from a variety of media. For example, photosyn-
thetic organisms have developed efficient sunlight harvesting apparatus to fuel their
metabolisms (Hu et al., 1998); also, dendrimeric polymers are being considered as
energy harversters in nanodevices (Andrews and Bradshaw, 2004). In engineering
applications energy harvesters were studied for converting ambient vibrations into
usable electrical energy (Glynne-Jones et al., 2004; Lesieutre et al., 2004; Cornwell
et al., 2005; Roundy, 2005; Kim et al., 2005; Stephen, 2006) but their performance
is limited by the fact that ambient vibration is often low-level and broadband, occur-
ring in random bursts. The passive nonlinear TET designs discussed in this work,
result in broadband energy transfer between structural components, in some cases
even at low energy levels; hence, they hold promise towards alleviating the previous
restrictions of current energy mechanical harvesters of ambient vibration.

Additional studies of nonlinear energy transfer in lattice models have been per-
formed to model heat flux and test the validity of the classical Fourier law of heat
conduction (Gendelman and Savin, 2004; Balakrishnan and Van den Broeck, 2005).
Wang (1973) analyzed TET between nonlinearly interacting waves, and Kevrekidis
et al. (2004) studied localization and resonance-induced energy transfer in mechan-
ical lattices with geometric nonlinearity. Spire and Leon (2004) studied energy ab-
sorption due to resonance of impeding waves by discrete molecular chains, resulting
in generation of solitons in these chains; it was found that both nonlinearity and dis-
creteness effects are prerequisites for this type of nonlinear energy absorption.

If we restrict our focus to purely mechanical systems possessing no dissipation
and executing vibrations, still one can point out a variety of dynamic phenomena
involving strong nonlinear energy transfers. Often the process of passive nonlinear
vibration energy exchange is described in terms of nonlinear interaction between
different structural modes with close or well-separated frequencies. Such exchange
is not possible in linear dynamical systems since, except for closely spaced modes
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(giving rise to the classical beat phenomenon), modes in these systems are uncou-
pled and can not exchange energy between them in a passive way.

In the presence of nonlinearity, however, nonlinear energy interactions can oc-
cur due to internal resonances, even between structural modes with widely spaced
frequencies (Guckenheimer and Holmes, 1983; Wiggins, 1990; Nayfeh and Mook,
1995; Nayfeh, 2000). In nonlinear Hamiltonian systems irreversible transfer of en-
ergy is generally precluded due to conservation of the phase volume and by virtue
of the Poincaré recurrence theorem; however, in certain cases the Hamiltonian dy-
namics can be trapped in bounded regions of the state space for relatively long time,
with subsequent release (Zaslavskii, 2005). In addition, there are special cases where
complete and irreversible (targeted) transfer of energy occurs between coupled non-
linear oscillators [(Nayfeh and Mook, 1995; see also the discussion of Fermi Tar-
geted Energy Transfer in Maniadis and Aubry (2005)]; such irreversible nonlinear
energy transfers occur on heteroclinic orbits of appropriately defined slow flows of
the dynamics, they occur asymptotically as time tends to infinity, and are not robust
as they are realized only at specific energy levels (in fact, perturbations of these
orbits destroys the irreversibility of energy transfer, as they lead to excitations of
quasi-periodic orbits in the slow flows). In general, nonlinear energy transfers may
be manifested as nonlinear mode bifurcations, or spatial energy localization phe-
nomena through the formation of localized nonlinear normal modes (NNMs) (King
and Vakakis, 1995; Boivin et al., 1995; Vakakis et al., 1996; Vakakis et al., 2002;
Lacarbonara et al., 2003; Jiang et al., 2005).

In the works by Nayfeh and Nayfeh (1994), Nayfeh and Mook (1995), Oh and
Nayfeh (1998), Nayfeh (2000) and Malatkar and Nayfeh (2003) a new form of non-
linear energy transfer between widely spaced modes in harmonically forced struc-
tures is analyzed; this mechanism of passive energy transfer is caused by resonance
interaction of the slow modulation of a higher mode (due to Hopf bifurcation) with
a lower one. This type of energy transfer is peculiar, in the sense that the interacting
modes need not satisfy conditions of internal resonance.

Kerschen et al. (2008) discuss an alternative form of nonlinear modal interac-
tion between highly energetic NNMs. Indeed, at low energies these modes may
possess incommensurate linearized natural frequencies so they do not satisfy in-
ternal resonance conditions. Due to the energy dependence of their frequencies,
however, at higher energies the same NNMs may become internally resonant, as
their energy-dependant frequencies may become commensurate resulting in strong
nonlinear modal interactions. This underlines the fact that important, essentially
nonlinear phenomena (such as this one) may be missed when resorting to pertur-
bation techniques based on linear (harmonic) generating functions, whose range of
validity is restricted to small-amplitude motions and/or weak nonlinearities [but for
a perturbation technique based on strongly nonlinear yet simple (non-smooth) gen-
erating functions, valid in strongly nonlinear regimes (but not in weakly nonlinear
ones!) refer to Pilipchuk (1985, 1988, 1996), Pilipchuk et al. (1997) and Pilipchuk
and Vakakis (1998)].

This monograph is devoted to the study of targeted energy transfer (TET) phe-
nomena in dissipative mechanical and structural systems possessing essentially non-
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linear local attachments. We will show that the addition of a local attachment pos-
sessing essential (nonlinearizable) stiffness nonlinearity to a linear system, may sig-
nificantly alter the global dynamics of the resulting integrated system. The reason
lies in the lack of a preferential resonance frequency of the attachment, which, in
principle, enables it to engage in nonlinear resonance with any mode of the lin-
ear system, at arbitrary frequency ranges (provided, of course, that the mode has
no node in the neighborhood of the point of attachment). The actual scenario of
single-mode or multi-mode nonlinear resonance interaction of the attachment with
the linear system will depend on the level and spatial distribution of the instanta-
neous vibration energy of the integrated system. We will show that under certain
conditions, passive TET from the linear system to the NES occurs, i.e., a one-way
and irreversible (on the average) flow of energy from the linear system to the attach-
ment, which acts, in effect, as a nonlinear energy sink – NES. Moreover, in contrast
to the classical linear vibration absorber whose action is narrowband, we will show
that under certain conditions the NES can resonantly interact with the linear system
in a broadband fashion, and engage in a resonance capture cascade with a set of
structural modes over a broad frequency range; then the NES, acts in essence, as a
passive, adaptive, broadband boundary controller.

Hence, viewed in the context of vibration theory, the NES can be regarded as
a generalization of the concept of the classical linear vibration absorber (or tuned
mass damper – TMD). Viewed in the context of the theory of dynamical systems,
the addition of the essentially nonlinear NES introduces degeneracies in the free
and forced dynamics of the integrated system, opening the possibility of higher
co-dimensional bifurcations and complex dynamical phenomena, certain of which
might be compatible to the design objectives.

As a preliminary illustrative example of TET, we consider a two degree-of-
freedom (DOF) dissipative unforced system described by the following equations:

ÿ1 + λ1ẏ1 + y1 + λ2(ẏ1 − ẏ2)+ k(y1 − y2)
3 = 0

εÿ2 + λ2(ẏ2 − ẏ1)+ k(y2 − y1)
3 = 0. (1.1)

Physically, these equations describe a damped linear oscillator (LO) with mass and
natural frequency normalized to unity, and viscous damping coefficient λ1; and
an essentially nonlinear attachment with normalized mass ε, normalized nonlinear
stiffness coefficient k, and viscous damping coefficient λ2. Note that system (1.1)
cannot be regarded as a small perturbation of a linear system due to the strongly
nonlinear coupling terms. The detailed study of this type of dynamical systems is
postponed until Chapter 3, and here we will only provide a brief numerical demon-
stration of TET by studying its transient dynamics.

To this end, we simulate numerically system (1.1) for parameter values ε = 0.1,
k = 0.1, λ1 = 0.01 and λ2 = 0.01. The selected initial conditions correspond
to an impulse F = A(δ(t) imposed to the linear oscillator [where δ(t) is Dirac’s
delta function – this impulsive forcing is equivalent to imposing the initial velocity
ẏ1(0+) = A] with the system being initially at rest, i.e., y1(0) = y2(0) = ẏ2(0) = 0
and ẏ1(0+) = A. Hence, the initial energy is stored only in the LO. The instanta-
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Fig. 1.1 Evolution of the energy ratio κ for impulse strength A = 0.5.

neous transfer of energy from the LO to the nonlinear attachment can be monitored
by computing the non-dimensional energy ratio κ , which denotes the portion of in-
stantaneous total energy stored in the nonlinear attachment,

κ = E2

E1 + E2
, E1 = 1

2
(y2

1 + ẏ2
1), E2 = ε

2
ẏ2 + k

4
(y1 − y2)

4, (1.2)

where E1 and E2 are instantaneous energies of the LO and the attachment, respec-
tively. Of course, all quantities in relations (1.2) are time dependent.

In Figures 1.1 and 1.2 we depict the evolution of the energy ratio κ for impulse
strengths A = 0.5 and A = 0.7, respectively. From Figure 1.1 it is clear that only
a small amount of energy (of the order of 7%) is transferred from the LO to the
nonlinear attachment. However, for a slightly higher impulse the energy transferred
climbs to almost 95% (see Figure 1.2), and within a rather short time ((15, much less
than characteristic time of viscous energy dissipation in the LO) almost the entire
impulsive energy is passively transferred from the LO to the nonlinear attachment,
which acts as nonlinear energy sink. It should be mentioned that the mass of the
attachment in this particular example is just 10% of the mass of the LO (and it will
be shown that this mass can be reduced even further with similar TET results).

From this example, it appears that passive TET from the directly excited LO to
the essentially nonlinear attachment in (1.1) is realized when the energy exceeds a
certain critical threshold. The mathematical description of the TET process poses
distinct challenges, since this phenomenon is transient (instead of steady state), and
essentially nonlinear (instead of weakly nonlinear). Traditionally, what one does
when dealing with systems of coupled oscillators like (1.1) is to consider the struc-
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Fig. 1.2 Evolution of the energy ratio κ for impulse strength A = 0.7.

ture of periodic or quasi-periodic orbits of the corresponding undamped, Hamil-
tonian system; however, given that TET is a strongly nonlinear transient phenom-
enon that occurs in the dissipative system, at this point it remains unclear what its
relation is to the dynamics of the underlying Hamiltonian system. In addition, it is
not obvious how to analytically study the TET phenomenon, as this occurs in the
strongly damped transient dynamics, where the majority of current techniques from
nonlinear dynamics are inapplicable; yet an analytical study of TET is required in
order for one to gain an understanding of the underlying dynamics, and apply it
to practical engineering designs. Some additional obvious open questions that arise
from this preliminary example concern the time scale of TET compared to the char-
acteristic time scales of the dynamics of the LO and the NES; the realization and
robustness of TET subject to other initial conditions and external excitations (such
as, for example, time periodic ones); and the possible extension of TET to multi-
degree-of-freedom linear oscillators or flexible structures with local essentially non-
linear attachments. These are some of the problems that we will be concerned with
in this monograph.

According to the commonly accepted and perhaps correct point of view, the his-
torical development of mechanics and, in particular, dynamics since Newton became
possible because the observed motion of celestial bodies was modeled by almost
conservative and nearly integrable mathematical dynamical models. Thus, the state-
ment that the orbits of planets are ellipses allowed Newton to discover the correct
laws of gravitation and motion. The solution of this problem initiated a breath of
important developments in applied mathematics, which eventually grew to the gen-
eral theory of integrable systems (Arnold, 1980). This type of systems possesses as
many independent first integrals of motion as their number of degrees of freedom,
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so their n-dimensional dynamics may be reduced (at least in principle) to single-
degree-of-freedom (SDOF) dynamical systems; alternatively put, the n-dimensional
phase spaces of these systems are foliated by families of n-dimensional tori, so their
motions may be reduced to periodic or quasi-periodic rotations on the surfaces of
multi-dimensional tori. For such integrable dynamical systems no energy exchanges
can occur between different modes of rotation and, of course, a process like TET is
not possible at all.

Later observations demonstrated that both assertions mentioned above concern-
ing the dynamics of celestial bodies (that is conservativity and integrability) are
not exact. Indeed, these systems are not exactly conservative, primarily due to tidal
phenomena; the famous manifestation of these effects is the one sidedness of the
Moon. Celestial systems are also not exactly integrable, as gravitational multi-body
interactions spoil the integrability; this led to the study of the celebrated three-
body problem, whose proof of non-integrability led Poincaré to the development
of modern geometrical dynamical systems theory and chaotic dynamics (Poincaré,
1899; Barrow-Green, 1996). Indeed, despite numerous attempts of more than two
centuries, the three-body problem, that is, the dynamics of three bodies interact-
ing via gravitational forces could not be analytically solved, until it was proven by
Poincaré to be non-integrable. Until the time of Poincaré common wisdom was the
Lagrangian view, that once a dynamical system is modeled by a set of differential
equations its analytical solution is a matter of developing the necessary mathemati-
cal techniques; Poincaré proved that there are dynamical systems – even of simple
configuration – for which no analytical solutions can exist (hence, the impossibility
of long-term weather prediction).

Despite their non-integrability, dynamical systems in celestial mechanics are of-
ten close to integrable ones, with the characteristic value of the perturbations from
integrability being of the order of about 10−3 or less. This is the reason that prob-
lems of celestial mechanics provided also a major thrust to the development of reg-
ular and singular perturbation techniques in applied mathematics. With the help
of these techniques, the dynamics of integrable Hamiltonian systems perturbed by
small Hamiltonian perturbations were analyzed and understood rather well in the
framework of the celebrated KAM (Kolmogorov–Arnold–Moser) theory (Arnold,
1963a, 1963b, 1964). If the perturbation is small enough, then for the majority of ini-
tial conditions quasi-periodic motions of the perturbed Hamiltonian system persist
under the perturbation (on ‘sufficiently irrational’ multi-dimensional tori), whereas
for special values of initial conditions (corresponding to countably infinite internal
resonances of the perturbed Hamiltonian system) invariant tori are destroyed and re-
placed by thin layers of chaotic motions. These chaotic layers prevent the existence
of a sufficient number of independent analytic independent first integrals of motion,
leading to non-integrability of the perturbed Hamiltonian system.

Much less is known about the effects of non-Hamiltonian perturbations, and so
theoretical developments concern only low-dimensional systems. The main effects
known include scattering by resonance and capture into the resonance (Armold,
1988). The former effect occurs when the orbit of the perturbed system is slightly
modified due to passage through resonance [by a perturbation of O(ε1/2), where
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is characteristic strength of the perturbation]. Capture into the resonance occurs
for a small subset of initial conditions, but the resulting variation of the perturbed
trajectory is of O(1).

Still, many interesting and important dynamical systems of practical significance
can not be described as small perturbations of integrable ones. For this more general
class of systems there are no rigorous analytical methods of solution. One approach
for analyzing this class of problems is to try to apply perturbation techniques far be-
yond the formal boundaries of their applicability (sometimes such an approach can
bring about success, for example, see the method discussed in Section 2.4). Another
approach is to seek some important partial solution of the problem, for example,
with the help of methods such as, harmonic balance, multiple scales, nonlinear nor-
mal modes (NNMs) (Nayfeh and Mook, 1995; Vakakis et al., 1996; Verhulst, 2005).

The systems under consideration in this work, exhibiting passive TET phenom-
ena, belong to this latter category. Indeed, considering the dynamical system in the
preliminary example (1.1), it is non-integrable, non-Hamiltonian, and besides some
special cases cannot be expressed in the form of a perturbed integrable dynami-
cal system. As mentioned previously, added challenges arise due to the type of re-
sponses that we will be interested in, namely, damped transient motions instead of
steady state ones. It follows that standard perturbation techniques from the theory of
dynamical systems dealing with periodic or nearly periodic motions are inapplica-
ble in the problem of TET in systems of coupled discrete or continuous oscillators.
Moreover, it is not clear for what types of dynamical systems is TET possible, and,
even if it is possible, under what conditions it can be realized. Hence, in our study
of TET in mechanical and structural systems certain important questions need to be
addressed, including:

• The type of structural modification needed for realization of passive TET in a
dynamical system, and the class of dynamical systems capable of TET.

• The robustness of the TET phenomenon to changes (and uncertainties) in system
parameters, initial conditions and external excitations.

• The modeling and mathematical analysis of TET, and the determination of the
governing dynamical mechanisms controlling TET.

• The ways to enhance and optimize TET in a system according to the specific set
of design objectives, and the type of practical applications where TET is useful.

• The comparison of TET-based designs to alternative current linear or nonlinear,
passive or active designs.

• Provided that TET is theoretically proven to be beneficial according to the spe-
cific design objectives, the practical implementation of these designs in engineer-
ing applications.

In this monograph we will attempt to address some of these issues, but, of course,
no complete answers to all these questions can be provided at this point. Instead,
this work can be regarded as a first attempt towards addressing some of the above
issues, and, thus, demonstrating that the nonlinear phenomenon of passive TET,
under certain conditions, can prove to be beneficial to a broad range of practical
engineering applications.
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This monograph is intended for the reader who has a general acquaintance
with analytical dynamics and the basic theory of ordinary differential equations.
Some more advanced issues, not normally taught in standard engineering curric-
ula and necessary for understanding the forthcoming material, are reviewed in
Chapter 2. These include the issue of localization in mechanical systems, the con-
cepts of nonlinear normal modes and resonance capture, as well as a survey of the
complexification-averaging (CxA) technique which will be frequently employed in
this work. In the same chapter perspectives on the experimental fixtures developed
for studying TET are discussed.

Chapter 3 is central in our discussion, as it provides the theoretical basis of
our study of TET. This includes the analysis of the main mechanisms for TET in
the simplest possible system that can exhibit this phenomenon, namely, a single-
degree-of-freedom (SDOF) linear oscillator with a SDOF essentially nonlinear at-
tachment; some additional theoretical results on conditions for optimal TET and on
TET in multi-degree-of-freedom (MDOF) linear oscillators with SDOF essentially
nonlinear attachments are also included in this chapter. Chapter 4 analyzes discrete
linear oscillators with MDOF essentially nonlinear attachments, and demonstrates
enhanced and more complex forms of TET in this type of dynamical systems.

In Chapter 5 we extend our theoretical analysis of TET in flexible structures, by
considering beams, rods and plates with essentially nonlinear SDOF and MDOF at-
tachments; we show that TET can be beneficial for shock isolation of this class of
systems. Chapter 6 treats TET in discrete oscillators under periodic external exci-
tation; it turns out that such systems can possess rather unusual response regimes
which can be related to different regimes of periodic or quasi-periodic TET, some
of which turn out to be favorable in the context of vibration isolation.

The analysis in Chapter 7 concerns TET in systems with attachments that pos-
sess non-smooth nonlinearities; special attention is given to the analysis of TET
to attachments with vibro-impact nonlinearities, since these systems are proved to
be especially suitable for applications where shock isolation in a fast time scale is
required. Experimental studies that validate the nonlinear TET phenomenon are re-
viewed in Chapter 8, which also includes a discussion of issues related to practical
implementation of TET in engineering applications.

In Chapters 9 to 11 implementation of TET in practical problems is discussed.
These include, passive suppression of aeroelastic instabilities by means of TET into
SDOF and MDOF lightweight essentially nonlinear attachments (Chapter 9); appli-
cation of TET to seismic mitigation problems, considering attachments with smooth,
as well as vibro-impact nonlinearities (Chapter 10); and passive suppression of drill-
string instabilities in oil drilling applications by means of TET (Chapter 11). These
applications demonstrate the potential of TET-based passive designs to provide ef-
ficient solutions to a broad range of important problems encountered in engineering
practice. Our discussion of TET is concluded in Chapter 12 with some perspectives
on the passive designs discussed in this work, and on potential future extensions of
this work.
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Chapter 2
Preliminary Concepts, Methodologies and
Techniques

As mentioned in the Introduction (Chapter 1, the study of targeted energy trans-
fer (TET) in strongly nonlinear and non-conservative oscillators poses some dis-
tinct technical challenges, and dictates the use of concepts, formulations, analytical
methodologies and computational techniques from different fields of applied math-
ematics and engineering, such as dynamical systems and bifurcation theory, asymp-
totic techniques, numerical signal processing, and experimental dynamics. There-
fore, before we initiate our study of the nonlinear dynamics of TET, it is appropriate
to provide first some background information related to certain key concepts and
methodologies that will be applied in the work that follows.

Specifically, we will briefly discuss the concepts of nonlinear normal mode
(NNM) and nonlinear mode localization in discrete and continuous oscillators,
and the occurence of nonlinear internal resonances, transient resonance captures
(TRCs) and sustained resonance captures (SRCs) in undamped or damped, forced
or unforced dynamics systems of coupled oscillators. These concepts will provide
us with the necessary theoretical framework to base our theoretical study of the
dynamics of TET; moreover, using these concepts we will be able to identify, in-
terprete, and place into the right context complex nonlinear dynamical phenomena
related to TET.

Then, we will outline the basic elements of a special perturbation technique,
namely, the complexification-averaging (CX-A) technique which will be one of the
basic mathematical tools employed for performing the analytical derivations re-
quired in our theoretical studies. This will be followed by discussion of some se-
lected advanced signal processing techniques, namely, wavelet transforms – WTs,
empirical mode decomposition – EMD, and Hilbert transforms, which will be espe-
cially suitable for post-processing the computational nonlinear dynamical responses
related to TET, and for identifying the corresponding underlying nonlinear modal
interactions that govern TET or influence its effectiveness. In essence, we will work
towards the formulation of an integrated post-processing methodology for analyz-
ing strongly nonlinear transient (or steady state) modal interactions in systems with
strong nonlinearities. We will end this chapter by providing some preliminary re-
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marks on the development of the necessary hardware required for our experimental
work, undertaken to validate and confirm the theoretical results related to TET.

We start our discussion by considering the concept of nonlinear normal mode
(NNM), which will be central in our theoretical investigation of the dynamics of
TET in systems of coupled oscillators.

2.1 Nonlinear Normal Modes (NNMs)

Engineers and physicists traditionally associate the concept of normal mode with
linear vibration theory and regard it as closely related to the principle of linear su-
perposition. Indeed, a classical result of linear vibration theory is that the normal
modes of vibration of a multi-degree-of-freedom (MDOF) discrete system can be
employed to decouple the equations of motion through an appropriate coordinate
(modal) transformation, and to express its free or forced oscillations as superposi-
tions of modal responses. Another result of classical linear theory is that the num-
ber of normal modes of vibration cannot exceed the number of degrees of freedom
(DOF) of a discrete system, and that any forced resonances of the system under ex-
ternal harmonic excitation always occur in neighborhoods of frequencies of normal
modes.

Although in nonlinear systems the principle of linear superposition does not (gen-
erally) hold, nevertheless the concept of the normal mode can still be employed.
Rosenberg (1966) defined a nonlinear normal mode (NNM) of an undamped dis-
crete MDOF system as a synchronous periodic oscillation where all material points
of the system reach their extreme values or pass through zero simultaneously; hence,
the NNM oscillation is represented by either a straight modal line (similar NNM) or
a modal curve (non-similar NNM) in the configuration space of the system. NNMs
are generically non-smimilar, since similarity (which is always the case in linear
theory) can only be realized when special symmetries exist (Vakakis et al., 1996).
Lyapunov (1947) proved the existence of nsynchronous periodic solutions (NNMs)
in neighborhoods of stable equilibria of n-DOF Hamiltonian systems with no in-
ternal resonances, and Weinstein (1973) and Moser (1976) extended Lyapunov’s
result to MDOF Hamiltonian systems with internal resonances. As discussed below,
an important feature that distinguishes NNMs from linear normal modes is that they
can exceed in number the degrees of freedom of an oscillator; in cases where this oc-
curs, essentially nonlinear modes (having no analogs in linear theory) are generated
through NNM bifurcations, breaking the symmetry of the dynamics and resulting in
nonlinear energy localization (motion confinement) phenomena.

Similar NNMs are analogous to linear normal modes, in the sense that their
modal lines do not depend on the energy of the free oscillation and space-time
separation of the governing equations of motion can still be performed; however,
as mentioned previously, this type of NNMs is realized only when special symme-
tries occur, and are not typical (generic) in nonlinear systems. More generic are
non-similar NNMs, whose modal curves do depend on energy; this energy depen-
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dence prevents the direct separation of space and time in the governing equations of
motion by means of non-similar NNMs, which complicates their analytical compu-
tation (Kauderer, 1958, Manevitch and Mikhlin, 1972; Vakakis et al., 1996).

In this work, we will adopt a more extended definition of NNMs, defining
an NNM as a (not necessarily synchronous) time-periodic oscillation of a non-
dissipative nonlinear dynamical system. This enables us to extend the NNM defini-
tion to cases of systems in internal resonance, where the resulting strongly nonlinear
modal interactions render the free oscillation non-synchronous (King and Vakakis,
1996). Viewed in a different context, whereas in the absence of internal resonance a
NNM can be represented by a modal line or curve in the configuration space of the
system – so that functional relations of the form yi = ŷ1, y1 ≡ ŷ1(y1), i = 1, . . . , n
can be established between the coordinates yj (hence, Rosenberg’s original NNM
definition), no such functional relations hold when internal resonances occur. Still,
our extended NNM definition applies to this later case as well.

The extension of the concept of NNM to non-conservative systems with damp-
ing was studied by Shaw and Pierre (1991, 1993), who introduced the concept of
damped NNM invariant manifold to account for the fact that the free oscillation
of a damped nonlinear system is a non-synchronous, decaying motion. This NNM
invariant manifold formulation is based on ideas developed by Fenichel (1971) re-
garding persistence and smoothness of invariant manifolds in dynamical systems,
and computes damped NNM invariant manifolds of the damped dynamical flow by
parametrizing the damped NNM response in terms of a reference displacement and
a reference velocity. For sufficiently weak damping, the damped NNM invariant
manifold can be viewed as perturbation (and analytic continuation) of the NNM of
the corresponding undamped Hamiltonian system. When a motion is initiated on
a damped NNM invariant manifold of a MDOF system, the response of each co-
ordinate is in the form of a decaying oscillation with non-trivial phase difference
with regard to the other coordinates. A computationally efficient extension of the
invariant manifold methodology was proposed by Nayfeh and Nayfeh (1993) who
reformulated the NNM invariant manifold method in a complex framework. When
no resonances exist, the NNM invariant manifolds of a MDOF discrete oscillator
are two-dimensional, and the NNMs are uncoupled from each other. When internal
resonances exist, there occur strongly nonlinear interactions between NNMs which
couple them; this causes an increase of the dimensionality of the corresponding
NNM invariant manifold.

NNMs and NNM damped invariant manifolds will play an important role in our
discussion of TET and related strongly nonlinear transient dynamical phenomena.
Our study will indicate that a prerequisite for realization of TET from linear sys-
tems to strongly nonlinear boundary attachments is the existence of some form of
energy dissipation in the system; although in this study the main energy dissipation
mechanism considered is (weak) viscous damping, other forms of energy dissipa-
tion may also qualify for TET, such as, for example, energy transmission to the far
field of unbounded media by traveling waves (see Section 3.5.2). A paradoxical fact,
however, is that although TET is realized only in the (weakly) dissipative system,
in essence its dynamics is governed by the dynamics, and, especially, the NNMs of
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the underlying non-dissipative system. Indeed, it will be shown, that the properties
and bifurcations of NNMs of the non-dissipative system determine the conditions
(i.e., the ranges of system parameters, external excitations and initial conditions) for
the realization of TET in the dissipative system. The topological structure and bi-
furcations of the NNMs of the underlying non-dissipative systems will be carefully
studied in this work – especially in the frequency-energy domain, since the energy
dependencies of NNMs (and damped NNM invariant manifolds) play a key role
regarding TET; this holds especially for NNMs whose spatial distributions change
from non-localized to localized with decreasing energy.

But there are additional benefits to be gained by adopting a NNM-based frame-
work for our study. It will be shown that NNM bifurcations govern complex non-
linear transitions occurring in the damped dynamics for decreasing energy. This
becomes clear when one considers that in a weakly damped system the NNMs and
NNM bifurcations are preserved as weakly damped NNM invariant manifolds and
as bifurcations of these manifolds, respectively, which lie in neighborhoods of the
corresponding undamped NNMs. It follows that the weakly damped, transient, non-
linear dynamics follow approximately paths along NNM invariant manifolds, and
that bifurcations of NNM invariant manifolds appear as sudden transitions (jumps)
in the damped transient dynamics. These may lead to complex, multi-modal and
multi-frequency complex transitions in the dynamics, which, however, may be fully
interpreted, modeled and analytically studied by adopting a theoretical framework
based on NNMs and damped NNM invariant manifolds. More importantly, using
such a framework TET can be analyzed and optimized according to a set of design
criteria, which is needed for the implementation of TET in practical applications.
Indeed a NNM-based approach seems to be natural for the study of TET and the
associated strongly nonlinear phenomena discussed in this work.

Returning now to our brief review of NNM-related works, constructive methods
for computing NNMs in discrete oscillators with no internal resonances were devel-
oped (see, for example, Rand, 1971, 1974; Manevitch and Miklhin, 1972; Mikhlin,
1985; Bellizzi and Bouc, 2005), and NNMs in systems with internal resonances
(where strong nonlinear modal interactions take place) have also been studied (see,
for example, Boivin et al., 1995; King and Vakakis, 1996; Nayfeh et al., 1996;
Jiang et al., 2005a). In an additional series of works (King and Vakakis, 1993, 1994,
1995a; Vakakis and King, 1995; Andrianov, 2008) methodologies for analysing the
NNMs (and their bifurcations) of nonlinear elastic and continuous systems have
been developed. In King and Vakakis (1994) stationary and traveling solitary waves
(breathers) in a class of nonlinear partial differential equations are regarded as lo-
calized NNMs over domains of infinite spatial extent and are studied analytically.
These methods and some additional ones for analyzing and computing NNMs in dis-
crete and continuous oscillators are reviewed in Manevitch et al. (1989), Vakakis et
al. (1996), Vakakis (1996, 1997, 2002), Pierre et al. (2006), Kerschen et al. (2008a)
and Peeters et al. (2008).

An additional interesting feature of NNMs, which clearly distinguishes them
from classical linear normal modes, is that they can exceed in number the degrees
of freedom of a dynamical system. This is due to NNM bifurcations which may also
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Fig. 2.1 NNMs of system (2.1); —: stable, - - -: unstable NNMs.

lead to NNM instability (a feature which, again, is distinct from what predicted by
linear theory). We illustrate this by a simple example. To this end, we consider the
following two-DOF Hamiltonian system with cubic stiffness nonlinearities (Vakakis
and Rand, 1992a, 1992b):

ÿ1 + y1 + y3
1 +K(y1 − y2)

3 = 0

ÿ2 + y2 + y3
2 +K(y2 − y1)

3 = 0 (2.1)

Due to its symmetry, this system possesses only similar NNMs which are computed
by imposing the following functional relationship:

y2 = ŷ2(y1) ≡ c y1 (2.2)

where c ∈ R is a real modal constant. Substituting (2.2) into (2.1), we derive the
following algebraic equation satisfied by the modal constant:

K(1 + c)(c − 1)3 = c(1 − c2) (2.3)

In Figure 2.1 the real values of the modal constant c are depicted for varying
coupling stiffness coefficient K , from which we infer that a pitchfork bifurcation
(Wiggins, 1990) of NNMs occurs in the Hamiltonian system. This type of bifur-
cation is realized due to the symmetry of system (2.1) and is expected to ‘break’
into saddle node (SN) bifurcation(s) when this symmetry is perturbed. Referring to
Figure 2.1, we note that system (2.1) always possesses the NNMs y2 = ±y1 cor-
responding to solutions c = ±1 of (2.3), irrespectively of the coupling strength K;
these correspond to in-phase and out-of-phase similar NNMs, respectively, which
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can be regarded as continuations of the two normal modes of the corresponding
linear system. However, as noted from the bifurcation diagram of Figure 2.1, the
nonlinear system possesses two additional NNMs which bifurcate from the out-
of-phase NNM at K = 1/4. The bifurcating NNMs are out-of-phase, essentially
nonlinear, time-periodic motions of system (2.1) having no analogs in linear theory;
both of these NNMs become localized as K → 0 (i.e., for sufficiently weak cou-
pling) to one of the two SDOF oscillators of system (2.1). Hence, in the limit of
weak coupling nonlinear mode localization occurs in the symmetric system. In the
next section nonlinear localization in dynamical systems is discussed in more detail.

This simple example demonstrates that the NNMs of a dynamical system may ex-
ceed in number its degrees of freedom. In this particular case, the NNM bifurcation
is due to 1:1 internal resonance between the two SDOF nonlinear oscillators of sys-
tem (2.1). An additional interesting conclusion drawn from this specific example is
that NNM bifurcations may result in mode instability; indeed, forK < 1/4 the out-
of-phase NNM x2 = −x1 becomes unstable (Vakakis et al., 1996), a result which, as
shown below, has implications on the global Hamiltonian dynamics of system (2.1).
We mention that the instability of the out-of-phase NNM is manifested in the form
of modulated (instead of a periodic) oscillation, and not in the form of an exponen-
tially growing motion; in other words, in system (2.1) only orbital stability (Nayfeh
and Mook, 1995) has meaning, as Lyapunov asymptotic stability is not possible in
the nonlinear Hamiltonian oscillator (2.1) due to the dependence of the frequency
of oscillation on the energy.

To show this, we construct numerical Poincaré maps of the global dynamics.
First, we reduce the dynamical flow of system (2.1) on its three-dimensional isoen-
ergetic manifold, defined by the relation

H(y1, ẏ1, y2, ẏ2) ≡ ẏ2
1 + ẏ2

2

2
+ y2

1 + y2
2

2
+ y4

1 + y4
2 +K(y1 − y2)

4

4
= h (2.4)

where h is the (conserved) level of energy. Then we intersect the isoenergetic flow
by the two-dimensional cut section

� = {y1 = 0, ẏ1 > 0} ∩ {H = h} (2.5)

which is everywhere transverse to the flow. Moreover, the resulting two-dimensional
Poincaré map is orientation-preserving due to the restriction imposed on the sign of
the velocity ẏ1 at the cut section. In Figure 2.2 we depict the Poincaré maps of
system (2.1) for the low energy level h = 0.4, and two values of K corresponding
to relatively strong (Figure 2.2a) and weak (Figure 2.2b) coupling.

We note that the in-phase NNM normal mode (appearing as the upper equilib-
rium point in both maps) is orbitally stable, as it appears as a center surrounded by
closed orbits (which are intersections of invariant tori of the Hamiltonian with the
cut section �). Considering the out-of-phase NNM, above the bifurcation it is sta-
ble, whereas below it is unstable and possesses a double homoclinic loop, as inferred
from Figure 2.2b. The (seemingly smooth) homoclinic orbits (loops) are formed by
the coalescence of the stable and unstable invariant manifolds of the unstable out-
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Fig. 2.2 Poincaré maps of the global dynamics of system (2.1) for low energy h = 0.4: (a)K =
0.4 > 1/4, (b)K = 0.1 < 1/4.

of-phase NNM, and represent the boundaries between trajectories that encircle only
one of the bifurcating NNMs and those that enclose both. The Poincaré plots of Fig-
ure 2.2 (which correspond to a relatively low value of energy) are rather deceiving,
however, since they give the impression that the global dynamics of the oscillator
(2.1) is regular and completely predictable [in fact, for low energies the dynamics
can be asymptotically approximated by the method of multiple scales (Vakakis and
Rand, 1992a)].

In fact, since the oscillator (2.1) is non-integrable, ‘rational’ and some ‘irra-
tional’ invariant tori of the flow are expected to ‘break’ according to the KAM
theorem (MacKay and Meiss, 1987), giving rise to random-like chaotic motions;
local (small-scale) chaos then results in layers of stochasticity surrounding count-
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able infinities of stable subharmonic periodic orbits (Guckenheimer and Holmes,
1983; Veerman and Holmes, 1985; Wiggins, 1990) that result from the ‘breakdown’
of rational invariant tori. This local chaos is due to exponentially small splittings of
the stable and unstable manifolds of unstable subharmonic orbits, producing trans-
verse intersections of these manifolds close to resonance bands of the dynamics
(Veerman and Holmes, 1986).

Apart from causing global qualitative changes in the dynamics, the NNM bifur-
cation depicted in Figure 2.1 gives rise to global (large-scale) chaos in the Hamil-
tonian system (2.1), and, hence, to large-scale instability. This is a consequence of
the splitting and transverse intersections of the stable and unstable invariant man-
ifolds that form the seemingly smooth (at low energies) homoclinic loops of the
unstable NNM in the Poincaré map of Figure 2.2b; this results in large-scale homo-
clinic tangles and chaotic Smale horseshoe maps (Wiggins, 1990) leading to large-
scale chaos in system (2.1). This is demonstrated in the Poincaré maps of Figure 2.3,
corresponding to relatively high energy levels h = 50.0 and h = 150.0, and weak
coupling (i.e., after the NNM bifurcation has taken place). We note that there is a
large region [a sea of stochasticity (Lichtenberg and Lieberrman, 1983)] in each of
these maps, inside which the orbits of the oscillator seem to wander in an erratic
fashion. These regions contain chaotic motions, i.e., motions with extreme sensi-
tivity on initial conditions. In each Poincaré map the region of large-scale chaos
occupies a neighborhood of the unstable out-of-phase NNM and the domain where
transverse intersections of the invariant manifolds of that NNM occur.

The occurrence of large-scale chaotic motions in the Hamiltonian system (2.1)
is a direct consequence of the pitchfork bifurcation of NNMs, since they appear
only after the NNM bifurcation has occurred (i.e., only for K < 1/4). Therefore,
a necessary condition for large-scale chaos in system (2.1) is the orbital instability
of the out-of-phase NNM (since only then can large-scale transverse homoclinic
intersections of invariant manifolds occur). As a result, in this case the bifurcation
of NNMs increases the complexity of the global dynamics and adds global instability
in the system. This is a first indication of the global effects on the dynamics that a
NNM bifurcation can introduce. In the course of this work we will show that NNM
bifurcations can affect in a critical way the dynamics of TET, and play an important
role when optimizing for robust, fast-scale and strong passive TET from a directly
forced linear system to an essentially nonlinear boundary attachment.

To illustrate the frequency-energy dependence and some additional interesting
features of NNMs we consider another example of a two-DOF system, consisting
of a nonlinear oscillator linearly coupled to a linear one (Kerschen et al., 2008a):

ÿ1 + 2y1 − y2 + 0.5y3
1 = 0

ÿ2 + 2y2 − y1 = 0 (2.6)

In contrast to (2.1) this system is not symmetric so it can possess only non-similar
NNMs. As mentioned previously, this is the generic type of NNMs encountered in
dynamical systems, so this example aims to demonstrate certain features of non-
similar NNMs that are typical for a broad class of nonlinear coupled oscillators.
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Fig. 2.3 Poincaré maps of the global dynamics of system (2.1) for high energies and K = 0.1 <
1/4: (a) 50.0, (b) h = 150.0.

The non-similar NNMs of this system are approximately computed by the
method of harmonic balance (Nayfeh and Mook, 1995), i.e., by seeking time-
periodic responses in the form

y1(t) ≈ A cosωt, y2(t) ≈ B cosωt (2.7)

Note that the computation of non-similar NNMs is approximate, in contrast to the
exact expressions derived for the similar NNMs in the previous example. When the
ansatz (2.7) is substituted into (2.6), and a matching of coefficients of the various
harmonic functions is performed, we obtain the following expressions for the am-
plitudes
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Fig. 2.4 NNMs of system (2.6) depicted in a frequency-energy plot (FEP); the corresponding
modal curves in the configuration plane are inset, horizontal and vertical axes in these plots depict
the displacements of the nonlinear and linear oscillators, respectively.

A = ±
{

8(ω2 − ω2
2)(ω

2 − ω2
1)

3(ω2 − 2

}1/2

, B = A

2 − ω2 (2.8)

with the natural frequencies of the linearized system given by ω1 = 1 and ω2 = √
3.

This result demonstrates the frequency dependence of the amplitudes of the NNMs
of system (2.6).

The appropriate graphical depiction of NNMs is key to their exploitation. In this
work extensive use will be made of frequency-energy plots (FEPs) where the am-
plitude of a NNM is plotted as function of its (conserved) energy. The NNMs of
system (2.6) were computed numerically (Peeters et al., 2008) and are depicted in
Figure 2.4. There exist two main backbone branches of NNMs, an in-phase branch,
S11+, originating (for low energies) from the first linearized natural frequency
and an out-of-phase one, S11−, originating from the second linearized natural fre-
quency. The notation ‘S’ used for these NNMs refer to the symmetric character of
these solutions [i.e., both oscillators of (2.6) execute synchronous motions], whereas
the indices indicate that the two oscillators of system (2.6) vibrate with the same
dominant frequency. A detailed discussion of FEPs and the corresponding notations
of branches of NNMs depicted on them, is postponed until Section 3.3.

The FEP of Figure 2.4 clearly shows that the nonlinear modal parameters have
a strong dependence on the (conserved) energy of the oscillation. Specifically, the
frequencies of the in-phase and out-of-phase NNMs increase with energy, which
reveals the hardening characteristic of system (2.6). Moreover, the modal curves
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change with increasing energy, since the in-phase NNM tends to localize to the
linear oscillator (i.e., its modal curve tends to become vertical in the corresponding
configuration plan with increasing energy), whereas the out-of-phase NNM tends
to localize to the nonlinear oscillator (its modal curve tends to become horizontal
with increasing energy). This tendency of NNMs to localize with varying energy
is key for the realization of TET in the corresponding weakly dissipative system,
as discussed in Chapter 3 [see also Pilipchuck (2008) for an additional study of
nonlinear mode localization and TET due to the dependence of the shapes of NNMs
on energy]. In this work we will make extensive use of the FEP, since it is a valuable
tool for examining not only NNMs of Hamiltonian systems, but also of nonlinear
transitions leading to TET in weakly dissipative ones.

Another salient feature of NNMs is that they may nonlinearly interact without
their linearized natural frequencies necessarily satisfying conditions of internal res-
onance. These strongly nonlinear modal interactions [which differ from nonlinear
modal interactions considered in the current literature, see (Nayfeh, 2000) for ex-
ample] occur at relatively high energy levels (so that nonlinear effects are dominant
in the motion), and can be clearly studied by representing the NNMs in the FEP.
Such internally resonant NNMs have no counterparts in linear theory and are gener-
ated through NNM bifurcations. The FEP of system (2.6) depicts internally resonant
NNMs at high energies (see Figure 2.4). In particular, we note an additional branch
of NNMs lying on a subharmonic tongue emanating from the in-phase backbone
branch S11+. This tongue is denoted by S31, since it corresponds to a 3:1 internal
resonance of the in-phase and out-of-phase NNMs at those energy levels. Surpris-
ingly, the ratio of the linearized natural frequencies of system (2.6) is equal to

√
3,

but due to the energy dependence of the frequencies of the NNMs, a 3:1 ratio be-
tween the two frequencies of the NNMs can still be realized; hence, conditions of
3:1 internal resonance are realized at high energies, although no such conditions
are possible at lower energies. This result clearly demonstrates that NNMs can be
internally resonant without necessarily having commensurate linearised natural fre-
quencies, a feature that is rarely discussed in the literature. This also underlines that
important features of nonlinear dynamics can be missed when resorting exclusively
to perturbation techniques which are based on linearized generating solutions, and,
thus, being limited to small-amplitude motions (Kerschen et al., 2008a).

To better illustrate this interesting high-energy nonlinear resonance mechanism,
the branch S11− is represented by dashed line as S33− in the FEP of Figure 2.4, at
a third of its frequency. This is permissible, because a periodic solution of period T
is also periodic with period 3T , so the branch S33− is identical to S11−. Using this
notation it is clear that in the energy range of 3:1 internal resonance there occurs
a smooth transition from branch S11− to branch S33− through the subharmonic
tongue S31. In Figure 2.5 we present a closeup of the FEP in the energy range of
existence of the 3:1 internally resonance NNMs; the subharmonic tongue is more
clearly depicted, and the stability of the various branches of internally resonance is
examined.

This discussion indicates that additional nonlinear resonance scenarios are re-
alized when we further increase the energy of the seemingly simple system (2.6).
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Fig. 2.5 Energy range of the FEP of existence of 3:1 internally resonant NNMs in system (2.6),
–•–•–•– unstable NNMs; the corresponding modal representations in the configuration plane are
depicted at selected energies.

This is supported by the fact that for increasing energy the frequencies of the out-
of-phase NNMs on branch S11− increase steadily, whereas the frequencies of the
in-phase NNMs on S11+ tend to the asymptotic limit ω2 = √

3. Following this
reasoning, we expect the existence of a countable infinity of internal resonances be-
tween the in-phase and out-of-phase NNMs at specific higher energy ranges. This is
confirmed by the numerical results presented in Kerschen et al. (2008a). In this work
we will investigate in detail FEPs similar to those depicted in Figures 2.4 and 2.5,
and show that the energy dependencies of the NNM backbone branches and sub-
harmonic tongues of NNMs dictate the different forms of possible targeted energy
transfers in coupled oscillators with essentially nonlinear attachments.

The previous examples highlight the advantages of adopting nonlinear theoreti-
cal frameworks (instead of linearized ones) for analyzing nonlinear dynamical re-
sponses. As shown previously, there are cases where a nonlinear dynamical system
may possess essentially nonlinear modes or can exhibit essentially nonlinear dynam-
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ical phenomena that have no counterparts in linear theory. Applying linear concepts
such as modal analysis and frequency response plots to such a nonlinear system
may model only partially the dynamics, so alternative approaches that take into full
account the effects of the nonlinearity must be applied instead. In that context, the
concepts of NNM and damped NNM invariant manifold provide a solid theoretical
framework for analyzing, interpreting and modeling strongly nonlinear responses of
dynamical systems.

An additional important characteristic of NNMs relates to forced resonances,
since in analogy to linear theory, forced resonances of nonlinear systems excited
by periodic excitations occur in neighborhoods of NNMs (Mikhlin, 1974) [this may
lead to quite complex structures of forced resonances as discussed by King and
Vakakis (1995b)]. Hence, knowledge of the structure of NNMs of a nonlinear os-
cillator can provide valuable insight on its fundamental or secondary (subharmonic,
superharmonic or combinantion) resonances (Nayfeh and Mook, 1995), a feature
which is of considerable engineering importance. The structure of forced resonances
of nonlinear oscillators is determined, in essence, from the structure and bifurcations
of their NNMs, so performing forced response analysis based on linear eigenspaces
and not taking into account the possibility that essentially nonlinear modes might
exist, may lead to inadequate modeling of the dynamics.

Moreover, it was shown in recent studies (Pesheck, 2000; Pesheck et al., 2002;
Jiang et al., 2005b; Touzé et al., 2004; Touzé and Amabili, 2006; Touzé et al., 2007a,
2007b) that NNMs can provide effective bases for constructing reduced-order mod-
els of the dynamics of discrete and continuous nonlinear oscillators. Indeed, NNM-
based Galerkin projections for discretizing the dynamics were proven to be more
accurate in predicting the nonlinear dynamics of these systems compared to linear
mode-based Galerkin projections. These results demonstrate one additional appli-
cation of NNMs; that is, even though NNMs do not satisfy orthogonality properties
(as classical linear normal modes do) they can still be used as bases for accurate,
low-order Galerkin projections of the dynamics of discrete and continuous weakly
or strongly nonlinear oscillators. The resulting low-order reduced models are ex-
pected to be much more accurate compared to linear mode-based ones (especially
in systems with strong or even nonlinearizable nonlinearities). The reason for the en-
hanced accuracy of NNM-based reduced-order models lies on the invariance prop-
erties of NNMs, and on the fact that they represent exact solutions of the free or
forced nonlinear dynamics of the oscillators considered. Hence, free or forced os-
cillations of a nonlinear structure in the neighborhoods of NNMs can be accurately
captured by either isolated NNMs (in the absence of multi-modal nonlinear inter-
actions), or by a small subset of NNMs (when internal resonances between NNMs
occur). Hence, NNMs hold promise as bases for efficient and accurate low-order
reduction of the dynamics of systems with many degrees-of-freedom, for example,
of finite-element (FE) computational models; this holds, in spite the fact that NNMs
do not satisfy any form of orthogonality conditions.

NNMs can be applied in additional areas of vibration theory, as in the area of
modal analysis and system identification. Traditional techniques for modeling the
dynamics of nonlinear structures are based on the assumptions of weak nonlinear-
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ities and of a nonlinear modal structure similar to that of the underlying linearised
system. As shown in the previous examples even a simple two-DOF system can
have more normal modes than its degrees of freedom; hence, in performing non-
linear modal analysis one should consider the possibility that certain of the modes
might be essentially nonlinear, having no counterparts in linear theory. The bifurcat-
ing NNMs of the previous examples are precisely this type of essentially nonlinear
modes; they change qualitatively the modal structure of the dynamical system by
adding essentially nonlinear components that do not exist in the context of linear
theory. It follows that the concept of the NNM can provide the necessary framework
for developing nonlinear modal analysis techniques, capable of modeling essentially
nonlinear dynamics (Kerschen et al., 2005).

It was mentioned previously that the bifurcating similar NNMs of the symmetric
system (2.1) become localized to either one of the two oscillators of the system as
coupling between them becomes weak, so that nonlinear mode localization occurs
in the weakly coupled system. Moreover, we showed that the non-similar NNMs of
the non-symmetric system (2.6) become localized with varying energy, even in the
absence of NNM bifurcations. Hence, it becomes clear that nonlinear localization
is an important feature of the dynamics of coupled nonlinear dynamical systems.
Nonlinear mode localization and its applications are discussed in the next section.

2.2 Energy Localization in Nonlinear Systems

One of the most interesting features of NNMs is that they may induce nonlinear
mode localization in dynamical systems, i.e., a subset of NNMs may be spatially
localized to subcomponents of dynamical systems. Mode localization may occur
also in linear systems composed of multiple coupled subsystems (Anderson, 1958;
Pierre and Dowell, 1987; Hodges, 1982), however, it only results due to the inter-
play between break of symmetry (structural disorder) and weak coupling between
subsystems. In nonlinear systems, structural disorder is not a prerequisite of mode
localization, since the dependence of the frequency of oscillation on the amplitude
(energy) provides an ‘effective disorder’ (or ‘mistuning’) in the dynamics (Vakakis
et al., 1993; Vakakis, 1994; King et al., 1995; Vakakis et al., 1996).

Nonlinear mode localization was realized in both previous examples of systems
of unforced coupled oscillators examined in Section 2.1, either due to a bifurca-
tion of similar NNMs of the symmetric system (2.1), or due to the energy depen-
dence of the nonlinear mode shape of non-similar NNMs of system (2.6). Moreover,
forced nonlinear localization in systems under harmonic excitation has been studied
(Vakakis, 1992; Vakakis et al., 1994), and nonlinear mode localization in flexible
systems with smooth (Vakakis, 1994; Aubrecht and Vakakis, 1996; Aubrecht et al.,
1996) and non-smooth nonlinearities (Emaci et al., 1997) has been investigated. A
review of mode localization in systems governed by nonlinear partial differential
equations was given in Vakakis (1996).
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We will demonstrate some aspects of nonlinear mode localization in coupled os-
cillators by considering two examples, the one involving a low-dimensional cyclic
system, and the other a nonlinear medium of infinite spatial extent. The latter exam-
ple will underline the theoretical link between NNMs and solitary waves. We start
by considering a cyclic assembly of coupled oscillators, governed by the following
set of ordinary differential equations (Vakakis et al., 1993):

ÿi + yiεµy3
i + εk(yi − yi+1 + εk(yi − yi−1 = 0, i = 0, . . . , N

y0 ≡ yN, yN+1 ≡ y1 (2.9)

This symmetric system possesses similar NNMs, which can be approximately com-
puted by the method of multiple scales (Nayfeh and Mook, 1995) as follows:

y1(t) = a1 cos[(1 + εα)t + β1)] +O(ε)
y2(t) = yN−1(t) = −a2 cos[(1 + εα)t + β1] +O(ε)
y3(t) = yN−2(t) = −a3 cos[(1 + εα)t + β1] +O(ε)

• • •

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(N = 2p + 1)

or

y1(t) = a1 cos[(1 + εα)t + β1] +O(ε)
y2(t) = yN−1(t) = −a2 cos[(1 + εα)t + β1] +O(ε)
y3(t) = yN−2(t) = a3 cos[(1 + εα)t + β1] +O(ε)

• • •
yp−1(t) = yp+1(t) = (−1)pap−1 cos[(1 + εα)t + β1] +O(ε)
yp(t) = (−1)p+1ap cos[(1 + εα)t + β1] +O(ε)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(N = 2p + 1)

(2.10)
where p is an integer and ak ≥ 0; the phase β1 depends on the initial conditions, and
εα = εα(a1) is the small amplitude-dependent nonlinear correction to the frequency
of the NNM. The ratios (an/am) in (2.10) were determined in (Vakakis et al., 1993)
for systems with even and odd degrees of freedom.

In Figure 2.6 we present a subset of NNMs for systems (2.9) with N = 4 and
N = 5 degrees of freedom. It can be shown that for fixed (conserved) energy level,
the parameter that conrols nonlinear mode localization is the ratio (k/µ), i.e., the
relative magnitude of coupling with respect to stiffness nonlinearity. For low val-
ues of this ratio the NNMs depicted in Figures 2.6a, b become localized to the first
oscillator, i.e., the amplitude a1 becomes much larger than the corresponding am-
plitudes of the other oscillators; this occurs in spite of direct coupling between os-
cillators. As the coupling to nonlinearity ratio (k/µ) increases from relatively small
to relatively large values, there occur two distinct scenarios of delocalization, as the
energy of the NNM gradually becomes spatially extended. Specifically, for the sys-
tem with even DOF (N = 4, see Figure 2.6a), the localized NNM branches become
delocalized through a bifurcation with the out-of-phase (spatially extended) NNM
a1 = a2 = a3 = a4; this bifurcation signifies the end of localization in this system.
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Fig. 2.6 Nonlinear localization in the cyclic system (2.9) with, (a) N = 4, and (b) N = 5 degrees
of freedom; —: stable NNMs, — — —: unstable NNMs; - - - -: asymptotic approximations.

A different scenario of delocalization occurs in the system with odd DOF (N = 5,
see Figure 2.6b), since as the ratio (k/µ) increases the localized branches of NNMs
become delocalized through smooth transitions to spatially extended NNMs; the ab-
sence of NNM bifurcations in this case is a reflection of the symmetry group of this
system which differs from that of the system with even DOF (for group theoretic
approaches to problems in dynamical systems, see Manevitch and Pinsky, 1972a,
1972b, and also Manevitch et al., 1970; Vakakis et al., 1996).

We note that although the previous results prove that for weak coupling to non-
linearity ratio (strong) localization of motion occurs in the first oscillator of system
(2.9), due to cyclic symmetry this result can be extended to each of the other oscilla-
tors. Hence, we can prove that system (2.9) possesses N (strongly) localized NNMs
with the vibration being passively confined mainly to one of the oscillators. More-
over, these localized NNMs are stable, and, hence, physically realizable (Vakakis
et al., 1993); in the same reference, it is proven that additional (weakly) localized
NNMs occur, with motion passively confined mainly to a subset of oscillators.

Nonlinear localization can greatly infuence the transient structural response since
it can lead to passive motion confnement of disturbances generated by external
forces. When localized NNMs of such structures are excited by external impulsive
forces, the oscillations remain passively confined close to the point where they are
initially generated instead of ‘spreading’ through the entire structure. Such passive
confinement can also occur in linear systems but only in the presence of disorder and
weak substructure coupling (Pierre and Dowell, 1987). To demonstrate the passive
nonlinear motion confinement phenomenon, we consider the impulsive response of
the cyclic system (2.9). As discussed previously, as k/µ → 0+ branches of similar
NNMs localize (strongly) to a single oscillator.
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A system with N = 50 oscillators is considered in the numerical simulations and
the numerical results are obtained by finite element (FE) computations (Vakakis et
al., 1993). A force with unit magnitude and duration 
t = 0.2 is applied to the
first oscillator, and the transient response of the system is depicted in Figure 2.7
for parameters εµ = 0.3, εk = 0.05 and k/µ = 0.166; at this energy level and
for the chosen system parameters the cyclic system possesses strongly localized
NNMs, so passive nonlinear motion confinement of the impulsive response is ex-
pected. Indeed, as shown in Figure 2.7 the nonlinear response remains confined to
the directly forced oscillator, instead of ‘leaking’ to the entire system. For compari-
son purposes the responses of the corresponding linear system with εµ = 0 are also
shown in the plots of Figure 2.7, from which we conclude that in the linear case
there is a gradual ‘spreading’ of the impulsive energy to all oscillators; moreover,
the spreading of energy in the linear system becomes increasingly more profound
as time increases. The motion confinement of disturbances in the nonlinear system
can only be attributed to the excitation of strongly localized NNMs by the external
impulse, yielding motion confinement due to their invariance properties.

The second example will show that there is a theoretical link between NNMs
and spatially localized solitary waves in nonlinear media of infinite spatial extent.
For this we consider spatially localized NNMs in the following nonlinear partial
differential equation (King and Vakakis, 1994):

utt + u+ ελuxx + εαu3 = 0, −∞ < x <∞ (2.11)

where x and t are the spatial and temporal independent variables, respectively,
λ, α > 0, 0 < ε 	 1, and the short-hand notation for partial differentiation has been
adopted. This equation represents the ‘continuum limit’ approximation of weakly
modulated out-of-phase oscillations of an infinite chain of coupled oscillators with
cubic stiffness nonlinearities. For additional works on localized NNMs in nonlinear
chains we refer to Manevitch (2001) and Manevitch and Pervouchine (2003).

A first integral of motion of (2.11) is given by

H = 1

2

∫ +∞

−∞

[(
∂u

∂t

)2

+ u2 − ελ
(
∂u

∂x

)2

+ εα

2
u4

]
dx (2.12)

provided thatH <∞ (this holds for stationary localized wave solutions of the type
considered in our analysis). We seek stationary, spatially confined and time-periodic
solutions of the nonlinear medium (2.11) in the form of NNMs, by expressing the
response of an arbitrary point of the medium in terms of the response of a reference
point x = x0,

u(x, t) = U [x, u0(t)], u0(t) ≡ u(x0, t) (2.13)

satisfying the compatibility condition U [x0, u0(t) ≡ u0(t), and the additional con-
ditions:

lim
x→±∞u(x, t) = 0, u(x, t) = u(x, t + T ), t ∈ R (2.14a)
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Fig. 2.7 Passive confinement of the impulsive response of the cyclic system withN = 50 DOF, for
a single impulse applied to the first oscillator; normalized displacements are depicted at different
snapshots, —: nonlinear system, - - -: linear system.

By the first of the above relations we require spatial localization of the envelope,
and by the second time-periodicity. Moreover, due to the odd stiffness nonlinearity
of (2.11), the additional symmetry of the envelope is satisfied:

U [−x,−u0(t)] = −U [x, u0(t)], x ∈ R (2.14b)
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It follows that we only need to confine our analysis to and .
In essence, expression (2.13) represents a modal function for the sought NNM

oscillation in functional space, and, viewed in that context, it may be regarded as
an infinite-dimensional extension of modal relations satisfied by NNMs of finite-
dimensional oscillators. Note that by (2.13) we assume that the sought NNM is non-
smililar, so it is anticipated that the modal function will depend on the energy of the
oscillation (or, equivalently, on the amplitude of the NNM oscillation). In addition,
by (2.13) we make the assumption that the NNM is a synchronous oscillation where
all points of the medium vibrate in-unison, so that the response of each point may be
parametrized in terms of the reference response u0(t) of the reference point x = x0.

Combining relations (2.12) and (2.13) we derive the following functional equa-
tion governing the modal function U (King and Vakakis, 1994),{∫ +∞

−∞ {[U2(x,A)− U2(x, u0)] − ελ[U2
x (x,A)− U2

x (x, u0)]}dx∫ +∞
−∞ U2

u0
(x, u0)dx

+

+ (εα/2)[U
4(x,A)− U4(x, u0)]∫ +∞

−∞ U2
u0
(x, u0)dx

}
Uu0u0 +

+{−U(x0, u0)− ελUxx(x0, u0)− εαU3(x0, u0)}Uu0(x, u0 =
= −U(x, u0)− ελUxx(x, u0)− εαU3(x, u0 (2.15)

where again the short-hand notation for partial differentiation is used. The amplitude
A > 0 of the NNM is the maximum amplitude attained by the response u0(t) of the
reference point, when the system reaches the position of maximum potential energy.
Equation (2.15) has to be solved simultaneously with the following two additional
conditions:

lim
x→±∞U [x, u0(t)] = 0 (2.16)

{−U(x0, A)− ελUxx(x0, A)− εαU3(x0, A)}Uu0(x,A) =
−U(x,A)− ελUxx(x,A)− εαU3(x,A) (2.17)

Condition (2.16) is self-explanatory [it corresponds to the first of relations (2.14a)],
whereas condition (2.17) needs further justification. A careful examination of the
functional relation (2.15) reveals that it becomes singular when the system reaches
the position of maximum potential energy u0 = A; indeed, the coefficient of the
highest-order partial derivative Uu0u0 becomes zero when u0 = A, so this repre-
sents a regular singular point of the mathematical problem. Therefore, the solu-
tion for U(x, u0) must be, (i) first asymptotically approximated in open intervals
0 ≤ u0(t) < A, and then, (ii) analytically continued up to the maximum potential
energy level u0 = A; this analytical continuation is accomplished by imposing the
condition (2.17) which guarantees that the solution of the functional equation (2.15)
is extended up to the point of maximum potential energy.
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The non-similar NNM governed by relations (2.15)–(2.17) was solved asymptot-
ically in King and Vakakis (1994), leading to the following analytical approximation
for the modal function

U [x, u0(t)] = [a(0)1 (x)+ εa(1)1 (x)+O(ε2)]u0(t)

+ [εa(1)3 (x)+O(ε3)]u3
0(t)+O[εu5

0(t)] (2.18)

where

a
(0)
1 (x) = sec hz,

a
(1)
1 (x) = [(1/24)(αA2 +K1 + AK2)z cosh z− (αA2/48) sinh z] tanh z sec h2z,

a
(1)
3 (x) = −(α/8)(1 − sech2z) sec hz, z = A(3α/8λ)1/2(x − x0),

K1 =
[
−

∫ +∞

−∞
λ a

(0)′2
1 (x) dx

]
/

[∫ +∞

−∞
a
(0)2
1 (x) dx

]
,

K2 =
{
−

∫ +∞

−∞

[
2a(0)1 (x)a

(1)
3 (x)+ (α/2)a(0)41 (x)

]
dx

}
/

[∫ +∞

−∞
a
(0)2
1 (x)dx

]

and prime denotes differentiation with respect to x. Note that although no space-time
separation is possible for this problem (since the sought NNM is non-similar), the
derived asymptotic approximation is based on solving an hierarchy of subproblems
at increasing orders of ε which are separable, so they can be solved analytically
(King and Vakakis, 1994).

After computing the approximation for the modal function (2.18), the reference
response u0(t) is computed by substituting (2.18) into (2.11) and evaluating the
resulting expression at the reference point x = x0. This results to the following
nonlinear modal oscillator:

ü0(t)+ [1 + ελa(0)′′1 (x0)+ ε2λa
(1)′′
1 (x0)]u0(t)

+ [εα + ε2λa
(1)′′
3 (x0)]u3

0(t)+O[ε2u5
0(t), ε

3] = 0 (2.19)

For specific initial conditions the response u0(t) of the modal oscillator can be
computed in closed form in terms of Jacobian elliptic functions. This computes
also the frequency of the oscillation of the non-similar NNM, and reveals its
dependence on energy (the initial condition). For example, for initial conditions
u0(0) = A, u̇0(0) = 0 (i.e., for initiation of the NNM oscillation at the point of
maximum potential energy) the solution of (2.19) is expressed as

u0(t) = A cn (pt, k2),

p = {1 + ελa(0)′′1 (x0)+ ε2λa
(1)′′
1 (x0)+ [εα + ε2λa

(1)′′
3 (x0)]A2}1/2 (2.20)
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Fig. 2.8 Localized NNM of system (2.11) Ű stationary breather.

where k2 = [εα+ ε2λa
(1)#
3 (x0)]A/2p2 is the elliptic modulus (Byrd and Friedman,

1954). The frequency of the NNM coincides with the frequency of the periodic
response (2.20),

ω = ω(A) = πp

2K(k)
(2.21)

where K(•) is the complete elliptic integral of the first kind (Byrd and Friedman,
1954). This completes the analytic approximation of the NNM of system (2.11).

The solution u(x, t) = U [x, u0(t)] given by expressions (2.18)–(2.21) represents
a stationary, spatially localized, time-periodic response of the nonlinear medium,
i.e., a stationary breather or stationary solitary wave. Since this stationary wave rep-
resents synchronous (in-unison) oscillations of all points of the nonlinear medium, it
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can be regarded as a localized NNM of the medium of infinite spatial extent. Hence,
the previous results provide a theoretical link between NNMs and stationary solitary
waves in nonlinear partial differential equations. In Figure 2.8 we depict snapshots
of the stationary breather for parameters α = 1.2, λ = 0.9, A = 0.25, x0 = 0 and
ε = 0.01. As discussed in King and Vakakis (1994), based on the stationary solution
(2.18)–(2.21) a family of travelling breathers of system (2.11) can be computed by
imposing the following Lorentz coordinate transformation:

ũ(x, t) = U
[
x + vt√ελ√

1 + v2
, u0

(
t − vx/√ελ√

1 + v2

)]
(2.22)

The traveling wave velocity (group velocity) v is related to the frequency ω by
modifying the frequencyŰenergy relation as follows:

ω = ω(v,A) = πp
√

1 + v2

2K(k)
(2.23)

We note that the NNM (2.18) can be considered as special case of the traveling
breather solution (2.22) with zero group velocity, v = 0.

From a practical point of view, nonlinear mode localisation phenomena can be
implemented in active or passive vibration isolation designs, where unwanted distur-
bances generated by external forces are initially spatially confined to predetermined,
specially designed subcomponents of the structure, and then passively or actively
dissipated locally. Indeed, inducing localized NNMs in flexible structures of large
spatial extent is expected to enhance the controllability of these structures, since in
designing for active control one would need to consider only local structural com-
ponents where the unwanted disturbances are to be confined, instead of considering
the structures in their entireties; of course, issues of observability, controllability,
spill-over effects, and possible istabilities by excitation of unwanted modes should
be addressed in these control designs.

In addition, the study of motion confinement phenomena by means of nonlinear
effects can prove to be beneficial in applications where such localization phenom-
ena are unwanted. For example, localization of vibration energy in rotating turbine
blade assemblies can be catastrophic since it may lead to failure of high-speed ro-
tating blades. Understanding the interplay between (and effects of) structural dis-
orders, coupling forces and stiffness or damping nonlinearities on localization can
prevent such failures and prolong the operational life of mechanical or structural
components.

We end this section by providing a remark concerning the relation between non-
linear mode localization and nonlinear targeted energy transfer (TET) phenomena
considered in this work. Simply stated, nonlinear mode localization can be regarded
as a static way of passive energy confinement: in structures with localized NNMs,
energy confinement can be achieved only as long as stable localized NNMs are ex-
cited either by the external excitations and/or the initial conditions of the problem; it
follows that energy confinement through nonlinear mode localization relies mainly
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on passive confinement of disturbances at the points of their generation through di-
rect excitation of stable localized NNMs. It follows that no passive energy transfer
is possible in this case. On the other hand, TET can be regarded as a dynamic way of
passive energy confinement: indeed, TET relies of the passive, directed transfer of
unwanted vibration energy from the point of its generation to isolated or sets of non-
linear energy sinks (NESs) where this energy is confined and dissipated locally; as
a result, TET can be realized for a broad range of external excitations and/or initial
conditions, and results in broadband energy transfer. As mentioned in the previous
section (and as discussed in detail in the following chapters), nonlinear mode local-
ization plays a key role in TET, as TET critically depends on the variation of the
shapes of excited NNMs from non-localized to localized with varying energy.

In the next section we continue our discussion of introductory concepts by dis-
cussing the nonlinear phenomena or internal resonances, transient resonance cap-
tures (TRCs) and sustained resonance captures (SRCs) in nonlinear dynamical sys-
tems.

2.3 Internal Resonances, Transient and Sustained Resonance
Captures

A general n-DOF time-invariant, linear Hamiltonian vibrating system with n dis-
tinct natural frequencies possesses n linear normal modes which form a complete
orthogonal basis in Rn; if a natural frequency has multiplicity p -Ű for example,
due to special symmetries of the system – the set of (n − p + 1) independent nor-
mal modes can complemented by (p − 1) generalized modes (Meirovitch, 1980) to
form again a complete and orthogonal basis in Rn. This can be extended to infinite
dimensions in the case of bounded, time-invariant, unforced linear continuous sys-
tems [since unbounded elastic media possess continuous spectra of eignevalues and
support waves instead of vibration modes (Courant and Hilbert, 1989)].

Viewed from a geometric perspective, the 2n-dimensional phase space of the
n-DOF linear Hamiltonian system is foliated by an infinite family of invariant n-
tori, parametrized by the Hamiltonian (which in most cases coincides with the total
conserved energy of the motion); this is due to the fact that linear systems are always
integrable. To give an example, consider the following two-DOF linear system of
coupled oscillators:

ÿ1 + y1 +K(y1 − y2) = 0

ÿ2 + y2 +K(y2 − y1) = 0 (2.24)

This system possesses an in-phase mode with natural frequencyω1 = 1, and an out-
of-phase mode with natural frequencyω2 = √

1 + 2K. To get a geometric picture of
the dynamics in phase space, we introduce the action-angle variable transformation,
(y1, ẏ1, y2, ẏ2) ∈ R4 → (I1, I2, φ1, φ2) ∈ (R+ × R+ × S1 × S1), which can be
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regarded as a form of nonlinear polar transformation (Persival and Richards, 1982),
and defined by the relations

y1 = √
2I1/ω1 sin φ1, ẏ1 =

√
2I1ω1 cosφ1

y2 = √
2I2/ω2 sin φ2, ẏ1 =

√
2I2ω2 cosφ2 (2.25)

In terms of the new variables, the system of coupled oscillators (2.24) can be ex-
pressed as follows:

İ1 = 0 ⇒ I1 = I10

İ2 = 0 ⇒ I2 = I20

φ̇1 = ω1

φ̇2 = ω2 (2.26)

The leading two equations in (2.26) are trivially solved, and represent conserva-
tion of energy for each of the two normal modes of system (2.24); actually, these
additional first integrals of motion render the two-DOF linear system (2.24) fully
integrable (for linear systems the integrability property can be extended to Rn). It
follows that at a given energy level the dynamics of (2.24) is reduced to the dy-
namics of the angles φ1 and φ2 on an isoenergetic two-torus T 2, with the resulting
motion being either periodic (if the frequency ratio ω1/ω2 is a rational number) or
quasi-periodic (if ω1/ω2 is irrational). By varying the energy of the motion (through
changes in initial conditions) the dynamics in phase space takes place on a different
isoenergetic two-torus, so the entire phase space of system (2.24) is foliated by an
infinite family of invariant two-tori parametrized by energy. In Figure 2.9 we present
a schematic depiction of this family of isoenergetic two-tori which are invariant for
the dynamical flow of (2.24). We note that the limiting cases where only one of the
two modes of the system is excited by the initial conditions (i.e., I1 = 0 or I2 = 0)
correspond to degeneracies of the family of tori ans represented by one-dimensional
manifolds (lines) as shown in Figure 2.9.

Returning to our discussion of the general n-DOF time-invariant linear Hamil-
tonian system, the energy imparted at t = 0 in the system by the initial conditions is
partitioned among the linear modes (i.e., the motion takes place on a specific n-torus
T n in phase space), and no further energy exchanges between modes is possible for
t > 0. Each linear mode conserves its own energy and participates accordingly in
the (periodic or quasi-periodic) response of the system through linear superposition
with the other modes.

This nice structure of the linear phase space in terms of the foliation by the
infinite family of invariant tori is not expected to be preserved when the Hamil-
tonian system is perturbed by nonlinear terms. For example, considering perturba-
tions of the integrable Hamiltonian system (2.24) by nonlinear non-Hamiltonian
perturbations, no tori survive the perturbation. For Hamiltonian perturbations, how-
ever, the KAM (Kolmogorov–Arnold–Moser) theorem (MacKay and Meiss, 1987)
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Fig. 2.9 Foliation of the phase space of two-DOF linear Hamiltonian system (2.24) by an infinite
family of invariant two-tori parametrized by energy.

guarentees that ‘sufficiently irrational’ tori (i.e., those for which the ratio ω1/ω2 is
‘poorly’ approximated by rational numbers in a number-theoretic setting) are pre-
served, filled with quasi-periodic orbits. Generically, the remaining invariant n-tori
of the infinite foliation ‘break-up’ by the perturbation, leading to an infinite number
of stable-unstable pairs of periodic orbits of arbitrarily large periods and to chaotic
trajectories located in local chaotic layers; this renders the perturbed nonlinear sys-
tem non-integrable (this scenario was demonstrated in the example with the two-
DOF Hamiltonian system and the corresponding Poincaré maps of Figure 2.3 in
Section 2.1). There are, however, cases of integrable nonlinear Hamiltonian systems
where the foliation of phase space by invariant tori is still preserved (in similarity
to the linear case) (Moser, 2003); it is conjectured, however, that full intergability is
not a generic property of nonlinear Hamiltonian systems.

The previously described scenario of ‘break-up’ of rational and ‘insufficiently
irrational’ tori in nonlinear Hamiltonian systems underlines a nonlinear dynamical
mechanism that enables energy exchanges between modes, even if they are well
separated in frequency (clearly, this would not be possible in linear theory). This
mechanism is the phenomenon of internal resonance which results in nonlinear
coupling between modes, and gives rise to mode bifurcations and nonlinear beat
phenomena during which strong energy exchanges between modes occur. This is
not possible in linear theory, since, as discussed above, there is no mechanism for
exchanging energy between well separated modes (although, it is well-known that
beat phenomena can occur when linear modes are closely spaced in frequency).

Internal resonances in nonlinear Hamiltonian systems are associated with the
failure of the averaging theorem with respect to certain ‘slow angles’ of the prob-
lem in neighborhoods of resonance manifolds. We show this in the following brief
exposition which follows Arnold (1988), Lochak and Meunier (1988) and Verhulst
(2005). Consider the following 2n-dimensional nonlinear Hamiltonian system in
action-angle variables,
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İ = εF (φ, I)
φ̇ = ω(I)+ εG(φ, I)

}
(I, φ) ∈ (R+n × T n) (2.27)

which, for |ε| 	 1 is a perturbation of the 2n-dimensional integrable Hamiltonian
system, İ = 0, φ̇ = �(I). We consider the general case where the n frequencies
ω = [ω1 . . . ωn]T depend on the n-vector of actions I [this is typical in nonlinear
Hamiltonian systems, but it does not hold for the linear system (2.24)–(2.26)]. In
(2.27) we assume that F and G are sufficiently smooth functions which are 2π-
periodic in the n-vector of angles φ = [φ1, . . . , φn]T ; moreover, as in previous
examples, by T n we denote the n-torus.

It follows that the n-vector of functions F can be expanded in complex Fourier
series in terms of the n angles as follows:

F(φ, I) =
+∞∑

k1,...,kn=−∞
ck1...kn (I )e

j (k1φ1+...+knφn) (2.28)

where j = (−1)1/2 and ck1...kn (I ) is an n-vector of complex coefficients of the
harmonic characterized by the indices (k1, . . . , kn) ∈ Zn. A resonance manifold of
the dynamics of (2.28) is defined by the relation,

k̂1ω1(I )+ k̂2ω1(I )+ . . .+ k̂nωn(I) = 0 ⇒ I = I (k̂1:k̂2:...:k̂n) (2.29)

for some (k̂1, k̂2, . . . , k̂n) ∈ Zn, provided that the corresponding vector of Fourier

coefficients in (2.28) does not vanish, ‖c
k̂1k̂2...k̂n

(I (k̂1:k̂2:...:k̂n))‖ �= 0. If the resonance
manifold is a low-dimensional submanifold of Rn, in its neighborhood we can av-
erage out the angles that do not participate in the internal resonance (these angles
possess time-like behavior and are regarded as ‘fast’ angles), and reduce accord-
ingly the dimensionality of the dynamics. This is performed by defining appropriate
‘slow’ angles (which are not time-like and cannot be averaged out of the dynamics)
as combinations of the angles that participate in the resonance condition (2.29). In
essence, the internal resonance provides nonlinear coupling between all participat-
ing modes, and results in energy exchanges between these modes.

In the absence of internal resonance, all angles in (2.27) possess time-like be-
havior (and, hence, are ‘fast’ angles) so they can be averaged out of the problem to
reduce it to the following n-dimensional averaged dynamical system,

İa = εc0...0(Ia) (2.30)

i.e., in terms of the vector of coefficients of the Fourier term in (2.28) not depending
on φ. Given an initial condition I (0) = Ia(0), it can be proven that I (t) − Ia(t) =
O(ε) on the timescale 1/ε (Verhulst, 2005). In the absence of internal resonances no
nonlinear modal interactions occur, and each mode retains its energy, in similarity
to the linear case [at least correct to o(1) – small modal energy exchanges occur
at higher orders of ε so they are insignificant]. It follows that no significant energy
exchanges between modes can occur in the absence of internal resonances.
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The effect of an internal resonance on the dynamics of a nonlinear system is
illustrated by the following example. We consider a two-DOF system composed of
a linear oscillator weakly coupled to a strongly nonlinear attachment (Vakakis and
Gendelman, 2001),

ÿ1 + Cy3
1 + ε(y1 − y2) = 0

ÿ2 + ω2
2y2 + ε(y2 − y1) = 0 (2.31)

where the stiffness characteristic of the weak coupling, 0 < ε 	 1, is the small
parameter of the problem. For ε = 0 the two oscillators become uncoupled, and the
nonlinear system is integrable. We wish to study the effects of internal resonance on
the dynamics of this system when we perturb it by weak coupling terms. In terms of
the terminology introduced in Chapter 3, this system represents a linear oscillator
(LO) with an attached grounded nonlinear energy sink (NES) (see Section 3.1).

First, we bring this system in the form (2.27) by transforming in terms of the
action-angle variables (I1, I2, φ1, φ2) ∈ (R+×R+×T 2) of the unperturbed system,

y1 = �I 1/3
1 cn [2K(1/2)φ1/π, 1/2]

ẏ1 = −[�I 1/3
1 ω1(I1)2K(1/2)/π] sn [2K(1/2)φ1/π, 1/2] ×

dn [2K(1/2)φ1/π, 1/2]
y2 = √

2I2/ω2 sin φ2

ẏ2 =
√

2I2ω2 cosφ2 (2.32)

where ω1(I1) = �I
1/3
1 is the frequency of oscillation of the uncoupled nonlinear

oscillator, K(1/2) is the complete elliptic integral of the first kind (Byrd and Fried-
man, 1954), and� = (4C)−1/6[3π/K(1/2)]1/3, � = [3π4C/8K4]1/3. Introducing
these transformations into the perturbed system (2.31), we express it in the form
(2.27):

İ1 = εF1(I1, I2, φ1, φ2)

İ2 = εF2(I1, I2, φ1, φ2)

φ̇1 = ω1(I1)+ εG1(I1, I2, φ1, φ2)

φ̇2 = ω2 + εG2(I1, I2, φ1, φ2) (2.33)

By construction, the functions F1, F2,G1 andG2 are 2π-periodic in φ1 and φ2 and
are listed explicitly below, and also in Vakakis and Gendelman (2001).

Equations (2.33) represent a two-frequency dynamical system in (R+ × R+ ×
T 2), and are in a form directly amenable to two-frequency averaging (Lochak and
Meunier, 1988). Indeed, by applying straightforward averaging with respect to the
two angles φ1 and φ2 we obtain the following simplified averaged system:
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İ1a = ε(1/4π2)

∫ 2π

0

∫ 2π

0
F1(I1a, I2a, φ1, φ2)dφ1dφ2 = 0

İ2a = ε(1/4π2)

∫ 2π

0

∫ 2π

0
F2(I1a, I2a, φ1, φ2)dφ1dφ2 = 0 (2.34)

which is of the general form (2.30). Hence, in the averaged system the two oscilla-
tors [conserve to O(1)] their initial energies, inspite of the weak coupling. Clearly,
this is will not be case when internal resonances occur in the dynamics.

The condition under which the dynamics of the averaged system (2.33) accu-
rately describes the dynamics of the full system (2.34) has been addressed in previ-
ous works (Neishtadt, 1975; Morozov and Shilnikov, 1984; Arnold, 1988). Arnold’s
theorem (1988) answers this question. If the condition

d

dt

[
ω1(I1)

ω2

]
�= 0

is satisfied along the trajectories of the dynamical flow of (2.33), then the full
dynamics is close to the averaged dynamics up to time of O(1/ε). That is, if
I (0) = Ia(0), then ‖I (t) − Ia(t)‖ ≤ κ√ε for 0 < t < 1/ε.

The condition of the theorem precludes any trajectory of (2.33) from being cap-
tured on a resonance manifold. According to our previous discussion, the conditions
for the existence of an (m : n) resonance manifold of (2.33) are as follows:

mω1(I1)− nω2 = 0,∫ 2π

0

∫ 2π

0
Fp(I1, I2, φ1, φ2)e

−j (mφ1−nφ2)dφ1dφ2 �= 0, p = 1, 2 (2.35)

where m and n are integers.
In what follows we study in detail the 1:1 internal resonance in the dynamics of

the Hamiltonian system (2.31) or (2.33), corresponding to the following level of the
action of the nonlinear oscillator:

ω1(I1)− ω2 = 0 ⇒ I1 ≡ I (1:1)
1 = (ω2/�)

3 (2.36)

We restrict our analysis in anO
(√
ε
)

boundary layer of the 1:1 resonance manifold
by defining the ‘slow’ angle ψ = φ1 −φ2, and introducing the angle transformation
(φ1, φ2) → (ψ, φ2) and the action transformation I1 = I

(1:1)
1 + √

εξ . Introducing
these transformations into the last of equations (2.33), we express the independent
variable as t = (φ2/ω2) + O(ε), which shows that φ2 is time-like, and, hence,
a ‘fast’ angle. It follows that we can replace t by φ2 as the independent variable
of the remaining three equations of (2.33), and obtain the following reduced local
dynamical system in the neighborhood of the (1:1) resonance manifold,

ξ ′ = √
εω−1

2 F̃1(I
(1:1)
1 , I2, ψ, φ2)+ εω−1

2
∂F̃1

∂I1
(I
(1:1)
1 , I2, ψ, φ2)+O(ε3/2)
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I ′
2 = εω−1

2 F̃2(I
(1:1)
1 , I2, ψ, φ2)+O(ε3/2)

ψ ′ = √
εω′

1(I
(1:1)
1 )ω−1

2 ξ + εω−1
2 [ω′′

1(I
(1:1)
1 )ξ2/2

+ G̃1(I
(1:1)
1 , I2, ψ, φ2)− G̃2(I

(1:1)
1 , I2, ψ, φ2)] +O(ε3/2) (2.37)

where primes denote differentiation with respect to φ2, and the notation
Fp(I1, I2, φ1 = ψ + φ2, φ2) ≡ F̃p(I1, I2, ψ, φ2), p = 1, 2, and a similar nota-
tion for G̃p, p = 1, 2 are adopted. We emphasize that due to 1:1 internal resonance
only one ‘fast’ (time-like) angle in the dynamics remains in the reduced averaged
system (the angle φ2), and the new ‘slow’ angle ψ appears. Moreover, although av-
eraging with respect to the ‘fast’ angle φ2 can still be performed, this cannot be done
with respect to the ‘slow’ angle ψ since the conditions of the averaging theorem do
not apply with respect to that angle; hence, 1:1 internal resonance is associated
with failure of the averaging theorem in the neighborhood of the corresponding
resonance manifold.

The dynamics of the local model (2.37) which describes the nonlinear interac-
tion between the two oscillators in the O

(√
ε
)

neighborhood of the 1:1 resonance
manifold can be analyzed by asymptotic techniques such as the method of multiple
scales. This was performed in Vakakis and Gendelman (2001) were the following
asymptotic solutions of (2.37) were derived using the method of multiple scales
(Nayfeh and Mook, 1995),

I1(φ2) = I (1:1)
1 +

√
εω2

ω′
1(I

(1:1)
1 )

C′(
√
εφ2)+O(ε)

I2(φ2) = I20 +O (√
ε
)

ψ(φ2) = C(√εφ2)+O(√ε) (2.38)

where a prime denotes differentiation with respect to the argument of the function,
and the leading-order approximation of the slow angleC(ζ ), ζ = √

εφ2, is governed
by the following equation,

C′′(ζ )+ µ cosC(ζ ) = 0 (2.39)

where µ = 0.9897�
√
I20/[ω3/2

2 K(1/2)�]. In (2.38) I20 is a real constant deter-
mined by the initial conditions, and we recall that φ2 = ω2t + O(ε) is the only
‘fast’ (time-like) angle of the problem.

The phase portrait of the slow angle is presented in Figure 2.10 for µ = 1.0, and
due to the cyclicity of the slow angle the dynamics is restricted in the strip −3π/2 <
C(ζ ) ≤ π/2. We note that there exists a stable equilibrium at (C,C′) = (−π/2, 0)
and an unstable equilibrium at (C,C′) = (π/2, 0). These correspond to a stable in-
phase NNM, and an unstable out-of-phase NNM of system (2.31), respectively. In
these NNMs with both oscillators vibrate with identical frequencies satisfying the
condition of 1:1 internal resonance; in either of these NNMs the nonlinear oscillator
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Fig. 2.10 Phase portrait (slow flow dynamics) for µ = 1.0 of the leading-order approximation of
the slow angle for 1:1 internal resonance of the Hamiltonian system (2.31).

agjusts its frequency (through its amplitude) to be equal to the frequency of the lin-
ear oscillator. The stable in-phase NNM is surrounded by a family of quasi-periodic
orbits, corresponding to continuous energy exchanges between the in-phase and out-
of-phase NNMs. The limit of this family of quasi-periodic orbits is a homoclinic
loop (which appears as heteroclinic loop in the plot of Figure 2.10, but, in actuality
it connects the unstable NNM with itself). On this homoclinic orbit there is gradual
(asymptotic) transfer of energy from the in-phase NNM to the unstable out-of-phase
NNM as t → ±∞; however, this orbit is only realized at a specific energy level and,
due to its degeneracy, is sensitive to perturbations in initial conditions. Outside the
homoclinic loop there exist mixed-mode librations of the dynamics corresponding
to smaller energy interactions between the two NNMs of the system.

There exist two additional localized NNMs in system (2.31) with both oscillators
possessing identical dominant frequencies, but these are not gereneared due to 1:1
internal resonance, and, hence, are not captured by the previous singular perturba-
tion analysis [actually, both these localized modes can be approximated by regular
perturbation analysis of (2.31)]. Indeed, there exists an additional out-of-phase sta-
ble NNM localized to the linear oscillator, with negligible amplitude of the nonlinear
oscillator; clearly, this linearized mode can not be captured by the previous analysis
where nonlinear effects and 1:1 internal resonance play the central role. Moreover,
away from the 1:1 resonance manifold defined by (2.36) there exists an additional
branch of stable out-of-phase NNMs where both oscillators possess equal domi-
nant frequencies, but not equal to ; this NNM is localized to the nonlinear oscillator
(Vakakis and Gendelman, 2001; Vakakis et al., 2003).

Internal resonances represent a fundamental mechanism for nonlinear dynamic
interactions in nature, and their affects are evident in a broad range of complex
phenomena, ranging from resonance interactions of asteroids with Jupiter (Dermott
and Murray, 1983) and cardiac arrythmias (Guevara et al., 1981), to nonlinear res-
onances in plasmas and fluids (Gildenburg et al., 2001; Mendonça et al., 2003) and
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nonlinear modal interactions in unforced and forced flexible engineering structures
(Nayfeh and Mook, 1995). Moreover, internal resonances give rise to essentially
nonlinear dynamic behavior, such as bifurcations and chaotic motions, and prevent
local linearization of dynamical systems by smooth coordinate transformations in
neighborhoods of equilibrium points [see theory of normal forms (Guckenheimer
and Holmes, 1983; Wiggins, 1990)]. But more importantly for our discussion, inter-
nal resonances provide a fundamental nonlinear mechanism for energy transfer be-
tween interacting systems or modes, thus paving the way for realization of directed
or targeted energy transfers from a component of a dynamical system to another. In
view of the fact that the majority of systems considered in this work will possess
some form of energy dissipation, we need to extend the notion of internal resonance
to dissipative (non-conservative) dynamical systems, and to introduce the concept
of resonance capture.

Resonance capture (or capture / entrapment into a resonance manifold) can be
regarded as a form of transient internal resonance, whereby an orbit of the dy-
namical system is captured in the neighborhood of a resonance manifold in phase
space, triggering vigorous energy exchanges between different components of the
system. Moreover, in similarity to internal resonances, resonance captures prevent
the direct application of the averaging principle, particularly in systems with mul-
tiple frequencies (Arnold, 1988; Sanders and Verhulst, 1985); on the other hand,
resonance captures lead to interesting energy exchanges and dynamic interactions
in celestial mechanics, orbital mechanics, and even in particle dynamics (Koon et
al., 2001; Belokonov and Zabolotnov, 2002; Itin et al., 2000). Resonance captures
play an important role in targeted energy transfer in dissipative systems, and pro-
vide the necessary conditions for irreversible and one-way, passive energy transfer
from a component of a dynamical system to a different one, which the later compo-
nent acting, in essence, as a nonlinear energy sink. In the following exposition we
provide some definitions that will help us classify the different types of resonance
captures that will be encountered in this work.

Consider the following general nonlinear non-conservative (dissipative) system
in polar form with multiple phase angles (Sanders and Verhulst, 1985):

I ′ = εR(φ, I)
φ′ = ω(I) (2.40)

where I ∈ R+p , φ ∈ T q (generally, q ≤ p), and

ω(I) = [ω1(I ), ω2(I), . . . , ωq(I)]T .
The dimension of the p-vector I may be even greater than that of the original dy-
namical system depending on the required number of fast-frequency frequency de-
compositions (this is indeed the case in this work, see Chapter 9). In (2.40) the
p-vector I represents energy-like amplitudes (like the actions in the previous exam-
ple), whereas φ is a q-vector of angles.
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The set of points in D ⊂ Rp where ωi(I) ≡ 0, i = 1, 2, . . . , q defines a res-
onance manifold. This resonance condition is necessary but not sufficient, since as
shown previously, if ωi(I) �= 0, i = 1, 2, . . . , q , the internal resonance manifold
is defined as the set {I ∈ Rp : 〈k̂, ω(I)〉 = 0, k̂ ∈ Zq}, where the corresponding
Fourier coefficients from R(φ, I) are not identically zero (and the notation 〈•, •〉
denotes internal product between two vectors).

Assume that the dynamical flow of system (2.40) intersects transversely the reso-
nant manifold. In similarity to internal resonance realized in Hamiltonian or conser-
vative systems, capture into resonance may occur for some phase relations satisfying
the condition that an orbit of the dynamical system reaching the neighborhood of a
resonant manifold continues in such a way that the commensurable frequency rela-
tion is approximately preserved; in this situation not all phase angles are fast (time-
like) variables, so classical averaging cannot be performed with regard to these an-
gles. As a result, over the time scale 1/ε the exact and averaged solutions diverge
up to O(1) (Arnold, 1988). This is similar to what holds for internal resonance.

There are no commonly accepted definitions for transient or sustained resonance
capture in the literature. For example, according to the definition provided by Bosley
and Kevorkian (1992), if an internal resonance occurs at a time instant t = t0,
with the non-trivial frequency combination σ = k1ω1 + k2ω2 + · · · + kqωq , where
ki ∈ N , i = 1, . . . , q , vanishing at that time instant, then, sustained resonance
capture (SRC) is defined to occur when the condition σ ≈ 0 persists for times
t − t0 = O(1). On the other hand, transient resonance capture (TRC) refers to the
case when σ makes a single slow passage through zero.

Quinn (1997a) provides a slightly different definition of resonance capture, as
follows. The possible behavior of trajectories near the resonance manifold on the
time scale 1/ε is described according to the following three scenarios: (i) Capture,
where solutions are unbounded in backward time, however, captured trajectories
remain bounded for forward times of O(1/ε), i.e., a sustained resonance capture
occurs in forward time; (ii) Escape, where solutions grow unbounded in forward
time, however, in backward time, solutions remain bounded for times of O(1/ε),
i.e., a sustained resonance exists in backward time; and (iii) Pass-through, where
solutions do not remain in the neighborhood of the resonance manifold in either
forward or backward time, and no sustained resonance occurs.

The definitions that will be adopted in this work differ slightly from the ones pro-
vided by Bosley and Kevorkian (1992) and Quinn (1997a) and follow more closely
those provided by Burns and Jones (1993). These definitions are especially suitable
for analyzing resonance captures in multi-phase dynamical systems, i.e., in systems
possessing multiple phase angles, some of which become slowly-varying in neigh-
borhoods of resonance manifolds.
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2.3.1 Definition (Transient and Sustained Resonance Captures)

Consider an unforced n-DOF system and denote its linearized natural frequen-
cies by ωk , k = 1, . . . , n. We define the following conditions: (i) Internal Res-
onance, for motions for which there exist ki ∈ Z, i = 1, 2, . . . , n, such that
k1ω1 + · · · + knωn ≈ 0, i.e., some combination of linear natural frequencies sat-
isfy commensurability; (ii) Transient Resonance Capture (TRC), as capture into a
resonance manifold which occurs and continues for a certain period of time (for ex-
ample, on the time scale 1/ε), followed by a transition to escape from capture; this
includes the phenomenon of pass-through-resonance as defined by Quinn (1997a);
and, (iii) Sustained Resonance Capture (SRC) (denoted also as permanent resonance
capture by Burns and Jones, 1993), defined as a resonance capture that will never
escape with increasing time.

SRCs are quite likely for pendulum-like equations (or called pendulum normal
forms) obtained by partial averaging in the neighborhood of a given resonance of the
dynamics. An unstable equilibrium point of the corresponding unperturbed pendu-
lum system should be non-degenerate by Neishtadt’s Condition B (Arnold, 1988),
which is another weaker transversality condition. For example, a SDOF pendulum
equation possesses an unstable equilibrium point (i.e., a saddle point) when the mass
is vertically upward, and a homoclinic orbit originating from the saddle point and
enclosing the stable equilibrium indicating the vertically-downward position. Ac-
cordingly, SRCs were formulated by two theorems (Burns and Jones, 1993), one re-
garding existence of an attractor near the resonance manifold, and the other regard-
ing its domain of attraction and hence the likelihood of resonance captures tending
asymptotically to the resonant attractor.

A mechanism for resonance capture in perturbed two-frequency Hamiltonian
systems was studied by Burns and Jones (1993) where it was shown that the most
probable mechanism for resonance capture involves the interaction between the as-
ymptotic structures of the averaged system and the resonance. It was shown that, if
the system satisfies a less restrictive condition (referred to as Condition N in Lochak
and Meunier, 1988) regarding transversal intersection of the averaged orbits of the
resonance manifold, resonance capture can be viewed as an event with low proba-
bility, and passage through resonance is the typical behavior on the time scale 1/ε.

Necessary conditions were proved in Kath (1983a) both for entrainment to TRC
and for its continuation (and thus the possible indication of unlocking or escape
from resonance capture after a finite time) by successive near-identity transforma-
tions; a sufficient condition was also derived for the continuation of transient res-
onance by means of matched asymptotic expansions (Kath, 1983b). On the other
hand, transition to escape from resonance capture was studied by Quinn (1997b)
in a coupled Hamiltonian system consisting of two identical oscillators, with each
possessing a homoclinic orbit when uncoupled. Focusing on intermediate energy
levels at which transient resonant motion occurs, Quinn analyzed the existence and
behavior of those motions in equipotential surfaces whose trajectories are shown
to remain in the transiently stochastic region for long times, and, finally, to escape
from (or leak out of) the opening in the equipotential curves and proceeding to infin-
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ity. Regarding passage through resonance, one may refer to, for example, Neishtadt
(1975). The phenomenon of passage-through resonance is sometimes referred to as
non-stationary resonance caused by excitations having time-dependent frequencies
and amplitudes (Nayfeh and Mook, 1995). For more details on resonance captures
in multi-frequency systems, one can also refer to Bakhtin (1986), Lochak and Me-
unier (1988), Dodson et al. (1989) and Neishtadt (1997, 1999). Additional works
on resonance captures in undamped and damped oscillators are discussed in Sec-
tion 3.4.

For a demonstrative example of transient resonance capture, we consider again
the system of coupled oscillators (2.31) but with weak dissipative terms:

ÿ1 + ελẏ1 + Cy3
1 + ε(y1 − y2) = 0

ÿ2 + ελẏ2 + ω2
2y2 + ε(y2 − y1) = 0 (2.41)

We wish to examine the perturbation of the 1:1 internal resonance discussed pre-
viously by the weak dissipative terms. Transforming into action-angle variables as
previously, we reduce the system into a form similar to (2.33), but now with weak
dissipative terms added (Vakakis and Gendelman, 2001),

İ1 = ε 3I 1/3
1 π

2K(1/2)��( cn4 + 2 sn2dn2)

×
{

−2λ�I 1/3
1 ω1(I1)K(1/2)

π
sn2dn2 +�I 1/3

1 cn sn dn −
√

2I2
ω2

sin φ2 sn dn

}

≡ εF1(I1, I2, φ1, φ2)

İ2 = −ε
{

2λI2 cos2 φ2 +
√

2I2
ω2

cosφ2

[√
2I2
ω2

sin φ2 −�I 1/3
1 cn

]}

≡ εF2(I1, I2, φ1, φ2)

φ̇1 = ω1(I1)+ ε
[

4K2(1/2)��I 2/3
1

π2

(
cn4 + 2 sn2dn2

)]−1

×
{

−λ�I 1/3
1 ω1 (I1)

2K(1/2)

π
cn sn dn +�I 1/3

1 cn2 −
√

2I2
ω2

sinφ2cn

}

≡ ω1(I1)+ εG1 (I1, I2, φ1, φ2)

φ̇2 = ω2 + ε sinφ2√
2I2ω2

{
λ
√

2I2ω2 cosφ2 +
√

2I2
ω2

sin φ2 −�I 1/3
1 cn

}

≡ ω2 + εG2 (I1, I2, φ1, φ2) (2.42)



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 49

where the arguments of the Jacobi elliptic functions cn, sn, dn (Byrd and Fried-
man, 1954) are given by [2K(1/2)φ1/π, 1/2], and the previous notations and pa-
rameter definitions hold. We note that the right-hand side exprssions of (2.42) are
2π-periodic in the angles φ1 and φ2, and that for λ = 0 they provide the explicit
expressions of the right-hand sides of system (2.33).

In the absence of resonance capture both φ1 and φ2 are ‘fast’ angles, so straight-
forward two-phase averaging may be applied to (2.42), yielding the following aver-
aged system:

İ1a = −ελI1a
İ2a = −ελI2a (2.43)

The averaged dynamics predict exponential decays for both actions of the system,
as no O(1) nonlinear interactions occur; in that cese, each oscillator vibrates inde-
pendently from the other, resembling a damped SDOF system. In this case condition
A of Arnold’s (1988) averaging theorem holds.

However, when trajectories of the dissipative system are captured on the 1:1 res-
onance manifold of the system (2.35) the averaging theorm fails, as only one of the
angles remains ‘fast’, and the ‘slow’ phase ψ = φ1 − φ2 enters into the asymptotic
analysis. Restricting our attention to an O(

√
ε) boundary layer of the 1:1 resonance

manifold and working similarly to the Hamiltonian case, we obtain the following lo-
cal dynamical system (since it is valid only in the neighborhood of the 1:1 resonance
manifold), which is identical in form to (2.37):

ξ ′ = √
εω−1

2 F̃1(I
(1:1)
1 , I2, ψ, φ2)+ εω−1

2
∂F̃1

∂I1
(I
(1:1)
1 , I2, ψ, φ2)+O(ε3/2)

I ′
2 = εω−1

2 F̃2(I
(1:1)
1 , I2, ψ, φ2)+O(ε3/2)

ψ ′ = √
εω′

1(I
(1:1)
1 )ω−1

2 ξ + εω−1
2 [ω′′

1(I
(1:1)
1 )ξ2/2

+ G̃1(I
(1:1)
1 , I2, ψ, φ2)− G̃2(I

(1:1)
1 , I2, ψ, φ2)] +O(ε3/2) (2.44)

In the above equations primes denote differentiation with respect to the remaining
‘fast’ angle φ2, the notation Fp(I1, I2, φ1 = ψ + φ2, φ2) ≡ F̃p(I1, I2, ψ, φ2), p =
1, 2, is adopted, and a similar notation for G̃p, p = 1, 2 is imposed.

The solution of the local system (2.44) can be approximated by the method of
multiple scales as follows (Vakakis and Gendelman, 2001):

I1(φ2) = I (1:1)
1 +

√
εω2

ω′
1(I

(1:1)
1 )

C′(
√
εφ2)

+ ε{ω−1
2 F̂

0
1 (I

(1:1)
1 , I20, C(

√
εφ2), φ2)

+
∫ √

εφ2

[T1(ζ )D(ζ )+ q1(ζ )]dζ } +O(ε3/2)
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I2(φ2) = I20 + √
εI21(

√
εφ2)+O(ε)

ψ(φ2) = C(√εφ2)+ √
εD(

√
εφ2)+O(ε) (2.45)

where F̂ 0
1 (I

(1:1)
1 , I20, C(

√
εφ2), φ2) = ∫ φ2 F̂1(I

(1:1)
1 , I20, C(

√
εφ2), δ)dδ, and F̂1

denotes the zero-mean component of function F̃1 (i.e., the function itself minus its
average with respect to φ2 over one period, 0 < φ2 ≤ 2π); I20 is a real constant
determined by the initial conditions, and the slow varying terms are explicitly com-
puted as follows:
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∫ 2π
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dδζ

= √
εφ2 (2.46)

Hence, the entire solution relies on the computation of the O(1) and O(
√
ε) ap-

proximations for the ‘slow’ angle ψ , which we now proceed to discuss.
We start by considering the O(1) approximation. It can be shown (Vakakis and

Gendelman, 2001) that the leading-order approximation for the slow phase angle
C(ζ ), ζ = √

εφ2, is governed by perturbation of equation (2.39) of the Hamiltonian
system,

C′′(ζ )+ µ cosC(ζ ) = −(λω2/3) ≡ ν (2.47)

where µ was defined in (2.39). Hence, to O(1) the weak dissipation introduces a
non-homogeneous term in the perdulum-type equation decribing the slow evolution
of the slow angle.

In Figure 2.11 we provide the phase portraits of the slow flow (2.47) for µ = 1.0
and ν = 0.5, 1.2. Depending on the relative values of µ and ν, the phase portrait of
the slow flow dynamics, either possess (for sufficiently weak damping, if µ > ν –
see Figure 2.11a, or not (for relatively strong damping, if µ < ν – see Figure 2.11b a
stable/unstable pair of equilibrium points and a closed homoclinic loop. Hence, we
conclude that by increasing the dissipation above a critical threshold no resonance
captures can be realized in the system (2.41), as evidenced by the lack of equilibrium
points in the corresponding slow flow.

Resonance capture in system (2.41) can occur only if dissipation remains below
the critical threshold (i.e., for µ > ν – see Figure 2.11a), in which case, to leading
order, there are two types of slow flow orbits in the neighborhood of the resonance
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Fig. 2.11 Phase portrait (slow flow dynamics) for µ = 1.0 of the leading-order approximation
of the slow angle for 1:1 internal resonance of the dissipative system (2.41): (a) weak damping,
ν = 0.5; (b) strong damping, ν = 1.2.

manifold: closed periodic orbits inside the homoclinic loop of the unstable equilib-
rium (such as the type-A orbit of Figure 2.12) corresponding to sustained resonance
capture of the dynamics on the resonance manifold; and open orbits outside the
homoclinic loop (depicted as type-B orbits in Figure 2.12) corresponding to pas-
sage through resonance, and transient resonance capture according to our previous
definition.

By taking into account higher-order terms in the asymptotic analysis we can show
that no sustained resonance captures (SRC) can occur in the dissipative system un-
der consideration. Indeed, the stable and unstable equilibrium points of the O(1)
slow flow are the first-order approximations of in-phase and out-of-phase slowly
decaying orbits, respectively, satisfying conditions of approximate 1:1 internal reso-
nance (according to the definitions of Section 2.1 these decaying motions take place
on damped NNM invariant manifolds). It follows that when higher-order terms are
taken into account in the asymptotic analysis the equilibrium points in the slow
phase plot of Figure 2.11a are replaced by slowly decaying orbits, with the decay
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Fig. 2.12 Type A and B orbits during resonance capture on a resonance manifold.

occurring at time scale εt . In addition, the degenerate homoclinic loop of the O(1)
slow flow (which defines the domain of transient resonance capture) ‘breaks up’
under the perturbation by higher-order (slower) terms, and the stable equilibrium
becomes an attractor.

We show the effects on the slow flow dynamics of higher-order (slower) terms,
we consider the O(

√
ε) correction to the ‘slow’ angle, governed by the following

quasi-linear equation:

D′′(ζ )− T2T1(ζ )D(ζ ) = T2q1(ζ )+ q ′
2(ζ ) (2.48)

where ζ = √
εφ2 and
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The solution of (2.48) was explicitly computed in Vakakis and Gendelman (2001)
and is not repeated here. When the correction D(

√
εφ2) is taken into account, the

slow flow phase portrait depicted in Figure 2.11a is perturbed in the following ways.
The homoclinic loop ‘breaks up’ (this is to be expected as it represents a highly de-
generate structure of the slow flow dynamics) and replaced by the independent stable
and unstable manifolds of the unstable equilibrium point (the out-of-phase NNM),
whereas the stable center (the in-phase NNM) becomes an attractor. To O(

√
ε) the
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Fig. 2.13 Perturbation of the homoclinic loop of the phase portrait of the ‘slow’ angle by O(
√
ε)

terms, showing the domain of attraction of 1:1 resonance capture; the unperturbed homoclinic loop
is indicated by dashed lines (Panagopoulos et al., 2004).

two components of the stable invariant manifold of the unstable equilibrium point
define the domain of attraction of 1:1 resonance capture. We note that atO(

√
ε) the

two equilibrium points of the slow flow phase portrait of Figure 2.11a still appear
as equilibrium points, and only when O(ε) terms are added they become slowly
decaying orbits on the corresponding damped NNM invariant manifolds; this in-
dicates that the envelopes of these orbits decay at a slower time scale compared
to the O(

√
ε) slow flow. In Figure 2.13 we present a computation of the ‘break

up’ of the homoclinic loop carried out by Panagopoulos et al. (2004) for a differ-
ent system, however, the qualitative features of the slow flow hold for the present
system as well. The plot in that Figure presents a projection of the extended phase
space (ψ,ψ ′, t) of the slow flow dynamics [note that theO(

√
ε) equation (2.48) for

the ‘slow’ angle possesses a slowly-varying non-homogeneous term] onto the plane
(ψ,ψ ′), and provides an O(

√
ε) approximation of the domain of attraction of 1:1

resonance capture.
We end this section by noting that TRCs will play a central role in our discussion

of targeted energy transfer phenomena in coupled oscillators with strongly nonlin-
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ear attachments, so this subject will be revisited in the coming chapters. In the next
section we discuss an analytical methodology that will be employed throughout this
work to theoretically analyze, understand and predict TET phenomena in the tran-
sient dynamics, as well as the associated transient and sustained resonance captures
that govern these phenomena. Moreover, this technique is especially suitable for
analyzing and identifying strongly nonlinear modal interactions occurring during
damped transitions considered in this work.

2.4 Averaging, Multiple Scales and Complexification

Different versions and combinations of multiple scales and averaging techniques are
widely used for analyzing the responses of nonlinear dynamical systems (Kevorkian
and Cole, 1996), and a general review of asymptotic methods in mechanics is pro-
vided in Andrianov et al. (2003). In this work we will make extensive use of a spe-
cial technique, the so called complexification-averaging (CX-A) technique, based
on complexification of the dynamics and then averaging over ‘fast’ time-scales. We
will show that the CX-A technique is especially suitable for analyzing strongly non-
linear transient responses of the type that we will be concerned with in our study
of TET. Indeed, the employment of this special technique is dictated by the fact
that the majority of TET problems considered in this work will be formulated in
the transient domain (although in Chapter 6 we will examine steady state TET as
well), so conventional perturbation or asymptotic techniques such as the methods of
averaging, multiple scales and Lindtstead–Poincaré which are more suitable for an-
alyzing steady state motions (such as periodic orbits) are not directly applicable in
the majority of problems that we will be concerned with in this work. Moreover, the
systems considered in this work possess strong (and even nonlinearizable) nonlin-
earities, so perturbation techniques based on linear generating functions and based
on the assumption of weak nonlinearity, again are not directly applicable for the
TET-related problems examined in this work.

The complex representation of a nonlinear oscillatory system was initially con-
sidered as a phenomenological model that provides enhanced possibility for analyz-
ing nonlinear effects (Scott et al., 1985; Kosevitch and Kovalyov, 1989). It has been
shown recently (Manevitch, 1999, 2001) that this type of complexified models can
be formally obtained for anharmonic oscillators and nonlinear oscillatory chains,
through the CX-A technique, in order to replace the classical equations of motion
by a set of first-order complex (modulation) equations. The method is based on an
initial transformation of real coordinates to complex ones, and subsequent use of
averaging or multiple scale expansions with further selection of resonance terms for
obtaining the main nonlinear approximations (Manevitch 1999, 2001; Gendelman
and Manevitch, 2003).

We illustrate the different approaches for applying the CX-A method by means
of two examples. The first deals with a common and simple model widely used in
the nonlinear dynamics literature, namely, the weakly nonlinear Duffing oscillator



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 55

forced by weak harmonic excitation. The second example concerns the application
of the CX-A method to the analysis of the strongly nonlinear transient response of
the system of damped oscillators (2.41) undergoing 1:1 transient resonance capture;
in this way, we provide an alternative approach for analyzing transient resonance
captures in this system.

The first example provides a formal introduction of the CX-A method consid-
ering a system that has been analyzed in the literature with a breath of analytical
techniques; hence, it will help us relate and compare the application of the CX-A
technique with other analytical methods of nonlinear dynamics. The second exam-
ple demonstrates the application of the CX-A technique to a more complicated,
strongly nonlinear transient problem, which lies beyond the formal range of valid-
ity of weakly nonlinear conventional methods. Additional and more complicated
applications of the CX-A technique will be presented throughout this work to a va-
riety of problems; indeed, this technique will serve as our main theoretical tool for
obtaining analytic approximations of the transient damped dynamics of coupled,
essentially nonlinear oscillators leading to TET.

We start by analyzing the dynamics of the following harmonically forced oscil-
lator,

ÿ + y + ε(8y3 − 2 cos t) = 0 (2.49)

where 0 < ε 	 1 is a dimensionless formal small parameter.
The first step for applying the method is complexification of the dynamics, which

is performed by introducing the new complex variable,

ψ = ẏ + jy (2.50)

where j = (−1)1/2. The transformation of variables (y, ẏ)→ ψ corresponds phys-
ically to studying the dynamics from a fixed to a rotating coordinate frame. Trans-
forming the original equation (2.49) in terms of the complex variable (2.50), and
recognizing that cos t = (ejt + e−j t )/2, we obtain the following alternative com-
plex differential equation of motion:

ψ̇ − jψ + ε[j (ψ − ψ∗)3 − (ejt + e−j t )] = 0 (2.51)

where ∗ denotes complex conjugate. This equation is exact, as it is derived from the
original real equation of motion without omitting any terms in the process.

At this point we make an assumption regarding the dynamics. In particular, we
aim to study the dynamics of (2.51) under the assumption of 1:1 (fundamental) res-
onance, i.e., under condition that the response of the oscillator has a dominant har-
monic component with frequency equal to the frequency of the harmonic excitation.
Hence, we express the complex variable in the following polar form:

ψ(t) = ϕ(t)ejt (2.52)

As shown in later chapters, under proper modifications – i.e., multi-fast frequency
partitions – the CX-A method can be extended to systems whose responses pos-
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sess more than one dominant (fast) frequency components. Substituting the repre-
sentation (2.52) into (2.51) yields the following alternative (still exact) equation of
motion:

ϕ̇ + jε[ϕ3 exp(2j t)− 3|ϕ|2ϕ + 3|ϕ|2ϕ∗ exp(−2j t)

− ϕ∗3 exp(−4j t)] − ε[1 + exp(−2j t)] = 0 (2.53)

At this point there are two ways to proceed with the analysis of the slow flow,
both of which involve approximations of a certain extent. The first way to proceed
is to apply a multiple scales analysis of system (2.53) and reduce the problem to
solving an hierarchy of linear subproblems at orders of increasing powers of the
formal small parameter, εk , k = 0, 1, 2, . . . . In what follows we will demonstrate
the application of this approach by analyzing (2.53). The second way of approxi-
mately analyzing (2.53) is to average out terms possessing (fast) frequencies higher
than unity; this amounts to assuming that (2.52) represents a slow-fast partition of
the dynamics (note that no such slow-fast partition is imposed in the first way to
solving the problem), with ejωt representing the fast oscillation, and ϕ(t) its (com-
plex) slow modulation. This alternative approach, which is especially suitable in
neighborhoods of resonances of strongly nonlinear transient problems [where the
nonlinear terms are not scaled by a formal small parameter as in (2.53)], will be
demonstrated in the second example considered later in this section.

Since no formal assumption regarding the fast frequencies of the system (2.53)
was imposed, the multiple scales singlular perturbation technique is applied to an-
alyze its dynamics. To this end, the following asymptotic decomposition of the de-
pendent variable, and the corresponding transformation of the independent variable
are introduced:

ϕ(t) = ϕ0(τ0, τ1, . . .)+ εϕ1(τ0, τ1, . . .)+ ε2ϕ2(τ0, τ1, . . .)+O(ε3)

d

dt
= ∂

∂τ0
+ ε[1 + εf2(τ1)] ∂

∂τ1
+O(ε2) (2.54)

where τ0 = t is the fast time scale, and τ1 = εt is the leading-order slow time
scale; the higher-order, slower time scales τk , k = 2, 3, . . . are obtained by proper
inversion of the second of equations (2.54) once the slow functions f2(τ1), . . . are
determined (see discussion below). We emphasize the point that the second of ex-
pansions (2.54) is slightly different than those used in conventional multiple scales
expansions, and the the necessity for introducing slow multiplicative factors such
as f2(τ1) in the O(ε2) terms will be explained below. Apparently this type of de-
composition has been used for the first time by Lighthill (1960), but in the rather
different context of aerodynamics.

Transforming the slow flow (2.53) by (2.54), we obtain the following hierarchy
of linear subproblems at different orders of approximation. The subproblem atO(1)
yields the following solution:
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∂ϕ0

∂τ0
= 0 ⇒ ϕ0 = ϕ0(τ1) (2.55)

which indicates that the main approximation for ϕ is slowly-varying (at time scale
τ1 = εt); this indicates that under the assumptions of this analysis the ansatz (2.52)
indeed represents a slow-fast partition of the dynamics.

Proceeding to the next order of approximation, we obtain the following linear
subproblem governing ϕ1:

∂ϕ0

∂τ1
+ ∂ϕ1

∂τ0
+ j [ϕ3

0 exp(2jτ0)− 3|ϕ0|2ϕ0 + 3|ϕ0|2ϕ∗
0 exp(−2jτ0)

− ϕ∗3
0 exp(−4jτ0)] − 1 − exp(−2jτ0) = 0 (2.56)

This equation represents the O(ε) approximation of the slow flow dynamics of the
system, i.e., it governs approximately the slow evolution of the complex amplitude
ϕ with time. In order to avoid the secular growth of ϕ1 with respect to fast time
variable, i.e., avoid a response not uniformly valid with increasing time, we need
to eliminate from (2.56) non-oscillating terms. Hence, the following condition must
hold:

∂ϕ0

∂τ1
− 3j |ϕ0|2ϕ0 − 1 = 0 (2.57)

Equation (2.57) is integrable, yielding the following first integral of motion for the
O(ε) approximation [but not of the original equation of motion (2.49) or (2.53)]:

h = 3j

2
|ϕ0|4 + ϕ∗

0 − ϕ0 (2.58)

This means that the O(ε) approximation can be analytically computed in closed
form. It should be mentioned that the appearance of a first integral of motion is a
common feature of CX-A calculations for Hamiltonian systems. Indeed, the exact
system (2.49) has a time-dependent Hamiltonian, and by applying averaging, it can
be shown that (2.58) is a first integral of the corresponding slow flow.

After introducing a polar decomposition of ϕ0 in terms of a real amplitude and
a real phase, ϕ0(τ1) = N(τ1) exp[jδ(τ1)], equations (2.57) and (2.58) are rewritten
as:

∂N

∂τ1
= cos δ,

∂δ

∂τ1
= 3N2 − 1

N
sin δ

h = 3

2
N4 − 2N sin δ = const (2.59)

Introducing the notation Z = N2, combining the first of equations (2.59) with the
first integral of motion h into a single equation in terms of Z, and integrating it by
quadratures we obtain the following explicit solution for the amplitude N :
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N(τ1) = −

⎧⎪⎨
⎪⎩
aq sn2

(
3
2
√
pqτ1, k

)
+ bp

[
1 + cn

(
3
2
√
pqτ1, k

)]2

q sn2
(

3
2
√
pqτ1, k

)
+ p

[
1 + cn

(
3
2
√
pqτ1, k

)]2

⎫⎪⎬
⎪⎭

1/2

(2.60)

where a and b are the two real roots of the algebraic equation

4Z −
[
(3/2)Z2 − h

]2 = 0

(with the other two roots being complex and expressed asm±jn) and the remaining
parameters are defined according to:

p =
√
(m− a)2 + n2, q =

√
(m− b)2 + n2, k = 1

2

√
−(p − q)2 + (a − b)2

pq

In the above expressions where k is the modulus of the Jacobi elliptic functions
sn(•) and cn(•). From (2.60) the real phase δ(τ1) is evaluated directly from the first
of equations (2.59).

It should be mentioned that the expression for the O(ε) approximation ϕ0 has
been computed by considering O(ε) terms and applying the method of multiple
scales. The same result could be obtained without formal resort to the method of
multiple scales by merely omitting all non-resonant terms from the initial (exact)
equation (2.53) – i.e., by performing ‘naive averaging’ with respect to the fast time
scale τ0 (actually this approach will be used in the second example of CX-A tech-
nique that follows). This observation means that the seemingly voluntary trick of
omitting non-resonant terms from the orgininal exact equation (2.53) may be sub-
stantiated by formal use of multiple scales, and thus its efficiency may be explained
formally, at least for the case of weak nonlinearity.

The computation of the next approximation constitutes a somewhat non-trivial
problem. To this end, the explicit expression for the first approximation is obtained
by solving equation (2.56) after eliminating secular terms through (2.57),

ϕ1(τ0, τ1) = −1

2
ϕ3

0 exp(2jτ0)+ 3

2
|ϕ0|2ϕ∗

0 exp(−2jτ0)

− 1

4
ϕ∗3

0 exp(−4jτ0)+ j

2
exp(−2jτ0)+!1(τ1) (2.61)

where the slow-varying function C1(τ1) is a constant of integration with respect to
the fast time scale τ0, and is computed by considering the equation governing the
O(ε2) approximation:

∂ϕ2

∂τ0
+ f2(τ1)

∂ϕ0

∂τ1
− 3j

4
ϕ5

0 exp(4jτ0)

+ [ − (15j/2)|ϕ0|2ϕ3
0 + 3jϕ2

0C1(τ1)− 3ϕ2
0

]
exp(2jτ0)
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+
{
∂ !1
∂τ1

+ 51j

4
|ϕ0|4ϕ0 + 3|ϕ0|2 − 3

2
ϕ2

0 − 3j [2|ϕ0|2C1(τ1)+ ϕ2
0C

∗
1 (τ1)]

}

+ [ − (69j/4) |ϕ0|4 ϕ∗
0 + 3jϕ2

0C1(τ1)+ 6j |ϕ0|2C∗
1 (τ1)+ 6|ϕ0|2

]
exp(−2jτ0)

+ [
(21j/4)|ϕ0|2ϕ∗3

0 − (9/4)ϕ∗2
0 − 3jϕ∗2

0 C
∗
1 (τ1)

]
exp(−4jτ0)

+ (3j/4)ϕ∗5
0 exp(−6jτ0) = 0 (2.62)

Secular terms in (2.62) are eliminated by imposing the following condition:

f2(τ1)
∂ϕ0

∂τ1
+ d!1(τ1)

dτ1
+ 51j

4
|ϕ0|4ϕ0 + 3|ϕ0|2 − 3

2
ϕ2

0 −

−3j
[
2|ϕ0|2C1(τ1)+ ϕ2

0C
∗
1 (τ1)

]
= 0 (2.63)

Now it is possible to demonstrate that the term containing the unknown func-
tion f2(τ1) is unavoidable, so it is necessary to be included in the initial multiple
scale expansions (2.54). Indeed, if we set f2 ≡ 0 equation (2.63) has the following
solution,

C1(τ1) = 17

24
|ϕ0|2ϕ0 − 19j

72
+

(
D − 17

6

∫ τ1

0
|ϕ0(u)|2du

)
(3j |ϕ0|2ϕ0 + 1)

where D is a real constant of integration. The integral term leads to global diver-
gence of the solution, although at time scales of order higher than 1/ε. It should
be mentioned that normal averaging procedures guarantee the accuracy at similar
time scale, but the approach developed here enables the extension of the analytical
solution to even larger time scales. In other words, in order to avoid weak secularity
of C1(τ1) we need to introduce an additional function f2(τ1) through the definition
(2.54).

The first way to compute f2(τ1) is to set the function C1(τ1) equal to zero, and
to compensate for the secular terms in (2.63) by appropriate selection of f2(τ1), as
follows:

f2 = − (51j/4)|ϕ0|4ϕ0 + 3|ϕ0|2 − (3/2)ϕ2
0

3j |ϕ0|2ϕ0 + 1
, C1 ≡ 0 (2.64)

The approximate solution for this choice of f2 is computed by combining the pre-
vious results (2.59)–(2.63). The dependence of the slow time scale on the original
temporal variable is obtained by appropriate inversion of (2.54) with account of the
explicit expression (2.64). These expressions may be trivially computed but are not
presented here due to their awkwardness.

This way of computing f2(τ1) and C1(τ1) has two shortcomings. First, it is inap-
plicable in the vicinity of stationary points of equation (2.57) because of divergence
of f2 there. Second, the slow time variable becomes complex, and additional diver-
gence problems may occur in neighborhoods of the poles of the elliptic functions in
(2.60). Despite these shortcomings, the previously outlined procedure may be per-
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Fig. 2.14 CX-A solution of (2.49) for initial conditions y(0) = ẏ(0) = 0: (a) ε = 0.065, (b) ε =
0.13, (c) ε = 0.03; exact solution is represented by crosses (+ + +), the analytical approximation
based on (2.64) by a solid line (—), and the analytical approximation based on (2.65) by diamonds
(♦♦♦).
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Fig. 2.15 CX-A solution of (2.49) for initial conditions y(0) = 0.7, ẏ(0) = 0 (close to funda-
mental resonance) and ε = 0.5; exact solution is represented by crosses (+ + +), the analytical
approximation based on (2.64) by a solid line (—), and the analytical approximation based on
(2.65) by diamonds (♦♦♦).

formed at any order of approximation. However, it is possible to derive an analytic
approximation free from the above shortcomings. To this end, one can demonstrate
that the requirements of non-divergingC1(τ1), and of real and non-diverging f2(τ1)

may be satisfied by a unique choice of these functions as follows:

f2 = 17

6
|ϕ0|2, C1 = 17

24
|ϕ0|2ϕ0 − 19j

72
(2.65)

Then, the corresponding approximation for the solution is given by

ψ = ϕ0 exp(j t)+ ε
[
−1

2
ϕ3

0 exp(3j t)+ 3

2
|ϕ0|2ϕ∗

0 exp(−j t)

− 1

4
ϕ∗3

0 exp(−3j t)+ j

2
exp(−j t)+

(
17

24
|ϕ0|2ϕ0 − 19j

72

)
exp(j t)

]
(2.66)

where ϕ0 = N(εt) exp[jδ(εt)]. The shortcoming of this approach is that in order to
compute the second-order approximation we have to solve the equation that elimi-
nates secular terms of the equation at the third degree of the small parameter, which
is a rather cumbersome task.

We now compare the results obtained by CX-A approach with direct numeri-
cal simulations of equation (2.49) for different values of the small parameter and
various initial conditions. The numerical parameters used for these simulations are
listed in the corresponding figure captions. The results depicted in Figure 2.14 in-
dicate that the analytical approximation including terms up to O(ε2) and based on
(2.65) provides a better approximation to the solution, compared to the correspond-
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Fig. 2.16 CX-A solution of (2.49) for initial conditions y(0) = 0, ẏ(0) = 0, (a) ε = 0.03, (b)
ε = 0.1; exact solution is represented by a solid line (—), and the analytical approximation based
on (2.65) by diamonds (♦♦♦).

ing analytical approximation based on (2.64) with C1 ≡ 0. Besides, the accuracy of
the analytical approximation decreases with increasing values of the small parame-
ter ε, at least in the range considered in the simulations.

It should be stressed that large values of ε do not necessarily imply that the de-
rived analytical approximations will be poor. The numerical simulation depicted in
Figure 2.15 demonstrates that close to fundamental resonance the analytical solu-
tion is close to the exact solution despite the relatively large value of ε used in this
particular simulation. Both analytical approximations based on (2.64) and (2.65)
provide good approximations to the exact solution, even at relatively large times.
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Fig. 2.17 CX-A solution of (2.49) for initial conditions y(0) = 1, ẏ(0) = 0 (close to fundamen-
tal resonance) and ε = 0.1; exact solution is represented by solid line (—), and the analytical
approximation based on (2.65) by diamonds (♦♦♦).

The results presented in Figures 2.16–2.18 provide comparisons of exact solu-
tions with the analytical approximation (2.66) based on conditions (2.65), for var-
ious values of ε and initial conditions. We note that the accuracy of the analytical
approximation decreases with increasing ε. In general, for these simulations the an-
alytical approximation based on conditions (2.64) provides leads to accuracy com-
parable to the analytical approximations depicted in these figures.

From the analysis of the dynamical system (2.49) we conclude that the CX-A
technique, when applied together with a modified multiple scales procedure, pro-
vides good analytical approximations for the forced nonlinear response. Moreover,
in regions of resonance the CX-A approach provides good approximations even
for relatively large values of the small parameter of the problem. Two different ap-
proaches were proposed for computing the higher-order approximations, both pro-
viding rather reliable predictions in their corresponding regions of applicability. It
should be mentioned that the dimensionless formal parameter ε in (2.49), commonly
regarded as the small parameter in conventional asymptotic analyses of this prob-
lem, turns out not to be a ‘true’ perturbation parameter.

Specifically, the analysis of the previous example demonstrates that the accu-
racy of the derived asymptotic approximations depends on the relationship between
the frequency of the slow modulation ϕ and the (fast) frequency of the main (fun-
damental) resonance of the problem; however, it is not yet clear how appropriate
perturbation parameters to scale this relationship can be selected in the analysis.

Another possibility for accurate asymptotic expansions using the CX-A tech-
nique arises in cases when the initial conditions of the response are in the neighbor-
hood of the stationary point of equation (2.57) (or, in other terms, close to the regime
of fundamental resonance of the problem). The small parameter in this case mea-
sures the deviation of the response from the stationary point. This case is of major
importance in applications of the CX-A technique in systems with strong nonlinear-
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Fig. 2.18 CX-A solution of (2.49) for initial conditions y(0) = 0.7, ẏ(0) = 0 (close to fundamen-
tal resonance), (a) ε = 1.0, (b) ε = 1.3; exact solution is represented by a solid line (—), and the
analytical approximation based on (2.65) by diamonds (♦♦♦).

ity (where the nonlinear terms are not scaled by a formal small parameter – this is
the case in the next example of application of the CX-A technique).

Thus, it is justified to apply the CX-A technique even in dynamical systems that
do not formally satisfy the conditions of the averaging theorem (see, for example,
Kevorkian and Cole, 1996), but the response regimes under consideration should be,
either close to exact resonance, or in the domains of attraction of tthe correspond-
ing resonance manifolds. This observation paves the way for the application of the
CX-A technique to TET-related problems, where transient or sustained resonance
captures on fundamental or subharmonic resonance manifolds are dominant in the
corresponding damped, nonlinear transient resposes.
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It should be mentioned that the very presentation of the equations of motion
in complex form [i.e., equation (2.53)], and the elimination of non-resonant terms
for the modulation equations much resembles the well-known method of normal
forms (Guckenheimer and Holmes, 1983; Wiggins, 1990; Nayfeh, 1993; Kahn and
Zarmi, 1997). Still, the CX-A technique outlined above is based on different ideas
of multiple scales and averaging and seems to lead to essential simplifications of
these well-known methods.

In the second example considered in this section we demonstrate the application
of the CX-A technique to a strongly nonlinear transient problem, and show that the
method is capable of analytically modeling the regime of 1:1 transient resonance
capture (i.e., of 1:1 transient resonance) in a system of coupled oscillators, in ac-
cordance with the previous discussion. To this end, we reconsider the two-DOF
system of coupled damped oscillators (2.41) examined in the previous section, and
apply the CX-A technique to study the regime of 1:1 TRC (Vakakis and Gendelman,
2001); this response regime was studied in the previous section using an alternative
methodology, i.e., by resorting to action-angle transformations and analyzing the
corresponding local model in the neighborhood of the 1:1 resonance manifold by
the method of multiple scales. Rewriting the system (2.41) in the form,

ÿ1 + ελẏ1 + Cy3
1 + ε(y1 − y2) = 0

ÿ2 + ελẏ2 + ω2y2 − εy1 = 0 (2.67)

where ω2 = ω2
2 + ε, and introducing the new complex variables,

ψ1 = ẏ1 + jωy1, ψ2 = ẏ2 + jωy2 (2.68)

we express (2.67) as the following set of first-order complex differential equations:

ψ̇1 − (jω + ελ)
2

(ψ1 + ψ∗
1 )−

jε

2ω
(ψ1 − ψ∗

1 )

+ jC
8ω3

(ψ1 + ψ∗
1 )

3 + jε

2ω
(ψ2 − ψ∗

2 ) = 0

ψ̇2 − jωψ2 + ελ

2
(ψ2 + ψ∗

2 )+
jε

2ω
(ψ1 − ψ∗

1 ) = 0 (2.69)

The set of equations (2.69) is exact, and, in contrast to the previous example, it
represents a strongly nonlinear system since the nonlinear terms are not scaled by a
small parameter and the initial conditions are assumed to be O(1) quantities.

We now seek an approximate solution of (2.69) based on the assumption of 1:1
resonance, i.e., by assuming that both oscillators execute slowly-modulated oscilla-
tions with identical ‘fast’ frequencies equal to ω:

ψ1 = ϕ1e
jωt , ψ2 = ϕ2e

jωt (2.70)
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In essence, in the regime of 1:1 TRC we partition the dynamics in terms of the ‘slow’
complex amplitudes (modulations) and the ‘fast’ oscillatory terms ejωt . Hence, in
contrast to the previous example, and in the absence of a formal small parameter
scaling the nonlinear terms, we make the basic assumption that there exists a single
fast frequency ω in the dynamics as a means of simplifying the analysis. This is
needed in view of the fact that formal application of the method of multiple scales
[at least with linear trigonometric generating functions – but see Belhaq and Lakrad
(2000) and Lakrad and Belhaq (2002) for extensions of the multiple scales method
with Jacobi elliptic functions and Yang et al. (2004) and Chen and Cheung (1996)
for extension of averaging and other perturbation schemes based on elliptic gener-
ating functions] is not justified in this strongly nonlinear problem.

Substituting (2.70) into (2.69) and averging out terms that contain fast frequen-
cies larger than ω (such as terms multipled by e2jωt , e3jωt , . . .) we obtain the fol-
lowing approximate slow flow valid in the regime of 1:1 TRC:

ϕ̇1 + j

2

(
ω − ω

2
+ ελ

2

)
ϕ1 − 3jC

8ω3
|ϕ1|2ϕ1 + jε

2ω
ϕ2 = 0

ϕ̇2 + ελ

2
ϕ2 + jε

2ω
ϕ1 = 0 (2.71)

The fact that (2.71) is an averaged system, among other approximations, poses cer-
tain restrictions on the time domain of its validity. As mentioned earlier, when first-
order averaging is performed in systems in standard form with a small parameter
ε [for example, see relations (2.33) and (2.42)], the validity of the results is only
up to times of O(1/ε). In the CX-A approach described above there is no formal
parameter to describe the slowly-varying character of the complex modulations ϕ1
and ϕ2, so we cannot provide a formal result regarding its range of validity. In this
regard, we can only state that the averaged slow flow (2.71) is valid only up to finite
times, as long as the basic assumptions outlined above are satisfied.

Returning to the analysis of the slow flow (2.71), to take into account the ampli-
tude decays of the two oscillators due to damping dissipation we introduce the new
variables, σ1 and σ2 defined by the relations, ϕi = σie

−ελt/2, i = 1, 2, and express
the averaged slow flow in the following form:

σ̇1 + j

2

(
ω − ω

2

)
σ1 − 3jCe−ελt

8ω3 |σ1|2σ1 + jε

2ω
σ2 = 0

σ̇2 + jε

2ω
σ1 = 0 (2.72)

Multiplying the first equation by σ ∗
1 and the second by σ ∗

2 , and adding the resulting
expressions we can show that the averaged system (2.72) possesses the following
first integral of motion:

|σ1|2 + |σ2|2 = ρ2 (2.73)
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This first integral is a conservation-of-energy-like integral of the averaged system
when expressed in terms of the σ -variables. This enables us to express the complex
amplitudes in the following polar representations:

σ1 = ρ sin θejδ1, σ2 = ρ cos θejδ2 (2.74)

which, when substituted into (2.72) and following certain algebraic manipulations,
reduce the isoenergetic averaged dynamics (i.e., for ρ = const) on the two-torus
(δ, θ) ∈ T 2:

δ̇ + ω

2
− 3Cρe−ελt

8ω3
sin2 θ + ε

ω
cot 2θ cos δ = 0

θ̇ + ε

2ω
sin δ = 0 (2.75)

In (2.75) we introduced the phase difference δ = δ1 − δ2, which denotes the rela-
tive phase between the two oscillators during 1:1 resonance, and the angle θ which
determines their corresponding amplitudes (θ ≈ 0 denotes localization of the oscil-
lation to the linear oscillator, whereas θ ≈ /2 denotes localization to the nonlinear
oscillator). Moreover, in the averaged slow flow there occurs a slow ‘drift’ of the
‘instantaneous equilibrium points’ of the reduced flow (2.75) due to the previously
introduced exponentially decaying coordinate transformation that relates the com-
plex amplitudes ϕi and σi .

The numerical integrations of system (2.75) for varying values of the initial first
integral ρ reveal clearly the 1:1 resonance capture in the system. These results are
presented in the (δ, θ) phase plots of Figure 2.19 for parameters ω = 1.0, C = 2.0,
ε = 0.1, λ = 1.0 and initial conditions δ(0) = 0.0 and θ(0) = 0.01 (i.e., for
motion initially localized to the linear oscillator). For ρ = 7.84 (see Figure 2.19a)
the initial energy localized in the linear oscillator remains confined to that oscillator
(indicated by the fact that θ is in the neighborhood of zero for the entire duration of
the motion). At higher values of ρ (see Figures 2.19b–d) we note targeted energy
transfer from the linear to the nonlinear oscillator; indeed, orbits that start initially
with θ ≈ 0, after some transients settle to damped oscillations with θ ≈ π/2, i.e.,
localize to the nonlinear oscillator. Of particular interest is the fact that the analytical
results capture accurately not only the 1:1 resonance capture of the dynamics, but
also the transition to resonance capture as the dynamics is attracted towards the
neighborhood of the 1:1 resonance manifold.

To assess the accuracy of the analytical predictions obtained by the CX-A tech-
nique, in Figure 2.20 we compare the theoretically predicted response y1(t) of the
nonlinear oscillator through application of the previous CX-A technique to the cor-
responding numerical response derived by direct numerical simulation of the orig-
inal equations of motion (2.67). For these results we used the system parameters
ω2

2 = 0.9, C = 5.0, ε = 0.1 and λ = 0.5, and set all initial conditions to zero
except for the initial velocity of the linear oscillator, ẏ2(0) = √

2h. In Figure 2.20a
we depict the low-energy damped response for h = 0.5; in this case no resonance
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Fig. 2.19 Phase plots of the reduced slow flow (2.75): (a) case of no resonance capture, ρ = 7.84;
and cases of 1:1 resonance capture, (b) ρ = 16.0, (c) ρ = 100.0 and (d) ρ = 225.0.

capture occurs in the dynamics, and there is poor agreement between the analytical
and numerical results. This is justified by the fact that the basic assumption of the
CX-A analysis (i.e., that both oscillators possess a single dominant fast frequency
nearly equal to ω2) does not hold in this low-energy regime. In Figures 2.20b,c
where 1:1 TRC (and TET) takes place there is satisfactory agreement between the
predicted and numerical transient responses, although some overshooting or under-
shooting can be noted in certain time intervals. These errors can be attributed to the
averaging approximations introduced in the CX-A analysis, and to the strong non-
linearities of the system considered. These results demonstrate the potential of the
CX-A technique to accurately model strongly nonlinear transient responses under
conditions of resonance capture.

In this work the CX-A technique will be applied to various problems involving
TRCs in coupled oscillators whose responses possess single or multiple fast fre-
quencies. It will be shown that this method is a valuable analytical tool for studying
strongly nonlinear damped responses resulting in single- or multi-frequency TET.
Moreover, coupled with advanced signal processing algorithms, the CX-A tech-
nique can be also applied to studies of identification of strongly nonlinear modal
interactions governing TET in practical applications, such as aeroelastic instability
suppression, shock isolation of flexible structures, and passive seismic mitigation.
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Fig. 2.20 Transient response of the nonlinear oscillator of system (2.67) for, (a) h = 0.5 (no reso-
nance capture), (b) h = 0.8 and (c) h = 1.125 (cases of 1:1 TRC); — exact numerical simulation,
♦♦♦ CX-A analysis.

In the next section we provide a brief discussion of some advanced signal process-
ing techniques that will be used throughout this work to analyze strongly nonlinear
transient responses related to TET.

2.5 Methods of Advanced Signal Processing

The study of strongly nonlinear weakly damped dynamics of coupled oscillators
is conveniently carried out by superimposing the wavelet transform (WT) spectra
of the transient responses in frequency-energy plots (FEPs) of the corresponding
Hamiltonian dynamics, as discussed in Section 2.1. In performing this procedure
we recognize that the effect of weak damping on the transient dynamics is parasitic
(as it cannot generate ‘new dynamics,’ but rather acts as perturbation of the underly-
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ing Hamiltonian responses), so that the damped transient responses are expected to
occur in neighborhoods of periodic (or quasi-periodic) Hamiltonian motions. Once
this is recognized, the interpretation of the damped nonlinear dynamics and the full
understanding of the associated multi-frequency modal interactions become possi-
ble. This methodology will be applied throughout this work, so we start our brief
exposition of signal processing methods by discussing the numerical wavelet trans-
form (WT).

2.5.1 Numerical Wavelet Transforms

The WT can be viewed as a basis for functional representation, but is at the same
time a relevant technique for time-frequency analysis. In contrast to the Fast Fourier
Transform (FFT) which assumes signal stationarity, the WT involves a windowing
technique with variable-sized regions. Small time intervals are considered for high
frequency components, whereas the size of the interval is increased for lower fre-
quency components thereby providing better time and frequency resolutions than
the corresponding FFTs.

Hence, the Wavelet Transform (WT) can be viewed as the ‘dynamic’ extension
of the ‘static’ Fourier Transform (FT), in the sense that instead of decomposing a
time series (signal) in the frequency domain using the cosine and sine trigonometric
functions (as in the FT), in the WT alternative families of orthogonal functions are
employed which are localized in frequency and time. These families of orthogonal
functions, the so-called wavelets can be adapted in time and frequency to provide
details of the frequency components of the signal during the time interval that is
analyzed. These wavelets result from a mother wavelet function through successive
iterations. As a result, the WT provides the transient evolution of the main frequency
components of the time series, in contrast to the FT that provides a ‘static’ descrip-
tion of the frequency of the signal.

In this work, the results of applying the numerical WT are presented in terms of
WT spectra. These contour plots depict the amplitude of the WT as a function of fre-
quency (vertical axis) and time (horizontal axis). Heavy shaded regions correspond
to regions where the amplitude of the WT is high, whereas lightly shaded ones corre-
spond to low amplitudes. Such plots enable one to deduce the temporal evolutions of
the dominant frequency components of the signals analyzed. The Matlab� program
used for the WT computations reported in this work was developed at the University
of Liège by Dr. V. Lenaerts in collaboration with Dr. P. Argoul from the Ecole Na-
tionale des Ponts et Chaussées (Paris, France). Two types of mother wavelets ψM(t)
are considered: (a) The Morlet wavelet which is a Gaussian-windowed complex si-
nusoid of frequency ω0, ψM(t) = e−t2/2ejω0t ; and (b) the Cauchy wavelet of order
n, ψM(t) = [j/(t + j)]n+1, where j = (−1)1/2. The frequency ω0 for the Morlet
WT and the order n for the Cauchy WT are user-specified parameters which allow
one to tune the frequency and time resolutions of the results. It should be noted that
these two mother wavelets provide similar results when applied to the signals con-
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sidered in the present work. In recent works by Argoul and co-workers (Argoul and
Le, 2003; Le and Argoul, 2004; Yin et al., 2004; Erlicher and Argoul, 2007), the
continuous Cauchy Wavelet transform was applied to system identification of linear
dynamical systems.

We demonstrate the application of the numerical WT by an example taken from
the thesis by Tsakirtzis (2006). Specifically, we consider a two-DOF linear system
weakly coupled to a three-DOF attachment composed of strongly nonlinear cou-
pled oscillators (this system will be studied in detail in Chapter 4, Section 4.1.2,
where TET from linear systems to strongly nonlinear MDOF attachments will be
analyzed):

ü1 + (ω2
0 + α)u1 − αu2 + ελu̇1 = F1(t)

ü2 + (ω2
0 + α + ε)u2 − αu1 − εv1 + ελu̇2 = F2(t)

µv̈1 + C1(v1 − v2)
3 + ε(v1 − u2)+ ελ(v̇1 − v̇2) = 0

µv̈2 + C1(v2 − v1)
3 + C2(v2 − v3)

3 + ελ(2v̇2 − v̇1 − v̇3) = 0

µv̈3 + C2(v3 − v2)
3 + ελ(v̇3 − v̇2) = 0 (2.76)

In Figures 2.21–2.23 we present the WT spectra of the relative responses In Fig-
ures 2.21–2.23 we present the WT spectra of the relative responses v2 − v1 and
v3 − v2 of the strongly nonlinear attachment for parameters ε = 0.2, α = 1.0,
C1 = 4.0, C2 = 0.05, ελ = 0.01, µ = 0.08, and ω2

0 = 1.0; in the simulations
out-of-phase impulsive excitations are considered, F1(t) = −F2(t) = Yδ(t) with
zero initial conditions.

First, we consider the WT spectra of the weakly forced responses depicted in
Figure 2.21. In this case there occurs strong targeted energy transfer (TET) from
the directly forced linear system to the nonlinear attachement (amounting to nearly
90Examination of the WT spectra reveals certain interesting features of the dynam-
ics. Indeed, we note that there occurs a transient resonance capture (TRC) of the
dynamics of the relative response v1 − v2 by a strongly nonlinear mode whose fre-
quency varies in time and lies in between the two natural frequencies of the uncou-
pled and undamped linear system; that this is a strongly nonlinear mode is signified
by the fact that it does not lie close to either one of the linear natural frequencies
of the system, which implies that this mode localizes predominantly to the non-
linear attachment. The strong nonlinearity of the response is further signified by
the occurrence of an initial multi-frequency beat oscillation (subharmonic or quasi-
periodic), as evidenced by the existence of an initial high frequency component in
the spectrum of v1 − v2. In addition, the second nonlinear stiffness-damper pair of
the attachment (corresponding to the relative response v2 − v3) absorbs (and dissi-
pates) broadband energy from the both modes of the linear system; this is evidenced
by the fact that the corresponding WT spectrum of Figure 2.21b possesses a broad
range of frequency components that includes both natural frequencies of the linear
system.
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Fig. 2.21 WT spectra of the relative responses, (a) ν1 −ν2, and (b) ν2 −ν3 of system (2.76) for out-
of-phase impulse excitation of magnitude Y = 0.1; the linear natural frequencies of the uncoupled
and undamped linear system (ε = 0) are indicated by dashed lines.
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These results indicate that strong TET in this case is associated with TRCs of
the dynamics of the nonlinear attachment by strongly nonlinear modes that predom-
inantly localize to the attachment; moreover these TRCs take place over a broad
frequency range, resulting in broadband TET. Hence, it becomes clear that the nu-
merical WT spectra provide important information not only regarding the frequency
contents of the nonlinear responses, but also on the temporal evolution of each in-
dividual frequency component as the interaction between the linear and nonlinear
subsystems progresses in time. This underlines the usefulness of the WT as a tool to
analyze essentially nonlinear dynamical interactions of the type considered in this
work.

By increasing the magnitude of the impulse to Y = 1.0, there is a marked deteri-
oration of TET from the linear system to the nonlinear attachment. In Figures 2.22a,
b we depict the corresponding WT spectra of the relative responses of the nonlinear
attachment in this case, which reveal the reason for poor TET. Indeed, the dynamics
of the nonlinear attachment appears to engage in sustained resonance capture (SRC)
predominantly with two weakly nonlinear modes lying in the corresponding neigh-
borhoods of the in-phase and out-of-phase modes of the unforced and undamped
linear system. Moreover, the fact that the weakly nonlinear in-phase and out-of-
phase modes localize predominantly to the linear system, prevents significant local-
ization of the vibration to the NES, a feature that contributes to weaker TET. We
conclude that weak TET in this case is associated with SRC of the dynamics with
weakly nonlinear modes that are predominantly localized to the linear subsystem.

Finally, in Figures 2.23a, b we depict the corresponding WT spectra for the sys-
tem with stong out-of-phase excitation Y = 1.5. Similarly to the case depicted in
Figures 2.21a, b, we note the occurrence of a strong TRC of the dynamics on a
strongly nonlinear mode localized predominantly to the nonlinear attachment; this
TRC leads to strong TET from the linear system to the attachment. Comparing the
WT spectra of Figures 2.23a, b to those of the case of weak TET (depicted in Fig-
ures 2.22a, b), we note that in the later case the transient responses are dominated
by sustained frequency components (i.e., by SRCs), indicating excitation of weakly
nonlinear modes which are mere analytic continuations of linearized modes of the
system. On the contrary, in cases where strong TET occurs, the frequencies of the
nonlinear modes involved in the TRCs are not close to linearized natural frequen-
cies, indicating that these are strongly nonlinear modes having no linear analogs; as
a result, these modes localize predominantly to the NES.

A general conclusion drawn from the examination of these WT spectra is that
the TET efficiency of system (2.76) may be explained by the examination of the reso-
nance captures depicted in the WTs of the transient responses. Indeed, strong TET in
the system is associated with TRCs of the dynamics with essentially (strongly) non-
linear modes localized predominantly to the nonlinear attachment; whereas weak
TET involves SRCs, i.e., sustained excitation of weakly nonlinear modes (i.e.,
modes that are analytic continuations of linearized modes of the system) localized
predominantly to the linear system.

This application demonstrates clearly the potential of the numerical WT as a
tool for analyzing and interpreting strongly nonlinear transient dynamics in terms
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Fig. 2.22 WT spectra of the relative responses, (a) ν1 −ν2, and (b) ν2 −ν3 of system (2.76) for out-
of-phase impulse excitation of magnitude Y = 1.0; the linear natural frequencies of the uncoupled
and undamped linear system (ε = 0) are indicated by dashed lines.
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Fig. 2.23 WT spectra of the relative responses, (a)ν1 −ν2, and (b) ν2 −ν3 of system (2.76) for out-
of-phase impulse excitation of magnitude Y = 1.5; the linear natural frequencies of the uncoupled
and undamped linear system (ε = 0) are indicated by dashed lines.
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of transient or sustained resonance captures. Moreover, when combined with Empir-
ical Mode Decomposition and the Hilbert transform it can form the basis of an inte-
grated nonlinear system identification approach for identifying the transient dynam-
ics and the modal interactions that occur in the dynamics of systems with strongly
nonlinear substructures.

2.5.2 Empirical Mode Decompositions and Hilbert Transforms

The Empirical Mode Decomposition (EMD) is a technique for decomposing a sig-
nal in terms of intrinsic oscillatory modes that are termed intrinsic mode functions
(IMFs). The IMFs satisfy the following three main conditions, which are imposed
in an ad hoc fashion: (a) For the duration of the entire time series, the number of ex-
trema and of zero crossings of each IMF should either be equal or differ at most by
one; (b) at any given time instant, the mean value (moving average) of the local en-
velopes of the IMFs defined by their local maxima and minima should be zero; and
(c) the linear superposition of all IMFs should reconstruct the original time series.

The EMD algorithm for computing the intrinsic mode functions (IMFs) of a sig-
nal (time series), say x(t), is called sifting process and involves the following steps
(Huang et al., 1998a, 1998b, 2003):

(a) Consider separately the envelopes defined by the local maxima and minima
of x(t), and interpolate the locus of all local maxima of x(t) through a spline
approximation, thus constructing an upper envelope of the signal e1

max(t); sim-
ilarly interpolate the locus of all local minima of x(t) thus creating a lower
envelope of the signal, e1

min(t).
(b) Compute the moving averageR1(t) between the lower and the upper envelopes,

and define the modified, zero-mean signal h1(t) = x(t)− R1(t).
(c) Repeat this procedure k times starting from h1(t) until the signal computed

at the k-th iteration, say h1k(t) ≡ c1(t), satisfies the properties of an IMF
therefore one stop criterion must be applied. The stop criteria of the repeatable
procedure can be various; one of them is being applied in each case. In our
applications we use either the standard deviation between the (k − 1)-th and
k-th steps or the number of successive repetitions of the sifting process. This
process yields the first IMF of the signal x(t), namely, c1(t).

(d) The second-order remainder of the signal, x2(t), is defined by the relation
x2(t) = x(t) − c1(t), on which the previous procedure is repeated to extract
the second IMF, c2(t).

(e) The outlined procedure is repeated until the n-th order remainder, xn(t), be-
comes a monotonic function of time.

The convergence criteria for completing the previous iterative algorithm are various;
two of them are extracted directly from the aforementioned properties of the IMFs.
The first convergence criterion determines convergence when the following standard
deviation between the (k − 1)-th and k-th steps,
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Fig. 2.24 Schematic presentation of application of the empirical mode decomposition to the signal
x(t) = sinω0t + sin 3ω0t where ω0 = 2π .

SD =
T∑
t=0

[
|h1(k−1)(t)− h1(k)(t)|2

h2
1(k−1)(t)

]

reduces below a preset tolerance, and is the signal duration; in this work this toler-
ance was chosen in the range [0.2, 0.3]. Practically, this criterion implies that the
k-th iteration h1k(t) ≡ c1(t) is approximately (within the specified tolerance) zero-
mean. A second convergence criterion consistent with the properties of the IMFs,
is to determine convergence by computing the successive repetitions of the sifting
process, and determining if the number of zero crossings and the number of extrema
are equal or differ by one for S repetitions; in this work S was chosen to be equal
to either 2 or 3. In this study, we utilize Matlab� codes developed by Rilling et al.
(2003) to perform numerical EMD.

Figure 2.24 depicts schematically the extraction of IMFs from the signal x(t) =
sin 2πt + sin 6πt . Since there is no control of the sifting process, end effects appear
in the results. Following the previous notation the two IMFs of this signal are com-
puted as c1(t) ≈ sin 6πt (i.e., the high-frequency component is extracted first), and
c2(t) = x(t)− c1(t) ≈ sin 2πt .

By the construction algorithm outlined above, the lowest-order IMFs contain the
oscillatory components (IMFs) of the signal with the highest frequency components.
As the order of the IMFs increases, their corresponding frequency contents de-
crease accordingly. Hence, EMD analysis extracts oscillating modulations or modes
imbedded in the data, which could be regarded as the ‘oscillatory building blocks’
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of the signal. It follows that the essence of the EMD method is to empirically iden-
tify the intrinsic oscillatory modes in the data (time series), and to categorize them
in terms of their characteristic time scales, by considering the successive extreme
values of the signal. Hence, the result of the analysis is a multi-scale separation of
the time series in terms of its oscillating components, with the different time scales
being extracted automatically by the algorithm itself. As discussed below, the EMD
algorithm, when combined with the Hilbert transform can provide further insightful
information on the decomposition of the signal.

After applying the EMD analysis to the time series, the extracted IMFs are
Hilbert-transformed in order to compute their approximate transient amplitudes and
phases. The Hilbert transformH [c(t)] ≡ ĉ(t) of a signal (time series) c(t) is defined
as follows:

ĉ(t) =
(

1

π

)∫ +∞

−∞
c(τ )

t − τ dτ ≡ 1

πt
∗ c(t) (2.77)

where (*) denotes the convolution operator:

f (t) ∗ g(t) =
∫ t

−∞
f (τ)g(t − τ )dτ =

∫ t

−∞
f (t − τ )g(τ )dτ

In the context of the following analysis, the Hilbert transform of the signal c(t)
can be regarded as the ‘imaginary’ part of the signal, enabling one to perform a
complexification of that signal. Indeed, defining the complexified analytical signal

ψ(t) = c(t)+ j ĉ(t) (2.78)

where j = (−1)1/2, we compute its amplitude A(t) and phase ϕ(t) by expressing
the complexification in polar form:

ψ(t) = A(t)ejϕ(t) = A(t) cosϕ(t)+ jA(t) sinϕ(t) (2.79)

It follows that the signal can be represented in the form

c(t) = A(t) cosϕ(t) (2.80)

with amplitude and phase given by

A(t) =
√
c(t)2 + ĉ(t)2, ϕ(t) = tan−1

[
ĉ(t)

c(t)

]
(2.81)

These decompositions enable one to compute the instantaneous frequency of the
signal c(t) according to the following definition:

f (t) = ϕ̇(t)

2π
= c(t) ˙̂c(t)− ĉ(t)ċ(t)

2π[c(t)2 + ĉ(t)2] (2.82)

Therefore, by applying the Hilbert transform to each IMF component resulting from
EMD of a signal, we can determine the variation of the instantaneous frequency of
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each IMF; this, in turn, enables us to get valuable insight into the dominant fre-
quency components that are contained in each IMF and to study resonant modal
interactions between IMFs of responses of different components of a system.

It is precisely these results that make the combined EMD-Hilbert transform use-
ful for the TET problems considered in this work. Indeed, the decomposition of
the transient responses of different components of a system in terms of their os-
cillatory components (IMFs), and the subsequent computation of the instantaneous
frequencies of these IMFs, provides a useful tool for studying nonlinear resonant
interactions between these components. To this end, we say that a (k:m) transient
resonance capture (TRC) occurs between two IMFs c1(t) and c2(t) with phases
ϕ1(t) and ϕ2(t), respectively, whenever their instantaneous frequencies satisfy the
following approximate relation,

kϕ1(t)−mϕ2(t) ≈ const ⇒ kϕ̇1(t) ≈ mϕ̇2(t), t ∈ [T1, T2] (2.83)

The time interval T1, T2 defines the duration of the TRC between the two IMFs.
A more complete picture for the TRC between two IMFs can be gained by con-

structing appropriate phase plots of the dynamics of the phase difference
ϕ12(t) =
ϕ1(t)−ϕ2(t). More specifically, a resonance capture is signified by the existence of
a loop in the phase plot of 
ϕ12(t) when plotted against
ϕ̇12(t), whereas absence
of (or escape from) TRC is signified by time-like (that is, monotonically varying)
behavior of
ϕ12(t) and
ϕ̇12(t). In addition, the ratio of instantaneous frequencies
of the IMFs, ϕ̇1(t)/ϕ̇2(t), provides an estimate of the order of the resonance capture.

Ending this brief exposition we mention that the dominant IMFs of a signal have
usually a physical interpretation as far as their characteristic scales are concerned;
indeed, certain IMFs may possess instantaneous frequencies that are nearly identi-
cal to resonance frequencies of components.of the system examined, but this need
not always be the case. This implies that certain IMFs may represent artificial (non-
physical) oscillating modes of the data. As shown in Kerschen et al. (2006, 2008b),
the leading-order (dominant) IMFs coincide with the responses of the slow flow
generated by the set of modulation equations of the system; this interesting obser-
vation, paves the way for a physics-based interpretation of the IMFs, in terms of the
slow flow dynamics (which represent the ‘essential’ dynamics of the system).

EMD when combined with the WT enables one to determine the dominant IMFs
of a nonlinear time series. This is achieved by superimposing the plots of instanta-
neous frequencies of the IMFs to the corresponding WT spectra of the time series.
The instantaneous frequencies of the dominant IMFs should coincide with the main
(dominant) harmonic components of the corresponding WT spectra in the corre-
sponding time windows of the response. It follows that by combining EMD and the
WT one is able to determine the main dominant oscillating components in a mea-
sured time series and, hence, to perform order reduction and low-order modeling of
measured transient signals. In this work EMDs and numerical WTs where imple-
mented in Matlab�. Focusing in the specific applications examined in this work,
this integrated approach provides the characteristic time scales of the dominant
nonlinear dynamics and the modal interactions occurring between components of a
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system. Moreover, by adopting this analysis one can identify and analyze the most
important nonlinear resonance interactions that are responsible for nonlinear energy
exchanges and TET between these components.

2.6 Perspectives on Hardware Development and Experiments

We conclude this chapter by discussing certain issues related to the experimental
validation of the theoretical results related to TET derived in this work. Experimen-
tal studies of TET will be performed by considering SDOF nonlinear oscillators at-
tached to SDOF or MDOF linear systems. As discussed in the theoretical derivations
of Chapter 3, important prerequisites for the realization of passive TET in these sys-
tems is that the nonlinear attachments possess essential (nonlinearizable) stiffness
nonlinearities, and that there exists weak damping dissipation in the integrated lin-
ear system – nonlinear attachment configuration. The later is easily implementable,
since to a certain extent all practical experimental fixtures possess some degree of
damping (inherent damping, or damping added at joints or supports); so the only
concern in the experiments focuses on the accurate measurement and estimation of
damping in the exterimental fixtures. The former requirement of essential stiffness
nonlinearity, however, is more difficult to implement, so in the experimental work
special care was paid towards the design and practical implementation of nonlinear
stiffness elements and the accurate measurement of their stiffness characteristics.

Passive stiffness nonlinearity in practical settings can be implemented by tak-
ing advantage of geometric nonlinearity realized during oscillations of elastic el-
ements. Following this approach, recent works employed different linear spring
combinantions to develop geometrically nonlinear stiffness designs. Virgin et al.
(2007) considered absorbers with geometrically nonlinear stiffnesses and studied
their vibration isolation capacities. Carella et al. (2007a, 2007b) considered verti-
cal linear springs acting in parallel with oblique linear springs, and showed that
this configuration could be designed to possess zero dynamic stiffness at their sta-
tic equilibrium positions. DeSalvo (2007) combined horizontal and vertical linear
springs in an arrangement yielding a geometrically nonlinear overall stiffness char-
acteristic, and applied this design to the problem of passive seismic mitigation. Lee
et al. (2007) designed spring mechanisms with ‘negative stiffness in the large’ and
applied them to vehicle suspension designs; their approach was based on the large-
amplitude post-buckling behavior of elastic ‘springing’ (thin shell) elements.

In our approach essential (nonlinearizable) stiffness nonlinearity of the third
degree was realized experimentally by adopting the simple configuration of Fig-
ure 2.25. A thin rod (piano wire) with no pretension was clamped at both ends,
and was restricted to perform transverse vibrations at its center. Assuming that the
wire is composed of linearly elastic material, a static force F will cause a transverse
displacement x, which from geometry can be expressed as:

F = kx[1 − L(L2 + x2)−1/2] (2.84)



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 81

Fig. 2.25 Realization of essential stiffness nonlinearity of the third degree.

The stiffness characteristic k = 2EA/L represents the stiffness constant of the wire
in axial displacement,E andA are the modulus of elasticity and cross sectional area
of the wire, respectively, and L the half-length of the wire. The nonlinear force-
displacement relationship (2.84) is a consequence of the geometric nonlinearity of
this system, eventhough the wire itself is linearly elastic.

For small displacements x we Taylor-expand the expression in the bracket of
(2.84) about x = 0, yielding

(L2 + x2)−1/2 = 1

L
− x2

2L3 + 3x4

8L5 +O(x6) (2.85)

so that the force displacement relation (2.84) is approximated as follows:

F = k

2L2 x
3 +O(x5) = EA

L3 x
3 +O(x5) (2.86)

Hence, the geometric nonlinearity of the system considered produces, to the leading
order of approximation, a cubic stiffness nonlinearity with coefficient C = EA/L3.
Moreover, the corrective terms for increasing displacement are of higher order in x,
and do not add a linear term in the stiffness characteristic (2.86). If, however, the
thin wire is preloaded, a highly undesirable linear term, proportional to the initial
preload tension, appears, and the resulting stiffness becomes linearizable. Hence,
special care in the experimental setup is given to minimize pretension in the wire;
in practical realizations of (2.86) a small linear term (due to unavoidable small pre-
tension) always appears, however, this does not affect the TET results.
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Fig. 2.26 Experimental realization of Configuration I of nonlinear attachment (grounded attach-
ment with essential cubic stiffness nonlinearity): (a) experimental fixture, (b) schematic describing
the various components of the fixture.

In the experiments three different configurations of essentially nonlinear attach-
ments were considered. The first configuration (labeled Configuration I) consists of
a grounded, essentially nonlinear attachment (termed nonlinear energy sink – NES,
see Chapter 3), and its practical implementation is depicted in the experimental fix-
ture of Figure 2.26. The fixture consists of two single-degree-of-freedom oscillators
connected by means of a linear coupling stiffness. The left oscillator (the linear
system) is grounded by means of a linear spring, whereas the right one (the NES)
is grounded by means of a nonlinear spring with essential cubic nonlinearity (the
clamped wire design presented in Figure 2.25); an additionalviscous damper exists
in the NES.

The second configuration of essentially nonlinear attachment (NES) (labeled
Configuration II) consists of an ungrounded nonlinear attachment, which is cou-
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Fig. 2.27 Experimental realization of Configuration II of nonlinear attachment (ungrounded at-
tachment with essential cubic stiffness nonlinearity): (a) experimental fixture, (b) schematic de-
scribing the various components of the fixture, (c) schematic indicating the NES portioned from
the linear oscillator.

pled to the linear system through an essential stiffness element. In Figure 2.27 we
depict this Configuration. The advantage of this design compared to Configuration I
is its versatility, since it can be connected to ungrounded structures (such as moving
ones); moreover, it will be shown that even lightweight ungrounded NESs can be
effective passive absorbers and local energy dissipators, making then primary candi-
dates for realizing TET in practical applications. Experimental results with fixtures
implementing Configurations I and II will be reported in Chapters 3 and 8 of this
work (for example, an experimental fixture depicting an ungrounded NES config-
uration attached to a two-DOF linear system of coupled oscillators is depicted in
Figure 3.96).

A third experimental configuration with a vibro-impact attachment will be con-
sidered in our study of passive seismic mitigation by means of TET. The vibro-
impact configuration is depicted in Figure 2.28. In this design, the essential stiffness
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Fig. 2.28 Experimental realization of a vibro-impact attachment: (a) experimental fixture, (b) de-
tail of VI NES.

nonlinearity of the attachment is realized by vibro-impacts, which, as argued in
Chapter 7, can be viewed as limiting cases of essentially nonlinear stiffnesses; in
that context, the vibro-impact nonlinearity can be regarded as the ‘strongest pos-
sible’ stiffness nonlinearity of this family of essentially nonlinear stiffnesses. In
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the experimental fixture considered the vibro-impact nonlinearity of the attachment
is realized by imposing rigid restrictors to the free motion of the mass of the at-
tachment (see Figure 2.28b). Apart from their relative simplicity, properly designed
vibro-impact attachments can act as strong passive absorbers and energy dissipators
of broadband vibration from the structures to which they are attached. Vibro-impact
TET will concern us in Chapters 7 and 10.
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Chapter 3
Nonlinear Targeted Energy Transfer in Discrete
Linear Oscillators with Single-DOF Nonlinear
Energy Sinks

In this chapter we initiate our study of passive nonlinear targeted energy transfer –
TET (or, so called nonlinear energy pumping) by considering discrete systems con-
sisting of linear coupled oscillators (refered to from now on as ‘primary systems’)
with single-DOF essentially nonlinear attachments. In later chapters we will extend
this study to discrete systems with MDOF nonlinear attachments and to continu-
ous elastic structures. We aim to show that under certain conditions, the nonlinear
attachments are capable of passively absorbing and locally dissipating significant
portions of vibration energy of the primary systems to which they are attached.
Moreover, this passive targeted energy transfer (TET) will be shown to occur over
broad frequency ranges, as the nonlinear attachments will be capable of engaging
in transient resonance (i.e., transient resonance captures) with linear modes of the
primary systems at arbitrary frequency ranges. Then, in essence, these essentially
nonlinear attachments will act as nonlinear energy sinks (NESs).

By applying analytic methodologies especially developed for studying strongly
nonlinear transient regimes (such as the CX-A method introduced in Section 2.4),
performing numerical simulations, and post-processing the results by means of the
signal analysis techniques discussed in Section 2.5, we will be able to study, model
and understand the dynamical mechanisms governing passive nonlinear TET in the
systems under consideration. Moreover, we will formulate appropriate measures for
assessing the TET efficiency of different configurations of NESs, which, ultimately,
will enagle us to establish conditions for optimal TET in the systems considered. At
the end of this chapter we will extend the study of TET to infinite-DOF chains with
SDOF essentially nonlinear attachments.

3.1 Configurations of Single-DOF NESs

The occurrence of nonlinear targeted energy transfer – TET (or nonlinear energy
pumping) was first observed by Gendelman (2001) who studied the transient dynam-
ics of a two-DOF system consisting of a damped linear oscillator (LO) (designated
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as ‘primary system’) that was weakly coupled to an essentially (strongly) nonlin-
ear, damped attachment, i.e., an oscillator with zero linearized stiffness. The need
for essentially nonlinearity was emphasized, since linear or near-integrable nonlin-
ear systems have essentially constant modal distributions of energy that preclude
the possibility of energy transfers from one mode to another; moreover, such essen-
tially nonlinear oscillators do not have preferential resonant frequencies of oscilla-
tion, which enables them to resonantly interact with modes of the primary system
that lie at arbitrary frequency ranges. Returning to the work by Gendelman (2001),
he showed that, while all the input energy is imparted initially to the LO, a nonlinear
normal mode (NNM) localized to the nonlinear attachment can be excited provided
that the imparted energy is above a critical threshold. As a result, TET occurs and
a significant portion of the imparted energy to the LO gets passively absorbed and
locally dissipated by the essentially nonlinear attachment, which acts, in essence, as
nonlinear energy sink (NES).

This result was extended in other works. A slightly different nonlinear attachment
was considered in Gendelman et al. (2001) and Vakakis and Gendelman (2001). In
these papers (some results of which are reviewed in Section 2.3), the nonlinear oscil-
lator (the NES) was connected to ground using an essential nonlinearity. This con-
figuration (refered to as ‘Configuration I’ in Section 2.6) is depicted in Figure 3.1.
TET was then defined as the one-way (irreversible on the average) channeling of
vibrational energy from the directly excited linear primary structure to the attached
NES. The underlying dynamical mechanism governing TET was found to be a tran-
sient resonance capture (TRC) (Arnold, 1988) of the dynamics of the nonlinear
attachment on a 1:1 resonance manifold (see Section 2.3 for related definitions). An
interesting feature of the dynamics discussed in these works is that a prerequisite for
TET is damping dissipation; indeed, in the absence of damping the integrated sys-
tem can only exhibit nonlinear beat phenomena (caused by internal resonances, see
Section 2.3), whereby (the conserved) energy gets continuously exchanged between
the linear primary system and the nonlinear attachment, but no TET can occur.

Nonlinear TET (or nonlinear energy pumping) in two-DOF systems was further
investigated in several recent studies. In Vakakis (2001), the onset of nonlinear en-
ergy pumping was related to the zero crossing of a frequency of envelope modula-
tion, and a criterion (critical threshold) for inducing nonlinear energy pumping was
formulated. The degenerate bifurcation structure of the NNMs, which reflects the
high degeneracy of the underlying nonlinear Hamiltonian system composed of the
undamped LO coupled to an undamped attachment with pure cubic stiffness nonlin-
earity, was explored by Gendelman et al. (2003). Vakakis and Rand (2004) discussed
the resonant dynamics of the same undamped system under condition of 1:1 inter-
nal resonance and showed the existence of synchronous (NNMs) and asynchronous
(elliptic orbits) periodic motions; the influence of damping on the resonant dynam-
ics and TET phenomena in the damped system were studied in the same work. The
structure and bifurcations of NNMs of the mentioned two-DOF system with pure
cubic stiffness nonlinearity were analyzed in Mikhlin and Reshetnikova (2005).

Kerschen et al. (2005) showed that the superposition of a frequency-energy plot
(FEP) depicting the periodic orbits of the underlying Hamiltonian system, to the
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Fig. 3.1 Impulsively loaded primary structure weakly coupled to a grounded NES (referred to as
‘Configuration I’ in Section 2.6).

wavelet transform (WT) spectra of the corresponding weakly damped responses
represents a suitable tool for analyzing energy exchanges and transfers taking place
in the damped system. Goyal and Whalen (2005) considered a nonlinear energy
sink design for mitigating vibrations of an air spring supported slab; the NES used
in that work is similar to the grounded version of essentially nonlinear attachment
(NES Configuration I) considered in this chapter. A procedure for designing passive
nonlinear energy pumping devices was developed in Musienko et al. (2006), and
the robustness of energy pumping in the presence of uncertain parameters was as-
sessed in Gourdon and Lamarque (2006). Koz’min et al. (2007) performed studies
of optimal transfer of energy from a linear oscillator to a weakly coupled grounded
nonlinear attachment, employing global optimization techniques. Additional theo-
retical, numerical and experimental results on nonlinear TET were reported in recent
works by Gourdon and Lamarque (2005) and Gourdon et al. (2007).

The first experimental evidence of nonlinear energy pumping was provided by
McFarland et al. (2005a). TRCs leading to TET were further analyzed experimen-
tally in Kerschen et al. (2007), whereas application of nonlinear energy pumping to
problems in acoustics, was demonstrated experimentally by Cochelin et al. (2006).

In most of the above-mentioned studies, grounded and relatively heavy nonlinear
attachments (NESs) were considered (i.e., Configuration I NESs – see Section 2.6),
which clearly limits their applicability to practical applications. Gendelman et al.
(2005) introduced a lightweight and ungrounded NES configuration (refered to as
‘Configuration II’ in Section 2.6) which led to efficient nonlinear energy pumping
from the LO to which it was attached. This alternative configuration is depicted in
Figure 3.2. Although there is no complete equivalence between the grounded and
ungrounded NES configurations depicted in Figures 3.1 and 3.2, it can be shown
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Fig. 3.2 Impulsively loaded primary structure connected to an ungrounded and lightweight NES
(referred to as ‘Configuration II’ in Section 2.6).

that, through a suitable change of variables the governing equations (and dynamics)
of these two NES configurations may be related (Kerschen et al., 2005).

To show this, we consider the simplest possible system with an NES of Configu-
ration II, namely a SDOF LO with a SDOF ungrounded nonlinear attachment,

ẍ + x + C(x − ν)3 = 0

εν̈ + C(ν − x)3 = 0
(Config. II NES)

and show that through a series of coordinate transformations it can be cast into a
form that nearly resembles a primary system with an attached grounded NES of
Configuration I. In the above system the lightweightness of the NES is ensured by
requiring that 0 < ε 	 1; all other variables are treated asO(1) quantities. Through
the change of variables,

x = ε(z−w), ν = εz +w
the above system is expressed as

ε(1 + ε)z̈+ ε(z− w) = 0

(1 + ε)ẅ + ε(w − z)+ C(1 + ε)4
ε

w3 = 0
(Config. I NES).

These equations correspond to a linear primary system (composed of a mass with
no grounding stiffness) linearly coupled to an NES of Configuration I. Moreover a
comparison between these two systems shows that an ungrounded NES (Config. II)
with small mass ratio ε with respect to the mass of the primary system and cou-
pled through essential nonlinearity to a LO (the primary system), is equivalent to
a grounded NES (Config. I) with large mass ratio (1 + ε)/ε and stiff grounding
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nonlinearity, that is weakly coupled to an ungrounded mass (the primary system) by
means of a weak linear coupling stiffness.

The dynamics of a two-DOF system composed of a linear primary oscillator
coupled to an ungrounded and light-weight NES was analyzed in a series of recent
papers. Lee et al. (2005) focused on the dynamics of the underlying Hamiltonian
system. The different families of periodic orbits of the strongly nonlinear system
were depicted in a frequency-energy plot (FEP) (see Section 2.1 for the appropriate
definition), which was shown to possess: (i) a backbone curve with periodic orbits
satisfying the condition of fundamental (1:1) internal resonance; and (ii) a countable
infinity of subharmonic branches, with each branch corresponding to a different
realization of an subharmonic resonance between the LO and the NES. In Kerschen
et al. (2006a), the energy exchanges in the damped system were interpreted based on
the topological structure and bifurcations of the periodic solutions of the underlying
undamped system. It was observed that TET can be realized through two distinct
mechanisms, namely fundamental and subharmonic TET. It was also noted that a
third mechanism, which relies on the excitation of so-called impulsive periodic and
quasi-periodic orbits, is necessary to initiate either of the TET mechanisms through
nonlinear beating phenomena. These impulsive orbits were studied using different
analytic methods in Kerschen et al. (2008). These theoretical findings were validated
experimentally in McFarland et al. (2005b).

Gendelman (2004) provided a different perspective of TET dynamics by com-
puting the damped NNMs of a LO coupled to an NES using the invariant manifold
approach. He showed that the rate of energy dissipation in this system is closely
related to the bifurcations of the NNM invariant manifold. To complement this ap-
proach, Panagopoulos et al. (2007) analyzed how initial conditions determine the
specific equilibrium point of the slow flow dynamics that is eventually reached by
the trajectories of the system. Manevitch et al. (2007a, 2007b), Quinn et al. (2007)
and Koz’min et al. (2008) discussed the conditions that should be satisfied by the
system and forcing parameters for optimal TET to occur (i.e., so that the maximum
portion of the vibration energy of the LO to get passively transferred and locally
dissipated by the NES in the least possible time).

We conclude this bibliographical review on the dynamics of linear oscillators
coupled to NESs by mentioning that alternative designs for SDOF NES have also
been proposed. In (Georgiades et al., 2005) and (Karayannis et al., 2007), TET at a
fast time-scale was achieved using an NES with non-smooth stiffness characteristic
(clearance and impact); NESs with non-smooth stiffness characteristics will be con-
sidered in detail in Chapter 7 of this work. In (Gendelman and Lamarque, 2005) and
(Avramov and Mikhlin, 2006) an NES characterized by multiple states of equilib-
rium positions was considered (this was achieved through a snap-through stiffness
element). Moreover, as reported in Laxalde et al. (2007), nonlinear energy pumping
can also be realized using an NES with hysteretic nonlinearity. Multi-degree-of-
freedom (MDOF) NESs were first introduced in Tsakirtzis et al. (2005) and will be
discussed in detail in Chapter 4 of this work.
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Fig. 3.3 The two-DOF system with essential stiffness nonlinearity.

3.2 Numerical Evidence of TET in a SDOF Linear Oscillator
with a SDOF NES

In this section we demonstrate TET by considering the simplest possible system
of coupled oscillators capable of exhibiting this phenomenon. The system is de-
picted in Figure 3.3 and consists of a damped SDOF linear oscillator (LO), which
acts as the primary system, coupled to an ungrounded attachment (of Configuration
II) through a pure cubic stiffness which lies in parallel to a viscous damper. The
seemingly simple configuration of this two-DOF system is quite deceptive, since, as
shown below, its dynamics possesses rich and complex structure, including capacity
for TET.

We mention at this point that the requirement of essential stiffness nonlinearity
of the NES plays a key role in the realization of TET, since it precludes the existence
of a preferential resonance frequency for the NES. This follows from the fact that
an essentially nonlinear NES is not a priori tuned to any specific frequency, unlike
the classical tuned mass damper (TMD) (Frahm, 1911; Den Hartog, 1947). Hence,
depending on its instantaneous energy the NES is capable of oscillating over a broad
frequency range.

The equations of motion of the system of Figure 3.3 are given by

m1ẍ + c1ẋ + c2(ẋ − ν̇)+ k1x + k2(x − ν)3 = 0

m2ν̈ + c2(ν̇ − ẋ)+ k2(ν − x)3 = 0 (3.1)

where x(t) and ν(t) refer to the displacement of the LO and of the NES, respectively.
Equations (3.1) are rescaled according to the mass m1 of the LO and assume the
form

ẍ + λ1ẋ + λ2(ẋ − ν̇)+ ω2
0x + C(x − ν)3 = 0

εν̈ + λ2(ν̇ − ẋ)+ C(ν − x)3 = 0 (3.2)
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where

ε = m2

m1
, ω2

0 = k1

m1
, C = k2

m1
, λ1 = c1

m1
, λ2 = c2

m1
(3.3)

We will be mainly concerned with systems possessing lightweight Configura-
tion II NESs, i.e., systems (3.3) with large mass asymmetry. Hence, we will assume
throughout that 0 < ε 	 1, so that can be regarded as the small parameter of
the perturbation, asymptotic and averaging analyzes that follow. The assumption of
lightweight NESs is of practical significance, as the considered NES designs can be
realized with minimal mass modifications of the mechanical or structural systems
to which the NESs are attached.

The system (3.2) is assumed to be initially at rest, with an impulse of magnitude
X applied to the LO; this is equivalent to initiating the system with initial conditions
ẋ(0) = X, x(0) = ν(0) = ν̇(0) = 0 and no external forcing. Numerical integra-
tion of system (3.2) is carried out for increasing values of the impulse X and fixed
parameters ε = 0.05, ω2

0 = C = 1, λ1 = λ2 = 0.002. Note that weak damping is
chosen in order to better highlight the different dynamical phenomena that occur in
this system.

A quantitative measure of the capacity of the NES to passively absorb and locally
dissipate impulsive energy from the LO can be obtained by computing the following
energy dissipation measures (EDMs):

ENES(t) = λ2
∫ t

0 [ν̇(τ )− ẋ(τ )]2dτ

(X2/2)
× 100, ENES,t�1 = lim

t�1
ENES(t) (3.4)

The EDM ENES(t) represents the percentage of impulsive energy that is absorbed
and dissipated by the NES up to time instant t , whereasENES,t�1, the percentage of
impulsive energy that is eventually dissipated by the NES up to the end of damped
motion (i.e., ENES,t�1 is the asymptotic limit that NNES(t) reaches with increasing
time in this passive system). The dependence ofNNES,t�1 on the impulse magnitude
X is depicted in Figure 3.4. This figure shows that the NES is most effective for
intermediate levels of energy, where it dissipates as much as 94% of the input energy.
In addition, there exists a well-defined threshold of input energy below which no
significant energy dissipation by the NES can be achieved. This critical energy level
represents a lower input energy bound below which TET is insignificant and the
NES is ineffective.

The existence of this critical energy level becomes apparent when we consider
the transient dynamics of the coupled system. In Figure 3.5 we present the transient
damped dynamics at a low-energy level; specifically we consider impulse magnitude
X = 0.05 corresponding to point A of Figure 3.4. Clearly, the LO undergoes a
motion with a much larger amplitude than that of the NES. The NES undergoes
small oscillations and most of the impulsive energy remains localized to the LO.
This becomes apparent by computing the percentage of instantaneous total energy
stored in the NES,
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Fig. 3.4 Percentage of impulsive energy eventually dissipated in the NES as a function of the
magnitude of the impulse; symbols refer to the simulations of Figures 3.5–3.8.

Fig. 3.5 Transient dynamics of the two-DOF system (low energy level; X = 0.05): (a) LO dis-
placement; (b) NES displacement and (c) percentage of instantaneous total energy in the NES.
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Fig. 3.6 Transient dynamics of the two-DOF system (intermediate energy level;X = 0.12): (a) LO
displacement; (b) NES displacement; (c) percentage of instantaneous total energy in the NES and
(d) close-up of the NES response.

D(t) = εν̇2(t)+ (C/2)[(t)− ν(t)]4

ẋ2(t)+ ω2
0x

2(t)+ εν̇2(t)+ (C/2)[x(t)− ν(t)]4
× 100 (3.5)

which is depicted in Figure 3.5c. It follows that no interesting energy transfer occurs
from the LO to the NES in this case, and the response remains localized mainly to
the LO. This explains why a relatively small portion of the input energy (44%) is
dissipated by the NES in this low-energy regime.

Moving now to the intermediate energy regime,X = 0.12 (point B in Figure 3.4),
a completely different dynamical behavior is observed in Figure 3.6. The motion is
now strongly localized to the NES, as evidenced by its larger amplitude compared
to that of the LO. A substantial variation in the NES frequency is also observed,
which is the indication of the strongly nonlinear nature of its oscillation. Inspite of
the fact that initially the energy is entirely stored in the LO, it quickly flows back
and forth between the two oscillators. After t = 15 s, 87% of the instantaneous
total energy is stored in the NES, but this number drops down to 3% immediately
thereafter. Through this nonlinear beating phenomenon, a reversible energy transfer
occurs, which, however, results in near optimal energy dissipation. For this interme-
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Fig. 3.7 Transient dynamics of the two-DOF system (moderate-energy level; X = 0.2): (a) LO
displacement; (b) NES displacement; (c) percentage of instantaneous total energy in the NES and
(d) superposition of both displacements during nonlinear TET.

diate energy regime, as much as 94.4% of the total input energy is dissipated by the
damper of the NES. Another evidence of the nonlinear beating is that the system
performs fast oscillations with frequency close to 1 rad/s, modulated by a slowly-
varying envelope (see Figure 3.6d for a close-up of the NES response); this is due to
the fact that a 1:1 transient resonance capture (TRC) between the LO and the NES
takes place. It is interesting to note that no a priori tuning of the NES parameters
was necessary to achieve this result. It is the variation of frequency due to damping
dissipation that plays the role of ‘tuning’ (but also of ‘detuning’ at later times) for
the realization of, and escape from TRC. This is markedly different from ‘classi-
cal’ nonlinear beat phenomena due to internal resonance in Hamiltonian coupled
oscillators with linearizable nonlinear stiffnesses, where the ratio of the linearized
eigenfrequencies dictates the type of internal resonance between modes that is real-
ized [see, for example, spring-pendulum systems in Nayfeh and Mook (1995)], and
no escape from internal resonance is possible.

When the applied impulse is further strengthened (X = 0.2, Figure 3.7 and
point C in Figure 3.4), the motion still localizes to the NES, but a different type of
energy exchange is encountered in this case. During the initial stage of the motion
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Fig. 3.8 Transient dynamics of the two-DOF system (high-energy level; X = 0.5): (a) LO dis-
placement; (b) NES displacement and (c) percentage of instantaneous total energy in the NES.

(until approximately t = 15 s), a nonlinear beating phenomenon takes place as in
the previous case. However, after this continuous energy exchange between the two
oscillators, an irreversible energy flow from the LO to the NES occurs, nonlinear en-
ergy pumping is triggered, and TET is realized. Figure 3.7d, which superposes both
displacements, illustrates that they are completely synchronized during this latter
regime. In other words, they vibrate in an in-phase fashion with the same appar-
ent frequency. The underlying dynamical phenomenon causing nonlinear TET can
therefore be related to capture in the neighborhood of a 1:1 resonant manifold. The
transient nature of the resonance capture is evident in Figure 3.7c, because energy
is released back to the LO around t = 300 s. However, when this occurs, the total
energy level is small compared to its initial value. Another manifestation of TET is
that the envelopes of the displacements decrease monotonically (i.e., no modulation
is observed in contrast to the beating regime), with the envelope of the LO decreas-
ing faster than that of the NES. Overall, 87.6% of the total input energy is dissipated
by the NES in this case.

At a higher-energy regime (X = 0.5, Figure 3.8 and point D in Figure 3.4), no
further qualitative change appears in the dynamics. The nonlinear beating phenom-
enon dominates the early regime of the motion. A weaker but faster energy exchange
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Fig. 3.9 Transient dynamics of the two-DOF system (X = 0.1039, λ1 = 0): (a) LO displacement;
(b) NES displacement; (c) percentage of instantaneous total energy in the NES and (d) superposi-
tion of both displacements during nonlinear energy pumping.

is observed, since 32% of the total energy is transferred to the NES after t = 4 s.
The triggering of TET still occurs, but the irreversible energy transfer from the LO
to the NES is slow compared to the previous simulation. This is why energy dissipa-
tion is less efficient than in the moderate-energy regime, and only 50% of the total
input energy is dissipated by the NES.

Another interesting simulation is shown in Figure 3.9 for parameters ε =
0.05, ω2

0 = C = 1, λ1 = 0, λ2 = 0.002 and X = 0.1039. As in previous simu-
lations, after an initial nonlinear beating (until approximately t = 150 s), a distinct
regime of the transient dynamics is realized. As Figure 3.9d shows, the transient
dynamics in the second regime is captured on a 1:3 resonant manifold, with the LO
vibrating three times faster than the NES; it is noteworthy that the NES envelope
grows during a few cycles, extracting energy from the LO. This simulation is fur-
ther evidence that the NES has no preferential resonant frequency and can engage
in (fundamental and subharmonic) resonance with the LO at multiple frequency
ranges.

To highlight the fundamental difference between the SDOF NES and the classical
linear TMD we compare their capacities as energy absorbers by performing a series
of simulations. To this end, the two configurations depicted in Figure 3.10 are used
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Fig. 3.10 Comparison of the linear and nonlinear energy absorbing devices: (a) TMD coupled to
a LO; (b) NES coupled to a LO.

in a parametric study where we vary, (i) the spring constant k1 of the LO (and there-
fore the natural frequency of the LO, ω0), and (ii) the magnitude X of the impulse
applied to the LO. The three-dimensional plots in Figures 3.11 and 3.12 display the
energy dissipated by the TMD and the SDOF NES, respectively, as a function of pa-
rameters ω0 and X. Due to the linear superposition principle, the energy dissipated
by the TMD does not depend on the impulse magnitude. There is a specific value of
ω0 for which the energy dissipation in the TMD is maximum (95.38% of the total
input energy). Any deviation in the frequency content of the LO response from this
regime decreases the TMD performance, signifying the well-known result that the
TMD is only effective when it is tuned to the natural frequency of the LO.

Unlike the TMD, the NES performance depends critically on the impulse mag-
nitude, which is an intrinsic limitation of this type of nonlinear absorber. This is
confirmed in Figure 3.12, where for every value of a discontinuity in the energy
dissipation can be noticed. On the other hand, this figure indicates that the effec-
tiveness of the NES is less affected by changes in the natural frequency of the LO.
More precisely, for every value of ω0, there exists an impulse magnitude for which
the NES dissipates not less than 94% of the total input energy. An additional obser-
vation is that, from ω0 = 1.7 rad/s, there is a sudden and sharp increase in the NES
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Fig. 3.11 TMD performance.

Fig. 3.12 NES performance.

performance in a very narrow region of the (ω0,X) plane. The system response for
(ω0,X) = (2.3, 0.31) depicted in Figure 3.13 reveals that the LO vibrates three
times faster than the NES, similar to what was observed in Figure 3.9. Hence, a
1:3 resonance between the LO and the NES seems to be the mechanism respon-
sible for the sudden increase in performance in this region. Therefore, it appears
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Fig. 3.13 Two-DOF system with LO coupled to a NES (ω0 = 2.3 N/m and X = 0.31 m/s):
(a) system response and (b) close-up.

that the NES can dissipate a substantial amount of the total input energy through
fundamental (1:1) as well as subharmonic (m:n) resonances.

In conclusion, even though the performance of the TMD is not affected by the
level of total energy in the system, it is limited by its inherent sensitivity to uncer-
tainties in the natural frequency of the primary system. In contrast, provided that the
energy is above a critical threshold, the SDOF NES is capable of robustly absorbing
transient disturbances over a broad range of frequencies. Hence, the NES may be
regarded as a frequency-independent passive absorber, possessing adaptivity to the
frequency content of the vibrations of the primary system. This is due to its essential
stiffness nonlinearity, which precludes the existence of any preferential resonance
frequency.

It is also shown in this section, that a seemingly simple system comprising of
a damped LO and an essentially nonlinear attachment may exhibit complicated dy-
namics and transitions, including fundamental and subharmonic resonances, nonlin-
ear beating phenomena, multi-frequency responses and strong motion localization to
either oscillator. The most interesting feature of this system is arguably its capability
to realize passive and irreversible energy transfer phenomena from the impulsively
loaded LO to the NES, in spite of the relative lightness of the NES compared to the
mass of the LO.

The complexity of the problem dictates a systematic study of the damped and un-
damped dynamics of the integrated discrete system composed of the linear oscillator
with an essentially nonlinear attachment (the NES). In the following sections of this
chapter we will employ a combination of numerical and analytical techniques, in-
cluding direct numerical simulations; special analytical methodologies capable of
modeling both qualitatively and quantitatively transient, strongly nonlinear damped
transitions; and advanced signal processing techniques to analyze the resulting non-
linear and non-stationary signals. First, we will consider the system without damp-
ing. Even though damping is a prerequisite for TET (as the numerical results dis-
cussed in this section indicate), we will show that for sufficiently weak damping the
dynamics of TET is governed, in essence, by the underlying Hamiltonian dynamics;
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the weak damping dissipation then controls the transient damped transitions along
branches of NNMs of the Hamiltonian system. After studying the complex dynam-
ics of the Hamiltonian system we will examine the damped transient responses, the
modal energy exchanges and TET between the linear primary system and the at-
tached NES. Experimental verification of the theoretical results of this chapter will
be presented later.

3.3 SDOF Linear Oscillators with SDOF NESs: Dynamics of the
Underlying Hamiltonian Systems

In this Sectios we consider the undamped version of the system depicted in Fig-
ure 3.3, by setting c1 = c2 = 0 and eliminating all external forces. We will perform
separate studies of (i) the periodic orbits (NNMs), (ii) the quasi-periodic orbits, and
(iii) the so-called impulsive orbits of the Hamiltonian system; in addition, we will
provide a geometric interpretation of the Hamiltonian dynamics in terms of slow
manifolds of the dynamics that will help us understand the mechanisms generating
TET in the damped system.

3.3.1 Numerical Study of Periodic Orbits (NNMs)

In the absence of damping and external forcing terms, the equations of motion (3.2)
become,

ẍ + ω2
0x + C(x − ν)3 = 0

εν̈ + C(ν − x)3 = 0 (3.6)

where the small parameter is used to denote the lightweightness of the NES; in the
following analytical studies ε will be considered as one of the perturbation parame-
ters of the problem.

Before proceeding with the study of the periodic orbits, we make a note regarding
the degeneracies of system (3.6). For this, we recast the equations of motion in terms
of phase variables:

⎧⎪⎪⎨
⎪⎪⎩
ẋ

ż

ν̇

ẇ

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

0 1 0 0
−ω2

0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
x

z

ν

w

⎫⎪⎪⎬
⎪⎪⎭ +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

−C(x − ν)3
0

−C/ε(ν − x)3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.7)
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This representation shows that the linear part of system (3.7) possesses two zero
eigenvalues and a pair of purely imaginary eigenvalues; in addition, the system pos-
sesses cubic stiffness nonlinearities.

This indicates that the system undergoes co-dimension three bifurcations for
changes of its parameters, and, in fact, its entire four-dimensional phase space coin-
cides with its Center Manifold (Guckenheimer and Holmes, 1983; Wiggins, 1990).
This highly degenerate structure is responsible for the complex dynamics of the
system (3.2), despite its seemingly simple configuration. We also mention that al-
though the full unfolding of the dynamics and the study of the bifurcation structure
of the dynamical system (3.7) is a formidable task (and well beyond the scope of
this work), we will show that it is still possible to analytically study the dynamics
related to TET phenomena under interest.

3.3.1.1 The Numerical Algorithm

Returning to system (3.6), the periodic orbits (or NNMs, see Section 2.1) for a given
period T are computed using the method of non-smooth transformations (Pilipchuk,
1985; Pilipchuk et al., 1997). This method formulates the problem of computing the
periodic solutions in terms of a nonlinear boundary value problem (NLBVP) over
a bounded domain. Then the NLBVP is solved using a shooting method. Because
a nonlinear system is considered, multiple periodic solutions (NNMs) may coexist
for a fixed period T .

Once a periodic solution is computed for a specific period T , the procedure is
restarted for another value of T , say T +
T . To this end, different strategies may
be used; the sequential continuation method is considered herein. The continuation
of the periodic orbits is carried out until the entire frequency range of interest is
investigated, and eventually, a branch of periodic solutions is numerically computed.

The stability of the computed periodic orbits is determined numerically by ap-
plication of Floquet theory. Necessary (but not sufficient) conditions for bifurcation
and stability-instability exchanges are satisfied when two Floquet multipliers of the
corresponding variational problems coincide at +1 or −1. Since the periodic orbits
of a two-DOF Hamiltonian system are considered, two Floquet multipliers of the
variational problem are always equal to +1, whereas the other two form a recipro-
cal pair. The stability results are verified using direct numerical simulations of the
equations of motion. The complete procedure (i.e., NLBVP formulation, shooting
method, sequential continuation and stability analysis) is applied to system (3.6)
within the range of energies of interest.

The first step of the numerical algorithm for computing the periodic orbits is to
formulating an equivalent two-point NLBVP over a finite domain. This is performed
using the method of non-smooth transformations first introduced by Pilichuck
(1985). This method can be applied to the numerical and analytical study of the
periodic orbits (and their bifurcations) of strongly nonlinear dynamical systems. To
apply the method we express the sought periodic solutions in terms of two non-
smooth variables, τ (•) and e(•), as follows:
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Fig. 3.14 The non-smooth functions τ(u) and e(u).

ν(t) = e(t/α)y1(τ (/α)), x(t) = e(t/α)y2(τ (t/α)) (3.8)

where α = T/4 represents the (yet unknown) quarter period. The non-smooth func-
tions τ (•) and e(•) are defined according to the expressions

τ (u) = 2

π
sin−1

(
sin
π

2
u
)
, e(u) = τ ′(u) (3.9)

and are used to replace the independent time variable from the equations of motion
(prime denotes differentiation with respect to the argument); their graphic depiction
is given in Figure 3.14.

Substituting (3.8) into (3.6), we impose ‘smoothening conditions’ (Pilipchuk et
al., 1997) to eliminate singular terms from the resulting equations, such as terms
proportional to

e′(u) = τ ′′(u) = 2
∞∑

k=−∞
[δ(u+ 1 − 4k)− δ(u− 1 − 4k)].

Setting equal to zero the component of the transformed equations that is multiplied
by the non-smooth variable e, we formulate the following two-point NLBVP in
terms of the non-smooth variable τ in the interval −1 ≤ τ ≤ 1,

y ′
1 = y3

y ′
2 = y4
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y ′
3 = −C

ε
α2(y1 − y2)

3

y ′
4 = −ω2

0α
2y2 − Cα2(y2 − y1)

3

y1(−1) = y1(1) = 0

y2(−1) = y2(1) = 0 (3.10)

where primes denote differentiation with respect to the non-smooth variable τ , and
a state formulation was utilized. The boundary conditions above result from the
above-mentioned smoothening conditions. The NLBVP (3.10) was solved using a
shooting method, by matching at τ = 0 the two solutions shot from the left and
right boundary points τ = ±1. The numerical algorithm is similar to the one used
in Pilipchuck et al. (1997).

Hence, the problem of computing the periodic solutions of the undamped system
(3.6) is reduced to solving the NLBVP (3.10) formulated in terms of the bounded
independent variable τ ∈ [−1, 1], with the quarter-period α playing the role of
the nonlinear eigenvalue. It is noted that the solutions of the NLBVP can be ap-
proximated analytically through regular perturbation series (Pilipchuk et al., 1997),
however, this will not be attempted herein where only numerical solutions will be
considered. We just mention here that (3.10) is amenable to direct analytical study
in terms of simple mathematical functions.

We note that the NLBVP (3.10) provides the solution only in the normalized half-
period −1 ≤ t/α ≤ 1 ⇒ −1 ≤ τ ≤ 1. To extend the result over a full normalized
period equal to 4 one needs to add the component of the solution in the interval 1 ≤
t/α ≤ 3; to perform this one takes into account the symmetry properties of the non-
smooth variables τ and e by adding the antisymmetric image of the solution about
the point (yi, t/α) = (0.1), as shown in Figure 3.15. By construction, it follows that
the computed periodic solutions satisfy the initial conditions, x(α) = ν(−α) = 0
and ν̇(−α) = y ′

1(−1)/α, ẋ(−α) = y ′
2(−1)/α. We note at this point that since

(3.6) is an autonomous dynamical system these initial conditions can be shifted
arbitrarily in time; for example, they can be applied to the initial time t = 0 instead
of t = −a = −T/4. However, in what follows we will respect the formulation of
the NLBVP (3.10), and retain the initial conditions at t = −T/4.

Referring to the general form of a periodic orbit depicted in Figure 3.15, we
introduce the following classification:

(i) Symmetric periodic orbits (NNMs) Snm± correspond to orbits that satisfy the
conditions,

ν̇(−T/4) = ±ν̇(+T/4) ⇒ y ′
1(−1) = ±y ′

1(+1)

and

ẋ(−T/4) = ±ẋ(+T )/4) ⇒ y ′
2(−1) = ±y ′

2(+1)

with n being the number of half-waves in y1(ν), and m the number of half-
waves in y2(x) in the half-period interval −T/4 ≤ t ≤ +T/4 ⇔ −1 ≤ τ ≤
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Fig. 3.15 Construction of the periodic solutions v(t) = e(t/α)y1(τ (t/α)) and x(t) =
e(t/α)y2(tau(t/α)) over an entire normalized period −1 ≤ t/α ≤ 3 from the solutions yi (τ (t/α)),
i = 1, 2 of the NLBVP (3.10), computed over the half normalized period −1 ≤ t/α ≤ 1.

+1. Hence, the periodic solutions on the branch of NNMs Smn+ (Smn-) pass
through the origin of the configuration plane (x, ν) with positive (negative)
slope. The ratio (m:n) indicates the order of the internal resonance realized dur-
ing the given periodic motion. For instance, a 1:1 internal resonance is realized
on both branches S11, which means that both the LO and the NES vibrate with
the same dominant frequency. Since the periodic orbits considered are nolinear,
thet will possess additional harmonics at multiples of this dominant frequency,
but their amplitude is expected to be small. Similarly, on branches S13±, a
1:3 internal resonance is realized between the two oscillators (with the LO os-
cillating 3 times faster than the NES), and there are two dominant harmonic
components in the responses, one around 1 rad/s and one around 1/3 rad/s; as
shown later, the relative importance of these two harmonic components may
vary along the branches S13±. Also, the (+) and (-) signs in the notations of
the branches indicate whether the periodic solution passes through the origin
of the configuration plane with positive or negative slope, respectively. For in-
stance, an in-phase (out-of-phase) motion of the system is realized on S11+
(S11−).

(ii) Unsymmetric periodic orbits (NNMs) Upq are orbits that do not satisfy the
conditions of the symmetric orbits. In particular, orbits U(m + 1)m bifurcate
from the branch of symmetric NNMs S11 – at T/4 ≈ mπ/2, and exist ap-
proximately within the intervals mπ/2 < T/4 < (m + 1)π/2, m = 1, 2 . . . .
For example on branches U21±, a 2:1 internal resonance is realized between
the two oscillators (with the NES oscillating two times faster than the LO),
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and there are two dominant harmonic components, one around 2 rad/s and one
around 1 rad/s; we note that the relative importance of these two harmonic
components may vary along branches U21±.

As mentioned previously, the numerical solution of the two-point NLBVP (3.10) is
constructed utilizing a shooting method, details of which can be found in Lee et al.
(2006). In brief terms, the NLBVP is solved as follows. For a given nonlinear eigen-
value a (the quarter period of the NNM) the solutions of the NLBVP are computed
at different energy levels; it is expected that at every energy level there will co-exist
multiple nonlinear periodic solutions sharing the same minimal period. Periodic or-
bits that correspond to synchronous motions of the two oscillators of the system,
and pass through the origin of the configuration plane are termed nonlinear normal
modes (NNMs) in Vakakis et al. (1996), but a more extended definition of NNMs is
adopted in this work (see Section 2.1) to include all periodic motions (and not just
synchronous ones).

The different families of computed periodic solutions are depicted in three types
of plots. In the first two types of plots, we assume zero initial displacements
x(−T/4) = ν(−T/4) = 0, and depict the initial velocities ν̇(−T/4) = y ′

1(−1)/α
and ẋ(−T/4) = y ′

2(−1)/α of the periodic orbits as functions of the quarter-period
α = T/4 of the (conserved) energy of that orbit:

h = h(1/2)[εν̇2(−T/4)+ ẋ2(−T/4)] = (1/2α2)[εy ′2
1 (−1)+ y ′2

2 (−1)].
In the third type of plots, we depict the frequencies of the periodic orbits as func-
tions of their energies h. These plots clarify the bifurcations that connect, gener-
ate or eliminate the different branches (families) of periodic solutions (NNMs). As
mentioned previously, the stability of the computed periodic orbits is determined by
Floquet analysis and by performing direct numerical simulations of the equations of
motion (3.6).

The numerical results correspond to system (3.6) with parameters and ε =
0.05, ω0 = 1.0 and C = 1.0, in the energy range 0 < h < 1. In Figures 3.16
and 3.17 we depict the bifurcation diagrams of the initial velocities ν̇(−T/4) and
ẋ(−T/4) of the computed periodic orbits for varying quarter-period α and energy
h. Since the dynamical behavior of the system on the various branches will be dis-
cussed in detail in the following sections, we make only some general and prelimi-
nary observations regarding the computed periodic orbits at this point. To illustrate
the computational results, in Figure 3.18 we present time series of representative
periodic motions on branches S11+, S13+ and U21, together with the correspond-
ing motions in the configuration plane of the system, (x, ν). Figure 3.19 depicts
the Fourier transforms of the time series to illustrate the frequency content of these
periodic motions.

Considering the bifurcation diagrams of Figures 3.16 and 3.17 we make the fol-
lowing remarks. Considering the NNM branches Snn−, they exist in the quarter-
period intervals 0 < α < nπ/2, and their initial conditions satisfy the following
limiting relationships (see Figure 3.16):
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Fig. 3.16 Normalized initial velocities of periodic orbits as functions of the quarter-period α; solid
(dashed) lines correspond to positive (negative) initial velocities: (a) |y′

1(−1)| vs. α, (b) |y′
2(−1)|

vs. α (S11: ◦, S13: �, S15: �, S31: �, S21: ♦ with in-phase as filled-in, and branches U without
symbol).
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Fig. 3.17 Initial velocities of the periodic solutions as functions of energy; solid (dashed) lines
correspond to positive (negative) initial velocities; unstable solutions are denoted by crosses:
(a) |v̇(−T /4)| vs. α, (b) |ẋ(−T /4)| vs. α.
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Fig. 3.18 Periodic motion on (a) S11+; (b) S13+ and (c) U21+ (ε = 0.05, C = 1); NES response
- - -, LO response —.
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Fig. 3.19 Power spectral density of the periodic motion on (a) S11+; (b) S13+ and (c) U21+
(ε = 0.05, C = 1); left plots correspond to the LO response, and right plots to the NES response.

lim
α→0

{|ν̇(−α)|, |ẋ(−α)|} = ∞ and lim
α→nπ/2

{|ν̇(−α)|, |ẋ(−α)|} = 0.

In the energy domain, these symmetric branches exist over the entire energy domain
0 < h < 1. We note that branches Snn− are, in essence, identical to the branch
S11−, since they are identical over the domain of their common minimal period
(actually, the branches Snn− are derived by branches S11− repeated n times); sim-
ilar remarks can be made regarding the branches S(kn)km±, k integer, which are
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identified with Snm±. Considering the neighborhoods of branches S11± and re-
ferring to Figure 3.16, the branches S11 and U21 bifurcate out at point α = π/2
where S11− disappears (similar behavior is exhibited by the branches S31, S21,
. . .). For π/2 ≤ α ≤ π a bifurcation from S11+ to S13+ takes place without
change of phase; similar bifurcations take place at higher values of α for branches
S15+, S17+, . . . . For α ≈ 3π/2 the branches S13+ and S13− coalesce with branch
S11−, with similar coalescences with branch S11− taking place at higher values of
α for the pairs of branches S15±, S17±, . . . .

The unsymmetric NNM branches U(m + 1)m bifurcate from the symmetric
branches S(m + 1)(m+ 1) – at quarter-periods α = mπ/2. It turns out that certain
periodic orbits, termed impulsive orbits – IOs, on these branches are of particular
importance concerning TET in the damped system. The IOs satisfy the additional
initial condition y ′

1(−1) ≡ ν̇(−α) = 0, and correspond to zero crossings of the
branches U(m + 1)m in the bifurcation diagram of Figure 3.17a. Taking into ac-
count the formulation of the NLBVP (3.10), it follows that IOs satisfy initial con-
ditions ν(−T/4) = ν̇(−T/4) = x(−T/4) = 0, and ẋ(−T/4) �= 0, which happen
to be identical to the state of the undamped system (3.6) (being initially at rest)
after application of an impulse of magnitude ẋ(−T/4) = y ′

2(−1)/α to the linear
oscillator.

This implies that if the LO of the system (being initially at rest) is forced im-
pulsively and one of the stable IOs is excited, a portion of the imparted energy is
transferred directly to the invariant manifold corresponding to that IO, and, as a
result energy is passively transferred from the LO to the NES during the initial cy-
cle of the motion; in subsequent cycles of the response energy gets continuously
transferred back and forward between the NES and the LO, and a nonlinear beat
phenomenon is formed. We will show that the excitation of IOs provides one of the
possible mechanisms for triggering TET in the damped system. A detailed analy-
sis and discussion of the role of IOs on TET will be carried out in the following
sections.

Similar classes of IOs can be realized also in a subclass of S- branches. In particu-
lar, this type of orbits can be realized on NNM branches S(2k+1)(2p+1)±, k �= p,
but not on periodic orbits that do not pass through the origin of the configuration
plane (such as S21, S12, . . . ). NNM Branch S11− is a particular case, where the
IO is realized only asymptotically, as the energy tends to zero, and the motion is
localized completely in the linear oscillator.

3.3.1.2 Frequency-Energy Plots (FEPs)

A more suitable representation of the computed NNMs is to depict their frequency
indices (FIs) as functions of their energies h in a frequency-energy plot (FEP). A first
introduction of this type of plots was made in Section 2.1, where it was shown that
they clearly depict and clarify the bifurcations that generate or eliminate the different
branches of periodic solutions (NNMs) of a Hamiltonian system. To construct the
FEP of the Hamiltonian system (3.6), the FI of a NNM on branches Snm± and
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Fig. 3.20 FrequencyŰenergy plot (FEP) depicting the periodic orbits of the Hamiltonian system
(3.6); impulsive orbits (IOs) are denoted by bullets (•); bifurcation points are denoted by (+) when
four Floquet multipliers are equal to +1, and (◦) when two Floquet multipliers are equal to +1 and
two to −1.

Unm± is defined as the ratio of its two indices multiplied by the driving frequency
ωf of the system on the branch, i.e., FI = nωf /m; the driving frequency is the
frequency of the harmonic component closest to the natural frequency of the LO,
ω0 = 1 rad/s, and slightly varies from one branch to another and even along the
same branch. For instance, S21± is characterized by the frequency index FI = 2 ×
0.97/1 = 1.94, as is U21±, and S13± is characterized by FI = 1×1.05/3 = 0.35.
This rule holds for every branch, the only exception being the two branches S11±,
which form the main backbones of the FEP.

In Figure 3.20 we depict the FEP of the Hamiltonian system (3.6) for parameters
ε = 0.05, ω2

0 = C = 1. A periodic orbit is represented by a point in the plot. A
NNM branch, represented by a solid line, is a collection of periodic orbits possessing
the same qualitative features. Bifurcation points are also indicated in that plot, with
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Fig. 3.21 Close-ups of specific branches of the FEP: (a) S11−; (b) S11+; (c) S12±; (d) S13±;
(e) S21±; (f) U21; (g) U43; (h) U65; (i) U12; stabilityŰinstability boundaries are represented as
in Figure 3.20 and IOs are indicated by triple asterisks; the plots for U43 and U65 consist of two
nearly spaced branches, but only one of these is presented for clarity; since the motion is nearly
identical on the two branches composing S12, S21, U12 and U21 (c, e, i, f), only the oscillations
on one of the there branches are depicted in the configuration plane.

(+) and (o) used to indicate changes of stability. We note that, if the system were to
be linear, the FEP would merely consist of two horizontal lines appearing at the two
natural frequencies of the corresponding two-DOF system. A consequence of the
frequency convention adopted is that smooth transitions between certain branches
seem to involve ‘jumps’ in the FEP (see for instance the dashed line between S15±
and S11− in Figure 3.20). The complexity of the FEP is an indication of the com-
plexity and richness of the nonlinear dynamics of this two-DOF Hamiltonian sys-
tem. As discussed previously, this is a consequence of the high degeneracy of the
dynamical system (3.6).

To understand the different types of periodic motions realized in this system,
close-ups of several branches are provided in Figure 3.21. The corresponding pe-
riodic orbits are represented in the configuration plane (ν, x) of the system. The
aspect ratio is set so that increments on the horizontal and vertical axes are equal



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 119

Fig. 3.21 Continued.
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in size, enabling one to directly deduce whether the motion is localized to the LO
(vertical line) or to the NES (horizontal line).

Although a systematic analytic study of the various types of periodic solutions
of the FEP is postponed until in the next section, some preliminary remarks are due
at this point. The backbones of the FEP are formed by NNM branches on which
the system response is nearly monochromatic (see, Figure 3.18a). Specifically, in-
and out-of-phase synchronous vibrations of the two particles are realized on and,
respectively. These NNMs are strongly nonlinear analogs (continuations) of the in-
phase and out-of-phase linear normal modes of the corresponding two-DOF linear
system with all stiifnesses being linear. However, unlike the classical linear normal
modes, the shapes and frequencies of the NNMs are energy dependent.

The natural frequency of the LO (ω0 = 1 rad/s, identified by a frequency index
equal to unity) divides naturally the NNMs into higher- and lower-frequency modes.
Figure 3.21a depicts the NNMs on the higher-frequency out-of-phase branch S11−.
Due to their energy dependence, they become localized to the LO or to the NES as
ω → 1+ or ω � 1, respectively. Two saddle-node bifurcations can also be observed
on this branch. In Figure 3.21b, the NNMs on the lower-frequency in-phase branch
S11+ are depicted; these motions localize to the nonlinear attachment as the total
energy in the system decreases. For further energy decrease, S11+ ceases to exist
and is continued by S13±, S15±, etc., as shown in Figure 3.20.

There is a sequence of higher- and lower-frequency branches of subharmonic pe-
riodic motions Snm± and Unm± with m �= n. These NNM branches are termed
subharmonic tongues, and they bifurcate out from the backbone branches S11±.
Unlike the NNMs on the backbones, the tongues consist of multi-frequency peri-
odic solutions (see, i.e., Figures 3.19b, c). Specifically, each tongue occurs in the
neighborhood of an internal resonance between the LO and the NES. Due to the es-
sential nonlinearity of the system (3.6), there exists a countable infinity of tongues
Snm± and Unm± in the FEP. This means that the NES is capable of engaging
in every possible n:m internal resonance with the LO, with n and m being rela-
tive prime integers; clearly, only a subset of these tongues can be represented in
Figure 3.20. We mention at this point that the existence of a countable infinity of
periodic orbits for this system can be proved rigorously by applying subharmonic
Melnikov analysis (Guckenheimer and Holmes, 1983; Wiggins, 1990). As discussed
in Veerman and Holmes (1985, 1986) the generation of infinitely countable subhar-
monic orbits is related to the non-integrability (Lichtenberg and Lieberman, 1983)
of the Hamiltonian system (3.6). Specifically, these countable infinities of subhar-
monic motions are generated from the breakdown of invariant KAM tori, and they
lead to the generation of low-scale chaotic layers close to the corresponding reso-
nance bands of these motions. The generation and stability of subharmonic motions
in non-integrable Hamiltonian systems can be studied through the use of averaging
methodologies (Holmes and Marsden, 1982; Greenspan and Holmes, 1983; Veer-
man and Holmes, 1986; Wiggins, 1990).

A few symmetric tongues are described in more detail. The periodic motions on
these branches are also considered as NNMs according to our extended definition
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introduced in Section 2.1 (for a study of non-synchronous NNMs in systems with
internal resonances in appropriately defined modal spaces, see Vakakis et al., 1996).

• The family S1(2k + 1)±, k = 1, 2, etc., exists in neighborhoods of frequency
indices FI = 1/(2k + 1). Each family is composed of two in-phase and out-
of-phase branches. For fixed k each of the two branches S1(2k+ 1)± is linked
through a smooth transition with its neighboring branches S1(2k − 1)± or
S1(2k+3)±, and exists only over a finite energy interval. The pair S1(2k+1)±
is eliminated through a saddle node bifurcation at a higher energy level, as
illustrated in Figure 3.21d for branches S13±.

• The pairs of branches S1(2k)±, k = 1, 2, etc. bifurcate from the branches
S1(2k + 1)±. For instance, the coalescence of the pair of branches S12± with
the branch S13+ for decreasing energy is depicted in Figure 3.21c.

• The families Sn1±, n = 2, 3, etc. appear in neighborhoods of frequency in-
dicesFI = n, i.e., at progressively higher frequencies with increasing n. These
tongues emanate from S11− and coalesce with S11+ for increasing energy.
The coalescences seem to occur through jumps represented by dashed lines in
the FEP of Figure 3.20, but as explained previously this is an artifact of the
frequency convention (frequency indexing) adopted in the FEP.

• Focusing now on the unsymmetric tongues, the family U(m+ 1)m bifurcates
from branch S11−. At a higher energy level, the two branches composing the
tongues are eliminated through saddle-node bifurcations. An additional family
of unsymmetric solutions is Um(m + 1) and in Figure 3.20 this family is de-
picted only for frequency indices FI < 1. The shapes of these orbits in the
configuration plane are similar to those of U(m+ 1)m, but rotated by π/2, as
illustrated in Figures 3.21f, i. Periodic motions on the unsymmetric tongues are
not NNMs because there exist non-trivial phases between the two oscillators,
and are represented by Lissajous curves in the configuration plane.

As mentioned previously, there exist special periodic orbits on the tongues that
satisfy the conditions ẋ(−T/4) �= 0 and ν(−T/4) = ν̇(−T/4) = x(−T/4) = 0.
These orbits, termed impulsive orbits (IOs), have important practical significance,
because they correspond to impulsive forcing of the LO of system (3.6). These or-
bits are indicated by bullets in Figure 3.20 and triple asterisks in Figure 3.21. In
principle, IOs can be realized on any subharmonic tongue, with the exception of
tongues on which the periodic orbits do not pass through the origin of the configu-
ration plane (for example, S12±). As far as the backbone curves are concerned, an
IO on the out-of-phase branch S11− is realized only asymptotically as the energy
tends to zero, and the motion is completely localized to the LO; similarly, there is
no finite-energy IO on branch S11+.
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3.3.2 Analytic Study of Periodic Orbits (NNMs)

In an effort to better understand the dynamics and localization phenomena that occur
in different frequency/energy ranges of system (3.6), we proceed to the analytical
study of the periodic solutions shown in the FEP of Figure 3.20. Representative
examples of this analysis will be given for periodic orbits on the backbone branches
S11± and on selected subharmonic tongues, namely S13± and U21±.

Without loss of generality we assume that ω2
0 = 1 and express system (3.6) in

the form:

ẍ + x + C(x − ν)3 = 0

εν̈ + C(ν − x)3 = 0 (3.11)

The analysis will be based on the complexification-averaging method (CX-A) first
introduced by Manevitch (1999) and briefly outlined in Section 2.4. This technique
will also be applied in later sections to analyze the strongly nonlinear transient dy-
namics of the damped version of system (3.6).

3.3.2.1 Backbone Branches S11±

The backbone branches S11± correspond to motions where the two oscillators of
the system possess identical dominant frequency components. The analytical study
is performed by applying the CX-A methodology through a slow-fast partition of
the dynamics. Following the method, we introduce the new complex variables:

ψ1 = ẋ + jωx and ψ2 = ν̇ + jων (3.12)

whereω is the dominant (fast) frequency of oscillation and j = (−1)1/2. Expressing
the displacements and accelerations of the linear and nonlinear oscillators of the
system in terms of the new complex variables, we obtain,

x = ψ1 − ψ∗
1

2ω
, ẍ = ψ̇1 − jω

2
(ψ1 + ψ∗

1 )

ν = ψ2 − ψ∗
2

2jω
, ν̈ = ψ̇2 − jω

2
(ψ2 + ψ∗

2 ) (3.13)

where the asterisk denotes complex conjugate.
Since nearly monochromatic (at fast frequencyω) periodic solutions of the equa-

tions of motion are sought, and since we make the assumption that the two oscil-
lators vibrate with the same fast frequency, the previous complex variables are ap-
proximately expressed in terms of fast oscillations of frequency ω, ejωt , modulated
by slowly varying (complex) amplitudes φi(t), i = 1, 2:

ψ1(t) = φ1(t)e
jωt and ψ2(t) = φ2(t)e

jωt (3.14)
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This amounts to partitioning the dynamics into slow- and fast-varying components,
with the modulations of the (approximately harmonic) fast oscillations ejωt provid-
ing the essential slow flow dynamics of the system.

Hence, the study of periodic orbits on NNM branches S11± is reduced to study-
ing the slow flow dynamics. This pattern of reducing the problem to the slow flow
dynamics by means of CX-A analysis will be used throughout this work, as a means
to separate the essential (slow flow) from the unessential (fast-flow) dynamics of the
problem. Note that no a priori restriction was imposed on the frequency ω of the
fast oscillation, which allows us to develop asymptotic approximations of the NNM
branches over their entire domains of existence (since the fast frequency may vary
within a branch of NNMs). At the same time, by the ansatz (3.14) we assume that
the periodic motion is dominated by a single fast frequency harmonic (which holds
for periodic motions on both backbone braches S11±). The analysis of more com-
plex periodic motions (for example, NNMs on subharmonic tongues) dictates more
complicated assumptions than (3.14); examples of such more involved analyses are
carried out in the following sections.

Substituting expressions (3.14) and (3.13) into (3.11) yields the following alter-
native expressions for the equations of motion, which are exact up to this point:

φ̇1e
jωt + φ1jωe

jωt − jω

2
(φ1e

jωt + φ∗
1e

−jωt )+ φ1e
jωt − φ∗

1e
−jωt

2jω

+ C
(
φ1e

jωt − φ∗
1e

−jωt − φ2e
jωt + φ∗

2e
−jωt

2jω

)3

= 0

ε

[
φ̇2e

jωt + φ2jωe
jωt − jω

2
(φ2e

jωt + φ∗
2e

−jωt )
]

− C

×
(
φ1e

jωt − φ∗
1e

−jωt − φ2e
jωt + φ∗

2e
−jωt

2jω

)3

= 0 (3.15)

The basic approximation related to the CX-A technique is that we perform aver-
aging of equations (3.15) with respect to the fast frequencyω, after which only terms
containing the fast frequency are retained (to a first approximation). This leads to the
following set of complex modulation equations, which constitute the approximate
slow flow reduction of the dynamics:

φ̇1 + (jω/2)φ1 − (j/2ω)φ1 + (jC/8ω3)

× (−3|φ1|2φ1 + 3φ2
1φ

∗
2 − 3φ2

2φ
∗
1 + 3|φ2|2φ2 + 6|φ1|2φ2 − 6|φ2|2φ1) = 0

ε[φ̇2 + (jω/2)φ2] − (jC/8ω3)

× (−3|φ1|2φ1 + 3φ2φ∗
2 − 3φ2

2φ
∗
1 + 3|φ2|2φ2 + 6|φ1|2φ2 − 6|φ2|2φ1) = 0

(3.16)
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Introducing the polar representations φ1 = Aejω and φ2 = Bejβ in equa-
tion (3.16), where A,B are real amplitudes and α, β real phases, and setting sep-
arately the real and imaginary parts of the resulting equations equal to zero, the
following set of real modulation equations is obtained governing the slow evolution
of the real amplitudes and phases of the modulations φi , i = 1, 2:

Ȧ+ BC

8ω3
[(3A2 + 3B2) sin(α − β)+ 3AB sin(2β − 2α)] = 0

Aα̇ + ωA

2
− A

2ω
− 3CA3

8ω3 − 6AB2C

8ω3

− BC

8ω3
[(−9A2 − 3B2) cos(α − β)+ 3AB cos(2β − 2α)] = 0

εḂ − AC

8ω3 [(3B2 + 3A2) sin(α − β)+ 3AB sin(2β − 2α)] = 0

εBβ̇ + εωB

2
− 3B3C

8ω3 − 6A2BC

8ω3

− AC

8ω3 [(−9B2 − 3A2) cos(α − β)+ 3AB cos(2β − 2α)] = 0 (3.17)

The first and third equations in (3.17) describing the evolutions of the two real
amplitude modulations, can be combined to yield

Ȧ+ εBḂ

A
= 0 ⇒ A2 + εB2 = N2 (3.18)

whereN is a constant of integration. Clearly, (3.18) is a conservation-of-energy-like
relation for the slow flow, as it is directly linked to conservation of total energy in
the undamped system (3.11) during free oscillation. It follows that the modulation
equations (3.17) can be reduced by one, replaced by the algebraic relation (3.18).

The periodic solutions on the backbone branches S11± are computed by setting
the derivatives with respect to time in (3.17) equal to zero, i.e., by imposing station-
arity conditions on the modulation equations. The resulting first and third equations
are trivially satisfied if we assume identity of phases, α = β, whereas the second
and fourth equations become:

ωA

2
− A

2ω
− 3CA3

8ω3 − 6AB2C

8ω3 − BC

8ω3 [−9A2 − 3B2 + 3AB]

= ωA

2
− A

2ω
− 3C

8ω3 (A− B)3 = 0

εωB

2
− 3B3C

8ω3 − 6A2BC

8ω3 − AC

8ω3 [−9B2 − 3A2 + 3AB]

= εωB

2
+ 3C

8ω3 (A− B)3 = 0 (3.19)
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The amplitudes A and B can be estimated by combining these equations, which
leads to the following analytic expressions for periodic motions on the backbone
branches S11±:

x(t) ≈ X cosωt = ψ1 − ψ∗
1

2jω
= (A/ω) cosωt

=
( −εω2

ω2 − 1

){
4ω2ε(ω2 − 1)3

3C[(1 + ε)ω2 − 1]3

}1/2

cosωt

ν(t) ≈ V cosωt = ψ2 − ψ∗
2

2jω
= (B/ω) cosωt

=
{

4ω2ε(ω2 − 1)3

3C[(1 + ε)ω2 − 1]3

}1/2

cosωt (3.20)

Since a single fast frequency was assumed in the slow-fast partitions (3.14), and only
terms containing this fast frequency were retained after performing averaging in the
complex equations (3.15), the analytical expressions (3.20) are only approximations
of the original dynamics of (3.11).

It is interesting to note that the ratios of the amplitudes of the linear and nonlinear
oscillators on both branches S11± are given approximately by the following simple
form:

X

V
= −εω2

ω2 − 1
(3.21)

This relation shows that if the mass ε of the NES is small (as assumed in this work),
and the frequency is not close to unity, the motion is always localized to the NES. In-
deed, as one would expect intuitively, the oscillation localizes to the LO sufficiently
close to its resonant frequency ω = ω0 = 1. This result is compatible to the fact
that NNM branches of the FEP with large curvatures represent strongly nonlinear
oscillations, as they correspond to strong frequency dependence on energy.

There is a region in the frequency domain,
√

1/(1 + ε) < ω < 1, where the
coefficients X and V are imaginary, indicating that no in-phase or out-of-phase
NNMs can occur there. Indeed, the in-phase backbone branch S11+ exists only
for ω ≤ √

1/(1 + ε), whereas the out-of-phase branch S11− for ω ≥ 1. Moreover,
the analytical approximations of branches in the FEP are computed by noting that
the conserved energy of the system is given by

E = X2

2
+ C (V −X)4

4
(3.22)

Taking into account expressions (3.20), this leads to the analytic FEP depicted
in Figure 3.22 for parameters ε = 0.05 and C = 1. The analytical approximations
are in close agreement with the exact numerical backbone of the FEP depicted in
Figure 3.20. However, the simple ansatz (3.14) restricts the validity of the plot to
regions where subharmonic tongues are encountered, since in these regions more
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Fig. 3.22 Analytic approximation of the backbone branches S11 in the FEP.

than one dominant fast harmonic components are present in the response. For ex-
ample, it is not possible to predict in the plot of Figure 3.22 that S11+ ceases to exist
for decreasing energy, where it is continued by S13±, since during that transition
two dominant fast frequency components at ω and 3ω are present in the responses.
To model this transition, the monochromatic ansatz (3.14) needs to be modified, as
performed in the next section.

3.3.2.2 Symmetric Tongues S13±

The in-phase and out-of-phase subharmonic periodic motions on branches S13± are
analyzed in this section. Along these tongues, the LO vibrates three times faster than
the NES, and two fast frequencies, ω and 3ω, are necessary for accurately modeling
the periodic orbits. To this end, the CX-A technique is modified by introducing four
new complex variables, ψ1, . . . , ψ4, defined as follows:

ψ1 = ẋ1 + jωx1 and ψ3 = ẋ2 + 3jωx2

ψ2 = ν̇1 + jων1 and ψ4 = ν̇2 + 3jων2 (3.23)

These lead to the following analytic approximations for the responses of the two
oscillators:

x(t) ≡ X1 cosωt +X2 cos 3ωt ≡ x1(t)+ x2(t)

ν(t) ≡ V1 cosωt + V2 cos 3ωt ≡ ν1(t)+ ν2(t) (3.24)

Following the procedure outlined in the previous section, the complex variables
(3.23) are partitioned in terms of slow and fast components as follows:

ψ1,2(t) = φ1,2(t)e
jωt and ψ3,4(t) = φ3,4(t)e

3jωt (3.25)
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which when substituted into the equations of motion (3.11) yield the following com-
plex equations of motion:

φ̇
jωt

1 + φ1jωe
jωt + φ̇3e

3jωt + φ33jωe3jωt − (jω/2)(φ2e
jωt + φ∗

1e
−jωt )

− (3jω/2)(φ3e
3jωt + φ∗

3e
−3jωt )+ (2jω)−1(φ1e

jωt − φ∗
1e

−jωt )

+ (6jω)−1(φ3e
3jωt − φ∗

3e
−jωt )

+ (C/2jω)[(φ1e
jωt − φ∗

3e
−3jωt )− 1/3(φ4e

3jωt − φ∗
4e

−3jωt )]3 = 0

ε[φ̇2e
jωt + φ2jωe

jωt + φ̇4e
3jωt + φ43jωe3jωt

− (jω/2)(φ2e
jωt + φ∗

2e
−jωt )− (3jω/2)(φ4e

3jω + φ∗
4e

−3jωt )]
− (C/2jω)[(φ1e

jωt − φ∗
1e

−jωt )− (φ2e
jωt − φ∗

2e
−jωt )

+ (1/3)(φ3e
3jωt − φ∗

3e
−3jωt )− (1/3)(φ4e

3jωt − φ∗
4e

−3jωt )]3 = 0 (3.26)

Averaging independently over each of the two fast frequencies ω and 3ω, we
derive a set of four complex differential equations governing the time evolutions
of the slow modulations φ1, . . . , φ4. Then, introducing the polar transformations
φ1 = Aejα, φ2 = Bejβ, φ3 = Dejγ and φ4 = Gejδ, we obtain a set of eight real
modulation equations governing the slow evolutions of the amplitudes and phases of
the four modulations. The next step is to consider identical phase angles, α = β =
γ = δ (in the absence of dissipative terms this does not restrict the generality of
the analysis), and then set the derivatives of the real amplitudes equal to zero. This
leads to the following set of algebraic equations, which compute the amplitudes of
the harmonic components of the responses at frequencies ω and 3ω,

A = εω2

1 − ω2
B, D = 9εω2

1 − 9ω2
G,

3B2CGZ2Z
2
1 + 9CB3Z3

1 + 2CBG2Z1Z
2
2 + 12ω4εB = 0

9CB3Z3
1 + 18CB2GZ2Z

2
1 + CG3Z3

2 + 18ω4εG = 0 (3.27)

where

Z1 = εω2

1 − ω2 − 1, Z2 = 9εω2

1 − 9ω2 − 1 (3.28)

These coefficients are related to the amplitudes X1, V1,X2 and V2 of approxima-
tions (3.24) by

X1 = A/ω, V1 = B/ω, X2 = D/3ω, V2 = G/3ω (3.29)

Figure 3.21 depicts these harmonic components along the NNM branch S13+
for varying frequencyω. Starting from frequency ω ≈ 0.6, the third harmonic com-



128 3 Nonlinear TET in Discrete Linear Oscillators

Fig. 3.23 Frequency dependence of the amplitudes X1, V1, X2, V2 on S13+; G3 is the point of
triple coalescence of branches S13± with S11− (see also Figure 3.21d).

ponentsX2 and V2 are small, meaning that the corresponding oscillations are nearly
monochromatic, x(t) ≈ X1 cosωt, ν(t) ≈ cosωt . When frequency decreases the
amplitudes of the basic harmonic componentsX1 and V1 also decrease, withX1 de-
creasing nearly quadratically and V1 approximately linearly. These results indicate
that the subharmonic motions on S13+ become increasingly localized to the nonlin-
ear oscillator (the NES) as branch S11+ makes a smooth transition to S13+. At the
same time, the LO starts developing the third harmonic component with amplitude
X2 and frequency 3ω, which is responsible for the cubic shape of the subharmonic
motion in the configuration plane. As the branch S13+ approaches the triple coa-
lescence pointG3, the componentsX1 and V1 further decrease, whereas X2 and V2
undergo a sudden increase (in absolute value) and the third harmonic components
become dominant in the motions of both oscillators. Eventually the responses be-
come again nearly monochromatic (but now at fast frequency 3ω, where ω ≈ 1/3),
and the responses are approximated as x(t) ≈ X2 cos 3ωt, ν(t) ≈ V2 cos 3ωt with
X2 and V2 having opposite signs (i.e., the linear and nonlinear oscillators are now
moving in out-of-phase fashion). A transition to the out-of-phase branch S33− (or
equivalently S11−) is therefore realized as we approach the triple coalescence point
G3. The FEP computed by the analytic approximations of the CX-A method is pre-
sented in Figure 3.21d for parameters ε = 0.05, C = 1 and frequencies in the
neighborhood of ω = 1/3. This plot highlights the triple coalescence of the two
branches S13± with branch S11− (not shown in the plot) at pointG3.
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The evolutions of the NNMs of system (3.11) along the branch S13− present an
interesting, though paradoxical feature of the dynamics. Indeed, as pointG1 in Fig-
ure 3.21d is reached, the depiction of the NNMs in the configuration plane indicates
localization to the NES, i.e., that ν(t) � x(t). Under this condition, an inspection of
the equations of motion (3.11) reveals that the nonlinear attachment vibrates nearly
independently, in essence driving the LO. However, as we increase energy and move
toward pointG2, it can be shown that the force generated by the linear spring tends
to overcome that of the nonlinear spring, which means that the motion of the LO
becomes less influenced by the motion of the nonlinear attachment. Once point G2
is reached, both the LO and the nonlinear attachment approximately vibrate as a
set of uncoupled linear oscillators with natural frequencies fixed in the ratio 1/3.
In other words, in the neighborhood of point G2 the strongly nonlinear dynamical
system (3.11) oscillates approximately as the following system of uncoupled linear
oscillators:

ν̈ + (1/9)ν = 0, ẍ + x = 0 (3.30)

When we increase the energy even further and reach the triple coalescence bi-
furcation point G3, the force generated by the nonlinear spring is now negligible
compared to that generated by the linear spring; then, the LO vibrates nearly inde-
pendently and drives the nonlinear attachment. This behavior explains why subhar-
monic tongues S13+ (as well as all the other U− and S− tongues) appear as near-
horizontal segments in the FEP of Figure 3.20: the reason is that on these tongues
the strongly nonlinear system behaves nearly as a system of uncoupled linear oscil-
lators, and the frequency of oscillation becomes nearly independent from the energy.

The smooth transition from S13− to S15 and the triple coalescence of S15±
with S11− follow a process similar to what was just described. This also holds
for the other lower-frequency branches S12±, S14±, S16±, S17±, etc. Regarding
the higher-frequency branches S21±, S31±, etc., the only difference is that they
emanate from S11− and coalesce into S11+.

3.3.2.3 Unsymmetric Tongues U21±

A similar methodology applies when studying U− tongues. As a representative ex-
ample, the dynamics of system (3.11) on the two branches U21± is now examined.
Periodic oscillations on these branches carry two dominant harmonic components
with frequencies ω and 2ω, resulting in a 2:1 internal resonance. Accordingly, the
following complex variables:

ψ1 = ẋ1 + jωx1 and ψ3 = ẋ2 + 2jωx2

ψ2 = ν̇1 + jων1 and ψ4 = ν̇2 + 2jων2 (3.31)

are introduced, and represented in terms of slow-fast components as follows:

ψ1,2 = φ1,2e
jωt and ψ3,4 = φ3,4e

2jωt (3.32)
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The resulting transformed equations are averaged over the two fast frequencies ω
and 2ω, and the additional polar transformations φ1 = Aejα, φ2 = Bejβ, φ3 =
Dejγ and φ4 = Gejδ are imposed.

As shown in Figure 3.21f, periodic motions on U21± are represented by closed
loops (i.e., Lissajous curves) in the configuration plane. The expressions

x(t) = (A/ω) sinωt + (D/2ω) sin 2ωt ≡ x1(t)+ x2(t),

v(t) = (B/ω) sinωt + (G/2ω) sin 2ωt ≡ v1(t)+ v2(t) (3.33)

provide an appropriate ansatz for modeling this type of motions, and the phase an-
gles can be assigned the values α = β = γ = δ = 0 without loss of generality.
If expressions (3.33) were defined using cosine functions, one would model open
loops in the configuration plane, so, for example, this would apply for analyzing
branches on the subharmonic tongues S21±. Imposing stationarity conditions on
the equations of the slow flow leads to the determination of the real amplitudes of
the harmonic components

A = εω2

1 − ω2
B, D = 4εω2

1 −wω2
G,

6CB3Z3
1 + 3CBG2Z1Z

2
2 + 8ω4εB = 0,

24CB2GZ + 2Z2
1 + 3CG3Z3

2 + 64ω4εG = 0 (3.34)

where

Z1 = εω2

1 − ω2 − 1, Z2 = 4εω

− 1 (3.35)

Equations (3.34–3.35) can be solved exactly yielding

B = ±
√

4εω4(Z2 − 8Z1)

9CZ3
1Z2

, G = ±
√

32εω4(2Z1 − Z2)

9CZ3
2Z1

(3.36)

with the remaining two amplitudes being computed by the first two of equa-
tions (3.34). The presence of the ± signs shows that up to four solutions can coexist
for a fixed value of the frequency ω. However, only two of these solutions represent
distinct periodic motions and generate the two branches U21±.

Figure 3.24 depicts the variation with frequency of the coefficients X1 = A/ω,
V1 = B/ω, X2 = D/2ω and V2 = G/2ω, for the two subharmonic tongues (corre-
sponding to parameters ε = 0.05 and C = 1). Starting from the lower frequencies,
U21± originates from S11+, since X2 and V2 are nearly equal to zero and X1 and
V1 have identical signs. With increasing frequency both oscillators start develop-
ing a significant harmonic component with frequency 2ω. Around ω = 0.97, X1
and V1 decrease rapidly, whereas X2 and V2 undergo a sudden increase (in absolute
values). Eventually, the branch S11− is reached by both branches U21± through



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 131

Fig. 3.24 Frequency dependence of the amplitudes X1, V1, X2 and V2 on U21+.

a triple coalescence point (S22− with U21±). This is similar to what observed for
the subharmonic tongues S13±.

The previous analysis can also be used to analytically compute the impulsive
orbit (IO) on U21±. This orbit corresponds to all initial conditions zero except for
ẋ(0) �= 0, which yields

B = −2G⇒ Z1 = (Z2/12)
(
2 + 2 3

√
10 − 3

√
100

)
(3.37)

Taking into account expressions (3.35), we derive an analytical estimate for the
frequency ω(U21)

IO of the IO on the tongues U21±:

ω
∗U21)
IO =

⎡
⎣ (25 + 2−1/3552/3 − 5101/3)+ ε(2 − 4101/3 + 2102/3)

(1 + ε)(40 − 8101/3 + 4102/3)
(3.38)

+
√
(540 − 270101/3 + 216102/3)+ ε(216102/3 − 2160) + ε2(−624 + 96101/3 + 961302/3)

2(1 + ε)(40 − 8101/3 + 4102/3)

⎤
⎦

A better estimate can be obtained if an additional third harmonic component is
included in the ansatz (3.31–3.33). From (3.38) we conclude that the frequency of
the IO depends essentially on the mass ratio ε; moreover, it can be proven that it
does not depend on the coefficient of the nonlinearity of the attachment. As ε → 0
it can be shown that ω(U21)

IO → 1, and the frequency of the IO tends to the natural
frequency of the linear oscillator.
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The degree of localization of the IO can be estimated by considering the ratio
V/Y of the maximum amplitudes attained by the nonlinear attachment and the lin-
ear oscillator during one period of the motion. It can be shown that this ratio is inde-
pendent of the coefficient of nonlinearity of the attachment, and the stiffness of the
linear oscillator, but depends only on the mass ratio ε. Moreover, stronger localiza-
tion to the nonlinear attachment occurs for small mass ratios, with V/Y → 1.65 as
ε → 0. It is interesting to note that this localization limit appears to be independent
of the actual parameters of the system, and depends only on its configuration. These
results show that best localization results for the IO are realized for light attach-
ments, and that the degree of localization obtained in the limit of small mass ratios
reaches a parameter-independent limit. As mentioned in the previous section, if a
stable, localized special orbit is excited by external forcing or by the initial condi-
tions of the system, then in the first cycle of the motion energy is rapidly transferred
from the directly excited LO to the nonlinear attachment, and then there occurs a
continuous exchange of energy between the two oscillators in the form of a nonlin-
ear beat phenomenon; as shown in the next section, the excitation of such nonlinear
beats provides conditions for the realization of efficient TET in the damped, impul-
sively forced system. This issue will be studied in detail in the following exposition.

Similar analysis can be performed to model the dynamics of nonlinear beat phe-
nomena on the other unsymmetric branches Um(m+ 1) and U(m+ 1)m. We note
that due to the essential nonlinearity of the system considered, the nonlinear beat
phenomena on the U -branches do not require any a priori ‘tuning’ of the nonlin-
ear attachment, since at specific frequency-energy ranges the nonlinear attachment
passively ‘tunes itself’ in order to engage in an internal resonance with the linear
oscillator. This represents a significant departure from the ‘classical’ nonlinear beat
phenomena observed in coupled oscillators with linearizable nonlinear stiffnesses
[for example, in a spring-pendulum system (Nayfeh and Mook, 1985)], where the
ratio of the linearized natural frequencies of the components dictates the possible
types of internal resonances that can be realized. This observation shows the en-
hanced versatility of the NES with essential stiffness nonlinearity.

A systematic analytical study of IOs of the Hamiltonian system (3.11) is post-
poned until Section 3.3.4, whereas a numerical study of these special orbits is per-
formed in the next section.

3.3.3 Numerical Study of Periodic Impulsive Orbits (IOs)

In Section 3.3.1.2 we discussed the existence of periodic IOs, which correspond to
non-zero initial velocity of the LO with all other initial conditions zero. Since these
are the exact orbits that are directly excited after the application of an impulsive
excitation to the LO, they have an important significance in practical applications.

An extensive series of computations of IOs was carried out employing the nu-
merical algorithm described in Section 3.3.1.1 with the additional restriction that
v̇(0) = 0. The results are presented in Figure 3.25. Because the NES is capable of
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Fig. 3.25 Manifold of impulsive orbits (IOs) represented in the FEP; periodic impulsive orbits are
denoted by bullets (•).

engaging in a countable infinity of n : m internal resonances with the LO, with n
andm being relative prime integers, there exists a countable infinity of periodic IOs,
which are aligned along a smooth curve in the FEP. In addition, one can reasonably
assume that there exists an uncountable infinity of quasi-periodic IOs, which corre-
spond to irrational ratios of frequencies of oscillation of the LO and the NES. The
periodic and quasi-periodic IOs form a smooth manifold of solutions in the FEP,
which is of significant practical importance. This is due to the fact that this mani-
fold provides the impulse magnitude needed to excite an IO for a fixed frequency.

As shown below a subset of periodic IOs represent stable oscillations of the sys-
tem that strongly localize to the NES. It follows that if such a stable periodic IO is
excited by an external shock, strong energy transfer from the directly excited LO
to the NES takes place over a period of the oscillation. In the Hamiltonian system
such an IO is repeated as time progresses, and energy gets continuously exchanged
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Fig. 3.26 Time series of representative periodic IOs for ε = 0.05, C = 1: (a) low-energy IO U14;
(b) moderate-energy IO U54; (c) high-energy IO S31.

between the LO and the NES; however, in the weakly damped system, an initial ex-
citation of a stable, periodic IO that is strongly localized to the NES leads to strong
TET, and, in fact, as shown in the following sections this represents one of three
possible mechanisms for generating TET in the damped system.

The time series of three representative periodic IOs are depicted in Figure 3.26.
Comparing the relative magnitudes attained by the linear and nonlinear oscillators
in each of the IOs depicted in that Figure, we note the following. The low-energy
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periodic IO U14, which corresponds to a 1:4 internal resonance between the two
oscillators, is localized to the LO (see Figure 3.26a). If this orbit is excited by an
external shock, a very small fraction of the input energy is transferred to the NES
during the nonlinear beating phenomenon. The moderate-energy IO U54 (see Fig-
ure 3.26b) is strongly localized to the NES. The excitation of this orbit channels a
major portion of the induced energy from the directly excited LO to the nonlinear
attachment during a period of the oscillation. Regarding the high-energy periodic
IO S31 (see Figure 3.26c), the NES still undergoes a motion with a larger amplitude
than that of the LO, but localization to the NES is less pronounced compared to the
IO U54.

In Figure 3.27 representative periodic IOs are depicted in the configuration plane
(v, x) of the Hamiltonian system. By construction, these IOs have a common fea-
ture: each orbit passes with vertical slope through the origin of the configuration
plane. These plots indicate that low-energy periodic IOs X ≤ 0.078 with are local-
ized to the LO (where ẋ(0) = X is the only non-zero initial condition of the IO). In
contrast, moderate-energy periodic IOs in the range X ∈ [0.104, 0.158] are local-
ized to the NES. As far as the high-energy periodic IOs with are concerned, energy
is shared between the two oscillators in these IOs.

Due to the significance of IOs as a basic underlying mechanism for realizing TET
in the damped system, in the following section we provide an extensive analytical
study of the manifold of IOs in the FEP of system (3.11). Due to the complexity of
the problem, it turns out that we need to perform three separate analytical studies of
IOs, in the high-, moderate- and low-energy regimes, respectively.

3.3.4 Analytic Study of Periodic and Quasi-Periodic IOs

Motivated by the numerical results of the previous section, low-energy (i.e., S1m
and U1m, m > 1), moderate-energy (i.e., U(k + 1)k, k > 1) and high-energy (i.e.,
Sn1 and Un1, n > 1) impulsive orbits will be analyzed separately. To this end, we
reconsider the undamped Hamiltonian system,

ẍ + x + C(x − ν)3 = 0

εν̈ + C(ν − x)3 = 0 (3.39)

where, as previously, we assume that o < ε 	 1, indicating a lightweight nonlinear
attachment. We recall that an IO of the dynamical system (3.39) is defined as the
orbit corresponding to initial conditions ν(0) = ν̇(0) = x(0) = 0 and ẋ(0) �= 0.
The singularity in the second of equations (3.39) (since as the highest derivative is
eliminated) can be removed by introducing the following rescalings:

x → (8ε/C)1/2 x, ν → (8ε/C)1/2 ν (3.40)

with which (3.39) can be transformed into the form,
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Fig. 3.27 Representative periodic IOs in the configuration plane (for ε = 0.05, C = 1): (a) low-
; (b) moderate- and (c) high-energy orbits; the horizontal and vertical axes represent the NES and
LO displacements, respectively, and their aspect ratio is set so that increments on the horizontal
and vertical axes are equal in size, enabling one to directly deduce whether the motion is localized
to the LO (near vertical) or to the NES (near horizontal).
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ẍ + x + 8ε(x − ν)3 = 0

ν̈ + 8(ν − x)3 = 0 (3.41)

subject to initial conditions ν(0) = ν̇(0) = x(0) = 0 and ẋ(0) = X. The additional
coordinate transformation,

y1 = x + εν, y2 = x − ν (3.42)

renders the dynamical system into the following final form,

ÿ1 + y1 + εy2

1 + ε = 0

ÿ2 + y1 + εy2

1 + ε + 8(1 + ε)3y3
2 = 0 (3.43)

subject to initial conditions:

ẏ1 = ẏ2 = Y �= 0, y1 = y2 = 0 (3.44)

Note that for notational consistency we have replaced in (3.44) the initial condition
X by Y . In physical terms, the new ccordinate y1 denotes the motion of the center
of mass of the two oscillators, whereas coordinate y2 their relative response. These
new coordinates are natural for describing and studying TET phenomena in the cor-
responding weakly damped system, since the capacity of the nonlinear attachment
to passively absorb and locally dissipate energy from the LO depends on the relative
displacement y2 and its derivative, rather on its absolute response ν.

The dynamical system (3.43–3.44) is equivalent to systems (3.39) and (3.41),
and has the advantage that the small parameter does not multiply any of the time
derivatives of the dependent variables. Hence, system (3.43–3.44) is considered in
the following analytical study of IOs. Examining (3.44) we deduce that, correct to
first order, the center of mass of the system undergoes a linear oscillation of unit
frequency, whereas the relative motion between the LO and the nonlinear attach-
ment is governed by a strongly nonlinear ordinary differential equation with cubic
nonlinearity. This O(1) partition of the linear and nonlinear dynamics is one addi-
tional advantage for considering the transformed dynamical system (3.43-Ű3.44) in
the following analysis.

Introducing the rescaled time τ = ωt , where ω is a characteristic frequency of
the motion, solving the first of equations (3.43) and substituting into the second, the
dynamical system is reduced to the following reduced form,

y1(τ ) = (1 + ε)1/2Y sin kτ +O(ε)
y ′′

2 (τ )+ 8(1 + ε)2k2y3
2 (τ ) = −k2(1 + ε)1/2Y sin kτ +O(ε)

y2(0) = 0, y ′
2(0) = Y/ω, k = ω−1(1 + ε)−1/2 (3.45)
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Fig. 3.28 Graphic computation of periodic IOs (•) from the bifurcation diagram of periodic orbits:
(a) k = 4, ε = 0.05; (b) k = 6, ε = 0.05.

where primes denote differentiation with respect to τ . We note that in terms of the
normalized time the LO performs approximate harmonic oscillations with normal-
ized frequency k, and the problem of computing the IOs of system (3.39) is reduced
to solving the second of equations (3.45). We note at this point that the reduced sys-
tem approximates well the original system (3.39) at moderate or large energies of
the motion, i.e., in response regimes where theO(1) approximations dominate over
the (omitted) O(ε) corrections. At low energies, however,O(ε) terms are expected
to play a dominant role in the response, so the reduced system (3.45) may not be
used to approximate the response in these regimes.
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Approximations to the periodic IOs are computed by imposing on (3.45) the
periodicity condition y2(τ ) = y2(τ + 2π),∀τ ∈ R+, and the additional initial con-
ditions y2(0) = 0 and y ′

2(0) = Y/ω. Note that by imposing the 2π-periodicity con-
dition on y2(τ ) we impose the additional restriction of integer values for k ∈ N+.
In Figure 3.28 we present the graphic computation of periodic IOs. The bifurca-
tion diagrams in these plots depict the 2π-periodic solutions of y2(τ ) that satisfy
only the initial condition y2(0) = 0, ε = 0.05 and k = 4, 6; the corresponding
normalized initial conditions (π/2)y ′

2(0) are depicted versus the initial condition Y .
The periodic IOs are then computed as intersections of the plots in these bifurcation
diagrams with the lines (π/2)y ′

2(0) = Y/ω = k(1 + ε1/2)Y since at these intersec-
tions the second initial condition in (3.45) is satisfied as well. The classification of
the impulsive periodic orbits follows the notation introduced in Section 3.3.1.2 for
symmetric and unsymmetric periodic orbits (S− or U− orbits, respectively).

In Figure 3.29 we depict some representative periodic IOs reconstructed from the
approximations y1(τ ) and y2(τ ) of the reduced system (3.45), and compare them to
the exact IOs computed numerically from the original equations (3.39). It can be
observed that the reduced system approximates well the original system at moder-
ate and high energies, but not at small ones. Of particular interest is the impulsive
orbit U54 depicted in Figure 3.29b, which is in the form of a modulated signal or
beat (that is, a ‘fast’ oscillation modulated by a ‘slow’ envelope). This orbit occurs
at a moderate energy level, and its fast frequency is close to the eigenfrequency
of the linear oscillator, so that near 1:1 internal resonance between the linear os-
cillator and the nonlinear attachment occurs. In the next section it will be shown
that such IOs possess two close, rationally related frequency components, which
when superimposed produce the observed beating behavior. It follows that for such
moderate-energy impulsive orbits one can approximately partition the dynamics into
slow and fast components and employ averaging arguments. No such slow-fast par-
tition, however, of the dynamics is possible for the other types of impulsive periodic
orbits depicted in Figures 3.29a, c.

3.3.4.1 IOs at Moderate Energy Levels

The moderate-energy impulsive orbits U(k + 1)k are first analyzed. An IO repre-
sentative of this family, U54, is shown in Figure 3.29b. Motivated by this result,
we seek a solution of the system of equations (3.45) (with general k) in the form
of a beat, i.e., of a fast oscillation with normalized frequency k (the frequency of
the LO response) modulated by a slowly varying envelope. Because such a solution
may be modeled as a superposition of two harmonics with closely spaced frequen-
cies, a condition of near 1:1 internal resonance is realized for this moderate-energy
IO. It follows that in this case the dynamics can be partitioned into slow and fast
components, so we introduce the new complex variable

ψ(τ) = w′(τ )+ jkw(τ) (3.46)
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Fig. 3.29 Periodic IOs for ε = 0.05, C = 1: (a) low-energy orbit U14; (b) moderate-energy orbit
U54; (c) high-energy orbit S31; — exact; - - - reconstruction based on the reduced system (3.45).

which is further expressed as

ψ(τ) = ϕ(τ)︸ ︷︷ ︸
Slow component

exp(jkτ )︸ ︷︷ ︸
Fast component

(3.47)

Substituting (3.47) and (3.48) into the second of equations (3.45), and averaging
out fast components with frequencies of multiples of k, the following modulation
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(slow flow) equation in complex form is obtained:

ϕ′(τ )+ jk

2
ϕ(τ)− 3(1 + ε)2j

k
|ϕ(τ)|2ϕ(τ) = k2Y (1 + ε)1/2j

2
(3.48)

This complex equation governs the slow temporal evolution of the magnitude and
phase of the envelope of the response y2(τ ) on the moderate energy IO.

It turns out that the modulation equation (3.48) is exactly integrable, with first
integral of motion given by

H(ϕ) = jα|ϕ|2 − (jβ/2)|ϕ|4 − jρϕ∗ − jρϕ = const (3.49)

where asterisk denotes complex conjugate, and the coefficients in (3.49) are given
by α = k/2, β = 3(1+ε)2/k and ρ = k2Y (1+ε)1/2/2. Hence, the solutions of the
averaged system (3.48) can be derived in closed form. Introducing the final polar
transformation,

ϕ(τ) = N(τ) exp[jδ(τ )] (3.50)

and taking into account the first integral (3.49), the expressions for the amplitude
and phase of the envelope of y2(τ ) are obtained in real form:

cos δ =
{

2α

[
N2 −

(
Y

ω

)2
]

− β
[
N4 −

(
Y

ω

)4
]

+ 4ρ

(
Y

ω

)}/
(4ρN) (3.51a)

dN2(τ )

dτ
= (3.51b)

±1

2

√
16ρ2N2(τ )− {2α[N2(τ )− (Y/ω)2] − β[N4(τ )− (Y/ω)4] + 4ρ(Y/ω)}2

These systems are complemented by the initial conditions

δ(0) = 0, N2(0) = (Y/ω)2 (3.51c)

When integrated by quadratures subject to the initial condition (3.51c) equation
(3.51b) can be recast into the following form:

∫ N2

(
Y
ω

)2

du[
u− (

Y
ω

)2
]1/2 [I3 + I2u+ I1u2 − u3]1/2

= ±
∫ τ

0

βdξ

2
(3.52)

where the coefficients of the denominator of the integrand of the left-hand side are
defined as follows:

I1 = −(Y/ω)2 + (4α/β), I2 = −(4α2/β2)+ (Y/βω)[8ρ + β(Y/ω)3]
I3 = [(4ρ/β)− (2αY/βω)+ (Y/ω)3]2 (3.53)
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The definite integral (3.52) can be expressed in terms of elliptic functions (Grad-
shteyn and Ryzhik, 1980):∫ y

b

du

(a − u)1/2(u− b)1/2[(u− c)(u− c∗)]1/2 = g cn−1(cosφ,m) = g F(φ,m)
(3.54)

with

b < y ≤ a, c = b1 + ja1, c∗ = b1 − ja1

g = (AB)−1/2, m = [(a − b)2 − (A− B)2]/4AB
A2 = (a − b1)

2 + a2
1, B2 = (b − b1)

2 + a2
1

φ = cos−1
[
(a − y)B − (y − b)A
(a − y)(B + (y − b)A

]
(3.55)

In the above expressions cn−1(•,•) is the inverse Jacobi elliptic cosine, F(•,•) the
incomplete elliptic function of the second kind, and m the modulus. Expression
(3.54) can be applied to solve (3.52) by assigning the parameter value b = (Y/ω)2,
and computing a and (c, c∗) as the (single) real and complex pair of roots of the
equation I3 + I2u+ I1u2 − u3 = 0, respectively. As a result, the solution of (3.52)
is given by:

cosφ = cn

(
βτ

2g
,m

)
⇒ (a − N2)B − (N2 − b)A

(a − N2)B + (N2 − b)A = cn

(
βτ

2g
,m

)

⇒ N2(τ ) =
(aB + bA)− (aB − bA) cn

(
βτ
2g ,m

)
(B + A)+ (A− B)cn

(
βτ
2g ,m

) (3.56)

This expression computes the amplitude squared of the slow modulation, N2,
as a function of the normalized time τ for the moderate-energy IO. It can be eas-
ily verified that the above expression satisfies the initial condition (3.51c), i.e.,
N2(0) = b = (Y/ω)2. Once N2(τ ) is approximated through (3.56), the phase
δ(τ ) of the modulation is computed through (3.51a). Schematics of the evolutions
ofN2(τ ) and δ(τ ) over one cycle of the IO are depicted in Figure 3.30. The analytic
approximation of the response y2(τ ) is then computed by combining the expressions
(3.46), (3.47) and (3.50),

y2(τ ) ≈ −jN(τ)
2k

ej [kτ+δ(τ )] + cc = −(j/2k)N(τ)ejδ(τ )︸ ︷︷ ︸
Slow component

ejkτ︸ ︷︷ ︸
Fast component

+cc

= N(τ)

k
sin[kτ + δ(τ )] (3.57)
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Fig. 3.30 Slow evolutions of (a) the amplitude squared N2(τ ), and (b) phase δ(τ ) of the modula-
tion (envelope) of y2(τ ) for a moderateŰenergy IO under conditions of 1:1 internal resonance.

with cc denoting the complex conjugate, and the normalized time is defined ac-
cording to τ = [k(1 + ε)1/2]−1t . The solution (3.57) has normalized frequency
�̃(k) ≈ k + δ′(τ ); since δ′(τ ) is a slowly varying quantity, the normalized fre-
quency can be approximated further as �̃(k) ≈ k + 〈δ′(τ )〉τ , where 〈•〉τ denotes
average with respect to normalized time τ .

The analytic expression (3.57) approximates moderate-energy IOs of system
(3.45) under conditions of 1:1 internal resonance. It is interesting to note that this
expression is valid for periodic as well as quasi-periodic IOs, since no periodicity
condition has yet been imposed on the solution (as the initial condition Y is yet
undetermined and k is assumed to be real but not necessarily integer). To compute
periodic IOs in the region of 1:1 internal resonance, we must impose additional
2π-periodicity conditions on y1(τ ) and y2(τ ). Considering the first of expressions
(3.45), 2π-periodicity of y1(τ ) implies that k must be a positive integer; this, how-
ever, does not imply necessarily that 2π is the minimal period of y1(τ ). Considering
the approximation (3.57) for y2(τ ), a minimal 2π-normalized period is imposed
on the amplitude N2(τ ) and phase δ(τ ); from (3.51a) and (3.56) this implies that
cn(βτ/2g,m) must be 2π-periodic. Combining all previous arguments, we con-
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clude that periodic moderate-energy periodic IOs are obtained provided that the
following conditions are enforced:

k ∈ N+ and 4K(m)
2g

β
= 2π (Periodic IOs) (3.58)

where K(m) is the complete elliptic integral of the first kind (see Figure 3.30b).
We note that by the conditions (3.58) y2(τ ) has a minimal normalized period

equal to 2π/�̃(k) ≈ 2π/(k+〈δ′(τ )〉τ ) = 2π/(k+1), and y1(τ ) a minimal normal-
ized period equal to 2π/k. Hence, a (k + 1) : k internal resonance occurs between
the LO and the NES for the computed moderate-energy IO, which, for large val-
ues of k, satisfies the initial assumption of near 1:1 internal resonance. It follows
that for sufficiently large integers k, the two oscillators of system (3.41) [and of the
original dynamical system (3.39) under appropriate rescalings] execute oscillations,
x(τ) = [y1(τ )+ εy2(τ )]/(1 + ε) and ν(τ ) = [y1(τ )− y2(τ )]/(1 + ε); these are in-
deed in the form of beats, since they represent the superposition of two signals with
near identical normalized frequencies equal to k and k + 1. Moreover, by the above
construction of the IOs, the higher the positive integer k is, the closer the IO satisfies
the condition of 1:1 internal resonance, and the more valid the beat assumption (and
the slow-fast partition) for the IO becomes.

Summarizing, the procedure for computing an analytic approximation for a
moderate-energy periodic IO is outlined below:

• Select the order of the internal resonance k
• Determine the coefficients α, β and ρ in (3.53)
• Consider a specific initial condition Y
• Compute the denominator of the integrand (3.52) using expressions (3.53)
• Compute the roots a, b, c and c∗ of the denominator of the integrand of (3.54)

by solving the algebraic equation I3 + I2u+ I1U62 − u3 = 0
• Compute the coefficients g and m, hence compute the ratio 4K(m)(2g/β)
• If 4K(m)(2g/β) is equal to 2π , the periodicity condition for y2(τ ) is satisfied,

and the periodic IO U(k+ 1)k is realized. If not, modify Y and return to step 4
• Using (3.51a) and (3.56), compute the amplitude N(τ) and the phase δ(τ ) of

the envelope of the IO
• From (3.45) and (3.57), compute y1(τ ) and y2(τ ), and transform them back to

the original variables x(t) and ν(t), taking into account the rescalings (3.40).

In Table 3.1 we present a comparison between the exact and analytically pre-
dicted initial conditions for certain moderate-energy unsymmetric periodic IOs, for
the system (3.39) with ε = 0.05, C = 1. Apart from U21, a satisfactory agreement
between theory and numerics is obtained, which confirms that the previous analysis
is valid near the region of 1:1 internal resonance; indeed, as predicted, the accu-
racy of the analytical predictions for the IOs U(k + 1)k improves with increasing
k. In Figure 3.31 we present comparisons between analytical and numerical time
series of the responses x(t) and ν(t) for the periodic IOs U43 and U65. The ana-
lytical approximations were computed based on the previous analysis, whereas the
numerical simulations by directly integrating the governing equations (3.39). The
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Table 3.1 Initial conditions for moderate-energy periodic IOs.

Periodic IO ẋ(0) (exact) ẋ(0) (analytic)

U21 (k = 1) 0.5794 0.2697
U32 (k = 2) 0.2398 0.1675
U43 (k = 3) 0.1581 0.1288
U54 (k = 4) 0.1263 0.1099
U65 (k = 5) 0.1115 0.0999
U76 (k = 6) 0.1039 0.0944
U87 (k = 7) 0.1000 0.0914
U98 (k = 8) 0.0977 0.0898
U10–9 (k = 9) 0.0965 0.0889

Fig. 3.31 Comparisons between analytical approximations (dashed lines) and direct numerical
simulations (solid lines) of moderate-energy periodic IOs: (a) U43; (b) U65.

analytical periodic IOs can also be represented in the FEP of the Hamiltonian sys-
tem, when noting that the (conserved) energy of each IO is given by Y 2/2, and the
corresponding frequency index by

ω = �̃(k)

k(1 + ε)1/2 ≈ 1

(1 + ε)1/2 + 1

k(1 + ε)1/2 (3.59)
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Fig. 3.32 IOs represented in the FEP of the system: (a) analytic predictions; (b) exact results;
regions I, II and III correspond to moderate-, high- and low-energies, respectively.

The analytically predicted IOs are shown in Region I of the plot of Figure 3.32a,
which when compared to the exact result of Figure 3.32b, validates the previous
analytical methodology.

We end this section with some remarks. First, the periodicity conditions (3.58)
can be generalized by substituting the second of these relations with the more gen-
eral relation 4K(m)(2g/β)p = 2π, p ∈ N+, which amounts to p waveforms for
y2(τ ) in the normalized interval τ ∈ [0, 2π]; however, in order to ensure that the
modulationsN2(τ ) and δ(τ ) are still slow compared to the fast oscillation exp(jkτ ),
we must require that k � p. The second remark concerns the fact that IOs not sat-
isfying the periodicity conditions (3.58) are quasi-periodic beats that can still be
partitioned in terms of slow-fast components. Indeed, by varying k one obtains a
one-dimensional manifold possessing an uncountable infinity of quasi-periodic im-
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pulsive orbits, and a countable infinity of periodic impulsive orbits imbedded onto
it. In this case, the quantity 4K(m)(2g/β) with k non-integer defines the (slow) fre-
quency of the envelope modulation of the quasi-periodic response y2(τ ), which is a
function of the initial condition Y .

As a final remark we note that relations (3.56) may be used to estimate the max-
imum amplitude attained by the slow envelope, Nmax = a1/2, where a was defined
previously as one of the real roots of the integrand in (3.54). This measure (which
is valid for periodic as well as quasi-periodic IOs) is directly related to the energy
passively transferred from the LO to the nonlinear attachment during a cycle of the
nonlinear beat. Moreover, although during the nonlinear beat (i.e., the moderate-
energy IO) energy is continuously exchanged between the LO and the nonlinear
attachment, when damping is added to the Hamiltonian system (3.39) this energy
exchange is replaced by targeted energy transfer (TET) to the attachment (Kerschen
et al., 2005). Hence, the maximum amplitude Nmax of the slow envelope directly af-
fects the effectiveness of TET in the system under consideration. It can be shown
that Nmax increases with increasing k, as the 1:1 resonance region is approached
from higher frequencies, though this increase reaches a definite limit (Lee et al.,
2005). The relation between moderate-energy IOs of the Hamiltonian system and
TET in the weakly damped one will be discussed in detail in later sections.

3.3.4.2 IOs at High-Energy Levels

We now proceed to analyze high-energy IOs of the general form Sn1 and Un1.
Judging from the results depicted in Figure 3.26, high-energy IOs have distinctly
different waveforms than moderate-energy ones, since they do not appear in the
form of beats. Hence, the analytical methodology of the previous section cannot be
applied for analyzing this class of IOs, and a separate analysis must be developed.
To this end, the approximate dynamical system (3.45) is expressed in terms of the
original time variable t , yielding:

y1(t) = (1 + ε)1/2 Y sin[(1 + ε)−1/2 t] +O(ε)
ÿ2(t)+ 8(1 + ε)y3

2(t)+ (1 + ε)−1y1(t) = 0 +O(ε),
y2(0) = 0, ẏ2(0) = Y (3.60)

At sufficiently high energy levels, the essentially nonlinear coupling stiffness be-
haves almost as a rigid connection. It is therefore reasonable to assume that x(t) ≈
ν(t) ⇒ |y1(t)| � |y2(t)| in this regime. Then, the relative displacement is ex-
pressed as a superposition of slow and fast components

y2(t) ≈ s(t)︸ ︷︷ ︸
Slow component

+ f (t)︸ ︷︷ ︸
Fast component

(3.61)
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Fig. 3.33 Response y2(t) for the high-energy IOs, (a) S71; (b) S91.

where for high-energy IOs it is natural to assume that |f (t)| � |s(t)|. This is illus-
trated in Figure 3.33 for the high-energy IOs S71 and S91.

Substituting (3.61) into the second of equations (3.60) and the accompanying
initial conditions, yields the following differential equation possessing slow and fast
varying parts:

f̈ + s̈ + 8(1 + ε)(f 3 + 3f 2s + 3f s2 + s3)

= − Y

(1 + ε)1/2 sin

[
t

(1 + ε)1/2
]

s(0)+ f (0) = 0 ⇒ s(0) = f (0) = 0,

ṡ(0)+ ḟ (0) = Y ⇒ ṡ(0) = 0, ḟ (0) = Y (3.62)

Setting separately equal to zero the fast and slow components of (3.62), and taking
into account that , |f (t)| � |s(t)| we find that the fast dynamics is governed by an
unforced oscillator of Duffing-type,

f̈ + 8(1 + ε)f 3 = 0, f (0) = 0, ḟ (0) = Y (3.63)

the solution of which is readily obtained in closed form,

f (t) = −A cn

[
η

(
t + K(1/2)

η

)
,

1

2

]
(3.64)

where A = 2−1(1 + ε)1/2Y and η = A[8(1 + ε)]1/2. The expressions cn(•,•) and
K(1/2) in (3.64) denote the Jacobi elliptic cosine function and the complete elliptic
integral of the first kind, respectively.

Substituting (3.64) into (3.62) and averaging out the fast dynamics we obtain the
following approximate dynamical system governing the slow dynamics

s̈+8(1+ε)[3〈F 2〉T s+ s3] = −(1+ε)1/2 Y sin[(1+ε)−1/2 t], s(0) = 0 (3.65)
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where the average of the fast oscillation 〈f 2〉T can be explicitly computed according
to (Gradshteyn and Ryzhik, 1980):

〈f 2〉T = 1

T

∫ T

0
A2 cn2(ηt, 1/2)dt = A2

K(1/2)
[E(π, 1/2)− 2K(1/2)] (3.66)

where t = 4k(1/2)/2η, and E(•,•) is the incomplete elliptic function of the second
kind.

Because |s(t)| 	 1, to a first approximation the cubic term can be neglected
in (3.65), so the slow flow dynamical system can be reduced approximately to the
following linear system that can be solved explicitly:

s(t) ≈ −Y (1 + ε)1/2
24(1 + ε)2〈f 2〉T − 1

sin[(1 + ε)−1/2 t]

+ Y sin[24(1 + ε)〈f 2〉T t]
[24(1 + ε)2〈f 2〉T − 1][24(1 + ε)〈f 2〉T ] (3.67)

Combining the solutions (3.64) and (3.67), the relative displacement y2(t) for the
high-energy IO can be approximated by the analytical expression:

y2(t) ≈ −A cn

[
η

(
t + K(1/2)

η

)
,

1

2

]
︸ ︷︷ ︸

Fast component

(3.68)

+ −Y(1 + ε)1/2
24(1 + ε)2〈f 2〉T − 1

sin[(1 + ε)−1/2 t] + Y sin[24(1 + ε)〈f 2〉T t]
[24(1 + ε)2〈f 2〉T − 1][24(1 + ε)〈f 2〉T ]︸ ︷︷ ︸

Slow component

Then, the IO in terms of the original variables can be evaluated by combining the
first of expressions (3.60) and (3.68), and inversing the coordinate transformations
y1 = x + εν, y2 = x − ν.

To compute the initial condition Y corresponding to a specific high-energy peri-
odic IO, a periodicity condition similar to that for the moderate-energy case should
be imposed. This periodicity condition is formulated as follows:

n
4K(1/2)

η
= 2π(1 + ε)1/2, n ∈ N+ (Periodic IOs) (3.69)

and amounts to a n : 1 internal resonance between the LO and the NES. This con-
dition requires that the period of the slow component s(t) is n times the period of
the fast component f (t), with the overall (not necessarily) minimal period of y2(t)

being equal to 2π(1 + ε)1/2 [i.e., equal to the period of y1(t)]. From (3.69) the
necessary initial condition for Y is computed:
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Table 3.2 Initial conditions for high-energy periodic IOs.

Periodic IO ẋ(0) (exact) ẋ(0) (analytic)

U21 (n = 2) 0.58 0.82
S31 (n = 3) 1.59 1.84
S51 (n = 3) 4.85 5.12
S71 (n = 7) 9.75 10.03
U81 (n = 8) 12.80 13.10
S91 (n = 9) 16.30 16.58

Y (n) = K2(1/2)n2

π2(1 + ε)3/2
(

8ε

C

)1/2

(3.70)

where the rescaling (3.40) is taken into account.
Table 3.2 presents the comparison between the predicted and exact initial con-

ditions for a few symmetric and unsymmetric high-energy IOs for a system with
ε = 0.05 and C = 1. Good agreement between theory and numerics is noted. In
Figure 3.34 we depict the analytical time series for the IOs S71 and S91 and com-
pare them to the corresponding exact solutions derived by direct integrations of the
equations of motion (3.39). Overall, satisfactory agreement is obtained, particularly
when the order n of the internal resonance is increased. The total energy of the IO
is computed as E = Y 2/2, whereas the frequency index of the orbits is given by
ω ≈ n. Employing (3.70), an analytic expression for the locus of high-energy IOs
in the FEP can be derived as

E = 4εK4(1/2)ω4

Cπ4(1 + ε)3 (3.71)

This approximation is presented in Region II of Figure 3.32a and compares well
with the exact high-energy IO manifold of Figure 3.32b.

3.3.4.3 IOs at Low-Energy Levels

The low-energy periodic IOs S1m and U1m are finally analyzed. As mentioned
previously, at low energies, O(ε) terms are expected to play a dominant role in the
response, so the reduced system (3.45) may not be used to approximate the IOs in
this case. Instead the rescaled dynamical system (3.41) is reconsidered,

ẍ + x + 8ε(x − ν)3 = 0

ν̈ + 8(ν − x)3 = 0

ẋ(0) = Y, x(0) = ν(0) = ν̇(0) = 0, 0 < ε 	 1 (3.72)
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Fig. 3.34 Comparisons between analytical approximations (dashed lines) and direct numerical
simulations (solid lines) of high-energy periodic IOs: (a)S71; (b) S91.

where for coherence with the previous two sections, the initial condition is denoted
by Y . Figure 3.29a illustrates that low-energy IOs are characterized by (i) motions
of the two oscillators with very small amplitudes, and (ii) a much larger amplitude
of oscillation for the LO; motivated by these numerical results we assume that in
low-energy IOs it holds that |ν(t)| 	 |x(t)| 	 1.

Taking into account this assumption it appears that an appropriate ansatz for the
low-energy IOs is

x(t) = Y sin t + · · · , ν(t) = B sin t︸ ︷︷ ︸
Fast component

+ s(t)︸ ︷︷ ︸
Slow component

+ · · · (3.73)

with |B| 	 |Y | 	 1 and |s(t)| 	 |Y | 	 1. In contrast to the analysis of the
previous section, the component of the NES response with frequency close to unity
is regarded as the fast component, whereas the second component s(t) is regarded
as the slow component of the solution. Substituting (3.73) into the second of equa-
tions (3.72) yields the following differential equation:
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−B sin t + s̈(t)
+ 8[(B − Y )3 sin3 t + 3(B − Y )2s(t) sin2 t

+ 3(B − Y )s2(t) sin t + s3(t)] = 0 (3.74)

Setting separately equal to zero the slow and fast components of (3.74), we partition
the dynamics into the following slow and fast components:

−B sin t + 8(B − Y )3 sin3 t + 24(B − Y )s2(t) sin t = 0

s̈(t)+ 24(B − Y )2s(t) sin2 t + 8s3(t) = 0 (3.75)

The method of harmonic balance is applied to the first of equations (3.75), i.e., to
the fast component of the dynamics, leading to the relation:

−B + 6(B − Y )3 + 24(B − Y )f 2(t) = 0

⇒ −B + 6(−Y )3 ≈ 0 ⇒ B ≈ −6Y 3 (3.76)

Focusing now in the slow component of the dynamics [the second of equa-
tions (3.75)], the fast term sin2 t is averaged out to yield the following averaged
slow flow dynamical system:

s̈(t)+ 12(B − Y )2s(t) + 8s3(t) ≈ 0 (3.77)

since 〈sin2 t〉T = 1/π ∈π0 sin2 tdt = 1/2. In view of the fact that |B| 	 |Y | and
|s(t)| 	 |Y | 	 1, expression (3.77) may be approximated by the simplified linear
equation

s̈(t)+ 12Y 2s(t) ≈ 0 (3.78)

which is readily solved, by imposing the initial conditions for the impulsive orbit:

s(t) ≈ 6Y 2

√
12

sin
√

12 Y t (3.79)

Combining the previous results, the low-energy IOs of system (3.72) are analytically
approximated as follows:

x(t) ≈ Y sin t, ν(t) ≈ −6Y 3 sin t + 6Y 2

√
12

sin
√

12 Y t (3.80)

Depending on the non-zero initial condition Y , relations (3.80) describe either pe-
riodic or quasi-periodic low-energy IOs. As in the analytical derivations of the pre-
vious two sections, the periodicity of the solution (3.80) is ensured by applying a
periodicity condition, i.e., by imposing a 1 : m internal resonance between the LO
and the nonlinear attachment:

√
12 Y = 1

m
, m ∈ N+ (Periodic IO) (3.81)
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Table 3.3 Initial conditions for low-energy periodic IOs.

Periodic IO ẋ(0) (exact) ẋ(0) (analytic)

U1–22 (m = 22) 0.0083 0.0083
S19 (m = 9) 0.0201 0.0203
U2–15 (m = 15/2) 0.0241 0.0243
U16 (m = 6) 0.0299 0.0304
S13 (m = 3) 0.0555 0.0609
U12 (m = 2) 0.0781 0.0913
U34 (m = 4/3) 0.0942 0.1369

Because of the slow-fast partition in the ansatz (3.73), the analytic approximation
(3.80) is expected to be in better agreement with the exact solution for large integers
m, that is, for sufficiently small energies. Taking the rescaling (3.40) into account
an approximation of the low-energy periodic IO of the original dynamical system
(3.39) is obtained in the following form:

x(t) ≈
√

8ε

2
√

3C m
sin t, ν(t) ≈

√
8ε

4
√

3Cm3
[m sin(t/m)− sin t] (3.82)

Table 3.3 presents a comparison between predicted and exact low-energy periodic
IOs for the system with ε = 0.05 and C = 1. Again, good agreement between
the analytical and exact values is observed. Figure 3.32 depicts the analytical and
exact time series for the IOs U1–22 and S13, from which good agreement is noted.
The total energy of a low-energy IO is equal to e = Y 2/2, whereas its frequency
index is ω ≈ 1/m. Employing the resonance condition (3.81), a surprisingly simple
but accurate analytic approximation of the locus of low-energy IOs in the FEP is
obtained:

E = εω2

3C
(3.83)

The locus of IOs is depicted in Region III of Figure 3.32a. Overall, good agreement
is obtained between the predictions and the exact results, which demonstrates the
accuracy of the analysis.

In summary, we studied the periodic and quasi-periodic IOs of the strongly non-
linear Hamiltonian system (3.39). These are responses of the system initially at rest
and excited by an impulsive force applied to the linear oscillator. As shown in later
sections IOs directly affect the TET capacity of the damped system, i.e., the capacity
of the nonlinear attachment to passively absorb broadband energy from the linear
oscillator in a one-way, irreversible fashion. The manifold of quasi-periodic and pe-
riodic IOs in the FEP was analytically studied by considering separately the high-,
moderate- and low-energy regimes. Different analytical methods were applied to
analyze the IOs in these regimes. Of particular interest are moderate-energy IOs in
the neighborhood of 1:1 internal resonance of the system which are in the forms
of nonlinear beats, with the motion localized mainly to the nonlinear oscillator. As
shown in a later section the excitation of an IO in the 1:1 internal resonance regime
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Fig. 3.35 Comparisons between analytical approximations (dashed lines) and direct numerical
simulations (solid lines) of low-energy periodic IOs: (a) U1–22; (b) S13.

represents a very effective dynamical mechanism for strong passive TET from the
linear oscillator to the nonlinear attachment.

3.3.5 Topological Features of the Hamiltonian Dynamics

In this section we focus in the intermediate-energy region, and provide some re-
marks on the topological features of the dynamics in phase space under conditions
of 1:1 internal resonance. Our aim is to relate solutions, such as NNMs on branches
S11± and IOs, to certain global topological features of the Hamiltonian dynamics
of system (3.6). Through a suitable change of variables we reduce the isoenergetic
dynamics to a three-dimensional sphere, and discuss how the critical energy thresh-
old required for TET in the damped system (discussed in Section 3.2) can be directly
related to a similar critical energy threshold in the Hamiltonian system, above which
the IOs are in the form of nonlinear beats with strong energy exchanges between the
LO and the nonlinear attachment. Finally, we discuss how the topology of the phase
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space close or away from a homoclinic connection of the slow flow dynamics affects
the qualitative features of the IOs discussed in Sections 3.3.3 and 3.3.4.

Considering again the two-DOF Hamiltonian system (3.6) and setting (without
loss of generality) ω0 = 1,

ẍ + x + C(x − ν)3 = 0

εν̈ + C(ν − x)3 = 0 (3.84)

we recall from Section 3.3.2.1, that solutions in the neighborhoods of the two back-
bone branches S11± of the FEP can be analytically modeled using the CX-A tech-
nique. Indeed, assuming the following ansatz for these solutions:

x(t) ≈ A(t)

ω
cos[ωt + α(t)], ν(t) ≈ B(t)

ω
cos[ωt + β(t)] (3.85)

we obtain the set of four modulation equations (3.17) that govern the slow evolution
of the amplitudes A(t), B(t) and phases α(t), β(t) of the two oscillators. Note that
the ansatz (3.85) indicates that conditions of 1:1 internal resonance are realized in
the dynamics, so that the harmonic components of frequency ω dominate over all
other higher harmonics (this would not occur, for example, in neighborhoods of, or
on subharmonic and superarmonic tongues, see Sections 3.3.1 and 3.3.2).

Introducing the phase difference φ = α − β, the slow flow equations (3.17) can
be reduced to the following three-dimensional autonomous dynamical system on
the cylinder (R+ × R+ × S1),

ȧ1 = −3a1C

8
sinφ[(a2

1 + a2
2)− 2a1a2 cosφ]

ȧ2 = 3a1C

8ε
sin φ[(a2

1 + a2
2)− 2a1a2 cosφ]

φ̇ = 1

2
− 3C

8
[(a2

1 + a2
2)− 2a1a2 cosφ]

×
[(

1

ε

)[
1 − a1

a2
cosφ

]
−

[
1 − a2

a1
cosφ

]]
(3.86)

where the notation a1 = A, a2 = B was introduced.
In Section 3.3.2.1, the analytic modeling of periodic orbits that satisfy the exact

1:1 internal resonance condition was considered; moreover, since we were interested
on steady state solutions, we imposed stationarity conditions to the derived modu-
lation equations (i.e., the terms containing derivatives with respect to time were set
equal to zero). In this section, a more general analysis is carried out in the sense that
fast oscillations with frequencies and modulated by a slowly-varying envelope are
sought. In other words, we are primarily interested in the dynamics near the region
of 1:1 internal resonance.
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It turns out that the autonomous dynamical system (3.86) is fully integrable, as it
possesses the following two independent first integrals of motion:

a2
1 + (√εa2)

2 ≡ r2

a2
1

2
+ ε a

2
2

4
+ 3C

32
(a2

1 + a2
2 − 2a1a2 cosφ)2 ≡ h (3.87)

The first equation is a consequence of energy conservation in (3.84), and enables us
to introduce a second angle ψ into the problem, defined by

tan

(
ψ

2
+ π

4

)
= a1√

εa2
, ψ ∈

[
−π

2
,
π

2

]
(3.88)

Taking into account the first integrals of (3.87) and introducing the new angle into
the problem, the slow flow dynamical system (3.86) can be further reduced to system
on a three-dimensional sphere,

ṙ = 0

ψ̇ = −3Cr2

8ε3/2 [(1 + ε)− (1 − ε) sinψ − 2
√
ε cosψ cosφ] sinφ

φ̇ = 1

2
− 3Cr2

16ε2 [(1 + ε)− (1 − ε) sinψ − 2
√
ε cosψ cosφ]

×
[
(1 − ε)− 2ε1/2 sinψ cosφ

cosψ

]
(3.89)

where (r, φ,ψ) ∈ (R+ × S1 × S1) (see Figure 3.36). Then, the additional first
integral of the motion can be expressed in the form

r2

8

{
3 + sinψ + 3Cr2

16ε2
[(1 + ε)− (1 − ε) sinψ − 2ε1/2 cosψ cosφ]2

}
= h
(3.90)

Considering the isoenergetic dynamical flow corresponding to r = const, the orbits
of the system lie an a topological two-sphere, and follow the level sets of the first
integral of motion (3.90).

Projections of the isoenergetic reduced dynamics onto the unit disk at different
energy levels are depicted in Figure 3.37. The north pole (NP) atψ = π/2 lies at the
center of the disk, while the south pole (SP) ψ = −π/2 is mapped onto the entire
unit circle. In this projection, trajectories that pass through the SP approach the unit
circle at φ = π/2 and are continued at φ = −π/2. If the response is localized to the
LO, so that a2 	 a1, the phase variableψ lies close to +π/2. In contrast, a localized
response in the nonlinear attachment (e.g, a1 	 a2) implies that ψ ≈ −π/2.

Before we examine the dynamics near the region of 1:1 internal resonance, we re-
consider the periodic motions on branches S11±, corresponding to the equilibrium
points of the slow flow (3.89). These equilibrium points are explicitly evaluated by



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 157

Fig. 3.36 Topology of the reduced phase space: (a) three-dimensional sphere (r, φ,ψ) ∈ (R+ ×
S1 × S1), (b) projection of the reduced dynamics onto the unit disk.

Fig. 3.37 Projection of the dynamics of the isoenergetic manifold onto the unit disk at different
energy levels (ε = 0.1, C = 2/15); (a) r = 1.00, (b) r = 0.375, (c) r = 0.25.

the following expressions,

ψ̇ = 0 ⇒ sinψeq = 0 ⇒ φeq = 0, π

φ̇ = 0 ⇒ cosψeq − 3Cr2

8ε
(1 + ε)2[1 − sin(ψeq + γeq)] cos(ψeq + γeq) = 0

(3.91)

with

tan γeq = 2
√
ε cosφeq

1 − ε (3.92)
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Equilibrium points satisfying φeq = 0 correspond to in-phase periodic motions and
generate the backbone branch S11+ for varying frequency and energy; those cor-
responding to φeq = π , represent out-of-phase periodic motions and generate the
other backbone S11−. In the projections of the phase space shown in Figure 3.37,
periodic motions (NNMs) on S11+ appear as equilibrium points that lie on the
horizontal axis to the right of the origin, whereas periodic motions on S11− as
equilibrium points that lie on the horizontal axis to the left of the origin.

With increasing energy, i.e., as r → ∞, both equilibrium points approach the
value

lim
r→∞ ψeq = arctan

(
1 − ε

2
√
ε cosφeq

)
(3.93)

so that, for 0 < ε 	 1 and in the limit of high energies we have that ψeq,S11+ > 0
and ψeq,S11− < 0. Hence, with increasing energy the in-phase NNMs on S11+
localize to the LO, while the out-of-phase NNMs on S11− localize to the nonlinear
attachment (the NES). The degree of localization is controlled only by the mass
ratio ε, and for small but finite values of this ratio the high-energy localization is
incomplete, as the limiting values of ψeq,S11+ and ψeq,S11− do not attain π/2 in
magnitude.

Considering now the low-energy limit, it is easily shown that for sufficiently
small values of r the equilibrium equation for ψeq leads to the simple limiting rela-
tion cosψeq → 0. Therefore, we conclude that as r → 0+, the following values are
attained by the equilibrium value for ψ:

lim
r→0+ ψeq,S11+ = −π/2 and lim

r→0+ ψeq,S11− = +π/2 (3.94)

It follows that in the limit of small energies the in-phase NNM on S11+ localizes to
the nonlinear oscillator, while the out-of-phase NNM on S11− to the LO. However,
unlike the high-energy limits (3.93), as r → 0 localization is complete to either the
LO or the nonlinear attachment.

In the transition from high to low energies, the branch of out-of-phase NNMs
S11− undergoes two saddle-node bifurcations. In the first bifurcation, a new pair
of stable-unstable equilibrium points is generated near ψ = +π/2. As energy de-
creases a second (inverse) saddle-node bifurcation occurs that anhiliates the unsta-
ble equilibrium generated by the first bifurcation, together with the stable branch of
S11− that existed for higher energy values. It should be noted, however, that these
bifurcations occur only below a certain critical mass ratio ε, i.e., only for sufficiently
light attachments. This is demonstrated in Figure 3.38, which depicts the variation
of the out-of-phase branch S11− in the (ψeq, r) plane for three values of the mass
ratio ε; note that no bifurcations occur for the higher value of for ε. Figures 3.37a,
b, c depict the above-mentioned bifurcations in projections of the phase space of the
isoenergetic dynamics. Projections of the topological structure of the phase space of
the system before the first (higher energy) bifurcation, in between the two bifurca-
tions, and below the second (lower energy) bifurcation are depicted in Figures 3.37a,
b and c, respectively. An alternative representation of these bifurcations in the FEP
was depicted in Figures 3.20 and 3.21a for branch S11−.
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Fig. 3.38 Topology of the branch S11− for varying ε and C = 2/15.

We now focus on the topology of the impulsive orbits (IOs) in the neighbor-
hood of ω = 1, under conditions of 1:1 internal resonance. From the discussion
of Sections 3.3.3 and 3.3.4, it is clear that an IO corresponds to the initial condi-
tion a2(0) = 0 ⇒ ψ(0) = π/2. In terms of the spherical topology of isoenergetic
flow, an IO is therefore coincident with a trajectory passing through the NP, which
renders this representation particularly attractive. The IO, computed from the slow
flow (3.89), together with the trajectory passing through the SP (corresponding to
the orbit having as only non-zero initial condition the velocity of the LO) are shown
in Figure 3.39 for varying values of the energy-like parameter r (on different isoen-
ergetic manifolds). We note that the depicted IOs may be either periodic or quasi-
periodic. In Figures 3.39c, d a third isolated trajectory is seen which lies on the same
energy level as the trajectory passing through the NP.

Starting from the low-energy isoenergetic manifold of Figure 3.39a, we note that
the IO makes a small excursion in the spherical phase space, and remains localized
close to ψ = +π/2; it follows that in this case, the energy exchange between the
LO to the nonlinear attachment is insignificant, and the oscillation remains confined
predominantly to the LO. The same qualitative behavior is observed until the critical
energy r = rcrit = 0.3865 (occurring between Figures 3.39d and 3.39e), for which
the IO coincides with two homoclinic loops in phase space; these turn out to be
the homoclinic loops of the unstable hyperbolic equilibrium (NNM) on S11− that
exists between the two saddle-node bifurcations discussed previously. For r > rcrit
the topology of the IO changes drastically, as it makes much larger excursions in
phase space; this means continuous, strong energy exchange between the LO and
the nonlinear attachment in the form of nonlinear beats. At an even higher value of
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Fig. 3.39 IOs passing through the NP (the origin of the projection), and orbits passing through
the SP for ε = 0.1 and C = 2/15: (a) r = 0.25, (b) r = 0.36, (c) r = 0.37, (d) r = 0.386,
(e) r = 0.387, (f) r = 0.40, (g) r = 0.44, (h) r = 0.46, (i) r = 0.50; the shift of the IO from the
left to the right between (g) and (h) is an artifact of the projection.

energy, r ≈ 0.4495, the IO passes through both the NP and SP (this occurs between
Figures 3.39g, h), and 100% of the energy is transferred back and forth between the
LO and the nonlinear attachment during the occurring nonlinear beats.

We conclude that for fixed mass ratio ε and nonlinear coefficient C, the geome-
tries of the IOs undergo significant changes for varying energy: for low energies,
the IOs are localized to the LO, whereas above a critical energy threshold the IOs
appear as nonlinear beats, whereby energy gets continuously exchanged between
the LO and the nonlinear attachment. Moreover, at specific energy levels nearly the
entire (conserved) energy of the motion gets transferred back and forth between the
linear and nonlinear oscillators.

It turns out that the critical value of the energy-like variable, rcrit, can be directly
related to the energy threshold required for TET in the weakly damped system. In-
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deed, as we recall from the numerical results of Section 3.2, strong TET phenomena
in the damped system (3.2) occur only when the external impulsive excitation ap-
plied to the LO (i.e., the initial energy of the system) exceeds a certain critical value.
The threshold for TET in the damped system can be directly related to the existence
of a critical energy level (signified by rcrit) in the underlying Hamiltonian system,
above which the IO makes large excursions in phase space and nonlinear beats corre-
sponding to strong energy exchanges between the LO and the nonlinear attachment
are initiated. Moreover, conditions for optimal TET in the damped system can be
formulated by studying the topology of the IOs in the neighborhood of the homo-
clinic loops in the slow flow of the Hamiltonian system. These remarks provide a
first indication of the intricate relation between IOs and TET, and of the importance
of understanding the Hamiltonian dynamics in order to correctly interpret strongly
nonlinear transitions and TET in the weakly dissipative system. A systematic study
of the dynamics of the damped system will carried out starting from the next section.

Figure 3.40 depicts the maximum excursion attained by an IO from the NP (i.e.,
the measure ||ψNP|| = |π/2 − ψNP|), as function of and different values of the
mass ratio ε; as discussed above this measure provides a good picture of the energy
exchange that occurs between the linear and nonlinear oscillators. Considering the
results of Figure 3.40 there are two interesting findings. First, below a critical mass
ratio there occurs a discontinuity in this energy exchange. For instance, for ε = 0.25,
the variation of ||ψNP|| is continuous with r (Figure 3.40d); the reason is that the
branch S11− does not undergo any saddle-node bifurcations for this mass ratio (see
Figure 3.38), so no homoclinic loops exist (and, hence, no significant topological
change in the shape of the IOs occurs) as r varies. On the contrary, for smaller mass
ratios, the IOs undergo significant topological changes as r varies (see Figure 3.39),
which leads to the discontinuities in energy exchanges noted in Figures 3.40a–c.

The second interesting finding is that the mass ratio has a critical influence on the
capacity of the nonlinear attachment to passively absorb energy from the LO during
a cycle of the motion. Specifically, we note that for ε = 0.01, only a small amount
of energy is transferred from the LO to the nonlinear attachment, as evidenced by
the small value of ||ψNP|| in Figure 3.40a. However, for ε = 0.1 and ε = 0.25,
complete energy exchange between the two oscillators takes place (i.e., the upper
bound ||ψNP|| = π is reached for a specific value of r) during a cycle of the motion
(see Figures 3.40c, d). The energy level r = rcomplete for which complete energy
exchange occurs between the LO and the nonlinear attachment during the beating
phenomenon is related to the energy of the impulsive orbit,

hNP = r2

2
+ 3Cr4

32
(3.95)

and to the energy of the trajectory passing through the SP:

hSP = r2

4
+ 3Cr4

32ε2 (3.96)
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Fig. 3.40 Amplitude of the IO as function of r for C = 2/15 and: (a) ε = 0.01, (b) ε = 0.05,
(c) ε = 0.10, (d) ε = 0.25.

Equating these two energies, we ensure that an orbit initiated from the NP (i.e., an
IO) passes also from the SP, signifying that there occurs complete energy transfer
from the LO to the nonlinear attachment during a cycle of the ensuing nonlinear
beat. This provides the sought after critical value for rcomplete as follows:

hNP = hSP ⇒ rcomplete =
[

8ε2

3C(1 − ε2)

]
(3.97)

According to this expression, for ε = 0.1 and C = 2/15, there is complete energy
exchange between the two oscillators when r = rcomplete = 0.4495, which is in
agreement with the results depicted in Figure 3.40. Because no complete energy
exchange can be achieved for small mass ratios, expression (3.97) only holds for
sufficiently large values of ε.

These results conclude our numerical and analytical study of the dynamics of the
Hamiltonian system (3.6). In the next section we start our systematic study of the
dynamics of the weakly dissipative system, which will include a detailed discussion
of damped transitions and targeted energy transfer (TET) phenomena. We will show
that for sufficiently weak damping (which is a reasonable and practical assumption
for typical mechanical systems and structural components) the underlying Hamil-
tonian dynamics govern, in essence the damped responses, with damping playing a
rather parasitic role, in the sense that it does not ‘produce’ to any new dynamics; this
observation, however, is not intended to diminish the the important role that damp-
ing plays on TET phenomena, as discussed below. Viewed in this context, we will
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then argue that the excitation of stable IOs giving rise to strong energy exchanges
between the LO and the nonlinear attachment, provides an important mechanism for
strong TET in the weakly damped system. Moreover, conditions for optimal TET
will be closely related to the topology of orbits of the underlying Hamiltonian sys-
tem, and especially the topology of the manifold of IOs. Hence, the response of the
Hamiltonian system and the analysis presented in the previous sections provide the
necessary framework for understanding and analyzing the responses of the weakly
damped system, for interpreting complex nonlinear modal interactions and transi-
tions, and, more importantly, for designing NESs with optimal TET capabilities.

3.4 SDOF Linear Oscillators with SDOF NESs: Transient
Dynamics of the Damped Systems

Based on our knowledge of the Hamiltonian dynamics, we initiate our study of the
transient dynamics of the weakly damped system (3.2), which is reproduced here
for convenience:

ẍ + λ1ẋ + λ2(ẋ − ν̇)+ ω2
0x + C(x − ν)3 = 0

εν̈ + λ2(ν̇ − ẋ)+ C(ν − x)3 = 0 (3.98)

Again we will assume that the nonlinear attachment is lightweight, 0 < ε 	 1.
In an initial series of numerical simulations we demonstrate the intricate relation
between the weakly dissipative and Hamiltonian dynamics.

3.4.1 Nonlinear Damped Transitions Represented in the FEP

The aim of this section is to show that the previously studied structure of the under-
lying Hamiltonian dynamics of (3.98) greatly influences the transient dynamics of
the weakly damped system (3.98). When viewed from this perspective, one can sys-
tematically interpret complex multi-frequency transitions between different nonlin-
ear normal modes (NNMs) in the damped dynamics, by relating them to transitions
different branches of NNMs on the FEP of Figure 3.20. Unless otherwise noted, in
the following simulations of this section we consider system (3.98) with parameters
ε = 0.05, ω0 = 1.0, C = 1.0, and weak damping, λ1 = 0, λ2 = 0.0015.

In the first numerical simulation (see Figure 3.41) we initiate the motion on the
high-energy unstable IO on branch corresponding to initial conditions ν(−T/4) =
ν̇(−T/4) = x(−T/4) = 0 and ẋ(−T/4) = X = −0.579. Even though the ex-
cited IO is unstable, there is strong targeted energy transfer (TET) from the (directly
excited) LO to the NES, as evidenced by the rapid and strong build-up of the oscil-
lation amplitude of the NES (note that the NES is initially at rest). Moreover, due to
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Fig. 3.41 Damped transition initiated on the unstable IO on branch U21: transient responses of (a)
the LO and (b) of the nonlinear oscillator (NES); (c) WT spectrum of (v − x) superimposed to the
Hamiltonian FEP.

the instability of the excited IO the motion escapes immediately from branch U21
to land on S11+ through a frequency transition (jump). As energy further decreases
due to viscous dissipation the motion follows a multi-mode transition visiting the
branches S13+, S13−, S15−, S15+, . . . , i.e., it follows the basic backbone curve
of the frequency-energy plot (FEP) of Figure 3.20a. This is shown in Figure 3.41c
where the wavelet transform (WT) spectrum of the relative displacement (ν − x) is
superimposed to the FEP of the corresponding Hamiltonian system. Although this
plot provides a purely phenomenological interpretation of the damped transitions
in terms of the undamped Hamiltonian dynamics, it validates our previous asser-
tion regarding the parasitic role of weak damping in the transient dynamics. Indeed,



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 165

Fig. 3.42 Damped transition initiated on the stable IO on branch U76: transient responses of (a)
the LO and (b) of the nonlinear oscillator (NES); (c) WT spectrum of (v − x) superimposed to the
Hamiltonian FEP.

damping does not generate any new dynamics, but merely influences the damped
transitions (jumps) between different branches of NNMs of the Hamiltonian sys-
tem. Clearly, by depicting the damped dynamics on the FEP, we are able to interpret
complex multi-frequency transitions such as the ones shown in Figures 3.41a, b,
involving the participation of multiple nonlinear modes in the transient response. A
more detailed consideration of this nonlinear damped transition can be found in Lee
et al. (2006).

In the second simulation we initiate the motion on the moderate-energy stable IO
on branch U76 (corresponding to the non-zero initial condition X = −0.1039). In
Figures 3.42a, b we depict the transient responses of the LO and the NES, indicating
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that there occurs stronger TET to the NES in this case. Moreover, since the initially
excited special orbit on U76 is stable, there occurs a prolonged initial oscillation of
the system on that branch at the early stage of the motion (see Figure 3.42c). As
energy decreases due to damping dissipation there occurs a transition (jump) to the
stable branch S13−, where the NES engages into a transient 1:3 internal resonance
with the LO; this is referred to as a 1:3 transient resonance capture (TRC) (Arnold,
1988; Quinn, 1997 – see also Section 2.3). As energy decreases even further due to
viscous dissipation there occurs escape from 1:3 TRC, and the motion evolves along
branches S15, S17, . . .. as in the previous simulation.

This second simulation provides the first numerical evidence that the excitation
of a stable IO close to the 1:1 resonance manifold represents one of the mechanisms
for strong TET in system (3.98). Lee et al. (2006) showed that the strongly nonlinear
damped transitions depicted in Figures 3.41 and 3.42, are sensitive to damping,
since for a small damping variation may result in a qualitatively different series
of multi-modal transitions. An additional observation drawn from these numerical
simulations is that the excitation of a stable IO prolongs the initial phase of nonlinear
beats between the LO and the NES, resulting in strong TET to the NES. Indeed, by
comparing the time series of Figures 3.41a, b and 3.42a, b we conclude that when
an unstable IO is initially excited (so that no significant initial beating occurs), TET
from the LO to the NES is weaker.

In the third series of damped transitions depicted in Figure 3.43 we study damped
transitions initiated by exciting low-, moderate- and high-energy IOs of the system
with λ1 = λ2 = 0.005. The qualitative differences between these transitions are ev-
ident, indicating the sensitivity of the dynamics of system (3.98) on the initial con-
ditions (or, equivalently, on the initial energy of the motion). For initial condition
X = 0.05 (corresponding to a low-energy IO, Figure 3.43a) the response possesses
a frequency component around ω = 0.2 rad/s during the initial stage of the motion,
which indicates excitation of the low-energy IO. As discussed in Sections 3.3.3 and
3.3.4, such an IO is localized to the LO, and this is why a transition to S11− is
observed after a short multi-frequency initial transient. Eventually, only a small por-
tion of vibration energy is transferred to, and dissipated by NES in this case, a result
which is compatible with the fact that passive TET ‘triggers’ only above a critical
energy threshold (Section 3.2). Figure 3.43a also illustrates that the dynamics is
weakly nonlinear at this low-energy level, since after the initial transients the dom-
inant frequency component of the damped motion is near the linearized frequency
ω0 = 1, and the response is narrowband.

Qualitatively different transient dynamics is encountered for initial condition
X = 0.12 and excitation of a moderate-energy IO (see Figure 3.43b). Strong and
sustained harmonic components appear in this case, and the damped motion never
fully enters into the domain of attraction of the 1:1 resonant manifold; instead, the
damped response is in the form of a prolonged nonlinear beat, which results in
strong TET from the LO to the NES. This regime of motion is strongly nonlinear,
as revealed by the appearance of multiple strong sustained harmonics over a rela-
tively broadband frequency range.
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Fig. 3.43 WT spectra of the transient damped response (v − x) of the two-DOF system (3.98)
interpreted in the FEP for excitation of: (a) a low-energy IO, X = 0.05; (b) a moderate-energy IO,
X = 0.12; (c) a moderate-energy IO, X = 0.2, and (d) a high-energy IO, X = 0.5.

Increasing further the initial condition to X = 0.2 (and exciting still a moderate-
energy IO, see Figure 3.43c), gives rise to a different damped transition scenario.
Specifically, there occurs a rapid transition of the damped dynamics from the IO to
branch S11+, where sustained 1:1 TRC is initiated. This transition is similar to that
encountered in the numerical simulation of Figure 3.41, and results in moderate TET
from the LO to the NES. A similar transition is noted for the initial condition X =
0.5 corresponding to excitation of a high-energy IO, and shown in Figure 3.43d.

In summary, different transition scenarios are realized in the damped dynamics
depending on the energy of the IOs that are initially excited. These different tran-
sitions may result in enhanced or weaker TET from the LO to the NES, depending
on the excitation or not of nonlinear beat pheneomena leading to strong localiza-
tion of the motion to the NES. To further emphasize this point, in Figure 3.44 we
depict the energy dissipation measure (EDM) (i.e., the percentage of input energy
dissipated by the NES) when an IO are excited, as a function of the non-zero initial
condition X of that IO; the system parameters for these simulations are selected as
ε = 0.5, ω2

0 = 1, C = 1, λ1 = λ2 = 0.01. The positions of some representative
(stable and unstable) IOs are indicated in that plot. Low-energy impulsive orbits are
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Fig. 3.44 EDM when an IO is excited, as function of the non-zero initial condition of that IO.

located below the critical energy threshold, and their excitation results in weak TET.
Optimal TET is associated with the excitation of moderate-energy IOs, located just
above the energy threshold and satisfying conditions of near 1:1 internal resonance
between the LO and the NES (i.e., U54, U43, . . . ). By further increasing the initial
condition of the IO we get deterioration of TET, as we leave the regime of 1:1 in-
ternal resonance so that less pronounced nonlinear beats are realized when an IO is
excited (see Figure 3.26 and the analysis of Section 3.3.4).

The results of this section show the clear relation between TET and the strongly
nonlinear multi-mode (and multi-frequency) transitions that take place in the FEP.
This naturally leads to a detailed discussion of the alternative mechanisms for TET
in system (3.98), a task addressed in the next section.

3.4.2 Dynamics of TET in the Damped System

We now study the capacity for targeted energy transfer (TET) of the lightweight
ungrounded NES considered in the previous sections; that is, its capacity to pas-
sively absorb and locally dissipate vibration energy from the SDOF linear oscillator
(LO), without ‘spreading back’ the absorbed energy to the LO. We will show that
key to understanding TET in the weakly damped system is our knowledge of the
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topological structure of the orbits of the underlying Hamiltonian system, as it is the
undamped dynamics that influences in a essential way the weakly damped transi-
tions and the resulting strongly nonlinear modal interactions.

The first mechanism for TET, fundamental TET or fundamental energy pump-
ing, is due to 1:1 transient resonance capture (TRC) of the dynamics, and is realized
when the motion takes place along the in-phase backbone curve S11+ of the FEP
of Figure 3.20, at relatively low frequencies ω < ω0. The second mechanism, sub-
harmonic TET, resembles the first, but occurs when the motion takes place along a
lower frequency subharmonic tongue Snm, n < m of the FEP; it is due to n : m
TRC, and is less efficient than fundamental TET. The third mechanism, TET through
nonlinear beats, is the most powerful mechanism for TET, as it involves the excita-
tion of an IO on a higher frequency tongue, at frequencies ω > ω0. In the following
sections we will discuss each TET mechanism separately through numerical simu-
lations and analysis.

3.4.2.1 TET through Fundamental Transient Resonance Capture (TRC)

The first mechanism for TET involves excitation of the branch of in-phase NNMs
S11+, where the LO and the NES oscillate with identical frequencies in the neigh-
borhood of the fundamental frequency ω0. In Figure 3.21b we depict a detailed
plot of branch S11+ of the Hamiltonian system i.e., the set of formulae (3.98) with
λ1 = λ2 = 0], and note that at higher energies the in-phase synchronous periodic
oscillations (NNMs) are spatially extended (involving finite-amplitude oscillations
of both the LO and the nonlinear attachment). However, the nonlinear mode shapes
of NNMs on S11+ strongly depend on the level of energy and as energy decreases
they become localized to the nonlinear attachment.

This low-energy localization is a basic characteristic of the two-dimensional
NNM invariant manifold corresponding to S11+; moreover, this localization prop-
erty is preserved in the weakly damped system, where the motion takes place on a
two-dimensional damped NNM invariant manifold (Shaw and Pierre, 1991, 1993).
This means that when the initial conditions of the damped system place the motion
on the damped NNM invariant manifold corresponding to S11+, for decreasing
energy the mode shape of the resulting oscillation makes a transition from being
initially spatially extended to being localized to the NES. This, in turn, leads to
passive transfer of energy from the LO to the NES.

As shown below, the underlying dynamical phenomenon governing fundamental
TET is TRC on a 1:1 resonance manifold of the damped system. As discussed in
Section 2.3, TRC is a form of transient nonlinear resonance between two modes of a
system, followed by escape from the capture regime. TRCs and sustained resonance
captures (SRCs) have been studied extensively in weakly varying Hamiltonian sys-
tems and in non-conservative oscillators [(Kevorkian, 1971, 1974; Gautesen, 1974;
Neishtadt, 1975, 1986, 1987, 1997, 1999; Haberman, 1983; Kath, 1983; Arnold,
1988; Bosley and Kevorkian, 1992; Quinn et al., 1995; Bosley, 1996; Quinn, 1997;
Vakakis and Gendelman, 2001; Vainchtein et al., 2004); see also the discussion in
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Wiggins (1990) on the interaction of resonance bands in weakly damped oscillators
using geometrical methods]. Regarding the study of energy exchanges and nonlinear
dynamical interactions caused by TRCs, we mention the work by Neishtadt (1975)
on the transition of a Hamiltonian system across a separatrix (separatrix crissing)
caused by periodic parametric excitation due to a slowly varying frequency; the
work by Friedland (1997) on trapping into resonance in adiabatically varying sys-
tems driven by externally launched pump waves; on continuous resonant growth of
an induced nonlinear wave (Aranson et al., 1992); on the excitation of an oscillatory
nonlinear system to high energy by weak chirped frequency forcing (Marcus et al.,
2004); and on a method based on resonance capture to control transitions between
different regimes of Hamiltonian systems (Vainchtein and Mezic, 2004). However,
with the exception of the paper by Quinn et al. (1995) these works deal with systems
without damping; in contrast to the results reported in this work, Quinn et al. (1995)
did not consider strong inertial asymmetry, which as shown below is a necessary
condition (along with weak dissipation) for realizing of TET through TRC.

We note that in the absence of damping, no TET, i.e., irreversible energy transfer,
can occur on motions initiated on branch S11+. The reason is that in the absence
of energy dissipation the distribution of energy between the linear and nonlinear
components is ‘locked’ (due to the invariance of the NNM manifold S11+), so no
localization can occur to either one of these system components. In addition, unlike
the phenomenon of internal resonance encountered in conservative oscillators, dur-
ing TRC the frequency of oscillation of the NES varies with time, depending on the
amount of energy transferred from the LO; therefore, it is indeed possible to escape
from the fundamental resonance capture regime if the frequency of the NES departs
from the neighborhood of the natural frequency of the LO, ω0. Finally, we note that
although the NES has no preferential resonant frequency (as it possesses nonlin-
earizable stiffness nonlinearity), it may synchronize with the LO along S11+ due to
the invariance properties of the damped NNM manifold, and this occurs passively,
without the need to ‘tune’ the NES parameters. This demonstrates the enhanced
versatility of the systems with essential nonlinearities considered in this work.

Numerical evidence of fundamental TET in the damped system (3.98) is pre-
sented in Figure 3.45 for ω0 = 1, C = 1, ε = 0.05, λ1 = λ2 = 0.002.
Weak damping is considered in order to better highlight the TET phenomenon,
and the motion is initiated on a NNM on S11+ corresponding to initial conditions
x(0) = ν(0) = 0, ẋ(0) = 0.175, ν̇(0) = 0.386. Considering the transient responses
depicted in Figures 3.45a, b, we note that the envelope of the response of the LO
decays more rapidly than that of the NES. The detail of the response presented in
Figure 3.45c indicates that motion along S11+ corresponds to in-phase vibration of
the two masses with identical fast frequency, confirming that the transient dynamics
are locked into 1:1 transient resonance capture (TRC). The percentage of instan-
taneous energy stored in the NES is presented in Figure 3.45d, confirming that as
the damped motion follows branch S11+ with decaying energy an irreversible and
complete energy transfer takes place from the LO to the NES, at least until escape
from resonance capture occurs around t ≈ 300 s. We commend that the reversal
in instantaneous energy suffered by the NES for t > 300 s occurs at the very late
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Fig. 3.45 Fundamental TET (ω0 = 1, C = 1, ε = 0.05, λ1 = λ2 = 0.002): (a) LO displacement;
(b) NES displacement; (c) superposition of system displacements (solid line: LO; dashed line:
NES); (d) percentage of instantaneous total energy in the NES; and (e) WT spectrum of the relative
response (v − x) superposed to the backbone of FEP of the underlying Hamiltonian system.

stage of the response where the energy of the system has almost completely been
dissipated by damping. Finally, in Figure 3.45e, the Morlet WT spectrum of the
relative response between ν(t) − x(t) is superposed on the backbone of the Hamil-
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tonian FEP, confirming that the in-phase branch S11+ is followed by the damped
transient response. This validates our previous conjecture that the TET dynamics in
the damped system is mainly governed by the topological structure and bifurcations
of the periodic (and quasi-periodic) motions of the underlying Hamiltonian system.

We now proceed to analytically study the fundamental TET mechanism by ana-
lyzing system (3.98) through the complexification-averaging (CX-A) technique dis-
cussed in Sections 2.4 and 3.3.2. Even though (3.98) is a strongly nonlinear sys-
tem of coupled oscillators, analytical modeling of its transient dynamics leading to
TET can still be performed. Indeed, motivated by the time series of the transient
responses of Figures 3.45a, b we will partition the transient dynamics into slow and
fast components, and then reduce our study to the investigation the corresponding
slow flow dynamics of the system. The slow flow governs the essential (important)
dynamics of the weakly damped system, as well as the nonlinear modal interactions
that occur between the LO and the NES and lead to fundamental TET.

As discussed in Sections 2.4 and 3.3.2 the CX-A technique is especially suited
for studying TET, as it can be applied to the analysis of transient, strongly nonlinear
responses that possess multiple distinct fast frequencies, yielding the reduced slow
flow dynamics that govern the slow modulations of these fast components (namely,
their amplitudes and phases). Clearly, the CX-A approach provides a good approx-
imation of the exact dynamics only as long as the corresponding assumptions of
the analysis are satisfied, and within the time domain of validity of the associated
averaging operations [see (Sanders and Verhulst, 1985) and the discussion in Sec-
tion 2.4].

There are important motivations for reducing the dynamics of (3.98) to the slow
flow. First, as mentioned above, the slow flow-dynamics can be regarded as the im-
portant (essential) dynamics of the system (after the non-essential fast dynamics
has been factored out of the analysis), since it determines the long-term behavior
of the response. In addition, being in the form of a set of first-order ordinary dif-
ferential equations, the reduced dynamical system on the slow flow, although still
nonlinear, is generally easier to analyze than the original strongly nonlinear equa-
tions of motion. Finally, the derived slowly-varying amplitudes and phases represent
meaningful features of the transient responses and offer a sharper and clearer char-
acterization of the system dynamics than the original time series.

Focusing on fundamental TET, the following new complex variables are intro-
duced in the system of equations (3.98),

ψ1(t) = ẋ(t)+ jx(t)
ψ2(t) = ν̇(t)+ jν(t) (3.99)

where j = (−1)1/2. Since fundamental TET corresponds to 1:1 transient resonance
capture (TRC), we will assume that the transient dynamics possess a single domi-
nant fast frequency ω ≈ ω0 = 1, and introduce the following slow-fast partitions of
the new complex variables,

ψ1(t) = ϕ1(t)e
jt



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 173

ψ2(t) = ϕ2(t)e
jt (3.100)

where ϕi(t), i = 1, 2, are slowly varying complex modulations of the fast com-
ponents. It should be clear that by the ansatz (3.100) the validity of the following
analysis is only valid in the neighborhood of ω0 = 1 of the FEP. Expressing the
system responses in terms of the new complex variables,

x = (ψ1 − ψ∗
1 )/2j, ν = (ψ2 − ψ∗

2 )/2j (3.101)

where asterisk ∗ denotes complex conjugate, substituting into (3.98), and perform-
ing averaging with respect to the fast frequency (i.e., omitting terms with fast fre-
quencies greater than or equal to unity), the following set of approximate, slow
modulation equations governing the (slow) evolutions of the complex modulations
is derived:

ϕ̇1 − (ελ/2)(ϕ2 − ϕ1)− (3jC/8)|ϕ1 − ϕ2|2(ϕ1 − ϕ2)+ (ελ/2)ϕ1 = 0

ϕ̇2 + (j/2)ϕ2 + (λ/2)(ϕ2 − ϕ1)− (3jC/8ε)|ϕ2 − ϕ1|2(ϕ2 − ϕ1) = 0 (3.102)

For the sake of simplicity, from now on we will assume that λ1 = λ2 = λ in
(3.102), without restricting the generality of the analysis. To obtain a set of real
modulation equations, we express the complex amplitudes in polar forms, ϕi(t) =
ai(t)e

jβi(t), i = 1, 2, substitute these into (3.102), and set separately equal to zero
the real and imaginary parts of the resulting expressions. By introducing the phase
difference φ(t) = β1(t) − β2(t), the final set of real modulation equations can be
cast in the form of an autonomous dynamical system:

ȧ1 − (ελ/2)a2 cosφ + ελa1 + (3C/8)(a2
1 + a2

2 − 2a1a2 cosφ)a2 sin φ = 0

ȧ2 + (λ/2)a2 − (λ/2)a1 cosφ − (3C/8ε)(a2
1 + a2

2 − 2a1a2 cosφ)a1 sin φ = 0

φ̇ + (λ/2)[(εa2/a1)+ (a1/a2)] sinφ − 1/2 + (3C/8)(a2
1 + a2

2 − 2a1a2 cosφ)

× {(1/ε)[1 − (a2/a1) cosφ] − [1 − (a1/a2) cosφ]} = 0 (3.103)

The variables a1 and a2 represent the (real) amplitudes of the slowly-varying en-
velopes of the linear and nonlinear responses, respectively, whereas φ(t) the phase
difference of the evolutions of these envelopes.

The reduced dynamical system (3.103) governs the slow flow dynamics of the
fundamental TET. In particular, 1:1 TRC, the underlying dynamical mechanism of
TET, is associated with non-time-like evolution of the phase angle φ or, equiva-
lently, failure of the averaging theorem with respect to that angle (Sanders and Ver-
hulst, 1985; Verhulst, 2005). Indeed, in case that φ would exhibit time-like behavior,
we could regard it as a fast angle and apply the averaging theorem over φ to prove
that the amplitudes a1 and a2 decay exponentially with time, nearly independently
from each other (see also the discussion in Section 2.4). Then, no significant energy
exchanges between the linear and nonlinear oscillators would take place, and no
TET would be possible.
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Figure 3.46a depicts the dynamics of 1:1 TRC in the slow flow phase plane (φ̇, φ)
for system (3.103) with ε = 0.05, λ = 0.01, C = 1, ω0 = 1 and initial conditions
a1(0) = 0.24, a2(0) = 0.01, φ(0) = 0. The oscillatory behavior of the phase vari-
able in the neighborhood of the in-phase limit φ = 0+ confirms the occurrence of
1:1 TRC in the neighborhood of the in-phase NNM branch S11+. As evidenced by
the build-up of amplitude a2 of the envelope of the NES depicted in Figures 3.46b,
d, this leads to fundamental TET from the LO to the NES. Escape from the 1:1 TRC
is associated with time-like behavior of φ and rapid decrease of the amplitudes A1
and A2, as predicted by applying averaging in (3.103). A comparison of the analyti-
cal approximations (3.101–3.103) with direct numerical simulation of (3.98) subject
to the previous initial conditions is presented in Figure 3.4c confirming the accuracy
of the analysis. The discrepancy between analysis and numerical simulation noted
for T > 50S is attributed to the escape of the dynamics from the regime of 1:1
TRC, where the assumptions of the analysis are not valid any more. Moreover, due
to the averaging operations associated with the CX-A technique, the resulting ana-
lytical approximation is not expected to be valid for relatively large times (see the
discussion on the relation between averaged and exact dynamics in Section 2.4).

3.4.2.2 TET through Subharmonic TRC

Subharmonic TET involves excitation of a low-frequency subharmonic S-tongue of
NNMs for frequencies ω < ω0. As mentioned in Section 3.3.1.2, by low-frequency
tongues we mean families of NNMs of the underlying Hamiltonian system with the
nonlinear attachment engaging in m:n internal resonance with the LO (where m, n
are integers with m < n). Another feature of a low-frequency tongue Smn,m < n
is that it is represented by a nearly horizontal line in the FEP, since on the tongue
the strongly nonlinear response resembles that of a linear system with the NES
oscillating slower than the LO and the ratio of their frequencies being approxi-
mately equal to m/n < 1 (see the discussion about oscillations on tongues S13±
in Section 3.3.2.2). Moreover, to each rational number m/n,m > n there corre-
sponds a pair of closely spaced tongues, composed of in-phase (Smn+) and an
out-of-phase (Smn−) periodic motions, respectively; finally, these tongues exist
over finite energy ranges. Hence, a countable infinity of low-frequency subharmonic
tongues exists over finite energy ranges of the Hamiltonian system corresponding to
λ1 = λ2 = 0 in (3.98). As mentioned in Section 3.3.1.2 this is a direct sequence of
the non-integrability of this strongly nonlinear Hamiltonian system under examina-
tion.

To explain subharmonic TET in the damped system (3.98), we focus in the par-
ticular pair of lower tongues S13±, and refer to Figure 3.21d. As discussed in Sec-
tion 3.3.2.2, at the extremity of this tongue (i.e., at the maximum energy of the
tongue), the oscillation is strongly localized to the LO. However, as in the case of
fundamental TET, the reduction of energy by damping dissipation leads to gradual
delocalization of the motion from the LO and localization to the NES; as a result,
passive energy transfer from the LO to the NES, i.e., subharmonic TET, takes place.
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Fig. 3.46 Dynamics of fundamental TET: (a) 1:1 TRC in the slow flow; (b) nornalized amplitude
modulations; (c) comparison between analytical approximation (dashed line) and direct numerical
simulation (solid line) of NES response (vt ); (d) system responses, [dashed line x(t), solid line
v(t)].

It follows that, as in the case of fundamental TET, it is the change of shape of
NNMs on S13± that eventually leads to subharmonic TET in the damped system.
Again, one can invoke arguments of invariance and persistence of the damped NNM
manifold resulting from the perturbation due to weak damping of the correspond-
ing NNM invariant manifolds S13± of the underlying Hamiltonian system. In this
case, the underlying dynamics causing TET is anm:n TRC that occurs in the neigh-
borhood of an m:n resonance manifold of the dynamics, as discussed later in this
section.
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Fig. 3.47 Subharmonic TET (ω0 = 1, C = 1, ε = 0.05, λ1 = λ2 = 0.001): (a) LO displacement;
(b) NES displacement; (c) superposition of system displacements (solid line: LO; dashed line:
NES); (d) percentage of instantaneous total energy in the NES; and (e) WT spectrum of the relative
response (v − x) superposed to the backbone of FEP of the underlying Hamiltonian system.

The transient dynamics for motion initiated on branch S13− (with initial con-
ditions x(0) = ν(0) = 0, ẋ(0) = −0.0497, ν̇(0) = 0.0296) is displayed in Fig-
ure 3.47 for ω0 = 1, C = 1, ε = 0.05, and λ1 = λ2 = 0.001. Despite the presence
of viscous dissipation, the NES response grows continuously as it passively absorbs
and locally dissipates vibration energy from the LO whose amplitude rapidly de-
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creases. Figure 3.47d shows that subharmonic TET takes place until approximately
t = 900 s, during which almost complete energy transfer from the LO to the NES
is realized. The WT spectrum of Figure 3.47e demonstrates clearly that the damped
response traces approximately the subharmonic tongue S13− until it reaches the
backbone curve of the FEP, after which it traces that branch. This provides further
evidence of the close relation of the weakly damped and Hamiltonian dynamics,
and highlights the mechanism governing TET in this case. It is interesting to note
that for the specific 1:3 subharmonic TET shown in Figure 3.47, the LO oscillates
with a frequency approximately three times that of the NES. Moreover, due to the
stability properties of the tongues S13±, subharmonic TET can only take place for
out-of-phase relative motions between the LO and the NES (i.e., for excitation of
the stable out-of-phase NNMs on tongue S13−), and not for in-phase ones, since
the in-phase tongue S13+ is unstable (see Figure 3.21d).

To demonstrate the analysis of the dynamics governing subharmonic TET, we
focus on 1:3 TRC in the neighborhood of tongue S13−. However, similar analysis
can be applied to other cases of subharmonic resonance captures leading to TET.
Due to the fact that motion in the neighborhood of S13− possesses two main har-
monic components with frequencies ω and ω/3, the transient damped responses of
system (3.98) are expressed as

x(t) = x1(t)+ x1/3(t), ν(t) = ν1(t)+ ν1/3(t) (3.104)

where the indices 1 and 1/3 indicate that the respective terms possess dominant
frequencies equal to ω and ω/3, respectively. As in the case of fundamental TET,
we introduce the following new complex variables:

ψ1(t) = ẋ1(t)+ jωx1(t) ≡ ϕ1(t)e
jωt ,

ψ3(t) = ẋ1/3(t)+ j (ω/3)x1/3(t) ≡ ϕ3(t)e
j (ω/3)t

ψ2(t) = ν̇1(t)+ jων1(t) ≡ ϕ2(t)e
jωt ,

ψ4(t) = ν̇1/3(t)+ j (ω/3)ν1/3(t) ≡ ϕ4(t)e
j (ω/3)t (3.105)

Again slow-fast partitions of the dynamics are introduced, but this is performed
in a different way than in the case the fundamental TET case, to reflect the exis-
tence of two fast frequencies ω and ω/3 in the responses during 1:3 TRC. Although
ω ≈ 1 during 1:3 TRC in the neighborhood of tongue S13−, we opt to keep ω as
a yet undetermined frequency parameter for the time being. In (3.105) the variables
ϕi(t), i = 1, . . . , 4 represent slowly varying complex modulations of the fast oscil-
lations with frequenciesω and ω/3. Expressing the responses x and ν and their time
derivatives in terms of the new complex variables, i.e.,

x = ψ1 − ψ∗
1

2jω
+ 3(ψ3 − ψ∗

3 )

2jω
, ν = ψ2 − ψ∗

2

2jω
+ 3(ψ4 − ψ∗

4 )

2jω
(3.106)
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and substituting the resulting expressions into (3.98), we perform averaging over
each of the two fast frequencies ω and ω/3, and derive the following set of complex
coupled differential equations governing the slow evolutions of the four complex
modulations,

ϕ̇1 + (jω/2 − j/2ω)ϕ1 + (ελ/2)(2ϕ1 − ϕ2)

+ (jC/8ω3){3[9ϕ3
3 − 27ϕ2

3ϕ4 − 9ϕ3
4 − (ϕ1 − ϕ2)|ϕ1 − ϕ2|2 + 27ϕ3ϕ

2
4

− 18(ϕ1 − ϕ2)|ϕ3 − ϕ4|2]} = 0

ϕ̇3 + (jω/6 − 3j/2ω)ϕ3 + (ελ/2)(2ϕ3 − ϕ4)

+ (jC/8ω3){−9[ϕ1(2(ϕ3 − ϕ4)(ϕ
∗
1 − ϕ2)− 3(ϕ∗

3 − ϕ∗
4 )

2)

+ ϕ2(2(ϕ4 − ϕ3)(ϕ
∗
1 − ϕ2)+ 3(ϕ∗

3 − ϕ∗
4)

2)+ 9(ϕ3 − ϕ4)|ϕ3 − ϕ4|2]} = 0

ϕ̇2 + (jω/2)ϕ2 + (λ/2)(ϕ2 − ϕ1)− (jC/ε8ω3){3[9ϕ3
3 − 27ϕ2

3ϕ4 − 9ϕ3
4

− (ϕ1 − ϕ2)|ϕ1 − ϕ2|2 + 27ϕ3ϕ
2
4 − 18(ϕ1 − ϕ2)|ϕ3 − ϕ4|2]} = 0

ϕ̇4 + (jω/6)ϕ4 + (λ/2)(ϕ4 − ϕ3)

− (jC/ε8ω3){−9[ϕ1(2(ϕ3 − ϕ4)(ϕ
∗
1 − ϕ2)− 3(ϕ∗

3 − ϕ∗
4 )

2)

+ ϕ2(2(ϕ4 − ϕ3)(ϕ
∗
1 − ϕ2)+ 3(ϕ∗

3 − ϕ∗
4)

2)

+ 9(ϕ3 − ϕ4)|ϕ3 − ϕ4|2]} = 0 (3.107)

where it is assumed that λ1 = λ2 = λ.
The complex amplitudes are expressed in polar form, ϕi(t) = ai(t)e

jβi(t), i =
1, . . . , 4, which when substituted into (3.107) lead to an autonomous set of seven
slow flow real modulation equations in terms of the amplitudes ai = |ϕi |, i =
1, . . . , 4, and three phase differences defined as φ12 = β1 − β2, φ13 = β1 − 3β3,
and φ14 = β1 − 3β4. Due to its complexity, the autonomous system that governs the
slow flow of 1:3 TRC is not reproduced in its entirety here, but is only expressed in
the following compact form:

ȧ1 + (ελ/2)(2a1 − a2)+ g1(a, φ) = 0

ȧ3 + (ελ/2)(2a3 − a4)+ g3(a, φ) = 0

ȧ2 + (λ/2)(a2 − a1)+ g2(a, φ)/ε = 0

ȧ4 + (λ/2)(a4 − a3)+ g4(a, φ)/ε = 0

φ̇12 + f12(a)+ g12(a, φ; ε) = 0

φ̇13 + f13(a)+ g13(a, φ) = 0

φ̇14 + f14(a)+ g14(a, φ; ε) = 0 (3.108)
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In the system above, gi and gij are 2π-periodic functions in terms of the phase
angles φ = (φ12 φ13 φ14)

T , and a is the (4 × 1) vector of amplitudes,

a = [a1 a2 a3 a4]T .
As in the case of fundamental TET, strong energy exchanges between the LO and

the NES can occur only if a subset of phase angles φij does not exhibit time-like
behavior, that is, when some phase angles possess non-monotonic behavior with
respect to time. This can be deduced from the structure of the slow flow (3.108),
where it is clear that if all phase angles exhibit time-like behavior and functions
gi are small, averaging over these phase angles (which could then be regarded as
fast angles) would lead to decaying amplitudes. In that case no significant energy
exchanges between the LO and the NES could take place. As a result, 1:3 subhar-
monic TET is associated with non-time-like behavior of (at least) a subset of the
slow phase angles φij in (3.108).

Figure 3.48 depicts the results of the numerical simulation of the slow flow
(3.107) for ε = 0.05, λ = 0.03, C = 1 and ω0 = 1. The motion is initiated
on branch S13− with initial conditions ν(0) = x(0) = 0, ν̇(0) = 0.01499, and
ẋ(0) = −0.059443. The issue of computing the corresponding initial conditions
for the slow flow (3.107) is non-trivial and indeterminate, as this system possesses
more dimensions than the exact problem. The discussion of this issue is postponed
until Section 9.2.2.2 in Chapter 9, and here it suffices to state that the initial con-
ditions for the complex amplitudes and the value of the frequency of the slow flow
model (3.107) are computed by minimizing the difference between the analytical
and numerical responses of the system in the interval t ∈ [0, 100]:

ϕ1(0) = −0.0577, ϕ2(0) = 0.0016, ϕ3(0) = −0.0017

ϕ4(0) = 0.0134, ω = 1.0073 (3.109)

This result proves that indeed frequency ω is close to unity, in accordance to our
previous discussion.

Before proceeding with discussing the numerical results, we mention that the
initial conditions required for the solution of the set modulations (3.107) exceeds
in number the available initial conditions of the original problem (3.98); the reason,
of course, is that, due to decompositions (3.104, 3.105) we are in need to define
initial conditions separately for each of the harmonic components at frequencies
ω and ω/3. The method of defining the initial conditions adopted above, although
not conceptually elegant and non-unique, nevertheless provides satisfactory initial
conditions for the slow flow as judged by the following numerical results.

The initial conditions (3.109) indicate that the energy at t = 0 is almost entirely
stored in the fundamental frequency component of the LO. Figures 3.48a, b depict
the slow evolutions of the amplitudes ai . As judged from the build-up of amplitude
a4 and the corresponding decay of a1, it becomes evident that 1:3 subharmonic
TET involves energy transfer from the fundamental component of the LO to the 1/3
subharmonic component of the NES. Considering the evolution of the amplitude a2,
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Fig. 3.48 Dynamics of subharmonic 1:3 TET: (a, b) amplitude modulations; (c–e) phase modula-
tions.

we conclude that a smaller amount of energy is transferred from the fundamental
component of the LO to the fundamental component of the NES.

These conclusions are supported by the plots of Figures 3.48c–e, where the tem-
poral evolutions of the phase differences φ12 = β1 − β2, φ13 = β1 − 3β3, and
φ14 = β1−3β4 are presented. Absence of strong energy exchanges between the fun-
damental and 1/3 subharmonic components of the LO response is associated with
the time-like behavior of the corresponding phase difference φ13, whereas strong



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 181

Fig. 3.49 Transient damped response of the NES during 1:3 subharmonic TET: comparison be-
tween analytical slow-flow approximation (dashed line) and direct numerical simulation (solid
line).

energy transfer from the fundamental component of the LO response to both fun-
damental and 1/3 subharmonic components of the NES response, is associated with
early-time oscillatory (i.e., non-time-like) behavior of the corresponding phase dif-
ferences φ12 and φ14. Oscillatory responses of φ12 and φ14 signify 1:1 and 1:3 TRCs,
respectively, between the fundamental component of the LO response and the fun-
damental and 1/3 subharmonic components of the NES response. With progressing
time, the phase variables become eventually time-like, signifying escapes from the
corresponding TRCs. We note that the oscillations of φ12 and φ14 take place in
the neighborhood of π , which confirms that, in this particular example, 1:3 subhar-
monic TET involves out-of-phase relative motions between the LO and the NES
(since they take place in the neighborhood of tongue S13−).

The predictive capacity of the analytical slow flow model (3.107, 3.108) in the
regime of 1:3 subharmonic TET is demonstrated by the result depicted in Fig-
ure 3.49. It can be observed that the analytically predicted NES response is in sat-
isfactory agreement with the exact response obtained by direct simulation of equa-
tions (3.98); this, in spite of the fact that transient and strongly nonlinear dynamics
is considered. However, the analytic model fails to accurately model the response
in the later regime, where escape from 1:3 TRC occurs. This occurs because dur-
ing this regime the damped response leaves the neighborhood of tongue S13− and
approximately evolves along the backbone curve of the FEP. Eventually, the next
tongue S15 is reached, and at that point the motion cannot be described by the
ansatz (3.104, 3.105) anymore, since the 1/3 subharmonic component gradually di-
minishes becoming unimportant and a new 1/5 subharmonic component enters into
the dynamics. As a result, the considered analytical model looses validity.
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3.4.2.3 TET through Nonlinear Beats

The previous two TET mechanisms cannot be activated with the NES being ini-
tially at rest, since both require non-zero initial velocity for the NES, ν̇(0) �= 0.
This means that neither fundamental nor subharmonic TET can occur immediately
after the application of an impulsive excitation to the LO. An alternative TET mech-
anism, however, TET through nonlinear beats, not only surpasses this limitation,
but proves to be the most powerful TET mechanism since it is capable of initiating
stronger energy transfers from the LO to the NES compared to the above-mentioned
two TET mechanisms. This TET mechanism is based on the excitation of IOs (espe-
cially, moderate-energy ones, close to the 1:1 resonance manifold) which have been
discussed in detail in Sections 3.3.3 and 3.3.4.

As mentioned previously, the excitation of stable localized IOs in the regime of
1:1 internal resonance of the Hamiltonian system (with the system initially at rest
subject to impulsive excitations of the LO – equivalently, with initial conditions
ẋ(0) �= 0 and ν(0) = ν̇(0) = x(0) = 0), leads to rapid transfer of energy from the
LO to the NES during a cycle of the motion. This transfer is realized through nonlin-
ear beats. In the weakly damped system, such IOs play the role of transient bridging
orbits which direct the damped motion into the domain of attraction of a resonant
manifold, which eventually leads to (triggers) either fundamental or subharmonic
TET.

Recalling the analysis of Section 3.3.4.1, the class of moderate-energy IOs occurs
only above a critical energy threshold. It follows, that the corresponding triggering
mechanism for TET is effective only for input energies above this critical threshold.
Indeed, as shown in Section 3.3.3, low-energy (or equivalently low-frequency) IOs
transfer a small fraction of the input energy from the LO to the NES, so they can-
not induce TET. It should also be noted that, due to the essential (nonlinearizable)
nonlinearity of the NES the considered nonlinear beating phenomena do not require
any a priori tuning of the nonlinear attachment: at a specific frequency-energy range
corresponding to n:m resonance capture, the essential nonlinearity of the NES pas-
sively adjusts the amplitude to fulfill the necessary resonance conditions. This rep-
resents a significant departure from classical nonlinear beat phenomena observed
in coupled oscillators with linearizable nonlinear stiffnesses where the ratio of the
linearized natural frequencies of the components dictates the type of internal reso-
nance that can be realized [see, for example, spring-pendulum systems (Nayfeh and
Mook, 1995)].

To validate our conjecture, we perform a numerical simulation where system
(3.98) is initiated from the IO on U21 (corresponding to initial conditions x(0) =
ν(0) = ν̇(0) = 0, and ẋ(0) = 0.5794, for system parameters ω0 = 1, C = 1, ε =
0.05, λ1 = λ2 = 0.005). As evidenced in the instantaneous energy plot of Fig-
ure 3.50c, a nonlinear beating phenomenon takes place in the initial stage of the
motion until approximately T = 50 s; this corresponds to the initial excitation of
the damped analogue of the IO on U21. During the nonlinear beat phenomenon, the
relative displacement ν(t)−y(t) possesses two main frequency components (around
1 and 2 rad/s), but the higher harmonic is barely visible in the WT spectrum plot of
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Fig. 3.50 TET through nonlinear beats, excitation of IO U21 (ω0 = 1, C = 1, ε = 0.05,
λ1 = λ2 = 0.005): (a) LO displacement; (b) NES displacement; (c) percentage of instantaneous
total energy in the NES; and (d) WT spectrum of the relative response (v − x) superposed to the
backbone of FEP of the underlying Hamiltonian system.

Figure 3.50d. After this initial nonlinear energy exchange between the two oscilla-
tors, the dynamics makes a transition to the damped in-phase NNM manifold S11+,
and the dynamics is captured into the domain of attraction of the 1:1 resonant mani-
fold. Eventually, fundamental TET takes place. We note that TET through nonlinear
beats also occurs in the numerical simulation depicted in Figure 3.42; in that case,
however, the initial beats due to excitation of the IO on U76 lead, first to a transition
to small duration fundamental TET, and then to a second transition to a more pro-
longed 1:3 subharmonic TET. This underlines the fact that although damping cannot
generate new dynamics in the system, it influences the damped transitions between
branches of solutions of the underlying Hamiltonian system.

Finally, we note that TET through nonlinear beats proves to be the most efficient
TET mechanism. Further discussion of this TET mechanism is postponed until Sec-
tion 3.4.2.4 where conditions for optimal TET are discussed. In the next section we
discuss TET from the alternative view of damped NNM manifolds, which highlights
more clearly the role of damping on TET.
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3.4.2.4 Damped NNM Manifolds and Fundamental TET

In this section we wish to demonstrate the important role of damping on funda-
mental TET. Although the analysis will be carried out under the assumption of 1:1
resonance capture leading to fundamental TET, it can be extended to the more com-
plicated case of m:n subharmonic TET, with appropriate modifications. Reconsid-
ering equations (3.98), which describe the two-DOF damped dynamics of an essen-
tially nonlinear system, it is clear that they cannot be solved exactly (i.e., in explicit
analytic form). However, as shown in Section 3.4.2.1 fundamental TET can be ap-
proximately analyzed by performing averaging in the vicinity of the 1:1 resonance
manifold (or for the more complicated case of subharmonic TET, by multi-phase
averaging in the neighborhoods of the corresponding resonance manifolds – see
Section 3.4.2.2). We note that even the resulting reduced averaged system (3.102–
3.103) is still too complicated to be solved analytically, although its state space may
be reduced to three dimensions, unlike the exact system (3.98).

Approximate solutions of the averaged system governing fundamental TET may
be computed based on two different approximations, each of which is now dis-
cussed. In the following analysis we will relax the condition λ1 = λ2 = λ enforced
in (3.102), and instead we will adopt independent values for both values of damping
constants. The first option to analyze the averaged system in the regime of 1:1 res-
onance capture is to suppose that the damping coefficient λ is small; it follows that
the zeroth-order approximation to solving (3.102) is the undamped system which
is completely integrable as discussed previously. The effect of non-zero damping
may then be described by application of appropriate asymptotic procedures. Such
an approach, however, does not seem meaningful for studying TET, since as shown
below TET strongly depends on the value of damping, so that the mentioned low-
order perturbation scheme cannot be expected to describe the details of this strong
dependence.

The second perturbation approach for analyzing the averaged dynamics, is based
on the assumption of strong mass asymmetry between the LO and the NES, as de-
scribed by the small parameter ε in (3.98); this means that we will focus on linear
oscillators with lightweight NESs. This approach does not necessarily assume small
damping, and instead relies on perturbation analysis considering the NES mass ε as
the small parameter. This approach is considered in this section, for a system with
parameters, λ1 = 0, λ2 = ελ,C = 4ε/3 and ω0 = 1. The two latter conventions do
not affect the generality of the analysis, since they may be satisfied by appropriate
rescalings of the dependent and independent variables of the averaged system.

We start our analysis of fundamental TET by considering the system of aver-
aged (complex modulation) equations (3.102). Introducing the following change of
complex variables,

χ1 = ϕ1 + εϕ2

1 + ε
χ2 = ϕ1 − ϕ2
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the modulation equations (3.102) take the form:

χ̇1 + jε

2(1 + ε) (χ1 − χ2) = 0

χ̇2 + j

2(1 + ε) (χ2 − χ1)+ χ(1 + ε)
2

χ2 − j (1 + ε)
2

|χ2|2 χ2 = 0 (3.110)

We recall that the slow flow system (3.102), and, hence (3.110) was derived under
the assumption of 1:1 resonance between the LO and the NES, and so this model
is valid only in the neighborhood of the 1:1 resonance manifold of the underlying
Hamiltonian system. As in (3.102) the complex coordinates χ1 and χ2 describe the
oscillations of the center of mass of, and the relative displacement between the LO
and the NES, respectively. By successive differentiation and simple algebra, the
above averaged system may be reduced to the following single modulation equation
governing the slow flow of 1:1 resonance capture in the damped dynamics:

d2χ2

dt2
+ d

dt

[
j

2
χ2 + λ(1 + ε)

2
χ2 − j (1 + ε)

2
|χ2|2 χ2

]

+ jε

4
(λχ2 − j |χ2|2 χ2) = 0 (3.111)

This equation is integrable for λ = 0, but here we are interested in the damped case
λ > 0. More precisely, we assume that λ� ε, so we treat λ as an O(1) quantity.

Equation (3.111) may be analyzed by the multiple scales approach (Nayfeh and
Mook, 1995). To this end, we introduce the new time scales, τi = εi t, i = 0, 1 . . .,
which are treated as distinct independent variables in the following analysis. Ex-
pressing the time derivatives in (3.111) as

d

dt
= ∂

∂τ0
+ ε ∂
∂τ1

+O(ε2),
d2

dt2
= ∂2

∂τ 2
0

+ 2ε
∂2

∂τ0∂τ1
+O(ε2) (3.112)

substituting (3.112) into (3.111), and retaining only O(1) terms we derive the fol-
lowing first-order modulation equation,

∂2χ2

∂τ 2
0

+ ∂

∂τ0

[
j

2
χ2 + λ

2
χ2 − j

2
|χ2|2χ2

]
= 0 (3.113)

which possesses the following exact first integral of motion:

∂χ2

∂τ0
+

[
j

2
χ2 + λ

2
χ2 − j

2
|χ2|2χ2

]
= M(τ1, τ2, . . .) (3.114)

In expressing the constant of integration M as function of the slow-scales
τ1, τ2, . . ., we recognize that the first integral of motion (3.114) refers only to the
first-order dynamics, i.e., it is only constant at O(1); mathematically the slow vari-
ation of the first integral (3.114) is justified by the fact that the multiple scales of
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the problem are distinct and independent from each other. Hence, by (3.114) we
allow slow variation of the dynamics, but at higher-order (slower) time scales. By
the same reasoning, the equilibrium points, �(τ1, τ2, . . .) of the first-order system
(3.113) may depend on the higher-order slow time scales τ1, τ2, . . . . These equi-
librium points of the slow flow are computed by solving the following algebraic
equation:

j

2
�+ λ

2
�− j

2
|�|2 � =M(τ1, τ2, . . .) (3.115)

Clearly, if an equilibrium is stable it holds that

�(τ1, τ2, . . .) = lim
τ0→+∞χ2(τ0, τ1, τ2, . . .) <∞

whereas it holds that

�(τ1, τ2, . . .) = lim
τ0→−∞ χ2(τ0, τ1, τ2, . . .) <∞

if that equilibrium is unstable. One can show that the first-order dynamical system
(3.113) does not possess any limit sets besides equilibrium points [for instance by
applying Bendixon’s criterion (Guckenheimer and Holmes, 1982; Wiggins, 1990)].

Since we will carry the analysis only up toO(ε), we omit from here on slow time
scales of order higher than one and express the solution of (3.115) in the following
polar form:

�(τ1) = N(τ1) exp(jγ ((τ1)) (3.116)

Upon substituting into (3.115) and separating real and imaginary terms, we reduce
the computation of the equilibrium points of the slow flow to

λ2Z(τ1)+ Z(τ1)[1Z(τ1)]2 = 4|M(τ1)|2 (3.117)

where Z(τ1) ≡ N2(τ1). The number of solutions of equation (3.117) depends on
|M(τ1)| and λ. The function on the left-hand side can be either monotonous, or can
have a maximum and a minimum. In the former case the change |M(τ1)| of has no
effect on the number of solutions and equation (3.117) provides a single positive
solution. In the latter case, however, the change of |M(τ1)| brings about a pair of
saddle-node bifurcations, and hence multiple solutions.

In order to distinguish between the different cases, we check the roots of the
derivative with respect to Z(τ1) of the left-hand side of (3.117):

1 + λ2 − 4Z + 3Z2 = 0 ⇒ Z1,2 = [2 ±
√

1 − 3λ2]/3 (3.118)

It follows that for λ < 1/
√

3 there exist two additional real roots and pair of saddle-
node bifurcations, whereas at the critical damping value λ = 1/

√
3 the two saddle-

node bifurcation points coalesce forming the typical structure of a cusp. Extending
these results to equation (3.117), if a single equilibrium exists, this equilibrium is
stable with respect to the time scale τ0. If three equilibrium points exist, two of them
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are stable nodes, and the other is an unstable saddle with respect to the time scale
τ0. Therefore, the O(1) dynamics is attracted always to a stable node.

The characteristic rate of attraction of the dynamics near a node may be evaluated
by linearizing equation (3.114), and considering the following perturbation of the
dynamics near an equilibrium point:

χ2(τ0, τ1) = �(τ1)+ δ(τ0), |δ| 	 |�| (3.119)

Upon substitution of (3.119) into (3.114) yields the following linearized equation,

∂δ

∂τ0
+

[
j

2
δ + λ

2
δ − j |�|2δ − j

2
�2δ∗

]
= 0 (3.120)

where asterisk denotes complex conjugate. Rewriting equation (3.120) as(
∂

∂τ0
+ j

2
+ λ

2
− j |�|2

)
δ = j

2
�2δ∗ (3.121)

taking its complex conjugate and combining the two equations, we derive an ex-
pression that explicitly computes the evolution of the perturbation δ(τ0) (note that
� depends only on τ1 and not on the time scale τ0),[

∂2

∂τ 2
0

+ λ ∂
∂τ0

+ 1

4
(1 + λ2 − 4Z + 3Z2)

]
δ = 0 ⇒

δ = δ0 exp[(−λ± jω)t/2] (3.122)

where ω = √
3Z2 − 4Z + 1. Solution (3.122) reveals that the linearized dynamics

in the vicinity of the equilibrium points depends on λ and Z.
The following possible alternatives are now described. For relatively large values

of damping above the critical value, λ > 1/
√

3, there exists a single stable node
in the O(1) dynamics. For Z > 1 or Z < 1/3 the attraction of the dynamics to
that node is through oscillations [i.e., ω is real-underdamped cases], whereas for
1 > Z > 1/3 the attraction is through a decaying motion [i.e., ω is imaginary –
overdamped case).

For relatively small damping values, λ < 1/
√

3, the situation is more complex,
since there exist two additional real equilibrium points given by (3.118). For Z > 1
or Z < 1/3 the attraction of the dynamics to the stable node is oscillatory (under-
damped cases), whereas for 1 > Z > Z1 or Z2 > Z > 1/3 the attraction is through
a decaying motion (overdamped cases). For Z1 > Z > Z2 we obtain an unstable
equilibrium, and the linearized model predicts exponential growth in the dynamics.

In summary, as Z slowly decreases due to its dependency on the slow-time scale
τ1, and depending on the damping value λ, the O(1) dynamics undergoes qualita-
tive changes (bifurcations). In particular, if λ > 1/

√
3 we anticipate the dynamics

to remain always stable, since in that case there exists a single slowly-varying at-
tracting manifold of the O(1) averaged flow. However, if λ > 1/

√
3 the dynamics
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becomes unstable, in which case we expect that the O(1) averaged flow will make
a sudden transition from one attracting manifold to another for slowly decreasing
Z. In order to study this complicated damped transition, one should investigate the
slow evolution of the equilibrium of the O(1) averaged flow �(τ1).

To this end, we consider the O(ε) terms in the multiple-scale expansion (3.111–
3.112):

2
∂2χ2

∂τ0∂τ1
+ ∂

∂τ1

[
j

2
χ2 + λ

2
χ2 − j

2
|χ2|2χ2

]

+ ∂

∂τ0

[
λ

2
χ2 − j

2
|χ2|2χ2

]
+ j

4
[λχ2 − j |χ2|2χ2] = 0 (3.123)

We are interested in the behavior of the solution of the O(ε) averaged flow in the
neighborhood of a stable equilibrium point, or equivalently, in the neighborhood of
the damped NNM invariant manifold�(τ1) = limτ0→+∞ χ2(τ0, τ1). Therefore, by
taking the limit τ0 → +∞ in equation (3.123) we obtain the following equation
which describes the evolution of the dynamics at the slower time scale τ1:

∂

∂τ1

(
j

2
�+ λ

2
�− j

2
|�|2�

)
+ j

4
(λ�− j |�|2�) = 0 (3.124)

In deriving this equation we take into account that on the slowly-varying, stable in-
variant manifold there is no dependence of the dynamics on τ0, since�(τ1) was de-
fined previously as the equilibrium point of the O(1) averaged flow (3.113–3.114).
Hence, the differential equation (3.124) describes the slow evolution of the stable
equilibrium points of equation (3.113) (these are equilibrium points with respect to
the fast time scale τ0, but not with respect to the slow time scale τ1 and to slow time
scales of higher orders, which, however are omitted from the present analysis). The
slowly varying equilibrium �(τ1) provides an O(ε) approximation to the damped
NNM manifold of the dynamics of the system (3.98); this is an invariant manifold of
the damped dynamics and can be regarded as the analytical continuation for weak
damping of the corresponding NNM of the underlying Hamiltonian system (Shaw
and Pierre, 1991, 1993).

Rearranging equation (3.124) in the form(
j

2
+ λ

2
− j |�|2

)
∂�

∂τ1
− j�2 ∂�

∗

∂τ1
= −j

4
(λ�− j |�|2�) (3.125)

and adding to it its complex conjugate, we obtain the following explicit expression
for the slowly varying derivative of the equilibrium point of the O(1) slow flow:

∂�

∂τ1
= −λ�+ j (|�|2�− 3 |�|4�− λ2�

)
2
(
1 + λ2 − 4 |�|2 + 3 |�|4) (3.126)
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Using the polar representation, �(τ1) = N(τ1) exp(iγ (τ1)), and separating real
and imaginary parts, equation (3.126) yields the following set of real differential
equations governing the slow evolution of the magnitude and phase of the stable
equilibrium points of theO(1) averaged flow (i.e., of the stable damped NNM man-
ifolds),

∂N

∂τ1
= −λN

2
(
1 + λ2 − 4Z + 3Z2

)
∂γ

∂τ1
= (Z − 3Z2 − λ2)

2
(
1 + λ2 − 4Z + 3Z2

) (3.127)

where Z(τ1) ≡ N2(τ1). The first of equations (3.127) can be integrated exactly by
quadratures to yield

(1 + λ2) lnZ(τ1)− 4Z(τ1)+ (3/2)Z2(τ1) = K − λτ1 (3.128)

where K is a constant of integration [it actually depends on the higher-order time
scales τ2, τ3, . . ., but these are nor considered here as the analysis is restricted to
O(ε)].

Expression (3.128) implicitly determines the evolution of Z(τ1) and, conse-
quently, of N(τ1). The slow evolution of the phase γ (τ1) is described by the sec-
ond of equations (3.127), and may be computed by direct integration once Z(τ1) is
known; due to the implicit form of (3.128), however, this task cannot be performed
analytically and requires a numerical solution.

Essential information concerning the qualitative behavior of the solution may
be extracted from relation (3.127) even without explicitly solving it. Indeed, for
sufficiently strong damping, λ > 1/

√
3, the denominator on the right-hand side

terms is always positive, and the first equation describes a monotonous decrease
of Z(τ1) towards zero with increasing τ1. In other words, we conjecture that the
slowly varying dynamics remains always on the in-phase damped NNM manifold
S11+. By contrast, for relatively weak damping, λ < 1/

√
3, the velocity ∂Z/∂τ1

is a negative quantity for Z > Z1, but becomes divergent as the limit Z → Z1 is
approached from above.

We cannot proceed to any statement regarding the sign of the velocity when the
amplitude is in the range Z2 > Z > Z1, as the equilibrium point is unstable there;
therefore, we infer that as Z decreases below the critical amplitude Z1 the damped
dynamics should be attracted to a NNM damped manifold distinct from S11+. This
other manifold is a weakly nonlinear (linearized) branch of the damped NNM invari-
ant manifold S11−. Of course, this conclusion is valid only for the averaged system
(3.110–3.111), which was derived under the condition of 1:1 resonance capture. In
the original system (3.98) attraction of the dynamics to other (i.e., other than 1:1)
subharmonic or superharmonic resonance manifolds may take place, depending on
the initial conditions and the system parameters. Similar averaging arguments could
be used to study such more complex damped transitions.
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Fig. 3.51 Response of the averaged system (3.111) in the regime of 1:1 resonance capture, for
ε = 0.05, λ = 0.2 < 1/3, and initial conditions given by χ1(0) = 0.7 + 0j , χ2(0) = 0.7 + 0j .

The previous analytical findings are illustrated by performing numerical sim-
ulations of the averaged system (3.111) for parameters ε = 0.05, λ = 0.2, and
initial conditions χ1(0) = 0.7 + 0j, χ2(0) = 0.7 + 0j . The time evolution of the
square of the modulation of the envelope of the NES response, |χ2|2, is depicted
in Figure 3.51. Clearly, both the magnitude and frequency of the envelope modula-
tion of the NES response tend to zero as the trajectory approaches the critical value
Z1 =0.979. In the vicinity of this value, the trajectory jumps to the alternative stable
attractor S11−. This point may be further illustrated using the three-dimensional
plot depicted in Figure 3.52, where the real and imaginary parts of the complex
envelope modulation of the NES, χ2, are plotted in a parametric plot for increasing
time. The damped trajectory of the envelope modulation of the NES starts from zero,
gets attracted initially by the stable damped NNM manifold S11+, before making a
transition (jump) to the weakly nonlinear, low energy stable NNM manifold S11−.

In order to check the validity of the asymptotic approximations, we performed
direct simulations of the original set (3.98) (i.e., of the exact system before aver-
aging) with the same initial conditions used for the plots of Figures 3.51 and 3.52;
the result is presented in Figure 3.53. It is clear from this Figure that the damped
dynamics is initially attracted by the damped NNM manifold S11+, as evidenced
by the in-phase 1:1 resonant oscillations of the NES and the LO, with nearly unit
frequency. With diminishing amplitude of the NES, the critical amplitude is reached
close to t ∼ 50 s, and a transition of the damped dynamics to a the out-of-phase lin-
earized low-energy regime S11− takes place, with the motion localizing to the LO.
This is in accordance with the predictions of the averaging analysis.
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Fig. 3.52 Real and imaginary parts of the complex modulation χ2 of the NES plotted against time,
in the regime of 1:1 resonance capture for ε = 0.05, λ = 0.2, and initial conditions χ1(0) =
0.7 + 0j , χ2(0) = 0.7 + 0j .

Fig. 3.53 Direct numerical simulation of the damped system (3.98) for parameters ε = 0.05,
λ1 = 0, λ2 = 0.01, and initial conditions x(0) = v(0) = ẋ(0) = 0 and ẋ(0) = 0.7; the dynamics
correspond to the analytical results of Figures 3.50 and 3.51.

The next simulation illustrates the dynamics of the averaged system (3.110)
for the case of low damping (see Figure 3.54). The system parameters are cho-
sen as ε = 0.05, λ = 0.03, and the initial conditions as χ1(0) = 0.9 + 0j and
χ2(0) = 0.9+0j . Despite the low damping value, the qualitative behavior of the dy-
namics is similar to the previous case, although it takes much more time for the dy-
namics to escape away from the damped NNM invariant manifold S11+. It should
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Fig. 3.54 Response of the averaged system (3.111) in the regime of 1:1 resonance capture, for
ε = 0.05, λ = 0.03, and initial conditions given by χ1(0) = 0.9 + 0j and χ2(0) = 0.9 + 0j .

be mentioned that, technically, the multiple-scale analysis developed above is not
formally valid in this case, because the damping coefficient is of O(ε) and not of
O(1) as assumed in the analysis. To check the applicability of the approximation in
this case, the original system (3.98) was again simulated for parameters and initial
conditions corresponding to the ones of the averaged model. The result is presented
in Figure 3.55. It is difficult to judge whether any real transition (jump) occurs at
t ∼ 480 s, but a gradual change of the NES frequency starts at this time instant
and reveals escape from the regime of 1:1 resonance capture, thereby confirming
the analytic findings.

It is instructive to compare the result of the direct numerical simulation with
the analytic expression (3.128) that computes approximately the modulation of the
envelope of the response of the NES. The result of this comparison is presented
in Figure 3.56. Expression (3.128) provides an accurate prediction for the modula-
tion of the envelope of the NES response as long as the damped dynamics is in the
1:1 resonance capture regime, i.e., before the escape from the damped NNM man-
ifold S11+. Still, the description of the response is not complete since the initial
conditions should also be taken into account. The averaging approach successfully
describes the process up to times of O(1/ε), but is not suitable for later times since
the limit τ0 → +∞ is irrelevant in this case, as the dynamics makes a transition
away from the manifold S11+ at finite time.

Fortunately, this latter problem is even easier. If one is interested only in the
behavior of the system up to a time scale of O(1), i.e., only during the initial tran-
sient regime of the motion, then to a first approximation it is possible to neglect all
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Fig. 3.55 Direct numerical simulation of the damped system (3.98) for parameters ε = 0.05,
λ1 = 0, λ2 = 0.0015, and initial conditions x(0) = v(0) = ẋ(0) = 0 and ẋ(0) = 0.9; the
dynamics correspond to the analytical result of Figure 3.54.

Fig. 3.56 Exact solution of the NES oscillation v(t) -Ű solid line, superimposed to the analytically
predicted envelope modulation [computed from (3.128)] -Ű dotted line, up to the point of transition
away from the damped NNM manifold S11+.

terms ofO(ε) from the problem; this is shown below. To this end, we reconsider the
damped two-DOF system (3.98) in the form

ẍ + λ1ẋ + λ2(ẋ − v̇)+ ω2
0x + C(x − v)3 = 0
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εv̈ + λ2(v̇ − ẋ)+ C(v − x)3 = 0 (3.129)

with λ1 = 0, ω2
0 = 1, λ2 = ελ and C = ε, 0 < ε << 1. We introduce the change of

variables, y1 = x + εv, y2 = x − v, where y1 describes the motion of the center of
mass of the system, and y2 the relative motion between the LO and the NES. System
(3.129) is then transformed into the following form:

ÿ1 + y1 + εy2

1 + ε = 0

ÿ2 + y1 + εy2

1 + ε + (1 + ε)λẏ2 + (1 + ε)y3
2 = 0 (3.130)

The important advantage of system (3.130) compared to (3.129) is that the high-
est derivatives are now multiplied by unity, and the perturbation parameter is shifted
to the remaining terms. This permits the application of standard perturbation tech-
niques (such as the methods of multiple scales or averaging) to the analysis of the
dynamics. To a first approximation, we retain only terms ofO(1) in (3.130), render-
ing the resulting analytical transient approximations valid only up to times of O(1),
i.e., only in the initial, strongly nonlinear regime of the motion:{

ÿ1 + y1 = 0

ÿ2 + λẏ2 + y3
2 = −y1

(Early-time approximation)) (3.131)

More accurate approximation to the dynamics may be obtained by carrying the
analysis beyond theO(1) approximation, for example, by analyzing the transformed
system (3.130) by the method of multiple scales or averaging. This, however, would
recover the averaging results of the previous analysis which are valid up to times of
O(1/ε), so this option is not pursued further here.

We note that the damping term in the second of equations (3.131) appears now
as an O(1) quantity, so the approximation is justified only if λ � ε; in the follow-
ing simulations this condition is satisfied. Besides, the implicit assumption is that
O(y1) = O(y2), i.e., that the amplitude of the oscillation of the center of mass is
comparable to the amplitude of the relative oscillation between the LO and the NES.
This assumption is correct only during the initial regime of the motion, as further
evolution of the variables brings about diffentiation of the relative scaling between
amplitudes, and the coupling term of order ε in the equation for v is not negligible
anymore. Furthermore, equations (3.131) do not conserve energy in the absence of
damping, which means that they are not suitable for describing the global dynamics
of the system (3.129).

We wish to develop analytical approximations of the early-time transient re-
sponses modeled by the dynamical system (3.131), subject to the general initial
conditions

y1(0) = Y1, ẏ1(0) = V1

y2(0) = Y1 − Y2, ẏ2(0) = V1 − V2) (3.132)
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where Y1 and V1 are the initial displacement and velocity of the LO, respectively,
and Y2 and V2 the corresponding initial conditions for the NES. Hence, correct up
to a time scale of O(1), the system decomposes approximately to an unforced, un-
damped LO and a strongly damped and strongly nonlinear oscillator forced by the
linear one; in essence, the linear oscillation of the center of mass drives the strongly
nonlinear relative oscillation between the LO and the NES. As in the previous analy-
sis carried out in this section we focus in the early-time response under the condi-
tion of 1:1 transient resonance capture (TRC). In terms of the approximate system
(3.131), this means that the relative displacement y2 is assumed to perform fast oscil-
lations with frequency nearly equal to unity, possibly modulated by a slowly-varying
envelope. This paves the way for a slow-fast partition of the early-time dynamics.

Solving the first of equations (3.131), we may reduce the approximate system to
a single nonlinear differential equation:

y1 = Y1 cos t + V1 sin t

ÿ2 + λẏ2 + y3
2 = −Y1 cos t − V1 sin t,

y2(0) = Y1 − Y2, ẏ2(0) = V1 − V2 (3.133)

Restricting the analysis to the subset of initial conditions that correspond to the
domain of attraction of the 1:1 resonance manifold (providing the conditions for 1:1
TRC), we introduce the following slow flow partition of the dynamics:

ψ(t) ≡ y2(t)+ j ẏ2(t) = ϕ(t) ejt (3.134)

where ejt represents the fast oscillation of the system and ϕ(t) the corresponding
slow modulation. Clearly, the original variables can be recovered using the relations

y2(t) = [ψ(t) − ψ∗(t)]/2j and ẏ2(t) = [ψ(t)+ ψ∗(t)]/2 (3.135)

where the asterisk denotes complex conjugate. Introducing the expressions (3.134)
and (3.135) into (3.133) we obtain

y1 = Y1 cos t + V1 sin t

ϕ̇ejt + jϕejt + (λ− 1)

2
(ϕejt + ϕ∗e−j t )+ j

8
(ϕejt − ϕ∗e−j t )3

= −Y1
ejt + e−j t

2
− V1

ejt − e−j t
2j

(3.136)

with initial conditions ϕ(0) = (V1 − V2)+ j (Y1 − Y2).
To explore the slow flow dynamics (3.136) we perform time averaging with the

respect to the fast frequency, and obtain the following reduced, early-time slow flow
system:
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ϕ̇+ (λ+ j)
2

ϕ− 3j

8
|ϕ|2 ϕ = −Y1

2
− V1

2j
ϕ(0) = (V1−V2)+j (Y1−Y2)) (3.137)

This complex modulation equation governs approximately the slow dynamics of
the early-time dynamics in the neighborhood of the 1:1 resonance manifold. To
derive a set of real modulation equations, we employ the polar form representation,
ϕ(t) = N(t) ejδ(t), and set separately real and imaginary parts equal to zero to
derive a set of two real modulation equations governing the amplitude and the phase:

Ṅ + (λ/2)N = −(Y1/2) cos δ + (V1/2) sin δ

Nδ̇ + (N/2)− (3N3/8) = (Y1/2) sin δ + (V1/2) cos δ

N(0) =
√
(Y1 − Y2)2 + (V1 − V2)2,

tan δ(0) = (Y1 − Y2)/(V1 − V2) (3.138)

From the physical viewpoint, the amplitude N(t) may be associated with a charac-
teristic amplitude of the early-time nonlinear oscillations.

The 1:1 damped invariant NNM manifold of the early-time dynamics corre-
sponds to the set of equilibrium points of the slow flow (3.138) up to time scale of
O(1). In order to determine this set we impose stationarity conditions Ṅ = δ̇ = 0
yielding the following relations:

N6 − (8/3)N4 + (16/9)(1 + λ2)N2 − (16/9)(Y 2
1 + V 2

1 ) = 0

cos δ = [V1N(1 − 3N2/4)− λY1N ]/(Y 2
1 + V 2

1 )

sin δ = [Y1N(1 − 3N2/4)+ λV1N]/(Y 2
1 + V 2

1 ) (3.139)

The stability of an equilibrium point is specified by the nature of the eigenvalues of
the Jacobian matrix of the linearization of system (3.138) evaluated at that equilib-
rium point:

µ1,2 = (1/2)
[
−λ±

√
4(9N/8 − 1/2N)(N/2 − 3N3/8)

]
(3.140)

Bifurcations of equilibrium points can be studied by considering the topology of
the two-dimensional surface A = f (N, λ), where A = Y 2

1 + V 2
1 ; this is depicted

in Figure 3.57. This surface is defined by the first of equations (3.139), and all
equilibrium points lie on it. The folding lines on this surface form the boundaries
separating the parameter regions where one or three equilibrium points exist. These
are defined by the following equation:

∂

∂N

[
N6 − (8/3)N4 + (16/9)(1 + λ2)N2 − (16A/9)

]
= 0 (Folding curves)

(3.141)
A projection of the fold to the plane (λ,A) is obtained by eliminating N be-

tween equation (3.141) and the first of equations (3.139). The point on the plane
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Fig. 3.57 Early-time dynamics: surface of equilibrium points A = f (Nλ) as solutions of the first
of equations (3.139).

Fig. 3.58 Early-time dynamics: projection of the fold of the surface A = f (N, λ) onto the plane
(λ,A).

(λ,A) where the two folding curves intersect is computed as (λdeg = 1/31/2,
Adeg = 0.39506), and can be regarded as the most degenerate point of the surface
of equilibrium points. In Figure 3.58 we depict the two folding curves projected
onto the plane (λ,A) with the degenerate point of intersection also indicated. In the
region between the two folding curves, the early-time, slow flow dynamical system
(3.138) possesses three equilibrium points, whereas in the complementary region
only one. Qualitative changes in the dynamics are anticipated as the folding curves
are crossed transversely.

It should be mentioned that the equilibrium points discussed above are the only
limit sets of the equation (3.137). This fact may be rigorously proved with the help
of Bendixon’s criterion (Guckenheimer and Holmes, 1982). That is why the classi-
fication of phase trajectories on the basis of the equilibrium points to which they are
attracted is justified.
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In order to study the evolution of the trajectories of the dynamical system in phase
space, we consider again the energy-like quantity N(t), and provide the following
alternative expression related to the responses of the original system (3.129):

N(t) =
√
(ẋ(t)− v̇(t))2 + (x(t)− v(t))2 (3.142)

The same quantity was defined previously by the polar transformation of the slow
complex amplitude,

φ(t) = N(t) ejδ(t) (3.143)

and its temporal (slow) evolution is governed by the first of equations (3.138).
Hence, it is possible to compare directly the dynamics of the exact system (3.129)
and the averaged dynamics governed by the early-time slow modulation equations
(3.137) or (3.138). To study quantitative changes in the dynamics of the exact sys-
tem associated with bifurcations of equilibrium points of the reduced early-time
dynamical system (3.138), we consider two case studies corresponding to different
values of damping and initial conditions.

First, we consider system (3.129) with damping λ2 = λ = 0.1, and initial con-
ditions corresponding to A = 0.1. The additional damping coefficient is chosen to
be zero in the following computations, i.e., λ1 = 0. This corresponds to a point
inside the area defined by the folding curves in the (λ,A) plane (see Figure 3.58),
which means that the reduced early-time system (3.138) possesses three equilibrium
positions, computed as:

(δ,N) = (0.109375, 0.345185) (Lower Focus)

(δ,N) = (0.306884, 0.955293) (Middle Saddle)

(δ,N) = (2.755332, 1.278643) (Upper Focus)

Taking into account the previously introduced coordinate transformations, the
specific case considered corresponds to the following two-parameter set of initial
conditions of the original dynamical system (3.129)

Y1 = 0.0, V1 = 0.316228,

Y2 = Y1 −N(0) cos δ(0), V2 = V1 −N(0) cos δ(0) (3.144)

with parameters δ(0) and N(0). The exact system (3.129) was integrated for ε =
0.01 using each time a different initial point ( δ(0), N(0)) on the plane (δ,N).
For each simulation we computed the corresponding energy dissipation measure –
EDM, i.e., the percentage of initial energy of the system that is eventually dissipated
by the damper of the NES damper. Our effort was to relate the effectiveness of TET
in the original system (3.129), to the domains of attraction of the stable equilibrium
points of the early-time averaged system (3.138). In Figure 3.59 we depict the do-
mains of attraction of the upper and lower foci of the reduced system, superimposed
to a grid of initial points ( δ(0), N(0)). The different symbols of the grid points are
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Fig. 3.59 Domains of attraction of the early-time averaged system (3.138) with λ = 0.1 and A =
0.1, superimposed to a grid of initial conditions (δ(0),N(0)) whose symbol indicates efficiency of
TET in the exact damped system (3.129): (+) EDM > 70%, (◦) 50% < EDM < 70%, (�) 30% <

EDM < 50%, (*) 10% < EDM < 30%.

related to the percentage of total initial energy eventually dissipated by the NES for
the corresponding initial condition.

The picture clearly demonstrates that most efficient TET in the exact system
(3.129) occurs if the dynamics of the early-time reduced system (3.138) is initiated
inside or below the basin of attraction of the upper focus. A worthwhile caution is
that the depicted basin of attraction is only approximate since it is computed only
up to a time scale ofO(1), and, hence, is valid only in the initial high-energy regime
of the dynamics [since in the transformed system (3.130) only O(1) terms were
retained in the analysis]. The following numerical simulations support the above-
mentioned conclusion.

In Figure 3.60a we depict the exact responses of the LO and the NES for an initial
condition inside the basin of attraction of the upper focus of the averaged system (
N(0) = 0.7, δ(0) = 1.5), whereas in Figure 3.60b we depict the corresponding
temporal evolution N(t) computed by integrating the reduced system (3.138). The
results indicate that around t = 20 s the dynamics is in the domain of attraction of
the upper focus. At t = 50–60 s the trajectory escapes this regime, and this coincides
with a rather abrupt decrease of both amplitudes of oscillation. It is interesting to
note that the LO is continuously oscillating with unit frequency, whereas the NES
is oscillating with a lower frequency. This result may be understood in terms of
the previously discussed invariant manifold approach; that is, an abrupt change of
the dynamical regime is caused by the breakdown of the invariant manifold by the
saddle-node bifurcation described previously. In Figure 3.60 one can also clearly
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Fig. 3.60 Transient response of the exact system (3.129) for initial conditions, Y1 = 0.0, V 1 =
0.316228, Y2 = −0.698246, V 2 = 0.266712: (a) LO and NES displacements; (b) evolution of
N(t) t from the early-time averaged system (3.138).

distinguish the crossover between the initial transient and the slow evolution of the
invariant manifold. Up to t = 50 s the oscillations of the dynamical flow around
the upper focus are clear, whereas afterwards the dynamics is governed by a rapid
escape away from the domain of attraction of the upper focus.
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Fig. 3.61 Transient response of the exact system (3.129) for initial conditions, Y1 = 0.0, V 1 =
0.316228, Y2 = 0.194709, V 2 = −0.144303: (a) LO and NES displacements; (b) evolution of
N(t) from the early-time averaged system (3.138).

In Figures 3.61a, b the corresponding plots for an initial condition inside the
basin of attraction of the lower focus ( N(0) = 0.5, δ(0) = 0.4) are depicted.
Around t = 50 s the dynamics is attracted by the lower focus, and the two oscil-
lators are oscillating with approximately unit frequency. In this case, the amount of
energy transferred from the LO to the NES is small. From the viewpoint of invariant
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Fig. 3.62 Efficiency of TET as expressed by EDM (%), for varying damping values and initial
conditions, with the NES being initially at rest; the fold predicted by the early-time averaging
analysis is also shown.

manifolds, this case corresponds to the situation without bifurcation. One cannot
expect efficient TET in this case, since the NES is almost not excited.

The case when the NES is initially at rest, which is important from a practical
viewpoint, is now considered. This corresponds to excitation of an impulsive orbit
(IO). In order to relate the EDM (the percentage of energy eventually dissipated by
the NES) for given initial velocities of the LO and for various damping values λ, we
performed an additional series of numerical simulations. The results are depicted
in Figure 3.62, superimposed to the folding boundary curves of Figure 3.58. The
plot shows that most efficient TET occurs when the dynamics is initiated above and
close to the upper folding boundary curve. This result can be related to previous
results based on the damped NNM manifold approach, and demonstrates that the
most efficient TET is realized when the dynamics is attracted to the stable damped
NNM manifold, close to the point of bifurcation of that manifold. Otherwise, if the
dynamics is attracted relatively far from the bifurcation point, it undergoes a few
cycles of oscillation around the stable focus before breaking down (these cycles are,
in fact, nonlinear beats). Therefore we conclude that with the NES initially at rest,
TET is most efficient in the region close (but above) the upper folding boundary
curve in the (λ,A) plane.

This conclusion is supported by the simulations of Figures 3.63a, b depicting the
transient responses of exact system (3.129) for initial conditions (Y1 = Y2 = V2 =
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Fig. 3.63 Transient response of the exact system (3.129) for initial conditions, Y1 = 0.0, V 1 =√
0.25, Y2 = 0.0, V 2 = 0.0: (a) LO and NES displacements; (b) evolution of N(t) from the

early-time averaged system (3.138).

0, V1 = √
0.25), and parameters λ = 0.25 and ε = 0.01. In this case, the EDM is

over 50%. The plots demonstrate that around t = 35 s the dynamics of the system
is attracted by the stable focus of the averaged system (corresponding to δ = 2.427
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Fig. 3.64 Transient response of the exact system (3.129) for initial conditions, Y1 = 0.0, V 1 =√
0.065, Y2 = 0.0, V 2 = 0.0: (a) LO and NES displacements; (b) evolution of N(t) from the

early-time averaged system (3.138).

and N = 1.3105), with the amplitude of LO decreasing smoothly up to t = 100 s.
The amplitude of the NES increases up to t = 45 s and then decreases abruptly.

Figure 3.64 depicts the response of system (3.129) for initial conditions Y1 =
Y2 = V2 = 0, V1 = √

0.065, and λ = 0.3, ε = 0.01. The selected initial condi-
tions and damping value correspond to an initial point lying below the lower folding



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 205

boundary curve of the (λ,A) plane. The EDM is below 20% in this case. The plots
demonstrate that around t = 10 s the dynamics is attracted by the basin of attraction
of the focus corresponding to δ = 0.9055 and N = 0.2556. The amplitude of LO
decreases smoothly, while the amplitude of the NES remains almost constant. It is
interesting to note that both oscillators are oscillating with unit frequency, implying
the continuity of the invariant manifold.

The results presented above demonstrate that the problem of identifying appro-
priate initial conditions for enhanced TET may be reduced to the prediction of the
domains of attraction for a limited number of equilibrium points of the early-time
averaged slow flow. This latter approximation does not coincide with the damped
NNM manifold approach discussed in the beginning of this section, and the two-
dimensional slow phase plane (N, δ) does not coincide with that of the damped
NNM manifold at later stages of the dynamical process. Nevertheless, equilibrium
points in this slow phase plane obviously correspond to damped NNM manifolds,
which provide a direct connection between these two approaches. In other words,
the approach developed above enables the determination of the specific equilibrium
point eventually reached by the dynamics of the system for the majority of initial
conditions. Once this question is answered, the dynamics and efficiency of TET
may be assessed using the damped NNM manifold framework. Consequently, the
combination of the two methods leads to the analytical modeling of TET dynamics
over its entire time span, and answers the question of robustness of TET to changes
in initial conditions. The numerical results presented in this section clearly support
these analytical methodologies.

In summary, in this section we analyzed the damped dynamics of the essentially
nonlinear two-DOF system (3.98) or (3.129) under conditions of 1:1 resonance cap-
ture. The resulting fundamental TET was studied by considering the damped NNM
manifolds of the slow flow, and by analyzing the attraction of the dynamics on these
manifolds, as well as damped transitions between damped NNM manifolds. More
importantly, we demonstrated that the rate of energy dissipation by the NES, i.e.,
TET efficiency, is closely related to the bifurcation structure of the NNM invariant
manifolds. Indeed, it was found numerically that with the NES initially at rest (i.e.,
when an impulsive orbit is excited), optimal TET is realized when the damped dy-
namics is attracted by a stable damped NNM invariant manifold, close to the point
of bifurcation of that manifold, or equivalently, close (but above) the upper fold-
ing boundary curve in the (λ,A) plane depicted in Figure 3.62; this folding curve
was computed by performing an analysis of the early-time dynamics. This naturally
leads us to a more detailed study of the conditions for optimal fundamental TET in
system (3.98), which is performed in the next section.

3.4.2.5 Conditions for Optimal Fundamental TET

In Section 3.3.5 we discussed some topological features of the Hamiltonian dy-
namics of the two-DOF system (3.98) with no damping terms. Focusing in the
intermediate-energy region close to the 1:1 resonance manifold of the Hamiltonian
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system we studied the topological changes of intermediate-energy impulsive orbits
(IOs) for varying energy (see Figure 3.39). Specifically, we found that above the
critical value of energy-like variable r = rcrit (see Section 3.3.5) the topology of
intermediate-energy IOs changes drastically, as they make much larger excursions
into phase space, resulting in continuous strong energy exchanges between the LO
and the nonlinear attachment in the form of strong nonlinear beats. We also men-
tioned in Section 3.3.5 that this critical energy of the Hamiltonian system may be
directly related to the energy threshold required for TET in the weakly damped sys-
tem (as discussed in Section 3.2 and Figure 3.4).

In this section we study the intermediate-energy dynamics of the weakly damped
system (3.98),

ẍ + λ1ẋ + λ2(ẋ − v̇)+ ω2
0x + C(x − v)3 = 0

εv̈ + λ2(v̇ − ẋ)+ C(v − x)3 = 0 (3.98)

in an effort to formulate conditions for optimal fundamental TET; as usual we as-
sume that 0 < ε 	 1. It follows that our study will be necessarily restricted to the
neighborhood of the 1:1 resonance manifold of the underlying Hamiltonian system,
and the damped dynamics will be studied under the condition of 1:1 resonance cap-
ture. However, the ideas and techniques presented here can be extended to study
optimal conditions for the more general case of m:n subharmonic TET.

To initiate our analysis, we set ω2
0 = 1 in (3.98), and consider the following

ansatz for the damped responses close to the 1:1 resonance manifold of the Hamil-
tonian system (i.e., for ω ≈ 1):

x(t) ≈ a1(t)

ω
cos [ωt + α(t)] , v(t) ≈ a2(t)

ω
cos [ωt + β(t)] (3.145)

Substituting (3.145) into (3.98) and averaging out all frequency components with
frequencies higher than ω, we derive a system of four modulation equations gov-
erning the slow evolution of the amplitudes a1(t), a2(t) and phases α(t), β(t) of the
two oscillators; this defines the slow flow of system (3.98) in the neighborhood of
the 1:1 resonance manifold.

In Section 3.3.5 we found that the slow flow of the corresponding undamped
system is fully integrable and can be reduced to the sphere (R+×S1×S1). Motivated
by these results, we introduce the phase difference φ = α − β, the energy-like
variable r2 = a2

1 +(√εa2)
2, and the angle ψ ∈ [−π/2, π/2] defined by the relation

tan[ψ/2 + π/4] = a1/
√
εa2. Enforcing the condition of weak damping by rescaling

the damping coefficients according to λ1 → ελ1, λ2 → ελ2, and expressing the
slow flow equations in terms of the new variables, we reduce the slow flow of the
damped dynamics to the sphere (r, φ,ψ) ∈ (R+ × S1 × S1):

ṙ = − r
2

{
ελ1 (1 + sinψ)+ ελ2

[
(1 + ε)− (1 − ε) sinψ − 2ε1/2 cosψ cosϕ

]}
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ψ̇ = −3Cr2

8ε3/2

[
(1 + ε)− (1 − ε) sinψ − 2

√
ε cosψ cosϕ

]
sin ϕ

− ελ1

2
cosψ + λ2

2

[
(1 − ε) cosψ − 2ε1/2 sinψ cosϕ

]

ϕ̇ = 1

2
− 3Cr2

16ε2

[
(1 + ε)− (1 − ε) sinψ − 2

√
ε cosψ cosϕ

]

×
[
(1 − ε)− 2ε1/2 sinψ cosϕ

cosψ

]
− ε1/2λ2

sin ϕ

cosψ
(3.146)

We note that when λ1 = λ2 = 0 the slow flow reduces to the integrable system
(3.89) on a two-torus possessing the first integral (3.90). For non-zero damping,
however, the slow flow dynamics is non-integrable and the dimensionality of the
system (3.146) cannot be further reduced.

In Figure 3.65 projections of damped IOs to the three-dimensional space
(r, φ,ψ) ∈ (R+×S1×S1) are depicted for three different initial energy levels; these
results were obtained by direct numerical simulations of the damped system (3.98)
subject to initial conditions corresponding to IOs, and can be directly compared
to the plots of Figure 3.37 which depict isoenergetic projections of the underlying
Hamiltonian dynamics. In the damped case, however, instead of the equilibrium
points corresponding to NNMs on branches S11± we get in-phase and out-of-phase
damped NNM invariant manifolds (Shaw and Pierre, 1991, 1993). For the case of
large initial energy there is an initial transient (denoted as Stage I in Figure 3.65b) as
the orbit gets attracted by the damped NNM manifold S11+; this is followed by the
slow evolution of the damped motion along S11+ as energy decreases due to damp-
ing dissipation, with the motion predominantly localized to the NES as evidenced
by the fact that ψ(t) ≈ −π/2 (Stage II in Figure 3.65b). Finally, the damped NNM
S11+ becomes unstable, and the dynamics makes a transition to the weakly nonlin-
ear (linearized) NNM manifold S11−; the resulting out-of-phase oscillations are lo-
calized predominantly to the LO, as evidenced by the fact that limt→∞ ψ(t) = π/2
(Stage III in Figure 3.65b). TET in this case occurs predominantly during Stage I
(TET through nonlinear beat) and Stage II (fundamental TET).

For lower initial energy (i.e., in the intermediate energy level), the initial tran-
sients of the dynamics during the attraction to S11+ possess larger amplitudes
(Stage I, Figure 3.65c), leading to an increase of the resulting TET due to non-
linear beats; in later times, Stages II and III of the dynamics are similar to the cor-
responding ones of the higher-energy case. Compared to the previous case, TET is
enhanced, especially during the initial transients of the motion where the LO and
the NES undergo larger-amplitude nonlinear beats. Qualitatively different dynam-
ics is observed when the initial energy is further decreased; this can be noted from
the projection of Figure 3.65d, where the low-energy motion rapidly localizes to
the LO as the dynamics gets directly attracted by the weakly nonlinear branch of
the damped NNM manifold S11−, and, as a result, TET drastically diminishes. In
essence, for this low energy value only Stage III of the dynamics is realized.
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Fig. 3.65 Phase space projection of damped IOs for ε = 0.1, C = 2/15, and λ1 = λ2 = 0.1: (a)
projection definition, (b) r(0) = 2.0, (c) r(0) = 1.0, (d) r(0) = 0.5.

An analytical study of the stability of the damped NNM manifolds S11±, which,
as we showed, affects the damped transitions of system (3.98) and the resulting TET,
is carried out in Quinn et al. (2007). In that work a detailed study of TET efficiency
as judged by the time required by the NES to passively absorb and dissipate a sig-
nificant amount of initial energy of the LO is performed as well. A representative
result of this study is presented in Figure 3.66, depicting the time T required for the
initial value of the energy-like variable, r(0), to decay by a factor of e, when the
motion is initiated on an IO:

r(T ) = r(0) e−1 (3.147)

We note that for a classical viscously damped SDOF linear oscillator with damping
constant ελ, the corresponding time interval T would be equal to ελ/2. The numer-
ical results depicted in Figure 3.66 were derived for parameters ε = 0.05, λ1 = 0,
λ2 = 0.2 and C = 2/15, and the damped IOs in Figures 3.66a–e are only depicted
in the time interval 0 < t < T . We note that as we increase r(0) from 0.46 to 0.47
there is a drastic reduction in T , signifying drastic enhancement of TET efficiency.
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Fig. 3.66 Damped IO simulations at various initial energy levels: projections of the damped mo-
tions onto the unit disk for (a) r(0) = 0.45, (b) r(0) = 0.46, (c) r(0) = 0.47, (d) r(0) = 0.50,
(e) r(0) = 0.75; (f) time T required for decay of r(0) by a factor of e−1 as a function of r(0),
circles refer to the projections (a–e).

This is associated with a sudden ‘excursion’ of the damped IO in the projection of
the phase space, as the dynamics makes a transition from a motion that is predomi-
nantly localized to the LO (Figures 3.66a, b) to a motion where large relative motion
between the LO and the NES takes place (see Figure 3.66c); this, in turn leads to
enhanced TET through nonlinear beats.

It is interesting to note that the sudden jump in TET efficiency in Figure 3.66
occurs in the intermediate-energy regime, in the neighborhood of the 1:1 resonance
manifold of the Hamiltonian system. In this regime of the dynamics the slow flow
model (3.146) is valid, so it can be used to study the conditions for optimal TET ef-
ficiency. An analytic study of the conditions for optimal TET through the excitation
of intermediate-energy IOs is carried out in Sapsis et al. (2008), and elements of this
study will be reproduced here. Although the study is carried out under the assump-
tion of 1:1 resonance capture, and is based on CX-A, the analysis of the resulting
averaged slow flow is in different form than (3.146).
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Fig. 3.67 Percentage of energy dissipated in system (3.148) when intermediate-energy damped
IOs are excited (ε = 0.05, C = 1 and ελ = 0.005): solid lines correspond to excitation of specific
periodic IOs, and the dashed line indicates the energy remaining in the system at t = 25 s.

Hence, we reconsider the two-DOF system (3.98) with λ1 = λ2 = ελ and ω2
0 =

1,

ẍ + ελẋ + ελ(ẋ − v̇)+ x + C(x − v)3 = 0

εv̈ + ελ(v̇ − ẋ)+ C(v − x)3 = 0 (3.148)

with initial conditions corresponding to excitation of an impulsive orbit (IO),
v (0) = v̇ (0) = x (0) = 0 and ẋ(0) = X, and 0 < ε 	 1. In Figure 3.67 we
depict the dissipation of instantaneous energy in the system with ε = 0.05, C = 1
and ελ = 0.005 (these parameter values will be used in the remainder of this section,
unless stated otherwise), when damped IOs are excited. In accordance with previous
findings of this Chapter, we find that strong energy dissipation, i.e., strong TET, is
realized in the intermediate energy region and more specifically in the neighborhood
of the 1:1 resonance manifold of the underlying Hamiltonian system (we note that
the FEP of the corresponding undamped system with the positions of periodic IOs
indicated, is depicted at Figure 3.20).

Moreover, optimal TET, as judged by the strongest energy dissipation in the least
possible time in the plot of Figure 3.67, is realized for initial impulses X (i.e., ini-
tial energies) in the range between the periodic IOs U65 and U76; from the FEP
of Figure 3.20, we note that these periodic IOs are close to the energy level of a
saddle-node bifurcation of the linearized and strongly nonlinear components of the
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backbone branch S11−. At this energy level, an unstable hyperbolic periodic or-
bit is generated on the strongly nonlinear component of S11−. As shown below,
it is the homoclinic orbit of this hyperbolic periodic orbit that affects the topology
of nearby IOs and defines conditions for optimal TET in the weakly damped sys-
tem. This observation is in accordance with the discussion of Section 3.3.5 and the
results depicted in Figures 3.39 and 3.66, indicating that above a critical energy
level the topology of the IOs changes drastically, with IOs making large excursions
in phase space (actually, this critical energy level in the Hamiltonian system may
be defined as the energy where with the IO coincides with the homoclinic orbit –
Figure 3.39d). Finally, we note that these observations are also in accordance with
the findings of the approach based on damped NNM invariant manifolds (see Sec-
tion 3.4.2.4), where it was noted that the most efficient TET is realized when the
damped dynamics is attracted to a stable damped NNM manifold, close to the point
of bifurcation of that manifold.

The analytical study of conditions for optimal fundamental TET is carried out
by applying the CX-A technique to system (3.148) under condition of 1:1 internal
resonance between the LO and the NES. Moreover, only intermediate-energy IOs
are considered, focusing to those lying close to the 1:1 resonance manifold with
dominant (fast) frequency ω(1 (see the FEP of Figure 3.20). Applying the usual
complexification,

ψ1(t) = v̇(t)+ jv(t) ≡ φ1(t) e
jt , ψ2(t) = ẋ(t)+ jx(t) ≡ φ2(t) e

jt

and performing averaging with respect to the fast term ejt , we derive the following
set of complex modulation equations,

φ̇1 + (j/2)φ1 + (λ/2) (φ1 − φ2)− (3jC/8ε) |φ1 − φ2|2 (φ1 − φ2) = 0

φ̇2 + (ελ/2) (2φ2 − φ1)+ (3jC/8) |φ1 − φ2|2 (φ1 − φ2) = 0 (3.149)

with initial conditions φ1 (0) = 0 and φ2 (0) = X. Introducing the new complex
variables,

u = φ1 − φ2

w = εφ1 + φ2

}
⇔

{
φ1 = (u+ w)/(1 + ε)
φ2 = (w − εu)/(1 + ε) (3.150)

we express system (3.149) as

u̇+ (1 + ε)λ
2

u− 3(1 + ε)jC
8ε

|u|2 u+ j u+w
2(1 + ε) − ελ w − εu

2(1 + ε) = 0

ẇ + jε u+ w
2(1 + ε) + ελ w − εu

2(1 + ε) = 0 (3.151)

with initial conditions u (0) = −X and w (0) = X. Hence, we have reduced the
problem of studying intermediate-energy damped IOs of the initial system of cou-
pled oscillators (3.148) to the above system of first-order complex modulation equa-
tions which govern the slow flow close to the 1:1 resonance manifold. These equa-
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tions are valid only for small- and moderate-energy IOs, i.e., for initial conditions
X < 0.5 (see Figure 3.67), since above this level the fast frequency of the response
depends significantly on the energy level and the assumption ω ≈ 1 is violated.

Since we are interested in the study of optimal energy dissipation, especially from
the NES, we shall now derive expressions for the various energy quantities in terms
of the complex modulations u and w. These expressions will be further exploited
in an effort to study the characteristics of u and w that optimize TET. Thus, for
computing the instantaneous total energy stored in the LO we derive the expression:

EL(t) ≡ 1

2
[x2(t)+ ẋ2(t)]

≈ 1

2

[
(Im[φ2e

jt ])2 + (Re[φ2e
jt ])2] = 1

2
|φ2|2 = |w − εu|2

2 (1 + ε)2
(3.152)

The instantaneous energy stored in the NES is approximately evaluated as:

ENL(t) = 1

2

{
εv2 (t)+ C

2
[ẋ (t)− v̇ (t)]4

}

≈ 1

2

{
ε(Im[φ1e

jt ])2 + C

2
(Re[vejt ])4

}

= 1

2

{
ε

(
Im

[
u+w
1 + ε e

jt

])2

+ C

2
(Re[uejt ])4

}
(3.153)

Finally, the most important energy measure as far as our analysis is concerned will
be the energy dissipated by the damper of the NES, approximated as:

EDISS (t) =
t∫

0

ελ [ẋ (t)− v̇ (t)]2 dt ≈ ελ
t∫

0

(Re[uejt ])2dt

= ελ

t∫
0

{
(Re [u])2 cos2 t + (Im [u])2 sin2 t − Re [u] Im [u] sin 2t

}
dt

= ελ

t∫
0

{
(Re [u])2

1 + cos 2t

2
+ (Im [u])2

1 − cos 2t

2
− Re [u] Im [u] sin 2t

}
dt

(3.154)

Omitting terms with fast frequencies greater than unity from the integrand (this is
consistent with our analysis based on averaging with respect to the fast frequency
equal to unity), the above integral can be approximated by the following simple
expression:
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EDISS (t) ≈ ελ

2

t∫
0

{
(Re [u])2 + (Im [u])2

}
dt = ελ

2

t∫
0

|u (t)|2 dt (3.155)

Hence, within the approximations of the analysis, the energy dissipated by the NES
is directly related to the modulus of u (t) which characterizes the relative response
between the LO and the NES. It follows, that enhanced TET in system (3.148) is
associated with the modulus |u (t)| attaining large amplitudes, especially during the
initial phase of motion where the energy is at its highest values.

Returning to the slow flow (3.151), the second modulation equation can be solved
explicitly as follows:

w(t) = X exp

(
−ε (j + λ) t

2

)
+ ε(ελ− j)

2 (1 + ε)
t∫

0

exp
(
−ε

2
(j + λ)[t − τ ]

)
u (τ) dτ

(3.156)
which, upon substitution into the first modulation equation yields:

u̇− 3jC(1 + ε)
8ε

|u|2 u+ j + λ [
ε2 + (1 + ε)2]
2(1 + ε) u

= ελ− j
2(1 + ε)X exp

(
−ε (j + λ) t

2

)

+ ε
[
(ελ− j)
2 (1 + ε)

]2 t∫
0

exp
(
−ε

2
(j + λ)[t − τ ]

)
u (τ) dτ, u(0) = −X

(3.157)

This complex integro-differential equation governs the slow flow of a damped IO in
the intermediate-energy regime, as it is equivalent to system (3.151). The above dy-
namical system provides information on the slow evolution of the damped dynamics
close to the 1:1 resonance manifold.

In Figure 3.68 we present a typical solution of (3.151) depicting the slow flow
of a damped IO in the upper intermediate-energy regime of Figure 3.67. The initial
‘wiggles’ in the slow flow represent the initial attraction of the IO dynamics by the
damped NNM manifold S11+, and correspond to initial nonlinear beats in the full
response. Although short in duration, the energy dissipated by the NES in the initial
regime of nonlinear beats can be quite significant as discussed below.

In Figure 3.69 we examine the dynamics of the averaged system (3.151) [or
equivalently (3.157)] over the entire intermediate-energy regime of damped IOs.
Starting from relatively high energies (i.e., the highest value of impulsive magni-
tude X, Figure 3.69a), the initial regime of nonlinear beats (corresponding to the
attraction of the dynamics to the stable damped NNM invariant manifold S11+)
leads to strong energy exchanges between the LO and the NES; as the dynamics set-
tles to S11+ the energy exchanges diminish and slow energy dissipation is noted in
both oscillators; finally the dynamics makes the transition to the linearized damped
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Fig. 3.68 Slow flow (3.151) of a damped IO in the intermediate-energy regime of Figure 3.67.

NNM submanifold S11− at the later stage where nearly the entire energy of the sys-
tem has been dissipated. We conclude that in the upper region of the intermediate-
energy regime TET is relatively weak as the impulsively excited LO retains most of
its energy throughout the oscillation. As the impulsive energy decreases (see Fig-
ures 3.69b, c) the initial regime of nonlinear beats expands and stronger energy
exchanges between the impulsively forced LO and NES take place; moreover, the
dynamics instead of settling to S11+, proceeds to make a transition to the weakly
nonlinear branch of S11−. These features of the slow dynamics enhance TET in
the system, as judged by the efficient dissipation of energy in both oscillators. Over-
all, optimal energy dissipation, and hence TET, is realized in Figure 3.69d, where
the initial regime of beats is replaced by a slow oscillation during which the entire
energy of the LO gets transferred to the NES over a single half-cycle; some of this
energy gets ‘backscattered’ to the LO at a later stage of the motion, during some
low-amplitude nonlinear beats, but the major amount of energy gets dissipated dur-
ing the initial half-cycle energy transfer where the energy of the system is at its
highest; this provides the condition for optimal TET in this system, and corresponds
to the ‘ridge’ in Figure 3.67 at X(0.11. A slight decrease of the impulsive magni-
tude X changes qualitatively the slow dynamics, as both oscillators now settle into
linearized responses and negligible TET takes place; in this case the slow dynamics
gets directly attracted by the weakly nonlinear branch of S11−.

Hence, the slow dynamics of the damped IOs in the intermediate-energy regime
is quite complex. Indeed, based on the qualitative features of the damped IO dynam-
ics we may divide the intermediate-energy regime of Figure 3.67 into three distinct
subregimes; these can be distinguished by the features of the slow flow dynamics
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Fig. 3.69 Slow flow (3.151) or (3.157) of damped IOs in the intermediate-energy regime: (a) X =
0.30 (upper regime).

(3.157) during the initial, highly energetic stage of the impulsive motion where most
TET is realized. In the upper subregime corresponding to higher impulsive magni-
tudes (see Figures 3.69a–c) TET through nonlinear beats takes place. The middle
subregime (see Figure 3.69d) is the regime of optimal TET, and is governed by the
most complex dynamics, since the initial slow flow dynamics consists over a single
‘super-slow’ half-cycle during which the entire energy of the LO gets transferred
to the NES. Hence, it appears that the initial nonlinear beats realized in the upper
subregime degenerate to a single ‘super-slow’ half-cycle of the slow flow as the
middle subregime is approached. As shown in the following analysis, the dynam-
ical mechanism that leads to this ‘super-slow’ degeneration of the slow dynamics
in Figure 3.69d is the homoclinic orbit of the unstable damped NNM on S11− that
is generated by the saddle-node bifurcation at the critical energy level between the
periodic IOs U65 and U76 in the FEP of Figure 3.20. Finally, the lower subregime
is characterized by linearized motion predominantly localized to the LO, with com-
plete absence of nonlinear beats and negligible TET.

We note that this disussion can be directly related to the analysis presented in
Section 2.3 where the dynamics of a two-DOF system of a different configuration
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Fig. 3.69 Slow flow (3.151) or (3.157) of damped IOs in the intermediate-energy regime: (b) X =
0.19.

(with a grounded NES) was studied asymptotically in the neighborhood of the 1:1
resonance manifold of the dynamics. Indeed, the homoclinic orbit of the unstable
undamped NNM on S11− of the Hamiltonian system (3.148) studied in the present
section, is similar to the homoclinic loop appearing in Figure 2.10 of the Hamil-
tonian system (2.31). As shown in Section 2.3, when sufficiently weak damping is
added to the system [refer to condition µ > ν in equation (2.47)] the Hamiltonian
homoclinic loop is perturbed (to first order as in Figure 2.11a, and to second order
as schematically shown in Figure 2.13). Hence, following a similar reasoning, we
can relate the results regarding TET efficiency of this section to the damped sys-
tem (2.41) with grounded NES, by relating the dynamics in the neighborhood of the
perturbed homoclinic orbit of that system to TET efficiency.

The previous discussion and results provide ample motivation for focusing in
the initial, highly energetic regime of the slow flow dynamics (3.151) [or equiva-
lently (3.157)], as this represents the most critical stage for TET. Hence, we con-
sider the modulation equation (3.157) and restrict the analysis to the initial stage
of the dynamics. Mathematically, we will be interested in the dynamics up to times
of O(1/ε1/2), for initial conditions (impulses) or order X = O (

ε1/2
)
. Under these
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Fig. 3.69 Slow flow (3.151) or (3.157) of damped IOs in the intermediate-energy regime: (c) X =
0.12.

assumptions we consider the integral term on the right-hand side of (3.157) and
express it as follows:

I ≡ ε
[
(ελ− j)
2 (1 + ε)

]2 t∫
0

exp
(
−ε

2
(j + λ) [t − τ ]

)
u (τ) dτ

= ε
[

1

2 (1 + ε)
]2 t∫

0

exp
(
−ε

2
(j + λ) [t − τ ]

)
u (τ) dτ + O(ε2)

When t = O(ε−1/2), we have also that |τ − t | = O(ε−1/2); it follows that by
expanding the exponential in the integrand in Taylor series in terms of ε, the integral
I can be approximated as
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Fig. 3.69 Slow flow (3.151) or (3.157) of damped IOs in the intermediate-energy regime: (d) X =
0.11 (optimal TET).

I ≈ ε
[

1

2 (1 + ε)
]2 t∫

0

u (τ) dτ + O(ε3/2)

or, by invoking the mean value theorem of integral calculus, as

I ≈ 2−2 (1 + ε)−2 εt u (t0)

for some t0 in the interval 0 < t0 < t . Given that t = O(ε−1/2) and u (t0) =
O(X) = O(ε1/2), we prove that for times smaller than O(ε−1/2), the integral is
ordered as I = O (ε), and hence is a small quantity.

Taking this result into account, and introducing the variable transformations

u = ε1/2z and X = ε1/2Z

to account for the scaling of the initial condition (impulse)X = O(ε1/2), we express
the modulation equation (3.157) in the form
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Fig. 3.69 Slow flow (3.151) or (3.157) of damped IOs in the intermediate-energy regime: (e) X =
0.09 (lower regime).

ż− 3jC

8
|z|2 z+ j + λ

2
z = −jZ

2
+O(ε, ε1/2λ), z(0) = −Z (3.158)

where the variable z and initial condition Z are assumed to O(1) quantities, unless
otherwise noted. Finally, introducing the rescalings

z →
(

4

3C

)1/2

z , w →
(

4

3C

)1/2

w (3.159a)

the new notation,

B = −
(

3C

4

)1/2

X (3.159b)

and the additional scaling for the damping coefficient, λ = ε1/2λ̂, the system is
brought into the following final form,
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ż− j
2

|z|2 z+ j + ε1/2λ̂

2
z = jB

2
+O(ε), z(0) = B, t up to O(ε−1/2) (3.160)

and all quantities other than the small parameter ε are assumed to beO(1) quantities.
The complex modulation equation (3.160) provides an approximation to the initial
slow flow dynamics, and is valid formally up to times ofO(ε−1/2).

In Figure 3.70 we compare the initial approximation of the slow flow (3.158) or
(3.160) and the full slow flow (3.151) or (3.157), by computing the predicted energy
dissipated in the intermediate-energy regime of damped IOs by the two approxima-
tions. This comparison clearly validates the slow flow approximation (3.160) in the
intermediate-energy level of interest in this study.

Introducing the polar transformation, z = Nejδ , substituting into (3.160) and
separating real and imaginary parts, this system can be expressed in terms of the
following two real modulation equations:

Ṅ + ε1/2λ̂

2
N = B

2
sin δ +O(ε), N(0) = B

δ̇ + 1

2
− 1

2
N2 = B

2N
cos δ +O(ε), δ(0) = 0 (3.161)

These equations govern the slow evolutions of the amplitude N and phase δ of the
complex modulation z of the IO, during the initial regime of the dynamics.

In Figure 3.71 we depict the initial regime of slow flow dynamics (3.160–3.161)
for ε = 0.05, λ̂ = 0.4472 and three different normalized impulses (initial condi-
tions) B. For B above the critical level Bcrit(λ̂ = 0.4472) ≈ 0.3814, the slow flow
model (3.160) predicts large excursion of the damped IO in phase space. In fact,
after executing relatively large-amplitude transients, the orbit is being ultimately
attracted by the stable in-phase damped NNM S11+; these initial transients corre-
spond to the nonlinear beats (the ‘wiggles’) observed in the initial stage of the full
slow flow model (3.157) in the upper subregime of the intermediate-energy regime
(see Figures 3.68 and 3.69a–c). Note, that since the model (3.160–3.161) is valid
only for the initial stage of the slow flow dynamics, it cannot predict the eventual
transition of the dynamics from S11+ to S11− in the later, low-energy (linearized)
stage of the oscillation.

For B below the critical level Bcrit(λ̂), there is a significant qualitative change in
the dynamics as the IO executes small-amplitude oscillations, as is being attracted
by the weakly nonlinear out-of-phase damped NNM S11−; this corresponds to the
weakly nonlinear dynamics realized in the lower subregime of the intermediate-
energy range (see Figure 3.69e). It follows, that the critical orbit that separates these
two qualitatively different regimes of the dynamics is a ‘perturbed homoclinic orbit’
realized for B = Bcrit(λ̂). This special orbit is formed by one of the branches result-
ing from the ‘break-up’ of the Hamiltonian homoclinic loop when weak damping is
added to the system. We recall that the homoclinic loop of the unstable undamped
NNM S11− is generated through a saddle-node bifurcation that occurs at an energy
level between the periodic IOs on branchesU65 andU76 in the FEP of Figure 3.20.
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Fig. 3.70 Percentage of energy dissipated when intermediate-energy damped IOs are excited (ε =
0.05, C = 1 and λε1/2λ̂ = 0.1): (a) full slow slow (3.151) or (3.157), (b) approximation of the
slow flow in the initial stage of the dynamics, (3.158) or (3.160).
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The damped perturbed homoclinic orbit appears a the initial ‘super-slow’ half-cycle
in the plot of Figure 3.69d, and corresponds to the case of optimal TET in the sys-
tem. In Figure 3.71 we depict the portion of this damped homoclinic orbit corre-
sponding to the solution of the slow flow dynamical systems (3.160–3.161) for the
given initial condition z(0) = B; we note that these are peculiar forms of dynamical
systems, as the initial conditions appear also as excitation terms on their right-hand
sides. In what follows, the damped perturbed homoclinic orbit will be analytically
studied, in an effort to analytically model the optimal TET regime depicted in Fig-
ure 3.69d. This analysis is analogous to, but different from the analytical study per-
formed in Section 2.3 concerning the ‘break-up’ of the homoclinic orbit (depicted
in Figure 2.10) of system (2.31) with grounded NES when damping was added.

Reconsidering system (3.160–3.161), we seek its solution in the following regu-
lar perturbation series form:

z(t) = z0(t)+ ε1/2λ̂ z1(t)+O (ε) , B = B0 + ε1/2λ̂B1 +O (ε) (3.162)

Substituting into (3.160) and considering only O(1) terms we derive the following
system at the first order of approximation,

ż0 − j

2
|z0|2 z0 + j

2
z0 = jB0

2
, z0(0) = B0 (3.163a)

or in terms of the polar transformation z0 = N0e
jδ0 ,

Ṅ0 = B0

2
sin δ0, N0(0) = B0

δ̇0 + 1

2
− 1

2
N2

0 = B0

2N0
cos δ0, δ0(0) = 0 (3.163b)

We note that there exist no damping terms in this first order of approximation, as
these terms enter into the problem at the next order of approximation.

It can be proved that the undamped slow flow possess the following Hamiltonian
(first integral of the motion):

j

2
|z0|2 − j

4
|z0|4 − jB0

2
z∗0 − jB0

2
z0 = h (3.164)

where the asterisk denotes complex conjugate. This relation reduces (3.163b) to the
following one-dimensional slow flow:

2ȧ = [
f (a;B0)

]1/2
, f (a;B0) ≡ 4B0a −

(
a − 1

2
a2 + 1

2
B4

0 + B2
0

)2

sin δ0 = 2

B0

d
√
a

dt
, a(0) = B2

0 , δ0(0) = 0 (3.165)
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Fig. 3.71 Parametric plots for λ̂ = 0.4472 Im[z] against Re[z] with t being the parametrizing
variable: initial regime of slow flow dynamics of intermediate-energy damped IOs for different
normalized impulses B [slow flow (3.160) or (3.161)].

where we introduced the notation a(t) ≡ N2
0 (t). The roots of the polynomial

f (a;B0) depend on the parameterB0 (see Figure 3.72). For B0 > B0 crit ≈ 0.36727
the polynomial f (a;B0) possesses two real distinct roots for a, whereas for B0 <

B0 crit four distinct real roots. For B0 = B0 crit two of the real roots coincide, so
f (a;B0) possesses only three distinct real roots then:

a1 = B0 crit < a2 = a3 = 0.4563 < a4 = 2.9525, B = B0 crit ≈ 0.36727
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Fig. 3.72 Roots of (B0, a) = 0 (the additional real root for a > 1 is not shown).

In this case, it will be proven that the system (3.165) possesses a homoclinic orbit,
which we now proceed to compute explicitly.

Indeed, for B0 = B0],crit the reduced slow flow dynamical system can be inte-
grated by quadratures as

ȧ = 1

4

[
(a − B2

0 crit) (a2 − a)2 (a4 − a)]1/2

⇒ t = 4

a∫
B2

0 crit

dυ

(a2 − υ) [(υ − B2
0 crit) (a4 − υ)]1/2

(3.166)

where the initial condition a(0) = B2
0 crit was taken into account, and it was recog-

nized that a(t) ≥ B2
0 crit for t ≥ 0. We note that (3.166) provides the unique solution

of the problem (3.165). The definite integral in the expression above can be ex-
plicitly evaluated (Gradshteyn and Ryzhik, 1980) to yield the following analytical
homoclinic orbit of the first-order system (3.163):

N2
0 (t) ≡ a(−)h (t) = a2 − γ1γ2

γ1 sinh2
(√

γ1γ2

8
t

)
+ γ2 cosh2

(√
γ1γ2

8
t

) (3.167a)

δ0(t) = δ(−)0h (t) = sin−1

⎡
⎣ 2

B0 crit

d

√
a
(−)
h (t)

dt

⎤
⎦ (3.167b)

where γ1 = a2 − B2
0 crit, γ2 = a4 − a2, and only the branch of the solution cor-

responding to t ≥ 0 is taken. The solution (3.167) assumes the limiting values,
N0(0) = B0 crit and limt→+∞N0(t) = √

a2. Of course, the solution (3.168) can be
extended for t < 0, but the resulting branch of the homoclinic orbit is not a solution
of the problem (3.163), and satisfies the limiting relation limt→−∞N0(t) = √

a2.
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We mention that system (3.166) provides an additional homoclinic loop for
(3.163) [which, however, does not satisfy the initial condition a(0) = B2

0 crit]:

N2
0 (t) ≡ a(+)h (t) = a2 + γ1γ2

γ1 cosh2
(√

γ1γ2

8
t

)
+ γ2 sinh2

(√
γ1γ2

8
t

) (3.168a)

δ0(t) = δ(+)0h (t) = sin−1

⎡
⎣ 2

B0 crit

d

√
a
(+)
h (t)

dt

⎤
⎦ (3.168b)

This homoclinic loop assumes the limiting values, N0(0) = √
a4 and

limt→±∞N0(t) = √
a2. In Figure 3.73 the two homoclinic loops corresponding

to (3.167a, b) and (3.168a, b) are depicted. These loops are shown by dashed lines
for the full range −∞ < t < +∞, with the branch (3.167a) of the homoclinic
solution of problem (3.165) being identified by solid line.

This completes the solution of the O(1) approximation of the homoclinic solu-
tion of (3.160–3.161), and we now proceed to consider the O(ε) problem, which
takes into account (to the first order) the effects of damping. We will be especially
interested in studying the perturbation of the homoclinic solution (3.167a, b) of the
O(1) problem when weak damping [of O(ε1/2)] is added. The O(ε1/2) analysis
will also provide a correction due to damping of the critical value of the implulse
(initial condition) corresponding to the homoclinic solution (see Figure 3.71).

Substituting (3.162) in (3.160) and considering O(ε1/2) terms, we derive the
following problem at the next order of approximation:

ż1 − j

2
(z∗1z

2
0 + 2 |z0|2 z1)+ j

2
z1 = −1

2
z0 + jB1

2
, z1(0) = B1 (3.169)

This is a complex quasi-linear ordinary differential equation with a non-
homogeneous term. Although the following analysis applies for the general class
of solutions of (3.169), from hereon we will focus only in the solution correspond-
ing to the perturbation of the homoclinic orbit (3.167a, b) of theO(1) problem.

The perturbed homoclinic solution z1h(t) of (3.169) is written as

z1h(t) = z1HS(t)+ z1PI (t) (3.170)

i.e., it is expressed as a superposition of the general homogeneous solution z1HS(t)

and of a particular integral z1PI (t). Key in solving the problem, is the computation
of two linearly independent homogeneous solutions of (3.169), since then, a par-
ticular integral may be systematically computed by either solving the differential
equation satisfied by the Wronskian of the homogeneous solutions, or through the
method of variation of parameters.

We can easily prove (by simple substitution into the complex homogeneous equa-
tion) that one homogeneous solution of (3.169) can be computed in terms of the time
derivative of the O(1) homoclinic solution as z(1)1HS(t) = � ż0h(t), � ∈ R. At this
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Fig. 3.73 Homoclinic orbits (3.167a, b) and (3.168a, b): (a)a(±)h (t), (b) parametric plot of Im[z]
against Re[z] with t being the parametrizing variable; the solid line represents the homoclinic
solution of the slow-flow problem (3.165).

point we decompose the complex solution into real and imaginary parts:

z1h(t) = x1h(t)+ jy1h(t), z0h(t) = x0h(t)+ jy0h(t) (3.171)

Then the first homogeneous solution of (3.169) is expressed as
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x
(1)
1HS(t) = 2

B0 crit
ẋ0h(t)

y
(1)
1HS(t) = 2

B0 crit
ẏ0h(t)

⎫⎪⎪⎬
⎪⎪⎭

⇒ z
(1)
1HS = 2

B0 crit
[ẋ0h(t)+ j ẏ0h(t)] (First homogeneous solution)

(3.172)

where the real constant � was selected so that the first homogeneous solution
satisfies the initial conditions x(1)1HS(0) = 0, y(1)1HS(0) = +1 ⇒ z

(1)
1HS(0) = j .

In addition, the homogeneous solution (3.173) satisfies the limiting conditions
limt→+∞ x(1)1HS(t) = 0 and limt→+∞ y(1)1HS(t) = 0.

To compute a second linearly independent homogeneous solution of (3.169) it is
convenient to carry the entire analysis to the real domain, by decomposing (3.169)
into the following set of two real quasi-linear coupled ordinary differential equations
with non-homogeneous terms:

{
ẋ1h

ẏ1h

}
+

[
x0hy0h (x2

0h + 3y2
0h − 1)/2

−(3x2
0h + y2

0h − 1)/2 −x0hy0h

]{
x1h

y1h

}

=
{ −x0h/2

(B1 crit − y0h) /2

}
(3.173)

Note that problem (3.173) governs theO(ε1/2) perturbation of theO(1) homoclinic
solution (3.167a, b), and the real constant B1 crit on the right-hand side denotes the
O(ε1/2) correction to B0 crit in (3.162). We seek a second homogeneous solution of
(3.173) satisfying the initial conditions, x(2)1HS(0) = −1, y(2)1HS(0) = 0. Accordingly,
we consider the following relation satisfied by the Wronskian of (3.173):

W(t) = x(1)1HS(t)y
(2)
1HS(t)− x(2)1HS(t)y

(1)
1HS(t) (3.174a)

From the theory of ordinary differential equations the Wroskian then satisfies the
following relation:

Ẇ (t) = 0 ⇒ W(t) = W(0) = 1 (3.174b)

which provides a means for computing the second homogeneous through the rela-
tion,

x
(1)
1HS(t)y

(2)
1HS(t)− x(2)1HS(t)y

(1)
1HS(t) = 1 ⇒ x

(2)
1HS(t) = x

(1)
1HS(t)y

(2)
1HS(t)− 1

y
(1)
1HS(t)

(3.175)

When this expression is substituted into the second of equations (3.173) with the
non-homogeneous term dropped, yields the following first-order quasi-linear differ-
ential equation governing y(2)1HS,
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ẏ
(2)
1HS +

[
a21
x
(1)
1HS

y
(1)
1HS

+ a22

]
y
(2)
1HS = a21

y
(1)
1HS

, y
(2)
1HS(0) = 0 (3.176)

with a11 = x0hy0h, a12 = (x2
0h + 3y2

0h − 1)/2, a21 = −(3x2
0h + y2

0h − 1)/2, and
a22 = −x0hy0h. The solution of (3.176) provides the second linearly independent
homogeneous solution of (3.169), which is computed explicitly:

x
(2)
1HS(t) = x

(1)
1HS(t)y

(2)
1HS(t)− 1

y
(1)
1HS(t)

y
(2)
1HS(t) =

t∫
0

a21(τ )

y
(1)
1HS(τ )

exp

⎧⎨
⎩−

t∫
τ

[
a21(s)

x
(1)
1HS(s)

y
(1)
1HS(s)

+ a22(s)

]
ds

⎫⎬
⎭ dτ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇒ z
(2)
1HS = x(2)1HS(t)+ jy(2)1HS(t) (Second homogeneous solution)

(3.177)

As mentioned previously, the second homogeneous solution satisfies the initial
conditions x(2)1HS(0) = −1, y(2)1HS(0) = 0 ⇒ z

(2)
1HS(0) = −1, and, contrary to

(3.172) it diverges with time, since it holds that limt→+∞ x(2)1HS(t) = +∞ and

limt→+∞ y(2)1HS(t) = +∞.
Making use of the two linearly independent homogeneous (3.172) and (3.177)

we may compute a first particular integral by the method of variation of parame-
ters. By expressing the real and imaginary parts of the particular integral z1PI (t) =
x1PI (t)+ jy1PI (t), in the form

{
x1PI (t)

y1PI (t)

}
= c1(t)

{
x
(1)
1HS(t)

y
(1)
1HS(t)

}
+ c2(t)

{
x
(2)
1HS(t)

y
(2)
1HS(t)

}
(3.178)

and evaluating the real coefficients c1(t) and c2(t) by substituting into (3.174),
we obtain the following explicit solution of problem (3.169) which provides the
O(ε1/2) perturbation of the homoclinic orbit:{
x1h(t)

y1h(t)

}

=
⎡
⎣�1 +

t∫
0

{
−x0h(τ )

2
y
(2)
1HS(τ )−

[
B1cr − y0h(τ )

2

]
x
(2)
1HS(τ )

}
dτ

⎤
⎦

{
x
(1)
1HS(t)

y
(1)
1HS(t)

}

+
⎡
⎣�2 +

t∫
0

{
x0h(τ )

2
y
(1)
1HS(τ )+

[
B1cr − y0h(τ )

2

]
x
(1)
1HS(τ )

}
dτ

⎤
⎦{

x
(2)
1HS(t)

y
(2)
1HS(t)

}

(3.179)
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This analytical expression contains three yet undetermined real constants,
namely, the coefficients �1,�2, and the correction to the initial condition for mo-
tion on the homoclinic orbit, B1 crit. By imposing the initial condition of (3.169),
z1h(0) = B1 crit ⇒ x1h(0) = B1 crit, y1h(0) = 0, we compute the two coefficients as
follows:

�1 = 0 (3.180)

Then, taking into account that the components of the second homogeneous solution
x
(2)
1HS(t) and y(2)1HS(t) in the second additive term of (3.179) diverge as t → +∞, and

in order to obtain bounded solutions for x1h(t) and y1h(t) as t → +∞, we require
that

−B1 crit +
+∞∫
0

{
x0h(τ )

2
y
(1)
1HS(τ )+

[
B1 crit − y0h(τ )

2

]
x
(1)
1HS(τ )

}
dτ = 0 (3.181a)

This evaluates B1 crit according to the following expression:

B1 crit =

∫ +∞

0

[
x0h(τ )y

(1)
1HS(τ )− y0h(τ )x

(1)
1HS(τ )

]
dτ

2 −
∫ +∞

0
x
(1)
1HS(τ ) dτ

(3.181b)

This completes the solution of problem (3.169) and computes the perturbation of
the homoclinic orbit in the damped system (3.160–3.161) withO(ε1/2) damping. In
summary, the analytic approximation of the perturbed homoclinic orbit is given by

zh(t) = z0h(t)+ ε1/2λ̂ z1h(t)+O (ε) , Bcrit(λ̂) = B0 crit + ε1/2λ̂B1 crit +O (ε)
(3.182)

where z0h(t) =
√
a
(−)
h (t) exp[δ(−)h (t)] and a(−)h (t), δ(−)h (t) are computed by (3.167a,

b); z1h(t) = x1h(t) + jy1h(t), where x1h(t) and y1h(t) are computed by (3.179),
(3.180) and (3.182b);B0 crit ≈ 0.36727; and B1 crit is computed by (3.181b).

For ε = 0.05 and λ̂ = 0.4472 we estimate the initial condition as Bcrit(λ̂ =
0.4472) ≈ 0.3806, which compares to the numerical value of 0.3814 derived from
the numerical integration of the initial approximation of the slow flow (3.160–3.161)
(see Figure 3.71). Taking into account the previous coordinate transformations and
rescalings for B, the previous analytical result leads to an estimated initial condition
(impulse) of X = 0.0983 for optimal TET (i.e., for the excitation of the damped
homoclinic orbit), compared to the numerical result of X = 0.1099 derived from
the full averaged slow flow (3.157) (see Figure 3.69d); we note that the error is of
O(ε = 0.05) and compatible to our previous asymptotic derivations.

In Figure 3.74 we provide a comparison of the three approximate models for the
slow flow dynamics in the regime of optimal TET; the asymptotic analysis correctly
predicts the half-cycle ‘super-slow’ transfer of energy from the LO to the NES in
the initial regime of the motion, although it underestimates the maximum amplitude
of the response during this half-cycle; this can be explained by the fact that the
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Fig. 3.74 Slow flow response in the regime of optimal TET (‘super-slow’ half-cycle of TET), for
ε = 0.05, C = 1 and λ = ε1/2λ̂ = 0.1; comparison of full slow slow (3.151) or (3.157), of the
approximation of the slow flow in the initial stage of the dynamics (3.158) or (3.160), and of the
asymptotic solution (3.182).

slow flow approximation (3.158) or (3.160) is only valid in the initial regime of the
motion.

This completes the analytical study of the regime of optimal TET in system
(3.148) when intermediate-energy damped IOs are excited. In summary, in the
weakly damped system, optimal TET is realized for initial energies where the ex-
cited damped IOs are in the neighborhood of the homoclinic orbit of the unstable
out-of-phase damped NNM S11−; in the underlying Hamiltonian system this un-
stable NNM is generated at a critical energy through a saddle-node bifurcation. We
studied analytically the perturbation of the homoclinic orbit in the weakly damped
system, which introduces an additional ‘super slow’ time scale in the averaged dy-
namics and leads to optimal TET from the LO to the NES in a single ‘super-slow’
half cycle. At higher energies, this ‘super-slow’ half cycle is replaced by strong non-
linear beats (these are generated from the attraction of the dynamics to the stable in-
phase damped NNM S11+), which yield significant but non-optimal TET through
nonlinear beats. At lower energies than the one corresponding to the optimal TET
regime, the dynamics is attracted by the stable, weakly nonlinear (linearized), out-
of-phase damped NNM S11− and TET is negligible.

The above-mentioned conclusions are valid for the weakly damped system
(3.148), under the assumption of sufficiently small ε, i.e., of for lightweight NESs
and systems with strong mass asymmetries. In Figures 3.75–3.77 we study TET
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Fig. 3.75 Energy dissipation in system (3.148) when damped IOs are excited for mass assymetry
ε = 0.03: (a) ελ = 0.015, (b) ελ = 0.003, (c) ελ = 0.006.
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Fig. 3.76 Energy dissipation in system (3.148) when damped IOs are excited for mass assymetry
ε = 0.1: (a) ελ = 0.005, (b) ελ = 0.01, (c) ελ = 0.02.
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Fig. 3.77 Energy dissipation in system (3.148) when damped IOs are excited for mass assymetry
ε = 0.2: (a) ελ = 0.01, (b) ελ = 0.02, (c) ελ = 0.04.
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in system (3.148) for excitation of intermediate-energy damped IOs over a wider
range of mass asymmetry ε and damping ελ; these plots were derived by direct
numerical integrations of the differential equations of motion, and monitoring the
instantaneous energy of the system versus time. Numerical results indicate that, by
increasing ε (i.e., by decreasing the mass asymmetry) and the damping coefficient
ελ, the capacity of the NES for optimal TET deteriorates. This is due to the fact that
by increasing the inertia of the NES the amplitude of the relative response between
the LO and the NES decreases, which hinters the capacity of the damper of the NES
to effectively dissipate energy. Moreover, by increasing damping in the system, the
damper of the LO dissipates an increasingly higher portion of the vibration energy
which leads to deterioration of TET; this markedly slows energy dissipation in the
system, as judged by comparing the time intervals required for energy dissipation
in the plots of Figure 3.77 and the corresponding time intervals in the regimes of
optimal TET in the plots of Figures 3.75 and 3.76.

3.5 Multi-DOF (MDOF) Linear Oscillators with SDOF NESs:
Resonance Capture Cascades and Multi-frequency TET

Up to now we examined TET in a two-DOF system consisting of SDOF damped
linear oscillator (LO) coupled to an essentially nonlinear attachment, acting, in
essence, as nonlinear energy sink (NES). In this section, we extend the analysis
to MDOF LOs with SDOF essentially nonlinear boundary attachments. The main
result reported in this section is that the SDOF NES can interact with (and extract
energy from) multiple linear modes of the linear system to which it is attached, due
to resonance capture cascades (RCCs). Indeed, we will show that through RCCs
the NES can passively extract broadband vibration energy from the linear system
(i.e., over wide frequency ranges), through multi-frequency TET.

What enables a SDOF NES to interact with multiple linear modes over arbitrary
frequency ranges is its essential stiffness nonlinearity, which enables it to engage in
transient resonance capture (TRC) with any highly energetic linear mode irrespec-
tive of its frequency, provided, of course, that this mode has no node at the point
of attachment of the NES. Then, the NES extracts energy from each specific mode,
before escaping from TRC and engaging in transient resonance the next one. In the
passive system considered, what controls the order with which modes participate in
these RCCs is the initial state of the system, the external excitation (being narrow-
band or broadband), and the actual rate of energy dissipation due to damping (since
the instantaneous energy level of the NES passively ‘tunes’ its instantaneous fre-
quency). These concepts are discussed in the following sections and demonstrated
for the case of a two-DOF linear LO with a SDOF NES attachment. Then, we con-
sider a semi-infinite chain of LOs with a single NES attached to its end, as a first
attempt to extend the concept of passive TET to linear waveguides with local essen-
tially nonlinear attachments.
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Fig. 3.78 The three-DOF system consisting of a two-DOF primary LO with an essentially nonlin-
ear, lightweight NES.

3.5.1 Two-DOF Linear Oscillator with a SDOF NES

The system considered is depicted in Figure 3.78, and consists of a two-DOF
damped LO (designated as the primary system) coupled to a SDOF NES. The equa-
tions of motion are given by:

m1ẍ1 + c1ẋ1 + k1x1 + k12(x1 − x2) = 0

m2ẍ2 + c2ẋ2 + cv(ẋ2 − v̇)+ k2x2 + k12(x2 − x1)+ C(x2 − v)3 = 0

εv̈ + cv(v̇ − ẋ2)+ C(v − x2)
3 = 0 (3.183)

The variables x1(t) and x2(t) refer to the displacements of the oscillators of the
(primary) linear system, whereas v(t) refers to the displacement of the NES. As in
the previous sections, a lightweight NES is considered by requiring that ε 	 m1,
m2, with 0 < ε 	 1 being a small parameter characterizing the mass asymmetry of
the system.

As in the analysis for the two-DOF system considered in the previous sections,
first we discuss the dynamics of the underlying Hamiltonian system obtained by
setting all damping terms equal to zero; then we analyze the nonlinear transitions in
the weakly damped system and relate these transitions to the Hamiltonian dynamics.
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3.5.1.1 Frequency-Energy Plot (FEP) of the Underlying Hamiltonian System

It is not necessary to perform an exhaustive calculation of the periodic orbits of un-
derlying Hamiltonian system of (3.183), since the dynamics governing TET can be
studied by considering the following two subsets of orbits in the Hamiltonian FEP:
(i) the backbone branches of periodic orbits under conditions of 1:1:1 internal res-
onance, and (ii) the manifolds of impulsive orbits (IOs). Note since in this case the
primary linear system possesses two degrees of freedom there exist multiple back-
bone sub-branches (depending on the relative phases between the three oscillators
of the system during 1:1:1 internal resonance), and multiple manifolds of IOs in the
FEP.

An analytic approximation of the backbone branches of the Hamiltonian system
can be derived by applying the complexification-averaging (CX-A) technique. To
this end, the following complex variables are introduced,

ψ1 = ẋ1 + jωx1, ψ2 = ẋ2 + jωx2, ψ3 = v̇ + jωv (3.184)

where ω is the common dominant frequency of oscillation during 1:1:1 internal
resonance. Following the CX-A procedure as discussed in the previous sections (i.e.,
averaging over the fast frequency ω, expressing the resulting complex modulations
in polar form, and imposing stationarity conditions for the resulting real amplitudes
and phases) the following analytical approximation for the NNMs on the backbone
branches of the Hamiltonian system is obtained,

x1(t) ≈ A sinωt, x2(t) ≈ B sinωt, v(t) ≈ D sinωt (3.185)

where

A =
[

4εω2c2

3C(c2 − c1)3

]1/2

, D = c2A, B = c1A,

c1 =
(
k1 + k12 − ω2m1

)
/k12, c2 =

[
−k12 − c1(ω

2m2 − k2 − k12)
]
/εω2

The backbone branches can be constructed by varying the frequencyω and calcu-
lating the corresponding total energies of the NNMs. Figure 3.79 depicts the back-
bone branches, denoted by S111, of the system with parameters m1 = m2 = k1 =
k2 = k12 = C = 1 and ε = 0.05. NNMs depicted as projections of the three-
dimensional configuration space (v, x1, x2) of the system are inset. When the pro-
jections of the NNMs are close to horizontal (vertical) lines, the motion is localized
to the NES (primary system).

Four characteristic frequencies, f1L, f2L, f1H and f2H are defined in this FEP.
At high energy levels and finite frequencies, the essential nonlinearity behaves as a
rigid link, and the system is reduced to the following system of two linear coupled
oscillators:

m1ẍ1 + k1x1 + k12(x1 − x2) = 0
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Fig. 3.79 Analytic approximation of the backbone branch of (3.183): NNMs depicted as projec-
tions of the three-dimensional configuration space of the system are superposed; the horizontal and
vertical axes in these plots are the responses of the nonlinear and primary systems, respectively [top
plot (v, x1), bottom plot (v, x2)].

(ε +m2)ẍ2 + k2x2 + k12(x2 − x1) = 0 (3.186)

For the above parameters the natural frequencies of this system are given by f1H =
0.9876 rad/s and f2H = 1.7116 rad/s. At low energy levels, the stiffness of the
essential nonlinearity tends to zero, and the system is again reduced to the primary
two-DOF LO, the natural frequencies of which are given by f1L = 1 rad/s and
f2L = √

3 rad/s.
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From Figure 3.79, we note that the two frequencies f1L and f2L divide the FEP
into three distinct regions. The first region defined by ω ≥ f2L, consists of the back-
bone sub-branch S111+−+, where the (+) and (−) signs characterize the relative
phases between the three masses of the system, and indicate whether the extremum
of the amplitude of the corresponding oscillator during the synchronous 1:1:1 pe-
riodic motion (NNM) is positive or negative, respectively. On this sub-branch, the
primary LO vibrates in an out-of-phase fashion, and the motion becomes increas-
ingly localized to LO or the NES as ω → f2L or ω → ∞, respectively. The second
region defined by f1L ≤ ω ≤ f2H , consists of two distict sub-branches, namely
S111+−− and S111++−. These branches coalesce at point S111+0− (depicted
as the grey dot in Figure 3.79), where the initial velocity of the mass m2 is zero. On
S111+−− the LO vibrates in an out-of-phase fashion, and the motion localizes to
the NES as the frequency leaves the neighborhood of f2H . On S111++− the LO
oscillates in in-phase fashion, and the vibration localizes to the LO as ω → f1L.
The third region corresponding to ω ≤ f1H , consists of the sub-branch S111+++,
where the LO vibrates in in-phase fashion, and the motion localizes to the NES as
the frequency tends away from f1H .

Due to the energy dependence of the NNMs along the sub-branches of S111, in-
teresting and strong energy exchanges may occur between the primary LO and the
NES when weak damping is introduced in the system. Indeed, the weakly damped
system possesses damped NNM manifolds which can be considered as analytic con-
tinuations for weak damping of the NNMs of the Hamiltonian system. Since, these
manifolds are invariant for the dynamical flow, when a damped response is initiated
on a damped NNM manifold, it stays on it for the entire duration of the decaying
oscillation.

Two specific sub-branches, namely S111+−− and S111+++, play an impor-
tant role for the realization of fundamental TET in system (3.183). Due to the de-
pendence of the frequency of the damped oscillation on the instantaneous energy,
irreversible channeling of vibration energy from the LO to the NES takes place as
the damped continuations of the NNMs S111+−− and S111+++ are traced from
high to low frequencies (since the shapes of the corresponding NNMs localize from
the LO to the NES as frequency decreases – see Figure 3.79). Hence, both in-phase
and out-of-phase fundamental TET can be realized in this system, corresponding to
in-phase or out-of-phase motions of the oscillators of the primary LO, respectively;
this shows the adaptability of the NES to different initial conditions and represents
a generalization of the concept of fundamental TET discussed in Section 3.4.2.1 for
the two-DOF system. A detailed stability analysis of S111+−− and S111+++ was
not performed, but the following numerical simulations and experimental results
show that these are stable oscillations, at least for the parameter values considered
in this work.

The backbone of the FEP of the Hamiltonian system can also be computed
numerically. Assuming that a NNM is realized for the initial velocity vector
[ẋ1(0) ẋ2(0) v̇(0)] and zero initial displacements, this vector together with the
period of the motion, T , are computed by satisfying the following periodicity con-
dition:
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Fig. 3.80 Numerical computation of the FEP (backbone branches and periodic IOs) of system
(3.183) for m1 = m2 = k1 = k2 = k12 = C = 1 and ε = 0.05; black dots and squares denote
out-of-phase and in-phase IOs, respectively; unstable NNMs are denoted by (×); IOs 1–6 refer to
Figures 3.80 and 3.81.

[
x1(T ) x2(T ) v(T ) ẋ1(T ) ẋ2(T ) v̇(T )

]T
− [

0 0 0 ẋ1(0) ẋ2(0) v̇(0)
]T = [

0 0 0 0 0 0
]T

(3.187)

The numerical computation was carried out in Matlab� using optimization tech-
niques. For a given value of the period T the objective function to be minimized is
the norm of the left-hand side of equation (3.187), and the optimization variables
are the non-zero initial conditions. By varying the period, the backbone branch rep-
resented in Figure 3.80 is obtained; a small subset of subharmonic tongues (see
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Sections 3.3.2.2 and 3.3.2.3) has also been identified using this algorithm. We note
the close agreement between the backbones computed numerically and analytically
(compare Figures 3.79 and 3.80).

Another important feature of the FEP is the manifolds of IOs. The essential role
of IOs for TET has been discussed extensively in Section 3.4; the periodic IOs of
system (3.183) correspond to the special initial conditions, ẋ1(0) �= 0, ẋ2(0) �= 0
and x1(0) = x2(0) = v(0) = v̇(0) = 0 (or, equivalently, to two impulses applied
to the LO with the system initially at rest). Contrary to the two-DOF examined in
Sections 3.3.3 and 3.3.4, two distinct families of IOs are realized in the three-DOF
under consideration: in-phase IOs correspond to two in-phase impulses of identical
magnitudes applied to the two masses of the LO at t = 0, corresponding to initial
conditions, ẋ1(0) = ẋ2(0) �= 0; out-of-phase IOs correspond to two out-of-phase
impulses of equal magnitude applied to the two masses of the LO, and initial condi-
tions ẋ1(0) = −ẋ2(0) �= 0. Contrary to the two-DOF system examined previously,
no IOs can be realized in the three-DOF system by applying a single impulse to
either one of the masses of the LO. Similarly, however, to the two-DOF system, the
excitation of stable IOs localized to the NES, leads to rapid and significant energy
transfer from the LO to the NES during a cycle of the oscillation of the three-DOF
system; when damping is introduced this leads to effective, fast scale TET from
the LO to the NES. It follows that for system (3.183) there exist two distinct IO
manifolds, consisting of periodic and quasi-periodic in-phase and out-of-phase IOs,
respectively. The computations depicted in Figure 3.80 were restricted to periodic
IOs corresponding to low-order internal resonances between the LO and the NES.

As mentioned above, no periodic orbits corresponding to impulsive excitation of
only one of the masses of the primary system were detected. However, we conjecture
that for this type of impulsive excitation quasi-periodic impulsive orbits could still
exist, and are such that the NES resonates with a mode of the primary system only
above a certain energy threshold. Moreover, it was observed that strong nonlinear
interaction of the NES with the in-phase mode of the LO is triggered at lower energy
levels compared to the out-of-phase mode.

The in-phase manifold of IOs consists of in-phase impulsive orbits (++0) lo-
cated on in-phase subharmonic tongues, with the masses of the primary linear sys-
tem oscillating in in-phase fashion. This manifold is depicted as a smooth curve in
the FEP. Representative in-phase IOs labeled as IO 1, IO 2 and IO 3 in Figure 3.80
are illustrated in Figure 3.81. When the phase differences between the masses of
the system are trivial, the motion of the NNM in the configuration space (x1, x2, v)

takes the form of a simple curve; in the case of non-trivial phase differences the
motion corresponds to a Lissajous curve.

For IO 1, the oscillations of the two masses of the linear primary system are al-
most identical and nearly monochromatic; the corresponding oscillation of the NES
has two dominant harmonic components, one equal to the dominant frequency of
oscillation of the primary system, and the other equal to one-third of that frequency.
Hence, a 1:1:3 internal resonance (IR) between the two masses of the primary sys-
tem and the NES is realized. The nonlinear beat resulting due to this internal reso-
nance is clearly deduced from Figure 3.81. For IO 1, the energy exchange between
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Fig. 3.81 Representative in-phase IOs: (a) IO 1, (b) IO 2, (c) IO 3 (see Figure 3.80); left column:
time series; - -�— x1(t), - -O- - x2(t), - -�- - v(t); right column: two-dimensional projections of
IOs and instantaneous percentage of total energy carried by the NES during a cycle of the IO.

the LO and the NES is insignificant, as the maximum percentage of total energy
transferred from the LO to the NES during a cycle is just 0.17%. For IOs 2 and
3, however, which correspond to 3:3:2 and 5:5:2 internal resonances, respectively,
energy transfer from the LO to the NES during a cycle of the nonlinear beat is much
stronger, reaching levels of 35% and 15%, respectively (the notation p:p:q internal
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Fig. 3.82 Representative out-of-phase IOs: (a) IO 4, (b) IO 5, (c) IO 6 (see Figure 3.80); left col-
umn: time series; - -�- - x1(t), - -O- - x2(t), - -�- - v(t); right column: two-dimensional projections
of IOs and instantaneous percentage of total energy carried by the NES during a cycle of the IO.

resonance implies that the frequencies of oscillation of the first mass of the LO, the
second mass of the LO and the NES are in ratios equal to p:p:q).

The out-of-phase manifold of IOs consists of out-of-phase impulsive orbits
(+−0) located on out-of-phase subharmonic tongues. This manifold is also repre-
sented by a smooth curve in the FEP. Representative out-of-phase IOs (labeled as IO
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Fig. 3.83 Maximum percentage of energy transferred from the LO to the NES during a cycle
of the IO (dashed line: in-phase IOs; dotted line: out-of-phase IOs); the FEP of Figure 3.80 is
superimposed to this plot, unstable NNMs are denoted by (×).

4–6 in Figure 3.80 and corresponding to 1:1:3, 2:2:3 and 6:6:5 internal resonances,
respectively) are shown in Figure 3.82.

In Figure 3.83 we present a study of maximum energy transferred from the LO
to the NES during a cycle of the nonlinear beat resulting from excitation of in-phase
or out-of-phase IOs. Superimposed to the plot of maximum energy transferred is
the FEP of Figure 3.80, indicating the backbone branch and the two manifolds of
IOs. What is evident from that plot is that there exist two critical energy thresholds,
one for each of the in-phase and out-of-phase IOs, above which the IOs transfer a
significant amount of energy from the LO to the NES during a cycle of the nonlinear
beat; moreover, the energy threshold for out-of-phase IOs, hc2, is higher than the
corresponding one for in-phase IOs, hc1. For instance, for the out-of-phase IO 4
located below the energy threshold hc2, the maximum energy transferred to the NES
during a cycle of the nonlinear beat is approximately 0.15% of the energy of the LO,
whereas for the out-of-phase IO 6 located above that threshold the corresponding
percentage of energy transferred is nearly 60%.

It is interesting to note that the in-phase and out-of-phase thresholds hc1 and hc2
are located close to the corresponding energies where the saddle node bifurcations,
I for in-phase NNMs and II for out-of-phase NNMs take place; these bifurcations
generate unstable branches of in-phase and out-of-phase NNMs as shown in Fig-
ure 3.83. From the discussion of Sections 3.3.5 and 3.4.2.5 we recall that in the
two-DOF system a similar bifurcation exists in the corresponding FEP. In that sys-
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tem the homoclinic loops of the unstable NNM generated from the saddle-node
bifurcation affect drastically the topologies of nearby IOs, since IOs lying inside the
homoclinic loops are localized in phase space and the corresponding motions of the
system are predominantly localized to the LO; on the contrary, IOs lying outside
the homoclinic loops and being close to the 1:1:1 resonance manifold of the Hamil-
tonian dynamics make large excursions in phase space and correspond to strong
nonlinear beats where significant energy is being exchanged between the linear and
nonlinear oscillators. It appears that similar dynamics take place in the three-DOF
considered here: the strong energy exchanges for in-phase or out-of-phase IOs in
the neighborhoods of the saddle node NNM bifurcations I or II (actually, IOs hav-
ing energies slightly higher that the energies of these saddle-node bifurcations), are
affected by their proximities to homoclinic loops of unstable in-phase or out-of-
phase NNMs, respectively, and to the corresponding 1:1:1 resonance manifolds at
frequencies f1L and f2L, respectively. Based on the discussion and results of Sec-
tion 3.4.2.5 we may deduce that the excitation of the damped analogs of these IOs
lead to optimal in-phase and out-of-phase fundamental TET in the weakly damped
three-DOF system.

Another similarity to the dynamics of the two-DOF system is that, the two mani-
folds of in-phase and out-of-phase IOs of the three-DOF system play important roles
regarding fundamental and subharmonic TET in the weakly damped system. How-
ever, a distinct feature of the dynamics of the weakly damped three-DOF system
is the occurrence of resonance capture cascades (RCCs). This is a new feature of
TET dynamics, whereby the NES passively extracts energy from both modes of the
primary LO, as it engages sequentially both of then in transient nonlinear resonance.
This is discussed in the next section.

3.5.1.2 Dynamics of the Damped System: Resonance Capture Cascades

We now consider the dynamics of the weakly damped system (3.183). As in the
case of the two-DOF system considered in Section 3.4, the underlying Hamiltonian
dynamics determine, in essence, the weakly damped transitions and the energy ex-
changes between the LO and the NES.

The first series of numerical simulations verifies that both in-phase and out-of-
phase fundamental TET can occur in the weakly damped system, corresponding to
in-phase or out-of-phase relative motions of the two masses of the LO. The simula-
tions were carried out for the following specific system:

ẍ1 + 0.005ẋ1 + x1 + (x1 − x2) = 0

ẍ2 + 0.005ẋ2 + 0.002(ẋ2 − v̇)+ x2 + (x2 − x1)+ (x2 − v)3 = 0

0.05v̈ + 0.002(v̇ − ẋ2)+ (v − x2)
3 = 0 (3.188)

so that the small parameter of the problem is given by ε = 0.05; moreover, the
assumption of weak damping is satisfied.
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Fig. 3.84 In-phase fundamental TET on the damped NNM invariant manifold S111+++: (a) tran-
sient responses; (b) close-up of the time series, - -�- - x1(t), - -•- - x2(t), - -�- - v(t); (c) WT spec-
trum of v(t)− x2(t) superposed to the FEP; (d) trajectories of phase differences; (e) percentage of
instantaneous total energy in the NES.

The motion is first initiated on a NNM on the backbone branch S111+++, and
the resulting motion involves in-phase oscillations of all three masses of the system
with the same apparent frequency, as shown in Figures 3.84a, b. The temporal evo-
lution of the instantaneous frequencies of the responses can be followed by superim-
posing their wavelet transform (WT) spectra to the FEP (as performed in Section 3.4
for the two-DOF system). In Figure 3.84c, the WT spectrum of the relative response
v(t)− x2(t) is superposed to the backbone of the FEP (represented by a solid line).
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As mentioned in previous sections this representation is purely schematic since it
superposes a damped WT spectrum to the undamped FEP; nevertheless, this rep-
resentation helps us deduce the essential influence of the underlying Hamiltonian
dynamics on the weakly damped transitions, and is used for purely descriptive pur-
poses.

The plot of Figure 3.84c clearly illustrates that as the total energy in the sys-
tem decreases due to viscous dissipation, the response closely follows the backbone
branch S111+++; in actuality, the response takes place on the damped NNM in-
variant manifold which results as perturbation of S111+++ when weak damping
is added to the system. The dynamical flow is captured in the neighborhood of a
1:1:1 resonance manifold leading to prolonged 1:1:1 TRC. Figure 3.84d depicts the
trajectories of the phase difference
1(t) ≡ φv(t)− φx1(t) between v(t) and x1(t),
and the phase difference
2(t) ≡ φv(t)−φx2(t) between v(t) and x2(t); these phase
variables are computed directly from the transient responses v(t), x1(t) and x2(t)

by applying the Hilbert transform. A non-time-like behavior of the two phase dif-
ferences is noted, which provides further evidence of the occurrence of 1:1:1 TRC.
Figure 3.84e confirms that in-phase fundamental TET, i.e., passive and irreversible
(on the average) energy transfer from the LO to the NES, takes place.

In the second simulation the motion is initiated on S111+−−. In the initial stage
of the motion ( 0 < t < 100 s) out-of-phase fundamental TET is realized, with
the two masses of the LO oscillating in an out-of-phase fashion (see Figures 3.85a,
b). During this initial regime of the motion, the envelopes of all responses decrease
monotonically, but the envelope of the NES seems to decrease more slowly than
those of the masses of the linear primary system; TET to the NES occurs during
this stage of the motion (see Figure 3.85e). Around t = 80 s, the displacement of
the second mass of the primary system, x2(t), becomes very small, and a transi-
tion from the out-of-phase damped NNM S111+−− to the in-phase damped NNM
S111++− occurs. When the end of S111++− is traced by the damped dynamics
(close to the point of saddle-node bifurcation that eliminates the stable/unstable pair
of NNMs in the FEP), escape from 1:1:1 TRC occurs, which results in time-like be-
havior of the phase differences in Figure 3.85e. The plots of Figures 3.85c, d, f show
that this is soon followed by 1:3:3 subharmonic TRC leading to subharmonic TET as
the damped motion traces the damped analogue of the in-phase tongue S113. Con-
sidering the notation used for the subharmonic tongues, we generalize the notation
introduced for the subharmonic tongues of the two-DOF, in Section 3.3.1.2: a sub-
harmonic tongue Sppq contains periodic motions with two dominant frequencies,
ω, pω/q . We conclude that the NES extracts vibration energy from the LO through
two distinct TET mechanisms, that is, initial out-of-phase fundamental TET, fol-
lowed by subharmonic TET.

We now proceed to verify the existence of energy thresholds above which exci-
tations of IOs can trigger in-phase or out-of-phase fundamental TET. In the results
depicted in Figure 3.86, the damped motion is initiated by exciting the in-phase
IOs 1 and 2, located below and above the energy threshold hc1 of Figure 3.83, re-
spectively; we recall that the in-phase IOs are generated by applying two in-phase
identical impulses to the two masses of the LO at t = 0. By noting the resulting
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Fig. 3.85 Initial out-of-phase fundamental TET on the damped NNM invariant manifold
S111+−−, followed by 1:3:3 subharmonic TET: (a) transient responses; (b, c) close-ups of the
time series during fundamental and subharmonic TET, - -�- - x1(t), - -•- - x2(t), - -�- - v(t);
(d) WT spectrum of v(t) − x2(t) superposed to the FEP; (e) trajectories of phase differences; (f)
percentage of instantaneous total energy in the NES.

responses we conclude that the dynamics is markedly different in the two cases. In-
deed, when IO 1 is excited, the NES does not extract a significant amount of energy
from the LO, as the damped motion is nearly linear and remains localized predomi-
nantly to the LO; this is due to the fact that the damped dynamics traces the weakly
nonlinear (linearized) branch S111++− with decreasing energy (see Figure 3.86c).
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Fig. 3.86 Excitation of IO 1 (a, c, e) and IO 2 (b, d, f): (a) absence of TET on the linearized branch
S111++−; (b) initial TET through nonlinear beats, followed by inphase TET on S111+++; (c, d)
WT spectra of v(t)− x2(t) superposed to the FEP; (e, f) percentages of instantaneous total energy
in the NES.

When IO 2 is excited, however, qualitatively different dynamics takes place, since
in the initial stage of the response strong nonlinear beats take place leading to TET;
during this phase significant energy is dissipated by the damper of the NES. With
decreasing energy (and frequency) of the NES escape from the regime of nonlinear
beats occurs, and the dynamics makes a transition to the damped NNM S111+++,
at which point significant in-phase fundamental TET is realized. Overall, multi-
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frequency TET from the LO to the NES takes place in this case, underscoring the
adaptivity of the NES to initial conditions; indeed, depending on the specific initial
conditions of the system, the NES passively ‘tunes itself’ and transiently resonates
with different modes of the primary system, absorbing and dissipating vibration
energy from the LO.

Likewise, if the damped oscillation is initiated by exciting an out-of-phase IO
(i.e., by applying two out-of-phase but equal in magnitude impulses to the two
masses of the LO at t = 0) located below the energy threshold hc2 (IO 4 in Fig-
ure 3.83), the response traces the linearized damped NNM S111+−+, on which
the motion localizes predominantly to the LO throughout. However, if an out-of-
phase IO above the energy threshold is excited (IO 6 in Figure 3.83), after an initial
regime of nonlinear beats the damped motion makes a transition to the damped
NNM S111+−− with decreasing energy, and out-of-phase fundamental TET takes
place.

Another case of practical importance is when a single impulse is applied to one
of the masses of the LO (the primary system). We recall that for single applied
impulses to the LO no IO can be excited, but instead both the in-phase and out-of-
phase modes of the LO participate in the damped response; hence, a multi-modal
response is anticipated in this case, which opens the possibility of interesting multi-
frequency nonlinear transitions and energy exchanges in the system.

In the following simulations we consider a slightly modified system (3.183), in
the sense that no grounded stiffness for mass m2 exists (i.e., k2 = 0), and an addi-
tional dashpot of constant c12 is placed between the two masses m1 and m2 of the
LO. The numerical values of the system parameters were selected to be identical
to the ones of an experimental fixture (discussed in Section 3.5.1.3), and are listed
in Table 3.4. These parameters were identified using experimental modal analysis
and the restoring-force technique (see Section 3.5.1.3). An impulsive force in the
form of a half-sine pulse of duration 0.01 s is applied to mass m1 of the LO; the
peak amplitude of the applied impulse was selected in the range 1–40 N to highlight
the qualitatively different damped transitions and energy exchanges taking place at
different energy levels.

In Figure 3.87 we depict the damped responses for excitation of mass m1 with
a half-sine force with peak equal to 1 N. Although both linear modes participate
(at least initially) in the response, the contribution of the in-phase linear mode is
dominant and more persistent (see Figure 3.87a). It is clear that the weakly nonlinear
damped NNM S111++− is mainly excited in this case, so the response remains
localized to the LO and not more than 0.3% of the instantaneous total energy is
transferred to the NES at any given time. As a result, negligible TET takes place
in this case. Note that there is also a small contribution from the higher weakly
nonlinear damped NNM S111+−+ but this does not affect significantly TET in
this case.

By increasing the forcing peak to 15 N (see Figure 3.88), the initial energy of the
system exceeds the critical threshold for in-phase TET (see the FEP of Figure 3.80).
The branch S111+++ is excited in this case, and the instantaneous total energy in
the NES remains below 40% of the total energy of the system at any given instant of
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Table 3.4 System parameters of the experimental three-DOF system (Figure 3.96).

Parameter Value

m1 0.6285 kg
m2 1.213 kg
ε 0.161 kg
k1 420 N/m
k2 0 N/m
k12 427 N/m
C 4.97×106 N/m3

c1 0.05 to 0.1 Ns/m
c2 0.5 to 0.9 Ns/m
c12 0.2 to 0.5 Ns/m
cv 0.3 to 0.35 Ns/m

Fig. 3.87 Damped response for single half-sine force at mass 1 m , with peak 1 N and duration
0.01 s: (a) WT spectrum of v(t) − x2(t) superposed to the FEP, (b) percentage of instantaneous
total energy in the NES.

the motion. After t = 5.5 s, the participation of the in-phase mode in the system re-
sponse is neggligible, a sign that a significant portion of the energy contained in this
mode has been transferred to and dissipated by the NES. Higher-frequency compo-
nents are present in the relative displacement across the nonlinear spring v(t)−x2(t)

(see Figure 3.88c), but these are mainly non-dominant harmonics of the damped re-
sponse and do not correspond to a nonlinear resonance interaction of the NES with
the out-of-phase linear mode. Hence, the energy initially imparted to the out-of-
phase linear mode remains in that mode, and is dissipated by the dampers of the
LO, which explains the relatively weak TET evidenced for this force level.

The damped dynamics remains qualitatively unchanged until the force peak
reaches 27 N, where the percentage of instantaneous energy transferred to the NES
reaches levels of up to 70% (Figure 3.89).

A qualitatively different picture of the damped dynamics, however, occurs when
the force peak increases to 28 N (see Figure 3.90). This is due to the fact that for this
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Fig. 3.88 Damped response for single half-sine force at mass m1, with peak 15 N and duration of
0.01 s: (a–c) transient responses, (d) WT spectrum of v(t) − x2(t) x t - superposed to the FEP, (e)
percentage of instantaneous total energy in the NES.

level of impulsive force the initial energy of the system exceeds the threshold for oc-
currence of out-of-phase TET in the system (see Figure 3.80). From the numerical
results of Figure 3.90 it is clear that in this case the damped dynamics possess two
distinct regimes. In the initial regime of the motion (0 < t < 2 s) the NES engages
in 1:1:1 TRC with the high-frequency out-of-phase linear mode (see Figure 3.90d)
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Fig. 3.89 Damped response for single half-sine force at mass m1, with peak 27 N and duration
0.01 s: percentage of instantaneous total energy in the NES.

as it traces the NNM branches S111+−+ and S111+−−. During this initial stage
of the dynamics there occurs strong out-of-phase TET at a fast time scale, so that at
t ≈ 1 s, the NES carries 89% of the instantaneous total energy, and the participa-
tion of the out-of-phase linear mode in the damped response drastically decreases
with time as it looses energy to the NES. We conclude that in the initial stage of
the motion the NES extracts energy from the out-of-phase linear mode and locally
dissipates it without ‘spreading it back’ to the LO. In terms of the previously intro-
duced notation out-of-phase fundamental TET takes place during this initial stage
of the damped dynamics, and the motion resembles that depicted in Figure 3.85. In
that case, however, at the later stage of the motion the response underwent a transi-
tion to a low-frequency subharmonic tongue, whereas in the present case a different
damped transition follows after the initial excitation of S111+−−.

Indeed, for t > 2 s there occurs a damped transition to the damped NNM
S111+++, as the NES escapes TRC with the out-of-phase linear mode and engages
in TRC with the in-phase linear mode of the LO; as a result, starting from t = 2 s
the NES starts extracting energy from the in-phase linear mode and, from t = 3.5 s
strong in-phase TET to the NES occurs, with the instantaneous total energy in the
NES reaching levels of 90% of total instantaneous energy of the system.

This is an example of occurrence of a resonance capture cascade (RCC), i.e.,
of a sequential transient resonance interaction of the NES with both modes of the
primary system. The NES first extracts and dissipates almost the entire energy of
the out-of-phase linear mode, before engaging in resonance and extracting energy
from the in-phase mode linear mode. What triggers the RCC is the dependence
of the instantaneous frequency of the NES on its energy, and, more importantly,
the lack of a preferential resonance frequency of the NES due to its essential stiff-
ness nonlinearity. It follows that depending on its instantaneous energy, the NES
is capable of resonantly interacting with both linear modes, extracting energy from
the higher-frequency mode before engaging the lower frequency one. What is es-
pecially notable is that the process of RCC is adaptive and purely passive, as the
NES ‘tunes itself’ with the most highly energetic linear modes irrespective of their
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Fig. 3.90 Damped response for single half-sine force at mass m1, with peak 28 N and duration
0.01 s : (a–c) transient responses, (d) a resonance capture cascade (RCC) in the WT spectrum of
v(t) − x2(t) superposed to the FEP, (e) percentage of instantaneous total energy in the NES.

frequencies, before making a transition to modes with lower energies. RCC gives
rise to multi-frequency TET from the LO to the NES, which becomes increasingly
more broadband as the number of linear modes participating in the RCC increases
(see Figure 3.90c). We emphasize the capability of the NES to engage in TRC with
modes of the primary system at arbitrary frequency ranges (provided, of course, that
these modes do not posses nodes close to the point of attachment of the NES), as this
underlines the broadband feature of nonlinear TET; this is qualitative different from
the narrowband action of the classical linear vibration absorber, and is a feature of
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Fig. 3.91 Damped response for single half-sine force at mass m1, with peak 40 N and duration
0.01 s: (a–c) transient responses, (d) a resonance capture cascade WT spectrum of v(t) − x2(t)

superposed to the FEP, (e) percentage of instantaneous total energy in the NES.

the NES that renders it especially suitable for practical applications. Moreover, the
phenomenon of RCC is a distinct feature of MDOF LOs with attached NESs, as it
cannot be realized in the two-DOF system examined in previous sections.

Figure 3.91 proves that RCCs are robust and persist for higher peak force ampli-
tudes. For the increased impulsive level of 40 N considered in that Figure, the initial
TRC of the NES dynamics with the out-of-phase linear mode (resulting in sup-
pression of the out-of-phase linear mode during the first few cycles of the damped
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Fig. 3.92 Damped response for single half-sine force at mass m1, with peak 6 N and duration
0.25 s: WT spectrum of v(t) − x2(t) superposed to the FEP.

response), and the subsequent damped transition to TRC with the in-phase linear
mode are even more evident.

Finally, in Figure 3.92 we compare the damped transitions of the previous case
(force peak of 40 N and duration 0.01 s) to the ones occurring for an impulsive force
of longer duration (0.25 s) but smaller peak (6 N) so that the total initial energy
imparted to the system by the impulse remains constant. We note that due to the
increased peak duration, the participation in the damped response of the out-of-
phase linear mode drastically decreases (compare Figures 3.91 and 3.90d), so that
in-phase TET occurs from the beginning of the motion and no RCC occurs. This
case is similar to the case presented in Figure 3.84, where direct excitation of the
backbone branch S111+++ was considered (the only difference being the stronger
higher harmonics that occur in the present case).

From the previous results we conclude that the duration and amplitude of the
applied half-sine pulse have an important influence on the damped dynamics and
TET in the system. Depending on these parameters (but also on damping), different
branches of the FEP may be excited or traced during the damped nonlinear transi-
tions, affecting the strength of TET.

To provide an additional example of the complex, multi-frequency transitions
that can take place in coupled oscillators with essentially nonlinear local attach-
ments, we consider the following alternative three-DOF system (Kerschen et al.,
2006a):

ẍ2 + ω2
0x2 + λ2ẋ2 + d(x2 − x1) = 0

ẍ1 + ω2
0x1 + λ1ẋ1 + λ3(ẋ1 − v̇)+ d(x1 − x2)+ C(x1 − v)3 = 0

εv̈ + λ3(v̇ − ẋ1)+ C(v − x1)
3 = 0 (3.189)

with parameters ω2
0 = 136.9, λ1 = λ2 = 0.155, λ3 = 0.544, d = 1.2 × 103,

ε = 1.8, andC = 1.63×107, corresponding the linearized natural frequenciesω1 ≡
2πf1 = 11.68 rad/s and ω2 ≡ 2πf2 = 50.14 rad/s. In Figure 3.93a we present the
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Fig. 3.93 Resonance capture cascade (RCC) in the damped transient dynamics of system (3.189):
(a) relative response v(t) − x1(t), (b) instantaneous frequency of v(t) − x1(t) computed by the
Hilbert transform (eight TRCs indicated).

relative response v(t) − x1(t) of the system for initial displacements x1(0) = 0.01,
x2(0) = v(0) = −0.01 and zero initial velocities. The multi-frequency content
of the transient response is evident, and is quantified in Figure 3.93b, where the
instantaneous frequency of the time series is computed by applying the numerical
Hilbert transform (Huang et al., 1998).
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As energy decreases due to damping dissipation, an interesting RCC takes place,
involving as many as eight TRCs. The complexity of the RCC is evidenced by the
fact that of these eight TRCs only two (labeled IV and VII in Figure 3.93b) in-
volve the linearized in-phase and out-of-phase modes of the linear oscillator, while
the remaining ones correspond to essentially nonlinear interactions of the NES with
a number of low- and high-frequency nonlinear modes of the system (which ap-
parently have no analogues in the linearized dynamics). During each TRC there
occur energy exchanges between the NES and the the nonlinear mode involved in
the resonance capture, after which escape from TRC occurs and the NES engages
in transient resonance with the next mode of the series. Clearly, the main ‘tuning’
parameter that controls this purely passive RCC is the instantaneous energy of the
system and its rate of decrease due to damping dissipation. In essence, the NES acts
as a passive, broadband boundary controller, absorbing, confining and eliminating
vibration energy from the linear oscillator.

In the two additional applications that follow, we demonstrate the occurrence of
RCCs in coupled MDOF oscillators with essentially nonlinear attachments. In the
first application we consider the six-DOF system

ẍ1 + 0.014ẋ1 + 2x1 − x2 = 0

ẍ2 + 0.014ẋ2 + 2x2 − x1 − x3 = 0

ẍ3 + 0.014ẋ3 + 2x3 − x2 − x4 = 0

ẍ4 + 0.014ẋ4 + 2x4 − x3 − x5 = 0

ẍ5 + 0.0141ẋ5 − 0.0001v̇ + 2x5 − x4 + (x5 − v)3 = 0

0.05v̈ + 0.0001(v̇− ẋ5)+ (v − x5)
3 = 0 (3.190)

with initial excitation of only the fourth mode of the linear primary system. In Fig-
ure 3.94 we depict the relative response v(t) − x5(t), along with its WT spectrum
superimposed to the FEP of the underlying Hamiltonian system of (3.190); for clar-
ity, only the first four linear modes are depicted in the FEP.

We note that a RCC occurs in this case, leading to multi-frequency TET from
the primary system to the NES. After an initial TRC of the NES dynamics with the
fourth linear mode (labeled TRC 1 in Figure 3.94), a damped transition occurs after
which the NES engages in TRC with the second linear mode (TRC 2). At a later
stage of the dynamics a second damped transition occurs leading to final TRC of
the NES dynamics with the first linear mode (TRC 3). This application illustrates
clearly the usefulness of the utilization of combined WT spectra and FEPs as tools
for interpreting useful nonlinear transitions.

In the next application we consider an (N + 1)-DOF linear chain of coupled
oscillators (the primary system) with a grounded NES (Configuration I – see Sec-
tion 3.1) attached to its end (Vakakis et al., 2003). Each linear oscillator of the chain
possesses unit mass and grounding stiffness ω2

0, and is coupled to its neighboring
oscillators by linear stiffnesses of characteristic d . The primary system possesses
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Fig. 3.94 RCC in the damped dynamics of the six-DOF system (3.190) following direct excitation
of the fourth linear mode: (a) relative response v(t) − x5(t), (b) WT spectrum of v(t) − x5(t)

superposed to the FEP.

(N+1)mass-normalized eigenvectorsφ(i) = [φ(i)0 . . . φ
(i)
N ]T and (N+1) correspond-

ing distinct eigenfrequencies ωi , i = 0, 1, . . . , N . The responses of the oscillators
of the primary system are denoted by x0(t), . . . , xN(t), where x0(t) is the response
of the point of attachment to the NES. These responses are then expressed in modal
series:

xi(t) =
N∑
k=0

ϕ
(k)
i ak(t), i = 0, 1, . . . , N

We express the equations of motion of the system using modal coordinates for the
primary system

v̈(t)+ Cv3(t)+ ελv̇(t)+ ε
[
v(t)−

N∑
k=0

ϕ
(k)
0 ak(t)

]
= 0

äm(t)+ ω2
mam(t)+ ελȧm(t)+ ε

[
N∑
k=0

ϕ
(k)
0 ϕ

(m)
0 ak(t)− ϕ(m)0 v(t)

]
= 0

(3.191)

with m = 0, 1, . . . , N.
For the numerical simulation we considered a chain of ten linear oscillators (N =

9) with parameters ω2
0 = 0.4, d = 3.5, C = 5.0, λ = 0.5, ε = 0.1 and initial

conditions v(0) = v̇(0) = 0, xm(0) = 0, m = 0, 1, . . . , 9 and ẋm(0) = 0, ,m =
0, 1, . . . , 8, ẋ9(0) = 70. This corresponds to an impulsive excitation being applied
at t = 0 to the oscillator of the chain most distant from the NES. In Figure 3.95 we
present the transient response of the attachment v(t), together with its instantaneous
frequency of oscillation �(t) versus time. Note the strong RCC taking place in the
damped dynamics involving as many as six of the linearized modes of the chain,
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Fig. 3.95 RCC in the damped dynamics of the 11-DOF system (3.192) with N = 9: (a) multi-
frequency response of the NES, (b) instantaneous frequency �(t) of the NES versus time (the 10
linear modes of the chain are denoted by dashed lines).

including both modes located at the boundaries of the frequency spectrum of the
chain. This application further demonstrates the capacity of the NES for broadband
TET from the primary system.

The final series of numerical simulations demonstrates the superior performance
of an essentially nonlinear attachment (NES) as passive absorber of shock energy
from a linear MDOF system of coupled oscillators, when compared to the classi-
cal linear absorber (or tuned mass damper – TMD). To this end, we consider the
following eleven-DOF system with a strongly nonlinear end attachment (Ma et al.,
2008):

εv̈ + ελ(v̇ − ẋ0)+ C(v − x0)
3 = 0

ẍ0 + ελẋ0 + ω2
0x0 − ελ(v̇ − ẋ0)− C(v − x0)

3 + d(x0 − x1) = 0
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ẍj + ελẋj + ω2
0xj + d(2xj − xj−1 − xj+1) = 0, j = 1, . . . , 8

ẍ9 + ελẋ9 + ω2
0x9 + d(x9 − x8) = 0 (3.192)

In this example we consider an ungrounded lightweight NES (of Configuration II –
see Section 3.1) by assuming that 0 < ε 	 1. We assume that the system is initially
at rest, and an impulse of magnitude X is applied at t = 0 to the left boundary of
the linear chain, corresponding to initial conditions, v(0) = v̇(0) = 0; xp(0) = 0,
p = 0, . . . , 9; ẋ9(0+) = X; and ẋk(0) = 0, k = 0, . . . , 8.

To study TET efficiency, i.e., the capacity of the NES to passively absorb and lo-
cally dissipate impulsive energy from the linear chain, we employ the instantaneous
and asymptotic energy dissipation measures (EDMs) defined by relations (3.4), suit-
ably modified for system (3.192):

ENES(t) =
λ2

∫ t

0
[v̇(τ )− ẋ0(τ )]2dτ(
X2/2

) × 100, ENES,t�1 = lim
t�1
ENES(t)

In Figure 3.96a we present the plot of the EDM ENES,t�1 as function of the
stiffness characteristic C of the NES, for impulse strength X = 4.3, system para-
meters ω2

0 = 1.0, d = 2.0, and two values of damping, namely, ελ = 0.0125, and
0.025 (Ma et al., 2008). For comparison, we also depict the corresponding EDMs
for a chain with a linear TMD attached at its end, with identical parameter values.
Clearly, the TMD proves to be effective only in a narrow band of small stiffness
values, i.e., in the neighborhood of resonance with the chain. On the contrary, the
NES proves to be more effective than the TMD, since it is capable of passively ab-
sorbing a significant portion of the impulsive energy of the chain over a wide range
of values of C; this is due to the capacity of the NES to engage in resonance capture
and passively absorb energy from any of the modes of the chain, irrespective of their
actual natural frequencies. We note that as much as 37% of input energy is passively
absorbed and eventually dissipated by the NES, and that, even away from the region
of optimal TET, the NES is capable of significant TET. In Figure 3.96b we depict
the instantaneous EDM ENES(t) for the case of optimal TET and ελ = 0.0125, and
compare it to the corresponding EDM for the linear TMD with optimal parameters.
It is interesting to note that the sequence of early-time arrivals to the attachments of
reflected wavepackets from the boundaries of the chain are associated with sudden
increases of the rates of energy dissipation.

In Ma et al. (2008) the capacity for TET of the system (3.192) is related to the
shapes and energies of the underlying proper orthogonal modes (POMs) of the tran-
sient dynamics (Cusumano et al., 1994; Georgiou et al., 1999; Azeez and Vakakis,
2001; Ma and Vakakis; 1999). It is shown that enhanced TET is related to excitation
of dominant highly energetic POMs that localize to the NES. This observation is
then used for constructing accurate low-dimensional reduced-order models for the
TET dynamics.
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Fig. 3.96 Comparison of the TET for the case of linear (TMD) and strongly nonlinear NES) at-
tachments: (a) EDM ENES,t�1 for varying stiffness C, and two damping values; (b) EDM ENES(t)

for specific values of C and fixed damping ελ = 0.0125.
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3.5.1.3 Experimental Demonstration of Multi-Frequency TET

Although a presentation of experimental TET results will be presented in detail
in Chapter 8, in this section we provide some preliminary experimental evidence
in support of the previous theoretical findings. The experimental measurements re-
ported here were performed using the fixture depicted in Figure 3.97, composed of a
two-DOF linear oscillators (the primary system) coupled to an essentially nonlinear
ungrounded SDOF attachment (an NES of Configuration II). The primary system
consists of two cars made of aluminum angle stock which are supported on a straight
air track (that reduces friction forces during the oscillation). The NES consists of a
shaft supported by two linear bearings; steel plates on the shaft clamp two steel
wires configured with practically no pretension, realizing the essential cubic stiff-
ness nonlinearity C (see Section 2.6 for a discussion on the practical realization of
essential cubic stiffness nonlinearity, and also Chapter 8). The wires are connected
to the primary system through clamps at their outer ends.

A short half-sine force pulse representative of a broadband input is provided to
the left car (of mass m1) of the primary system (see Figure 3.97), and the damped
responses of the three oscillators are measured using accelerometers. Estimates of
velocities and displacements are obtained by numerically integrating the measured
acceleration time series, and the resulting signals are high-pass filtered to remove
spurious components introduced by the integration procedure.

The parameters of the experimental fixture were measured before the experimen-
tal tests. Prior to system identification, the cars of the primary system and the NES
were weighed as m1 = 0.6285 kg, m2 = 1.213 and ε = 0.161 kg, respectively,
which implies a low mass ratio equal to 8.7%. Experimental modal analysis was
then carried out to measure the stiffness and damping parameters of the integrated
three-DOF experimental system. First, the primary system was disconnected from
the NES, and experimental modal analysis was performed using the stochastic sub-
space identification method (Van Overschee and De Moor, 1996) to provide the
two natural frequencies estimates of 1.95 Hz and 6.25 Hz, respectively. Because the
masses of the primary system were known, the stiffness and damping parameters
k1, k12, c1, c2, and c12 could be deduced from this experimental modal analysis, and
are listed in Table 3.4.

In the second step of modal analysis the primary system was clamped, an impul-
sive force was applied to the NES using a modal hammer, and the NES acceleration
and the applied force were measured. The restoring force surface method (Masri
and Caughey, 1979) was then used to estimate the coefficient of the essential non-
linearity C and the damping coefficient cv of the NES. For further details about the
procedure, the reader is referred to Chapter 8. The identified system parameters of
the experimental fixture are listed in Table 3.4. Damping estimation is a difficult
problem in this fixture due to the presence of several ball joints and bearings, and
the air track. It was found that damping was rather sensitive to the force level, which
is the reason why ranges rather than fixed values are given in Table 3.4. Even though
the air-track greatly reduced friction forces in the system, at low forcing amplitudes
friction seemed to intervene significantly with the experimental measurements.
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Fig. 3.97 Experimental fixture: (a) NES, (b) schematic of the two-DOF primary system and the
SDOF NES.

In the first series of experimental tests, the mass m1 was impulsively excited by
impulsive forces of durations around 0.01 s and varying magnitudes. Four cases of
increasing input energy were considered, labeled as I (0.0103 J), II (0.0258 J), III
(0.0296 J) and IV (0.0615 J), respectively. The superposition of the WT spectrum
of the relative response across the nonlinear spring of the NES to the FEP for each
case is depicted in Figure 3.98.

Starting with the case of lowest energy (Case I, Figure 3.98a) the damped NNM
S111+++ is excited from the beginning of the motion. This means that the input
energy is already above the critical energy threshold for in-phase fundamental TET,
but below the energy threshold for resonance with the out-of-phase linear mode; this
case resembles the low-energy numerical case depicted in Figure 3.87a.
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Fig. 3.98 WT spectra of the experimental relative responses v(t) − x2(t) superposed to the FEP
for impulsive forces of duration approximately 0.01 s : (a–d) Cases I–IV.

Moving to Case II (Figure 3.98b) S111+++ is again excited, but higher har-
monic components are now present, and resemble the corresponding numerical sim-
ulation presented in Figure 3.88d. By slightly increasing the input impulsive energy
(Case III, Figure 3.98c), the energy threshold for resonance interaction of the NES
dynamics with the out-of-phase linear mode is exceeded; as a result the damped
NNM S111+−− is initially excited leading to initial out-of-phase fundamental
TET, followed by a damped transition a to S111+++ and in-phase fundamental
TET. Hence, in this case there is experimental confirmation of a resonance capture
cascade (RCC) that occurs in the transient dynamics of the system. The series of
TRCs that occur in this RCC resembles the numerical simulation of Figure 3.90d.

Finally, in the experimental measurement corresponding to the highest energy
input, Case IV (Figure 3.98d), a stronger RCC similar to the one occurring in
Case III takes place resembling the corresponding highest-energy simulation of Fig-
ure 3.91d. Overall, the experimental findings are in accordance with, and validate
the numerical results discussed in Section 3.5.1.2.
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Fig. 3.99 Experimental RCC, Case IV: (a–c) measured responses; (d) theoretically predicted NES
response; (e, f) measured and theoretically predicted percentage of instantaneous total energy in
the NES.

Further results for the RCC taking place in Case IV are displayed in Figure 3.99.
During the first few cycles of the damped response, the NES clearly resonates with
the out-of-phase mode and strong out-of-phase TET is realized, with as much as
87% of the instantaneous total energy being passively captured by the NES around
t ≈ 2 s; after this initial regime of the motion the participation of the out-of-phase
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Fig. 3.100 RCCs in the WT spectra of experimental relative responses v(t)− x2(t) superimposed
to the FEP: (a) 6%; (b) 8.7% mass ratio, peak duration of 0.15 s.

mode in the dynamics drastically reduces. After t = 2 s a damped nonlinear tran-
sition in the dynamics takes place, and the NES engages in TRC with the in-phase
linear mode, extracting energy from it in in-phase fundamental TET.

The comparison of the experimentally measured results of Figures 3.99c, e with
the corresponding theoretically predicted ones depicted in Figures 3.99d, f, shows
close agreement between experiment and theory in the initial highly energetic phase
of the motion 0 < t < 4 s. Specifically, the sequential interaction of the NES with
both linear modes during the RCC is accurately reproduced by the numerical model.
The observed discrepancies between experimental and theoretical results that occur
in the later, low-energy regime of the damped motion, may be attributed to the sensi-
tivity of the low-energy dynamics of the system on unmodeled friction forces in the
bearings and the air-track of the experimental fixture. We note, however, that since
in the later stage of the motion the energy level of the system is small, no significant
qualitative features of the dynamics are missed due to dry friction effects.

No attempt was made to optimize TET in the experimental fixture, i.e., to max-
imize energy dissipation by the NES, since the purpose of the experimental tests
was to confirm the numerical predictions and, especially the occurrence of RCCs in
the three-DOF system. Some additional experimental results are presented in Fig-
ure 3.100, to show that RCCs and multi-modal (multi-frequency) TET can occur for
the even smaller mass ratios. For this particular experimental series we considered
two mass ratios equal, to 6% (corresponding to m1 = 1.1295 kg, m2 = 1.553 kg
and ε = 0.161 kg – Figure 3.100a) and 8.7% (Figure 3.100b). The applied im-
pulsive force to mass m1 was kept fixed, with duration equal to 0.15 s. A clear
RCC is observed for the system with reduced mass ratio (Figure 3.100a); as pre-
dicted by the numerical simulations, the out-of-phase damped NNM S111+−− is
excited in the initial stage of the motion (leading to out-of-phase fundamental TET),
followed by a transition of the dynamics to TRC with the in-phase damped NNM
S111+++ (and in-phase fundamental TET). For the system with increased mass
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ratio (Figure 3.100b) a similar, albeit weaker RCC is observed in the experimental
measurements.

3.5.2 Semi-Infinite Chain of Linear Oscillators with an End SDOF
NES

In this final section we study the dynamics of a semi-infinite linear chain of coupled
oscillators with an essentially nonlinear attachment (NES) at its boundary. Consid-
ering first the undamped system we analyze families of localized nonlinear standing
waves situated inside the lower or upper attenuation zones of the dynamics of the
linear chain, with energy being predominantly confined to the NES. In addition,
we estimate the energy radiated from the NES back to the chain, when the NES
is excited under non-resonant conditions by wavepackets with dominant frequen-
cies inside the propagation zone of the dynamics of the chain. We show that in this
system TET from the semi-infinite chain to the NES is possible even in the absence
of damping. The TET dynamics, however, is qualitatively different in this case: in-
stead of TET through TRCs as in the case of finite-DOF weakly damped oscillators
considered previously, TET in the undamped infinite-DOF system relies on the ex-
citation of in-phase standing waves localized to the NES. Passive TET from the
semi-infinite linear chain to the NES is confirmed numerically. The analysis of the
undamped system follows closely the work by Manevitch et al. (2003).

Then we analyze the weakly damped semi-infinite linear chain with a weakly
damped essentially nonlinear oscillator attached (Vakakis, 2001). Using an integro-
differential approach, we reduce the dynamics to a complex integro-differential
equation and then analyze TET using the complexification-averaging approach (CX-
A). We show that TET in the weakly damped system is generated by TRCs as in the
finite-dimensional discrete oscillators discussed in previous sections.

3.5.2.1 Dynamics of the Chain-NES Interaction

The dynamics of linear or nonlinear periodic chains with local attachments (or ‘de-
fects’) is a research area with many interesting applications, such as in the areas
of optical and magneto-optical waveguide periodic arrays, semiconductor superlat-
tices, layered composite media, micro- or nano-lattices used as thermal barriers, in
photonic band-gap materials (photonic crystals), and bio-molecular engines (see,
for example, the works by Chen and Mills, 1987; Eggleton et al., 1996; Akozbek
and John, 1998). Gendelman and Manevitch (2000) examined the dynamics of a
semi-infinite string with a strongly nonlinear oscillator attached at its end, and stud-
ied energy transfer from the string to the attached oscillator through impeding short
rectangular pulses. They found that excitation of vibrations in the oscillator was
possible through this nonlinear interaction. Lazarov and Jensen (2007) studied in in-
fluence of stiffness nonlinearities on the filtering properties (i.e., the low-frequency
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bands) of infinite linear chains with attached nonlinear oscillators; they found that
the position of low-frequency bands in these systems depended on the form of the
nonlinearity and the level of energy of the motion. Goodman et al. (2004) analyzed
the dynamic interaction of a nonlinear Schrödinger soliton with a local defect and
proposed a mechanism of resonance energy transfer from the impeding soliton to
a nonlinear standing wave localized at the defect. Additional works (Kivshar et al.,
1990; Forinash et al., 1994; Goodman et al., 2002a, b) examined nonlinear interac-
tions of standing or traveling waves in infinite nonlinear media with local defects.

The system under consideration is a semi-infinite chain of coupled linear oscil-
lators, whose free end is weakly coupled to an essentially nonlinear attachment.
We wish to study the possibility of passive TET from the chain to the nonlinear
attachment, which then acts, in essence, as an NES. Each oscillator of the chain is
grounded and possesses only next-neighbor interactions. Assuming no damping in
the system, the set of equations governing the dynamics is given by

ẍk + c2(2xk − xk−1 − xk+1)+ ω2
0xk = 0, k < 0

ẍ0 + c2(x0 − x−1)+ ε(x0 − v)+ ω2
0x0 = 0

v̈ + 8av3 − ε(x0 − v) = 0 (3.193)

where xk denotes the response of the k-th oscillator of the linear chain, v the re-
sponse of the NES, c2 the linear coupling stiffness between adjacent oscillators,
and ω2

0 the linear grounding stiffness of each oscillator. The dimensionless pertur-
bation parameter 0 < ε 	 1 scales the weak coupling between the linear chain
and the NES, and the parameter a denotes the strength of the essential (nonlineariz-
able) stiffness nonlinearity of the attachment. Note that in this case we consider a
grounded form of NES (of the type presented in Figure 3.1 – Configuration I), and
the mass of the NES is not assumed to be small (as in previous sections). Instead, in
the following analysis the small parameter characterizes the weak coupling between
the semi-infinite chain and the NES.

Before discussing the chain-NES dynamic interaction, we examine briefly the
dynamics of the infinite chain with no boundaries and no nonlinear attachment. The
dispersion relation of the infinite linear chain is composed of two attenuation zones
(AZs) and a single propagation zone (PZ) in the frequency domain (Brillouin, 1953;
Mead, 1975). In the AZs the chain supports two families of standing waves with
exponentially decaying envelopes, which represent near field solutions of the infinite
chain. The lower AZ is in the frequency range ω ∈ [0, ω0), whereas the upper

AZ extends up to arbitrarily large frequencies, ω ∈ (

√
ω2

0 + 4c2,∞). In the PZ,

ω ∈ (ω0,

√
ω2

0 + 4c2), the infinite chain supports two families of traveling waves
that propagate unattenuated in opposite directions of the chain. It is well known that
energy through the chain can only propagate by means of traveling waves, i.e., only
with frequencies inside the PZ. The bounding frequencies ωb1 = ω0 and ωb2 =√
ω2

0 + 4c2 that separate the two AZs from the PZ correspond to in-phase and out-
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of-phase normal mode oscillations (i.e., synchronous non-decaying standing waves)
of the infinite chain (Mead, 1975).

Now suppose that the integrated semi-infinite chain-NES system is initially at
rest, and at t = 0 an impulse F δ(t) is applied to an oscillator of the chain. Then,
the motion of the system at t = 0+ is a conservative free oscillation and the energy
transfer through the chain and to the nonlinear oscillator may be approximately
analyzed with the help of linear theory. The first basic problem of the chain-NES
dynamics is to establish the type of excitation of the NES by the chain. Clearly,
the excitation of the nonlinear oscillator is caused by an initial right-going traveling
wave propagating through the chain; depending on the form of this wave, the ini-
tial chain-NES dynamic interaction may occur under resonance or non-resonance
conditions.

Resonance interaction is most probable if the time and distance needed for the
wave to travel through the chain and impede to the NES are enough for the for-
mation of a wave packet with primary frequency � > ω0. Then the excitation of
the NES occurs approximately under condition of 1:1 resonance. In that case, the
chain may be approximately simulated as a single particle acting on the nonlinear
oscillator with prescribed force, i.e., possessing certain amplitude and frequency,
and applied during a known time interval. All these parameters may be obtained
simply by solving the linear problem for the chain. On the other hand, non-resonant
interaction between the chain and the NES corresponds to the situation when the
wave packet does not have sufficient time and space to form into a cohesive wave
form, and, as a result the force that excites the nonlinear oscillator is non-harmonic.

The next basic problem of the chain-NES dynamics focuses on the radiation
(backscattering) of energy from the NES back to the chain after the initial wave has
impeded to it. This process is the most interesting from an analytical point of view,
and as shown below, can be divided into two essentially different parts: (a) the tran-
sient radiation of excess energy from the NES back to the chain through traveling
or near-field waves; and (b) the formation at the NES of a localized standing wave
mode. In the following analysis we discuss these issues separately.

We first consider radiation (backscattering) of energy from the NES to the semi-
infinite chain through traveling waves, i.e., waves with frequencies in the PZ.
Specifically, we consider the state of the system after the main impulsive excitation
of the chain commences. The NES is excited with a wave packet with predominant
frequency � > ω0 (i.e., in the PZ on the linear chain), as these are the only waves
that can travel from the source of the excitation through the chain and impede to
the NES; moreover, this frequency most probably belongs to the zone of moderate
wavenumbers corresponding to the maximum of group velocity. Therefore, under
conditions of 1:1 resonance the energy of the NES is radiated back to the chain in
the diapason of moderate wavenumbers, and for qualitative purposes the energy ra-
diation may be studied in the continuum approximation. These assumptions regard-
ing the radiation process will be proved and validated a posteriori by the derived
results.

In this case we propose the following ordering of the variables of system (3.193),
v = O(1), xk = O(ε), k = 0,−1,−2, . . . . Hence, to a first approximation we
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consider the following continuum approximation of equations (3.193):

∂2x(s, t)

∂t2
− c2r2

0
∂2x(s, t)

∂s2 + ω2
0x(s, t) ≈ 0, s ≤ 0

c2r0
∂x(0, t)

∂s
≈ εv(t)

v′′(t)+ 8αv3(t) ≈ 0 (3.194)

where r0 is the distance between oscillators, so that the k-th oscillator corresponds
to the position s = kr0, k = 0,−1,−2, . . . of the one-dimensional continuum, and
primes denote differentiation with respect to s. In deriving (3.194) we replaced the
infinite set of variables xk(t), k ≤ 0 by the continuous variable x(s, t), s ≤ 0, and
the semi-infinite set of ordinary differential equations of (3.193) by a single partial
differential equation [the first of relations (3.194)].

The last equation in (3.194) describes (to a first approximation) a vibration of
the nonlinear oscillator with constant amplitude and frequency. In fact, this is only
an approximation; since in actuality the amplitude and frequency of the nonlinear
attachment varies slowly with time due to energy loss by energy radiation to the
chain. However, it will be shown that this radiation effect is of order O(ε2), and,
therefore, the variations of the amplitude and the frequency of the nonlinear oscilla-
tor are nearly adiabatic up to O(ε2).

The flow of energy through the chain in the continuum limit may be estimated
by recalling that the energy stored in the spatial interval a < s < b of the chain is
computed as

Eab(t) = 1

2

∫ b

a

[(
∂x

∂t

)2

+ c2r2
0

(
∂x

∂s

)2

+ ω2
0x

2

]
ds (3.195)

so the flow of energy in the chain is approximated as

dEab

dt
=

b∫
a

(ẋẍ + c2r2
0x

′ẋ ′ + ω2
0x

′) ds

=
b∫
a

[
ẋẍ + c2r2

0x
′ẋ ′ + (c2r2

0x
′′ − ẍ)ẋ]ds

= c2r2
0

b∫
a

(x ′ẋ)′ds =c2r2
0

(
x ′ẋ

∣∣
x=b − x ′ẋ

∣∣
x=a

)
(3.196)

Therefore, the rate of total energy radiated from the nonlinear oscillator back to the
chain is estimated by setting a = −∞, b = 0 in (3.196), and taking into account
that (due to causality) the chain is motionless in the far field s → −∞:
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dEchain

dt
= c2r2

0 x
′(0) ẋ(0) = −dENES

dt
(3.197)

The rate of energy loss of the NES due to radiation is the negative of the corre-
sponding energy gain by the chain, which is a consequence of the lack of damping
dissipation in system (3.193). We note that the energy contained in the NES de-
pends only on its instantaneous frequency of oscillation, and this fact is crucial in
our discussion. Indeed, considering the dominant harmonic component at frequency
ω of the (approximately) periodic response v(t) of the NES, the outgoing radiated
harmonic traveling wave in the chain may be expressed as

xω(s, t) ≈ Aωej (ωt+βs), β = (cr0)−1 (ω2 − ω2
0)

1/2, ω ≥ ω0,

where j = (−1)1/2. Since this is a traveling wave emanating from the NES due to
energy backscattering, it propagates in the direction of decreasing negative s, i.e.,
away from the NES and towards the far field s → −∞. The amplitude of this wave
may be computed from the second of equations (3.194),

Aω ≈ −j ε Zω
c

√
ω2 − ω2

0

(3.198)

where Zω is the amplitude of the harmonic of v(t). Substituting this result into
(3.197), and averaging over the period T = 2π/ω, we derive the following approx-
imate expression for the rate of energy radiation at frequency ω in the PZ of the
linear chain:

dEchain

dt
≈ ε2ω |Zω|2

2c
√
ω2 − ω2

0

, ω ≥ ω0 (3.199)

Hence, energy radiation is of O(ε2) which validates our previous assertions and
assumptions. In actuality, the energy of the oscillator decreases slowly due to energy
radiation back to the chain, and so does its instantaneous frequency of oscillation
until it approaches the neighborhood of the lower bounding frequency ωb1 = ω0.
Clearly, expression (3.199) is not valid in the neighborhood of this bounding fre-
quency, since the assumed scaling of v and xk does not hold there; this means that
as ω slowly decreases towards ωb1 the traveling wave ansatz becomes invalid since
the dynamics of the system approach the qualitatively different state of 1:1 reso-
nance, which should be considered separately.

The previous scenario is supported by the findings reported in Vakakis (2001)
and in Section 3.5.2.3, where numerical simulations of the dynamic interaction of
a damped NES with a damped linear chain of coupled oscillators are presented.
It is numerically shown (and analytically proven), that after some initial irregular
transients (corresponding to the energy radiation phase described previously), 1:1
TRC between the in-phase normal mode of the chain (at frequencyω0) and the NES
takes place. During this TRC strong energy exchanges between the two systems
occur.
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The results (3.195–3.199) concerning monochromatic energy radiation from the
nonlinear oscillator to the chain can be extended to the case of transient energy radi-
ation. To show this, we Laplace-transform the first two linear equations of (3.194),
assuming that the chain is initially at rest, and imposing the far field condition
lims→−∞ x(s, t) = 0. This leads to the following expression for the Laplace trans-
form U(0, p) = �[u(0, t)], where p is the Laplace transform variable,

U(0, p) = εV (p)

ε + c (p2 + ω2
0

)1/2

= εV (p)
[

1

c
(
p2 + ω2

0

)1/2
− ε

c2
(
p2 + ω2

0

) +O(ε2)

]
(3.200)

where V (p) = �[v(t)]. Inverse Laplace-transforming the above expression and
substituting the result into the last of equations (3.194) we obtain the following
nonlinear integro-differential equation governing the transient energy radiation from
the NES back to the chain:

v̈(t)+ 8αv3(t) =

− ε
[
v(t) − ε

c

∫ t

0
v(τ )J0 [ω0(t − τ )] dτ

+ ε2

c2ω0

∫ t

0
v(τ ) sinω0(t − τ )dτ +O(ε3)

]
(3.201)

In agreement with the previous simplifying analysis, the integral terms on the right-
hand side that govern energy radiation to the chain are of O(ε2). In Section 3.5.2.3
we discuss in detail the solution of this integro-differential equation.

From the above discussion we conclude that after a wavepacket impedes to the
NES, its energy is slowly radiated back to the chain in an O(ε2) nonlinear dynamic
interaction, until the dynamics approaches a regime of 1:1 resonance close to the
lower bounding frequency ωb1 = ω0. The dynamics of this resonance interaction is
studied in the next section.

3.5.2.2 Nonlinear Resonance Interactions and TET

We now focus in nonlinear resonance interactions occurring between the NES and
the semi-infinite chain in the neighborhood of the lower bounding frequency of the
PZ of the infinite chain. Later we will extend the analysis to resonance interactions
occurring the the neighborhood of the upper bounding frequency.

We commence right from the beginning that the problem of resonance in the sys-
tem under consideration is by no means trivial, as we deal with a problem possessing
an infinite number of DOFs and a local essential (strong) nonlinearity; moreover,
the transient nature of the examined dynamical interactions complicates even fur-
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ther the analysis. Since no common ways exist to proceed with this problem, we
need to apply some simplifying propositions that will enable us to analytically ap-
proximate in a self-consistent way the dynamic phenomena under investigation. We
follow closely the analysis by Manevitch et al. (2003). However, as in the previous
section, the validity of the assumptions made has to be checked a posteriori when
the analytical results are derived.

First, we assume that 1:1 resonance between the semi-infinite chain and the NES
occurs at a frequency smaller than the lower bounding frequency ωb1 = ω0, i.e.,
inside the lower AZ of the dispersion relation of the linear chain. It follows that
the amplitudes of the responses of the oscillators of the chain decay exponentially
with increasing distance from the NES. This basic simplifying assumption will be
checked (and validated) through numerical simulations later. An additional simpli-
fication is achieved by supposing that the shape of this exponential amplitude decay
is fairly approximated by a single exponent which is consistent with the dispersion
relation of the linear chain,

xj ≈ x0e
κj , j ≤ 0, ω2

0 −�2 ≈ 2c2(cosh κ − 1) (3.202)

where � ă denotes the fast frequency of oscillation of the oscillators of the chain
[as explained below in relation (3.205)], and κ the frequency-dependent rate of ex-
ponential decay. It follows that, in contrast to the analysis of the previous section,
we now seek standing-wave solutions localized to the NES. The assumption (3.202)
introduces an approximation in the analysis, since it omits nonlinear effects in the
decay rate which are present in the system; for an asymptotic study of near field
solutions in nonlinear layered media we refer to Vakakis and King (1995).

Substituting (3.202) into (3.193) we reduce approximately the dynamics to a
system of two coupled ordinary differential equations:

ẍ0 + x0[c2(1 − e−κ)+ ω2
0] + ε(x0 − v) = 0

v̈ + 8αv3 − ε(x0 − v) = 0 (3.203)

This indicates that the problem of studying the resonance interaction of the NES
with the semi-infinite chain can be reduced approximately to the simpler problem
of resonance interaction between the NES and the nearest to it oscillator of the chain.
Clearly, the biggest advantage gained by the above reduction is that the study of the
resonance interaction may be performed by applying the CX-A method introduced
in previous sections.

To this end, we introduce the complex variables ψ1 = ẋ0 + jωx0 and ψ2 =
v̇+ jωv with ω =

√
c2(1 − e−κ)+ ω2

0 + ε, which reduces (3.203) to the following
set of first-order complex modulation equations:

ψ̇1 − (jω/2)(ψ1 − ψ∗
1 )− (jω/2)(ψ1 − ψ∗

1 )+ (jε/2ω)(ψ2 − ψ∗
2 ) = 0

ψ̇2 − (jω/2)(ψ2 − ψ∗
2 )+ (ja/ω3)(ψ2 − ψ∗

2 )
3
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+ (jε/2ω)(−ψ2 + ψ∗
2 + ψ1 − ψ∗

1 ) = 0 (3.204)

where asterisk denotes complex conjugate. We now introduce the following approx-
imate slow-fast partition of the dynamics, implying that in the studied resonance
interactions there exists a single dominant fast frequency �:

ψk = ϕk(t) ei�t , k = 1, 2 (3.205)

The fast frequency � ă ăis assumed to be in the neighborhood of ωb1 = ω0, and
the complex amplitudes φk(t) to be slowly-varying; this implies that φ̇k(t) = O(ε)
or smaller. Substituting (3.205) into (3.204) and averaging over the fast frequency
we obtain the following set of modulation equations governing the evolutions of the
slow-varying complex amplitudes,

ϕ̇1 − iµ1ϕ1 + (jε/2ω) ϕ2 = 0

ϕ̇2 + iµ2ϕ2 − (3ja/ω3) |ϕ2|2 ϕ2 + (jε/2ω)ϕ1 = 0 (3.206)

where µ1 = ω −� and µ2 = �− (ω/2)+ (ε/2ω).
There are two different ways to proceed with the analysis of (3.206), both of

which are equivalent. In the first approach we express the complex variables in in
polar form, φk(t) = ak(t) e

iβk(t), k = 1, 2, substitute into (3.206) and set the real
and imaginary parts separately equal to zero. Then the following system of real
modulation equations results:

ȧ1 − (ε/2ω) a2 sin(β2 − β1) = 0

ȧ2 + (ε/2ω) a1 sin(β2 − β1) = 0

}
⇒ a2

1 + a2
2 = ρ2 (3.207a)

a1β̇1 − µ1a1 + (ε/2ω) a2 cos(β2 − β1) = 0

a2β̇2 + µ2a2 − (3 a a3
2/ω

3)+ (ε/2ω) a1 cos(β2 − β1) = 0 (3.207b)

Provided that a1a2 �= 0, we define the new phase difference variable θ = β2 − β1
and combine equations (3.207b) to get:

θ̇ + µ2 + µ1 − 3αa2
2

ω3
+ ε

2ω

(
a1

a2
− a2

a1

)
= 0 (3.207c)

Equations (3.207a, 3.207c) form an autonomous set of nonlinear evolution equa-
tions. The integral relation between the two amplitudes in (3.207a) is an energy-like
expression indicating conservation of the total energy of the undamped system dur-
ing the motion. Indeed, we note that for the type of localized standing waves con-
sidered here the total energy of the integrated semi-infinite chain-NES is finite and
conserved.

The stationary solutions of (3.207a, c) correspond to (approximately) time-
periodic localized standing waves of the integrated system. These are computed
by solving the following set of nonlinear algebraic equations:
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a2
1 + a2

2 = ρ2, θ = 0

ω

2
+ ε

2ω
− 3αa2

2

ω3 + ε

2ω

(
a1

a2
− a2

a1

)
= 0 (3.208)

where we recall that ω =
√
c2(1 − e−κ)+ ω2

0 + ε and that the exponential decay
factor κ is expressed in terms of the fast frequency � by the second of relations
(3.202), i.e., the linear dispersion relation of the infinite chain. Combining all these
results we derive the following expression relating the fast frequency of oscillation
� to the decay factor κ (through the frequency ω):

ω = {
ω2

0 + ε + (1/2)(�2 − ω2
0)+ (1/2)

[
(ω2

0 −�2)1/2(ω2
0 −�2 + 4c2)1/2

]}1/2

(3.209)
Since we are interested in localized standing waves with frequencies close to the

lower bounding frequency ωb1 = ω0 but inside the lower AZ, we introduce at this
point a frequency detuning parameter δω defined by the relation:

�2 = ω2
0 − ε2δω2

This leads to the following algebraic relations governing the amplitudes and decay
factors of the nonlinear standing wave motions:

ω = ω0 + [ε(1 + cδω)/2ω0] +O(ε2), a2
1 + a2

2 = ρ2

1

2
[ω0 + (ε/2ω0)(1 + cδω)] + (ε/2ω0)− 3aa2

2[ω−3
0 − (3ε/2ω5

0)(1 + cδω)]

+ (ε/2ω0)

(
a1

a2
− a2

a1

)
+O(ε2) = 0 (3.210)

The frequency of the slow modulation corresponding to the stationary solution is
obtained by considering the phase relations (3.207b) and taking into account that
θ = 0 ⇒ β1 = β2:

β̇1 = β̇2 = O(ε)

= ω −�− (ε/2ω) (a2/a1)

= (ε/2ω) [1 + cδω − (a2/a1)
] +O(ε2) (3.211)

This result is consistent with our assumption of slowly-varying phases.
For fixed energy ρ and detuning frequency δω the set (3.210) is solved numer-

ically ăfor the amplitudes a1 and a2. Then the corresponding phases are computed
by means of (3.211). The localized standing wave solutions with frequency close to
the lower bounding frequency of the chain are then approximated as follows:

x0(t) ≈ (a1/ω) sin [�t + β1(t)] ,
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Fig. 3.101 Energy dependence of the effective frequencies of in-phase localized standing waves
inside the lower AZ, for varying frequency detuning δω.

ẋ0(t) ≈ a1 cos [�t + β1(t)] , xj (t) ≈ x0(t) e
κj , j ≤ 0

v(t) ≈ (a2/ω) sin [�t + β2(t)] ,

v̇(t) ≈ a2 cos [�t + β2(t)] (3.212)

This is a synchronous oscillation with constant amplitude, fast frequency � =
(ω2

0 − ε2δω2)1/2, and effective frequency ωeffective = � + β̇1 = ω0 +
(ε/2ω0)[1 + cδω − (a2/a1)] +O(ε2). In order to comply with the assumptions of
the analysis these quantities should satisfy the relations,

∣∣β̇1
∣∣ = ∣∣β̇2

∣∣ 	 � (as this
separates the slow and fast dynamics), and ωeffective = � + β̇1 < ω0 (since this
satisfies the condition that the frequency of the standing waves lies inside the lower
AZ of the chain).

In Figure 3.101 we depict the energy dependence of ωeffective for parameters c2 =
1, ω2

0 = 0.4, ε = 0.1, α = 5/8 and varying frequency detuning δω. These solutions
correspond to a1 > 0 and a2 > 0, i.e., to in-phase motions between the NES and
the adjacent oscillator of the chain, localized to the NES. Hence, the 1:1 resonance
interaction between the NES and the chain close to the lower bounding frequency
ωb1 = ω0 gives rise to a continuous family of localized, slowly modulated standing
waves that lie inside the lower AZ of the chain; the decay rates of these waves
increase as we increase the frequency detuning δω, moving further inside the lower
AZ.

We now discuss a second approach for analyzing the averaged set of complex
slow modulations (3.206) that takes in account the integrability features of this set
of equations. We start by noting that the set (3.206) is completely integrable, since
it possesses the following two first integrals of motion:

ρ2 = |ϕ1|2 + |ϕ2|2
H = −jµ1 |ϕ1|2 − jµ2 |ϕ2|2 − (3jα/2ω3) |ϕ2|4 + jλ(ϕ∗

1ϕ2 + ϕ∗
2ϕ1) (3.213)
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where λ = ε/2ω, µ1 = ω −� and µ2 = �− (ω/2)+ (ε/2ω). We recall that ωăis
the reference frequency related to the rate of exponential decay κ , whereas � is the
(single) dominant fast frequency of the 1:1 resonance interaction.

Taking into account the first integral of motion, we express the slowly-varying
complex amplitudes as ϕ1 = ρ cosφ ejδ1 and ϕ2 = ρ sin φ ejδ2 , where ϕ and δk ,
k = 1, 2 are time-dependent angle variables. Employing now the second integral of
motion the set modulation equations (3.206) is transformed as follows:

ϕ̇ = λ sin δ

δ̇1 = µ1 − λ cos δ tan ϕ

δ̇ = (µ1 + µ2)− (3αρ2/ω3) sin2 ϕ − λ cos δ (tanϕ − cotϕ)

C = sin2 ϕ(µ1 + µ2)−
(

3αρ2/ω3
)

sin4 ϕ + 2λ sinϕ cosϕ cos δ (3.214)

where C is a first integral of the motion, and δ = δ1 − δ2. Setting Z ≡ sin2 ϕ

we can solve exactly this first-order slow flow approximation. Indeed, the following
analytic solution of (3.214) can be derived:

Ż = {
4λ2Z(1 − Z)− [C − Z(µ1 − µ2)+ (3αρ2/2ω3)Z2]2}1/2

⇒
∫ {

4λ2Z(1 − Z)− [C − Z(µ1 − µ2)+ (3αρ2/2ω3)Z2]2}−1/2
dZ = t + S

(3.215)

where S is a constant of integration, and the integral in (3.215) can be explicitly
expressed in terms of elliptic integrals.

Returning to the slow flow (3.214), it is of interest to study the case when the
effective frequency of oscillation ωeffective is exactly equal to the prescribed fast fre-
quency of the resonance, i.e., ωeffective = �. In that case there is no slow frequency
modulation of the fast oscillation (since then it holds that the slow-phases are sta-
tionary, i.e., β̇1 = β̇2 = 0), and the integrated chain-NES system executes purely
time-periodic oscillations at the fast frequency�. This special (pure fast frequency)
solution is computed by solving the following (extended) set of stationary equations:

0 = sin δ ⇒ δ = 0, π ⇒ µ1 ∓ λ tan ϕ = 0

(µ1 + µ2)− (3αρ2/2ω3) sin2 φ ± λ(tan φ − cotφ) = 0 (3.216)

which leads to the following amplitude-frequency relation for this special, purely
fast-frequency solution:

ρ = ρ(�) =
{
�3

3α

[
λ(�)2

µ1(�)
− µ2(�)

][
µ2

1(�)+ λ2(�)

µ2
1(�)

]}1/2

(3.217)
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Fig. 3.102 Purely fast localized standing waves for parameters ω0 = 1, a = 5/8, c = 1 and
ε = 0.1: (a) dependence of the energy-like variable ρ on the effective frequency ωeffectiveective = �,
(b) dependence of energy on frequency.

This solution exists only in the finite interval ωmin < ω < ω0 inside the lower
AZ, where ωmin is the solution of the equation µ1(�)µ2(�)−λ2(�) = 0. A typical
plot depicting this solution is presented in Figure 3.102a. Note the breakdown of
the analytical approximation in the neighborhood of the lower bounding frequency
ωb1 = ω0 = 1. The corresponding physical energy of the oscillation is given by
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E(�) = ρ2(�)

2(λ2 + µ2
1)

[
λ2

1 − exp(−2κ)
+ µ2

1

]
(3.218)

where κ is the exponential decay rate of the localized standing wave. The corre-
sponding plot is presented at Figure 3.102b. Note the abrupt energy increase as the
PZ is approached, a feature consistent with the fact that inside the PZ the standing
wave solution is transformed to a traveling wave propagating in the semi-infinite
chain and corresponding to unbounded energy.

In summary, we proved the existence of a family of nonlinear standing wave so-
lutions localized to the NES, and possessing effective frequencies situated inside the
lower AZ of the dispersion relation of the linear chain. Physically, in these motions
the chain performs synchronous in-phase oscillations, which are also in-phase with
the NES responses. In the following analysis we prove the existence of a similar
family of localized standing waves with effective frequencies situated in the upper
AZ of the linear chain, corresponding to out-of-phase oscillations of adjacent pairs
of oscillators.

Hence, we consider localized standing waves of (3.193) with frequencies in the

range
[
ωb2 =

√
ω2

0 + 4c2,+∞)
. Following the procedure outlined previously, we

introduce the following assumption of exponential decay for the amplitudes of the
oscillators of the chain,

xk = (−1)kx0e
νk, k ≤ 0,ω2

0 −�2 = 2c2(cosh κ − 1), κ = jπ + ν (3.219)

where� denotes again the (common) fast frequency of the linear oscillators and the
NES, and out-of-phase motions are assumed. Substituting the ansatz (3.219) into
(3.193) we reduce the problem of computing localized standing waves inside the
upper AZ to the following system of coupled oscillators:

ẍ0 + x0[c2(1 − e−ν)+ ω2
0 + ε] − εv = 0

v̈ + 8av3 − ε(x0 − v) = 0 (3.220)

Introducing the reference frequencyω = [c2(1 − e−ν)+ ω2
0 + ε]1/2 the analysis

of system (3.220) follows the steps outlined above for the reduced system (3.203),
but for an important modification. This is dictated by the fact that, in contrast to
the family of in-phase localized standing waves considered previously, out-of-phase
standing waves can exist only above a certain energy threshold since their frequen-
cies must exceed the upper bound ωb2 . Moreover since the oscillation is expected
to be strongly localized to the NES it is logical to impose the additional require-
ment that |a2| � |a1|. This amounts to rescaling the amplitudes of the slow flow in
terms of the small parameter of the problem according to, a1 = εb1, a2 = b2 and
b1, b2 = O(1).

Taking into account these assumptions, and performing a similar analysis to that
adopted for the in-phase localized standing waves, we derive the following sta-
tionary solutions corresponding to time-periodic, out-of-phase, localized standing
waves of the chain-NES system:
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Fig. 3.103 Energy dependence of the effective frequencies of out-of-phase localized standing
waves inside the upper AZ, for varying frequency detuning δω.

b2
2 = ρ2 +O(ε2), θ ≡ β1 − β2 = 0,

b1 = ρ[ω2 − (6ρ2/ω2)+ ε]−1 +O(ε2)

β̇1 = β̇2 = ω −�− (b2/2ωb1)

�2 = ω2
0 + 4c2 + ε2δω

ω = (ω2
0 + 2c2)1/2 + (ε/2)(ω2

0 + 2c2)−1/2[1 − 2−1/2c δω] +O(ε2)

(3.221)

This set of stationary conditions is similar to the set (3.208, 3.211) for in-phase,
localized standing waves. Moreover, the solution (3.221) is valid only when the
conditions |β̇1| 	 � and �+ β̇1 > (ω

2
0 + 4c2)1/2 hold.

In Figure 3.103 we depict the dependence of the effective frequency ωeffective =
�+ β̇1 with respect to the energy-like quantity ρ = (a2

1 + a2
2)

1/2 for the family of
out-phase localized standing waves. These computations were performed for c2 =
1, ω2

0 = 0.4, ε = 0.1, α = 5/8 and varying frequency detuning parameter δω. We
note that close to the upper bounding frequency there exists an approximately linear
dependence of the effective frequency on energy. The localized solution corresponds
to a1 < 0, a2 > 0, a2 � |a1|, i.e., to out-of-phase oscillations between the NES and
the nearest to it linear oscillator of the chain.

An analytical estimate for the energy threshold for the family of out-of-phase
localized standing waves is now derived. To this end, we express the energy-like
quantity ρ as ρ = ρ(0) + εr , where ρ(0) is a constant and r is the variation of
the energy in the neighborhood of the upper bounding frequency ωb1. Substituting
this expression into the third of equations (3.221) provides a way for determining
the constant ρ(0); indeed, ρ(0) is chosen so to eliminate the O(1) term from the
frequency of the slow variation thus rendering the analytical solution consistent with
the assumptions made. This leads to the following estimate:
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ρ(0) = [
(ω2

0 + 2c2)3/2/3α
][
(ω2

0 + 4c2)1/2 − (1/2)(ω2
0 + 2c2)1/2

]
(3.222)

As a result, the frequency of the slow modulation becomes an O(ε) quantity, given
by the following expression:

β̇1 = β̇2 = ε
{

− 1

2ρ(0)

[
r

(ω2
0 + 2c2)1/2

− 
ρ(0)

(ω2
0 + 2c2)

]

×
[
(ω2

0 + 2c2)− 6αρ(0)2

(ω2
0 + 2c2)

]

+ B

2ρ(0)(ω2
0 + 2c2)1/2

[
(ω2

0 + 2c2)− 6αρ(0)
2

(ω2
0 + 2c2)

]2
⎫⎬
⎭ +O(ε2)

(3.223)

where

 = 
(δω) = (1/2)(ω2

0 + 2c2)−1/2(1 − 2−1/2cδω)

and

B = B(r, δω) = −ρ(0)
[

1 + 2
(ω2
0 + 2c2)1/2 − 12αρ(0)r

(ω2
0 + 2c2)

+ 12αρ(0)2


(ω2
0 + 2c2)3/2

]

×
[
(ω2

0 + 2c2)− 6αρ(0)2

(ω2
0 + 2c2)

]−2

+ r
[
(ω2

0 + 2c2)− 6αρ(0)2

(ω2
0 + 2c2)

]−1

Finally, the amplitudes of oscillation of the problem are approximated as follows:

a1 = ερ(0)
[(
ω2

0 + 2c2
)

− 6αρ(0)2(
ω2

0 + 2c2
)
]−1

+ ε2B(r, δω)+O(ε3)

a2 = ρ(0) + εr +O(ε2) (3.224)

This solution indicates that close to the upper bounding frequency the effective
frequency ωeffective = � + β̇1 of the out-of-phase localized standing waves vary
linearly with increasing energy, a result which is consistent with the numerical result
of Figure 3.102. The energy threshold for the existence of this family is given by
ρcrit(δω) = ρ(0) + ε rcrit(δω) + O (

ε2
)
, and is approximated by the requirement

that on the threshold it must be satisfied that ωeffective = ωb2, or, �+ β̇1 = ωb2 ⇒
β̇1 = 0 + O (

ε2
)
. This leads to the following algebraic expression for determining

rcrit(δω):


(δω)− 1

2ρ(0)

[
rcr(

ω2
0 + 2c2

)1/2 − 
(δω)ρ(0)(
ω2

0 + 2c2
)
][(

ω2
0 + 2c2

)
− 6αρ(0)2(
ω2

0 + 2c2
)
]
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Fig. 3.104 Numerical simulation of the chain-NES interaction for weak impulse excitation of the
fourth oscillator of the chain: Response of the NES.

+ B(rcrit, δω)

2ρ(0)
(
ω2

0 + 2c2
)1/2

[(
ω2

0 + 2c2
)

− 6αρ(0)2(
ω2

0 + 2c2
)
]2

= 0 (3.225)

This completes the analytical study of the out-of-phase localized standing waves
in the system (3.193). In the remainder of this section we perform a series of numer-
ical simulations in order to highlight the role that the computed families of localized
standing waves play on TET from the chain to the NES. We note that, in contrast to
our previous studies of TET in weakly damped finite-DOF coupled oscillators, TET
in the present problem takes place even in the absence of damping. This is due to
the fact that the energy radiation from the NES to the far-field of the semi-infinite
chain [i.e., as s → −∞ in the continuum approximation (3.194)] has an equivalent
effect to damping dissipation in finite-DOF discrete oscillators, and, hence, induces
the necessary frequency variation of the NES response required for TET.

We performed a series of numerical simulations with a chain composed of 200
oscillators with an essentially nonlinear oscillator (the NES) attached to its right
end. In the first series of simulations the initial conditions of all oscillators are set
equal to zero, except for ẋ−3(0) = X �= 0; in essence, this simulates an initial
impulse of magnitude X applied to the fourth oscillator from the NES. The total
instantaneous energy of the system was monitored to verify energy conservation
and ensure accuracy of the numerical simulations. In addition, care was taken to
select the time window of the simulations small enough to avoid the interference
due to reflected waves from the left free end of the chain in the measurements.

For a small enough impulse neither in-phase nor out-of-phase localized standing
waves (modes) are excited (see Figure 3.104). For a sufficiently strong impulsive
magnitude, however, excitation of the in-phase localized standing wave occurs. This
is shown the the numerical simulations depicted in Figure 3.105 for impulsive mag-
nitude X = 50, and system parameters ω0 = 1.5, c2 = 2.0, 8α = 0.5 and ε = 0.3.
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Fig. 3.105 Numerical simulation of the chain-NES interaction for strong impulse excitation: (a) —
v(t), - - - x0(t); (b) instantaneous frequency ωNL(t) of the NES.

In Figure 3.105a we depict the transient responses of the NES and its neighboring
oscillator of the chain, whereas in Figure 3.105b we depict the temporal evolution
of the instantaneous frequency ωNL(t) of the NES. In the plot of Figure 3.105a we
note an initial regime of strong dynamic interaction between the chain and the NES,
after which the system settles into a time-periodic localized standing wave motion,
with energy predominantly confined to the NES. This time-periodic solution is the
theoretically predicted localized in-phase standing wave inside the lower AZ of the
infinite chain. This is confirmed by the fact that its frequency (i.e., the asymptotic
value reached by ωNL(t) in Figure 3.105b) is equal to 1.497 < ωb1 = ω0; by the
near-exponential decay of the amplitudes of the oscillators (see Figure 3.105c – the
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Fig. 3.105 Numerical simulation of the chain-NES interaction for strong impulse excitation: (c)
near exponential decay of the amplitudes of the oscillators when the localized in-phase standing
wave is excited; (d) evolution of instantaneous normalized energy of the leading 26 oscillators and
the NES.

small discrepancies noted for distant oscillators is due to the fact that they have not
reached a complete steady state motion at the time of the measurement); and by the
near in-phase oscillations of the chain and the NES. In Figure 3.105d we depict the
instantaneous fraction of initial energy contained in the leading 26 oscillators of the
chain and the NES; as time increases this energy reaches an asymptotic value that
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represents the fraction of total initial energy transferred to the localized standing
wave.

Hence, passive TET from the undamped semi-infinite chain to the undamped NES
occurs through the excitation of the in-phase standing wave localized to the NES.
This is qualitatively different compared to the mechanisms of TET for finite-DOF,
weakly damped oscillators, which relied either on fundamental and subharmonic
TRCs or on the excitation of nonlinear beats. In the absence of damping in the
infinite-dimensional system, radiation to the far field provides an energy dissipa-
tion mechanism similar to damping, which drives the dynamics to the domain of
attraction of the localized in-phase standing wave, and, hence, generates TET.

In the second series of numerical simulations we study the excitation of the lo-
calized out-of-phase standing wave inside the upper AZ of the linear chain. In our
simulations we could not establish the occurrence of TET in the impulsively excited
chain through excitation of the out-of-phase family of localized standing waves, i.e.,
we could not reproduce the scenario for TET discussed above, which relied on the
excitation of the in-phase family of standing waves. Instead, we wish to numerically
demonstrate the existence of the out-of-phase family of localized waves. To this end,
we initiate the system by exponentially decaying out-of-phase initial conditions for
the 25 leading oscillators of the chain, and observe an initial regime of chain – NES
dynamic interaction, after which a time-periodic localized out-of-phase standing
wave is formed, with energy predominantly confined to the NES. In Figure 3.106a
we depict the corresponding evolution of the instantaneous frequencyωNL(t) of the
NES, which eventually enters into the higher AZ, above the upper bounding fre-
quency ωb2 = 3.2015. In Figure 3.106b we depict the instantaneous normalized
energy of the leading 18 oscillators of the chain and the NES, representing the por-
tion of the total energy ‘trapped’ in the localized standing wave.

The main conclusion drawn from the analytical and numerical results of this
section is that passive TET can occur in the undamped semi-infinite chain of lin-
ear oscillators with a weakly coupled, essentially nonlinear end attachment; that is,
impulsive energy from the chain can be transferred irreversibly to the nonlinear os-
cillator (which acts as an NES) under conditions of nonlinear 1:1 resonance. The
only scenario for TET established by the numerical simulations is through the exci-
tation of families of in-phase standing waves (nonlinear modes) situated inside the
lower AZ of the linear chain, and localized to the NES.

Based on the previous theoretical and numerical results we can formulate the fol-
lowing scenario for passive TET from the semi-infinite chain to the nonlinear oscil-
lator. An initial impulsive excitation of the chain causes energy to propagate towards
the NES (and also away from the NES to the far field) through traveling wavepackets
with predominant frequencies inside the PZ ω ∈ (ωb1, ωb2) of the chain (actually,
the only way to transfer energy through the linear chain is by exciting traveling
waves). After these traveling wavepackets impede to the nonlinear oscillator they
excite it initially with frequencies inside the PZ of the chain, under non-resonant
conditions (this is confirmed by the numerical result of Figure 3.105b). These ini-
tial non-resonant interactions cause initial near-adiabatic radiation of energy from
the nonlinear oscillator back to the chain, a process that reduces its instantaneous
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Fig. 3.106 Numerical simulation of the chain-NES interaction for out-of-phase exponentially de-
caying initial excitation of the leading 25 oscillators: (a) instantaneous frequency ωNL(t) of the
NES; (b) evolution of instantaneous normalized energy of the leading 18 oscillators and the NES.

frequency; indeed the radiation of energy from the nonlinear oscillator back to the
chain has the same effect as energy dissipation due to damping in finite-DOF dis-
crete coupled oscillators. After sufficient radiation of energy, the instantaneous fre-
quency of the nonlinear oscillator reaches from above the lower bounding frequency
ωb1 = ω0 of the chain, where conditions for 1:1 resonance between the chain and
the nonlinear oscillator are established. This eventually leads to excitation of an in-
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phase localized standing wave (mode) of the integrated chain-attachment system.
Once this localized mode is excited, energy is ‘trapped’ in the nonlinear oscillator,
and no further energy radiation back to the chain is possible afterwards, since the
motion takes place on an invariant nonlinear normal mode manifold localized to the
nonlinear oscillator. As a result, there occurs confinement of energy to the NES and
passive TET.

An interesting feature of this TET scenario is that it is realized in the absence of
damping. This contrasts to our studies of finite-DOF systems of coupled oscillators,
where TET occurred only in the presence of damping dissipation, through TRCs
in neighborhoods of the corresponding resonant manifolds. In the infinite-DOF un-
damped system considered in this section the far field acts as an effective energy
dissipater, ‘absorbing’ irreversibly energy in the form of traveling waves propagat-
ing away from the nonlinear oscillator. Hence, in the scenario outlined above for
the undamped infinite-DOF system TET is realized through the eventual excitation
of a standing wave localized to the NES, rather than through TRCs. Due to invari-
ance property of the family of localized standing waves, once such a standing wave
is excited the motion remains confined to the NES and no energy radiation to the
semi-infinite chain is possible. In the next section we formulate an alternative ana-
lytical methodology for studying TET in the corresponding weakly damped system,
and examine the mechanisms for TET in that case.

3.5.2.3 Integro-Differential Formulation

To study TET in the weakly damped, semi-infinite chain with the nonlinear end
attachment we adopt a different methodology by reducing the dynamics to a single
integro-differential equation in terms of the NES response v(t) (Vakakis, 2001). The
system considered is the weakly damped variant of (3.193),

ẍk + c2(2xk − xk−1 − xk+1)+ ελẋk + ω2
0xk = 0, k > 0

ẍ0 + c2(x0 − x−1)+ ε(x0 − v) + ελẋ0 + ω2
0x0 = 0

v̈ + 8av3 + ελv̇ − ε(x0 − v) = 0 (3.226)

with initial conditions, xi(0) = ẋi(0) = 0, i �= p; xp (0) = 0, ẋp (0) = X;
and v(0) = v̇(0) = 0. In addition, compared to (3.193), in (3.226) we change
the indexing of the oscillators of the chain from negative to positive The initial
conditions correspond to impulsive excitation of the (p + 1)-th oscillator of the
chain, with the system being initially at rest.

Before proceeding, however, with the analysis we present numerical evidence of
TET from the semi-infinite chain of weakly damped oscillators to the damped NES.
The numerical simulations were carried out by numerically integrating a model of
101 oscillators. Careful monitoring of the transient wave propagation in the model
assured that no unwanted reflexions of waves due to the finiteness of the numerical
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Fig. 3.107 Case of absence of TET from the chain to the NES: (a) response of the NES, (b)
response of the neighboring to the NES linear oscillator.

chain occurred, so that the analytical condition of semi-infinite chain was accurately
simulated in the temporal window of the results presented herein.

In the first simulation we consider a chain with parameters ε = 0.1, λ = 0.5,
C = 5.0, c2 = 1.5, ω2

0 = 0.9, p = 2 and X = 4. In Figure 3.107 we depict the
transient responses of the nonlinear attachment and the adjacent linear oscillator,
from which it is concluded that no TET from the chain to the NES occurs in the
system in this case. Note that in the absence of TET the linear oscillator executes a
nearly monochromatic (single-frequency) fast oscillation with a slowly decaying en-
velope, whereas the NES executes a multi-frequency oscillation with no discernable
dominant harmonic component.

Next, we consider a system with parameters ε = 0.1, λ = 0.5, C = 5.0,
c2 = 1.5, ω2

0 = 0.4 and initial conditions as previously. In Figure 3.108 we de-
pict the transient responses of the NES and its adjacent linear oscillator, from which



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 289

Fig. 3.108 Case of TET from the chain to the NES: (a) response of the NES, (b) response of the
neighboring to the NES linear oscillator.

TET from the chain to the NES is noted. Considering the transient response of
the NES we note that after an initial regime of multi-frequency transients, the re-
sponse appears to settle to a single-frequency fast oscillation modulated by a slow
varying envelope. Moreover, TET appears to occur predominantly in the regime
of single-frequency fast oscillation. Relating these results to the TET scenario out-
lined in the previous section for the undamped system, we deduce that in the initial
multi-frequency regime the NES radiates (backscatters) energy to the chain as its
frequency decreases inside the PZ of the chain. After sufficient energy radiation to
the far field, the instantaneous frequency of the NES approaches from above the
lower bounding frequency ωb1 = ω0 of the PZ, and TRC takes place at frequency
ωb1 = ω0. At this point fundamental TET from the chain to the NES takes place
in similar way to the two-DOF system (see Section 3.4.2.1); in that context TET
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in the damped system is qualitatively different than TET in the undamped system
which is due to excitation of an in-phase standing wave localized to the NES. Hence,
the numerical results of Figure 3.108 appear to confirm in general terms the TET
scenario formulated in the previous section for the undamped chain-NES system.
Similar TET results were obtained for the system with parameters ε = 0.1, λ = 0.5,
C = 5.0, c2 = 3.5, ω2

0 = 0.4 and initial conditions as previously (Vakakis, 2001).
The numerical results indicate that depending on the system parameters and the

level of impulsive excitation, TET in the system is realized. The fact that TET ap-
pears to be coincidental with the settlement of the NES response to a regime of a
single-frequency fast oscillation modulated by a slowly varying envelope, provides
strong motivation to apply slow-fast partition of the dynamics in the regime of TET
and apply once again the CX-A methodology. Before we proceed to studying this
partition, however, it is necessary to reduce the dynamics of the chain-NES inter-
action by taking into account the linear structure of the chain dynamics. Indeed,
we will show that the dynamics of the infinite system (3.226) can be reduced (with
no approximation) to a single integro-differential equation. To perform this task we
make use of the analytical results of Lee (1972) and Wang and Lee (1973) who, in
essence, derived the Green’s functions of the free and forced damped chain of linear
oscillators in explicit form.

To this end, the response of the k-th oscillator of the chain (3.226) can be sym-
bolically expressed as follows:

xk(t) = X[Gk−p(t)+Gk+p−3(t)]+ ε[v(t) − x0(t)] ∗ [Gk(t)+Gk+1(t)], k ≥ 0
(3.227)

where (∗) denotes the convolution operation. The kernel Gm(t) = G−m(t) is de-
fined as

Gm(t) = e−ελt/2
t∫

0

J0
[
(ω2

0 − ε2λ2/4)1/2(t2 − τ 2)1/2
]
J2m(2cτ)dτ

≡ e−ελt/2Hm(t) (3.228)

where J2m(•) denotes the Bessel function of the first kind of order 2m. Using (3.227)
we express the response x0(t) of the linear oscillator adjacent to the NES in the
following integro-differential form:

x0(t) = X[Gp(t)+Gp+1(t)] + ε {v(t) −X[Gp(t)+Gp+1(t)]
}

∗ [G0(t)+G1(t)] +O(ε2) (3.229)

with p ≥ 0.
Substituting (3.229) into the last of equations (3.226) we obtain the following

reduced dynamical system, in the form of a single integro-differential equation gov-
erning the motion of the NES:
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v̈ + ελv̇ + Cv3 + εv =
εX[Gp(t)+Gp+1(t)] + ε2 {

v(t)−X[Gp(t)+Gp+1(t)]
}

∗ [G0(t)+G1(t)] +O(ε3) (3.230)

This equation is supplemented by the initial conditions v(0) = v̇(0) = 0.
It follows that the problem of studying the dynamics of TET in system (3.226)

is reduced to the equivalent problem of studying the dynamics of the integro-
differential equation (3.230) with zero initial conditions. Clearly, direct application
of the CX-A technique developed in the previous section is not possible at this point,
due to the apparent lack of a single ‘fast’ frequency in the non-homogeneous term
on the right-hand side of (3.230). Hence, before proceeding with the analysis of
this equation it is necessary to examine carefully the frequency content of the non-
homogeneous term; if this term can be approximated by a slowly modulated fast
monochromatic oscillation, it will render the integro-differential equation (3.230)
amenable to direct CX-A analysis.

Since the quantity

Gm−1(t)+Gm(t) ≡ e−ελt/2[Hm−1(t)+Hm(t)]
appears repeatedly in (3.230) we start our analysis by studying the spectral content
of this quantity. As shown by Wang and Lee (1973), Hm(t) can be expressed in the
following alternative form (which highlights its spectral content):

Hm(t) = π−1
∫ π

0

cosmθ

2jω(θ)

[
ejω(θ)t − e−jω(θ)t] dt,

ω(θ) = [
ω2

0 + 4c2 sin2(θ/2)
]1/2 (3.231)

By (3.231)Hm(t) is expressed as a superposition of a continuum of harmonics with
frequencies in the range [ω0, (ω

2
0 + 4c2)1/2], which is coincident with the PZ of the

infinite undamped linear chain, where time-harmonic traveling waves can propagate
unattenuated upstream or downstream through the chain. Outside this frequency
range (in the two AZs) the chain acts as a filter, exponentially attenuating harmonic
signals and producing merely near-field solutions. Hence, a first conclusion is that
the reduced system (3.230) highlights the fact that the NES is forced by a continuum
of impeding harmonics in the range of the PZ of the linear chain.

We now asymptotically analyse (3.232) in order to show that after some ini-
tial multi-frequency transients,Hm(t) performs oscillations dominated by the single
‘fast’ frequency ωb1 = ω0, which is the lower bounding frequency of the disper-
sion relation of the chain; this finding will pave the way for applying the CX-A
methodology to the reduced system. Considering the time dependence of the inte-
gral (3.231) we note that for t � 1 the harmonic terms in the integrand perform fast
oscillations; it follows that for sufficiently long times we can apply the method of
stationary phase (Bleistein and Handelsman, 1986) to asymptotically approximate
Hm(t)+Hm−1(t) as follows:
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[
Hm(t)+Hm−1(t)

]
(t�1) = ej (ω0t+π/4)

2j

(
2

πc2ω0t

)1/2

− ej (ω0t+3π/4)

32jπ1/2ω0

(
4ω0

c2t

)3/2
{
c2

ω2
0

+ 2[m2 + (m+ 1)2] − 1

}

+O(t−5/2)+ cc, t � 1 (3.232)

where ‘cc’ denotes complex conjugate and m = 0, 1, 2, . . . . We note that at suffi-
ciently long times (i.e., after the multi-frequency early transients have died out) the
quantityHm(t)+Hm−1(t) settles approximately to a fast oscillation with frequency
ω0 modulated by an algebraically decaying ‘slow’ envelope. Similar algebraic time
decay rates for anharmonic chains were derived by Sen et al. (1996).

A short time analytic approximation for Hm(t) +Hm−1(t) is derived by Taylor-
expanding the exponentials in (3.232) close to t = 0, and performing successive
integrations with respect to θ of the resulting coefficients of powers of t ,

[
Hm(t)+Hm−1(t)

]
(t	1) ≈ π−1

∑
i=1,3,5,...

[Ii(m)+ Ii(m− 1)]
t i

i! , t 	 1

(3.233)
where

Ii(m) =
∫ π

0
ω(i−1)(θ) cosmθdθ, i = 1, 3, 5, . . .

An interesting observation is that for fixed i the quantity Ii(m) becomes zero for
m ≥ (i + 1)/2. It follows that as the orderm increases we must consider higher or-
ders of t in the early time expansion (3.233) to obtain accurate approximations. This
observation is consistent with the existence of exceedingly larger ‘silent’ regions in
Gp(t) + Gp+1(t) in the non-homogeneous term of the reduced integrodifferential
equation with increasing p (i.e., as the impulse is shifted further downstream away
from the NES).

The point of matching of the short- and long-time approximations can be com-
puted by imposing an appropriate criterion, for example, by minimizing in time the
error quantity

Er(t) = {[g(t	1)(t)− g(t�1)(t)]2 + [ġ(t	1)(t)− ġ(t�1)(t)]2}1/2

g(t) ≡ [Hm(t)+Hm−1(t)]
This quantitative criterion provides the time interval [0, t∗] of validity of the Taylor-
series based approximation, and the beginning of the range of validity of the long-
term asymptotic approximation (3.232). The error at the point of matching, Er(t∗),
can be made arbitrarily small by including a sufficient number of terms in the two
approximations. Similar matching techniques of short- and long-time local solutions
have been introduced in previous works (for example, Salenger et al., 1999) to con-
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Fig. 3.109 Matching the local approximations (3.232) and (3.233): (a) short and long time ap-
proximations for [Hp(t) + Hp+1(t)], p = 2, compared to the exact numerical simulation for the
response depicted in Figure 3.107; (b) error function Er(t) for the same system determining the
transition point t∗.

struct global analytical approximations of strongly nonlinear responses of coupled
oscillators.

In Figure 3.109a we depict a comparison of the short and long time approxima-
tions with the (exact) numerical simulation for the quantity

[
Hp(t)+Hp+1(t)

]
for

the chain whose responses are shown in Figure 3.108. Since the impulse is applied
in the fourth particle of the system we have that p = 2; the short time approxima-
tion was derived up to O

(
t3

)
, whereas the long time asymptotic approximation up

to O
(
t−3/2

)
. In the same Figure we depict the error Er(t) versus time from where

the instant of transition t∗ is determined. Better approximations can be obtained by
improving the accuracy of the long time asymptotic approximation.
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The previous discussion proves that, in the TET regime and after certain ini-
tial multi-frequency transients the non-homogeneous term of the reduced equation
(3.230) possesses a dominant harmonic with fast frequencyω0. This finding enables
us to apply the CX-A method to analyze TET from the chain to the NES. The solu-
tion of the reduced system is developed in two steps. For t ∈ [0, t∗) the short-term
solution of the reduced system is expressed in Taylor series whose coefficients are
computed by matching respective powers of t on the left- and right-hand sides. For
t ≥ t∗ we express the quantities

[
Gp(t)+Gp+1(t)

]
and [G0(t)+G1(t)] on the

right-hand side of (3.230) using the long-time asymptotic approximation (3.232).
We then apply the CX-A method by partitioning the dynamics into fast and slow-
components using as initial condition the state of the system at t∗ (as computed by
the Taylor series expansions of the previous step).

Elaborating further on the second step, to approximate v(t) we introduce the
complex variable ψ(t) = v̇(t) + jω0v(t), and express ψ(t) in polar form, ψ(t) =
ϕ(t)ejω0t , where φ(t) represents the slowly varying modulation of the fast oscilla-
tion ejω0t . Moreover, it is of help to introduce the complex amplitude σ(t) defined
by φ(t) = σ(t)e−ελt/2. Finally, we use the following compact notation for the long-
time asymptotic solution (3.232),[

Hm−1(t)+Hm(t)
]
(t�1) ≡ h(t;m) ejω0t +O(t−5/2)+ cc (3.234)

where

h(t;m) = ejπ/4

2j

(
2

πc2ω0t

)1/2

− ej3π/4

32π1/2ω0j

(
4ω0

c2t

)3/2

×
{
c2

ω2
0

+ 2[m2 + (m+ 1)2] − 1

}

Introducing the new variables, t̃ = t − t∗, σ (t) = σ(t̃ + t∗) ≡ σ̃ (t̃), h(t;p) =
h(t̃ + t∗;p) ≡ h̃(t̃;p), t̃ ≥ 0, and omitting the tildes from the resulting expressions
we derive the following slow flow approximation governing the dynamics of the
complex modulation

σ̇ + j
(
ω2

0 − ε)
2ω0

σ − 3jCe−ελt∗e−ελt

8ω3
0

|σ |2 σ

= εX h(t;p + 1)+ ε2

2jω0

t∫
0

σ(τ) h(t − τ ;p + 1) dτ

− ε2X

t∫
0

h(τ ;p + 1) h(t − τ ; 1) dτ +O(ε3) (3.235)



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 295

The initial condition σ(0) is determined by computing the Taylor series solution
at the transition point t = t∗ ⇒ t̃ = 0. We note that due to the approximations
involved, the solution of (3.235) is expected to be valid only up to times ofO(1/ε2).

Hence, the problem of studying TET in the weakly damped system (3.226) is
reduced approximately to the analyis of the dynamics of the complex modulation
equation (3.235). This analysis is similar to the ones performed in previous sections
for studying the slow flow of the two-DOF system, and is not carried out further.
We state, however, that the reduction of the dynamics to (3.235) indicates that TET
in the weakly damped system (3.225) is due to TRC of the NES dynamics in the
neighborhood of a 1:1 resonance manifold at frequency ω0; in that sense, TET in
the weakly damped system can be regarded as qualitatively different from the TET
mechanism in the corresponding undamped system which was due to excitation of
an in-phase family of standing waves localized to the NES. Viewed in a different
context, however, the TET dynamics in the damped and undamped systems possess
a similarity. Indeed the spectral study of the non-homogeneous term of the reduced
system carried out in this section confirms the TET scenario of the previous section,
namely, that TET from the semi-infinite chain to the NES occurs when the frequency
of the NES approches from above the lower bound of the PZ of the chain. Similar
results were obtained in Dumcum (2007) where the analysis was extended to semi-
infinite linear chains with lightweight ungrounded NESs (of Configuration II – see
Section 3.1).

A final note concerns the initial multi-frequency transients that occur after a trav-
eling wavepacket propagating in the semi-infinite chain impedes on the NES (see
Figure 3.108). In this regime the NES interacts with traveling waves possessing fre-
quencies inside the PZ of the chain, and radiates energy to the far field of the chain.
Traveling waves, however, can be regarded as the continuum limit of the closely
packed resonances of a chain composed of a large (but finite) number of coupled
oscillators, as this number tends to infinity. Viewed in that context, the initial multi-
frequency transients resulting from the dynamic interaction of the NES with im-
peding traveling waves propagating in the semi-infinite chain, can be viewed as the
continuum limit of resonance capture cascades (RCCs) occurring between subsets
of linear modes of the finite but high-DOF chain and the NES, as the number of
DOF of the chain tends to infinity. This provides an interesting physical background
to the complex traveling wave-NES dynamic interaction that occurs in the initial
stage of the NES dynamics.
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Chapter 4
Targeted Energy Transfer in Discrete Linear
Oscillators with Multi-DOF NESs

4.1 Multi-Degree-of-Freedom (MDOF) NESs

In the previous chapter we considered targeted energy transfer (TET) from linear
discrete primary systems to single-degree-of-freedom (SDOF) essentially nonlinear
attachments (or nonlinear energy sinks – NESs). In this chapter we extend our dis-
cussion of nonlinear TET to multi-DOF essentially nonlinear NESs. The reason for
doing so is twofold. First, we aim to show that through the use of MDOF NESs it
is possible to passively extract vibration energy simultaneously from multiple lin-
ear modes of primary systems. This feature cannot be realized in the case of SDOF
NESs, since as shown in Chapter 3, in such attachments multi-frequency TET (in-
volving resonance interactions of the NESs with multiple linear modes) can only
occur through resonance capture cascades (RCCs); i.e., through sequential transient
resonance captures (TRCs) involving only one linear mode at a time. Second, we
wish to show that by using MDOF NESs we can improve the efficiency and robust-
ness of TET, even at small energy levels. This represents a qualitatively new feature
in TET dynamics, since as we discussed in Chapter 3, strong TET from primary
discrete systems to SDOF NESs can be realized only when the energy exceeds a
well-defined critical threshold (e.g., see Figure 3.4).

The general study of the nonlinear dynamical interactions of linear primary sys-
tems with MDOF essentially nonlinear NESs is a formidable problem from an an-
alytical point of view, due to the high-order degeneracies of the governing dynam-
ics that lead to high-co-dimension bifurcations (Guckenheimer and Holmes, 1983;
Wiggins, 1990). However, we will show in this chapter that if the aim of the analysis
is narrowed to focus on TET dynamics, asymptotic analysis can still be applied to
study analytically certain aspects of the problem. The following exposition draws
results from the thesis by Tsakirtzis (2006). Additional works on MDOF NESs
were performed by Gourdon et al. (2005, 2007) and Gourdon and Lamarque (2005),
whereas Musienko et al. (2006) studied nonlinear energy transfers from a linear os-
cillator to a system of two attached SDOF NESs. Ma et al. (2008) studied TET from
a chain of particles to a two-DOF essentially nonlinear attachment at its end by ap-
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plying proper orthogonal decomposition (POD); they related TET in that system to
the localization properties of proper orthogonal modes and to the energy distribu-
tion among them. POD-based reduced-order modeling of the TET dynamics was
also discussed in that work.

4.1.1 An Alternative Way for Passive Multi-frequency Nonlinear
Energy Transfers

It was shown in Chapter 3 that SDOF essentially nonlinear attachments (NESs) are
capable of passively absorbing energy from multiple linear modes of primary sys-
tems through resonance capture cascades (RCCs). The resulting multi-frequency
TET occurs through sequential transient resonance captures (TRCs), as the nonlin-
ear attachment engages in resonance capture with each linear mode involved in the
RCC in the neighborhood of its own natural frequency (e.g., close to the correspond-
ing resonance manifold), before escaping TRC and engaging in resonance the next
linear mode of the sequence at a different frequency range. Moreover, it was shown
that RCCs lead to sequential, multi-frequency energy transfer from all participating
linear modes to the nonlinear attachment, which then acts, in essence, as broadband
NES.

As an example we consider a system consisting of a two-DOF primary system
that is weakly coupled to a SDOF essentially nonlinear NES with governing equa-
tions of motion given by Tsakitzis et al. (2004):

ü1 + u1(ω
2
0 + 2α)− αu2 = 0

ü2 + u2(ω
2
0 + α + ε)− αu1 − εv = 0

v̈ + Cv3 + εβ v̇ + ε(v − ü2) = 0 (4.1)

The parameters used in the following simulation are assigned the numerical val-
ues, α = 1, ω0 = 1, β = 2, C = 3, and ε = 0.1, with all initial conditions being
assumed zero, except for the initial velocity u̇1(0) = 25.0. In the plot of Figure 4.1
we depict the numerical wavelet transform (WT) spectrum of the transient response
of the NES, from which the occurrence of an RCC is deduced. Indeed, in the initial
phase of the motion the NES resonates (or engages in TRC) with the higher out-
of-phase linear mode, resulting in passive energy absorption from that mode in the
neighborhood of the higher natural frequency (Vakakis et al., 2003; Panagopoulos et
al., 2004). As energy decreases due to damping dissipation, an escape of the dynam-
ics from this initial TRC occurs, and the NES engages in transient resonance with
the lower in-phase linear mode; in turn, this results in TET from the lower mode to
the NES in the neighborhood of the lower natural frequency. In the final phase of
the motion the dynamics escapes from this second TRC as well, and settles into a
linearized regime as the motion decays to zero due to damping dissipation; due to



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 303

Fig. 4.1 Wavelet analysis of the transient response of an SDOF NES engaged in an RCC (frequen-
cies in Hz).

Fig. 4.2 Primary system with MDOF NES.

the low amplitude of the motion, the nonlinear effects (and, hence, the effect of the
NES) are negligible at this late stage of the dynamics.

What was described above constitutes a RCC, leading to multi-frequency TET
from both modes of the primary system to the SDOF NES. However, since this en-
ergy transfer takes place in a sequential manner, the SDOF NES does not engage in
simultaneous resonance with both linear modes of the primary system. In an attempt
to device an NES capable of extracting simultaneously energy from multiple linear
modes of the primary system to which it is attached, we consider an alternative de-
sign by adding to the NES more degrees of freedom. As a motivational example, we
consider the system depicted in Figure 4.2, composed of a two-DOF linear primary
system weakly coupled to a three-DOF essentially nonlinear attachment. We aim
to study the capacity of the MDOF NES to passively absorb and locally dissipate
vibration energy initially induced to the primary system.

Assuming that the two modes of the uncoupled primary system (i.e., for ε = 0)
possess natural frequencies ω1 and ω2, the equations of motion are given by

ẍ1 + ελẋ1 +
(
ω2

1 + ε

2

)
x1 − ε

(x2

2
+ v1

)
= 0
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ẍ2 + ελẋ2 +
(
ω2

2 + ε

2

)
x2 − ε

(x1

2
− v1

)
= 0

µv̈1 + ελ(v̇1 − v̇2)+ ε
(
v1 + x2 − x1

2

)
+ C1(v1 − v2)

3 = 0

µv̈2 + ελ(2v̇2 − v̇1 − v̇3)+ C1(v2 − v1)
3 + C2(v2 − v3)

3 = 0

µv̈3 + ελ(v̇3 − v̇2)+ C2(v3 − v2)
3 = 0 (4.2)

where the variables x1 and x2 are the linear modal co-ordinates (that is, they de-
scribe the amplitudes of the linear in-phase and out-of-phase modes of the primary
system), and vi , i = 1, 2, 3 are the absolute displacements of the particles of the
NES. In the following numerical simulations an initial excitation of the primary
system is considered, with the NES being initially at rest.

Before considering energy transactions in the coupled system, it is instructive to
discuss the dynamics of the two degenerate systems resulting in the limit of zero
coupling, i.e., as ε → 0. The degenerate nonlinear attachment possesses three non-
linear normal modes (NNMs); as discussed in Section 2.1 these are synchronous
free periodic motions where all coordinates of the system vibrate in-unison, in simi-
larity to the modes of classical linear vibration theory (Vakakis et al., 1996). The first
NNM of the decoupled NES possesses zero frequency and corresponds to a rigid-
body mode of the decoupled NES. In addition, an in-phase NNM exists satisfying
the relation [v2(t)− v3(t)] = [v1(t)− v2(t)], and an out-of-phase one satisfying the
relation [v2(t)− v3(t)] = −[v1(t)− v2(t)].

Based on these observations, we introduce at this point the nonlinear modal co-
ordinates z1(t), z2(t) and z3(t), defined as

z3(t) = [v2(t)− v3(t)] + [v1(t)− v2(t)],
z2(t) = [v2(t)− v3(t)] − [v1(t)− v2(t)],

z1(t) = v1(t)+ v2(t)+ v3(t) (4.3)

representing the coordinates of the three NNMs of the decoupled NES. The cor-
responding backbone curves (i.e. the frequency-energy dependences) of the linear
and nonlinear modes of the decoupled primary system and the decoupled NES are
depicted in Figure 4.3 for C1 = C2 = 0.15, µ = 0.33, ω1 = 1.0, ω2 = √

3 and
ε = 0. At crossing points between different backbone curves (i.e., at points A, B
and C) internal resonances may occur, since at these points the frequency of a NNM
coincides to the natural frequency of one of a linear mode of the primary system.
It follows that in the proposed design there exists the possibility of simultaneous
resonance captures between multiple NNMs of the NES with the two linear modes
of the primary system.

When non-zero but weak coupling is introduced (0 < ε 	 1), system (4.2)
is expected to possess NNMs that are perturbations of the aforementioned modes
of the two decoupled linear and nonlinear subsystems. Moreover, the resulting dy-
namics are expected to exhibit added complexity due to the multi-modal dynamical
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Fig. 4.3 Frequencies of the linear and nonlinear modes of the uncoupled primary system and the
NES (corresponding to ): — linear, - - - nonlinear modes.

interaction of the linear and essentially nonlinear subsystems; this is especially true
close to points of internal resonances where bifurcations of NNMs (Vakakis et al.,
2003) are expected to occur that further complicate the dynamics. In Figure 4.4 the
transient responses of the coupled system of are depicted for ε = 0.25 and initial
conditions u̇1(0) = 5.0, u̇2(0) = −5.0, with all other initial conditions zero. This
corresponds to initial excitation of the anti-phase linear mode of the decoupled pri-
mary system. Comparing the responses of the linear and nonlinear subsystems we
clearly deduce that the NES passively absorbs vibration energy from the primary
system. Moreover, this energy is absorbed in multiple frequencies, which is an in-
dication of the occurring complex dynamical interactions. In Figures 4.4c and 4.4d
the Fast Fourier Transforms (FFTs) of the nonlinear modal responses z2(t) and z3(t)

are depicted, respectively, whereas in Figure 4.5 the corresponding wavelet spectra
of these responses are presented. As discussed in Section 2.5.1, the WT spectra re-
veal not only the frequency contents of the nonlinear modal responses, but also the
temporal evolution of each individual frequency component; this is key to under-
standing the transient nonlinear interactions that occur between the primary system
and the NES. Indeed, the WT spectra depicted in Figure 4.5 reveal that a series of
transient resonance captures (TRCs) occurs, which we now proceed to discuss.

Specifically, the out-of-phase NNM of the NES [corresponding to z3(t)] absorbs
energy at three main frequencies, two of which are close to the natural frequencies
of the linear in-phase and out-of-phase linear modes, and one is lower than these.
Hence, the MDOF NES appears to resonate simultaneously with both linear modes,
extracting energy simultaneously from both. The additional lower frequency com-
ponent indicates the presence of an essentially nonlinear mode that exists in the
coupled system; as shown in Lee et al. (2005) in systems of this type (composed
of weakly coupled linear and nonlinear components), there can exist numerous
branches of stable and unstable NNMs resulting from bifurcations under conditions
of internal resonance. The in-phase NNM [corresponding to z2(t)] exhibits similar



306 4 Targeted Energy Transfer in Discrete Linear Oscillators with Multi-DOF NESs

Fig. 4.4 Transient responses of system (4.2): (a) x1(t) —, z2(t) - - - - - -, (b) x2(t) —, z3(t) - - -,
(c) FFT of z2(t), (d) FFT of z3(t).

behavior, though its interaction with the out-of-phase linear mode takes place after
some initial time delay. This mode also absorbs energy in a multi-frequency fash-
ion, and resonates with both linear modes of the primary system; the presence of the
lower NNM is again noted in the in-phase nonlinear modal response.

The results presented in this section provide a first numerical demonstration that,
indeed, MDOF NESs can act as passive energy absorbers of vibration energy over
wide frequency ranges. This is due to the occurrence of simultaneous TRCs at dif-
ferent frequency ranges, resulting from resonance interactions of multiple NNMs of
the NES with multiple linear modes of the primary system. Motivated by this pre-
liminary numerical evidence, we now proceed to a more systematic numerical study
of targeted energy transfer (TET) phenomena from linear oscillators to attached
MDOF NESs.
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Fig. 4.5 Wavelet transform spectra of the transient responses of the MDOF NES (frequencies in
Hz): (a) z3(t), (b) z2(t).

4.1.2 Numerical Evidence of TET in MDOF NESs

In this section we will study systematically the efficiency of passive TET in the
system depicted in Figure 4.2. The study follows closely Tsakirtzis (2006) and
Tsakirtzis et al. (2007). This system consists of a two-DOF primary linear oscil-
lator connected through a weak linear stiffness of constant ε (which is the small
parameter of the problem, i.e., 0 < ε 	 1) to a three-DOF NES with essential stiff-
ness nonlinearities. Each mass of the primary system is normalized to unity, and the
stiffnesses of the NES possess pure cubic characteristics with constants C1 and C2.
Each mass of the nonlinear attachment is equal to µ, and both linear and nonlinear
subsystems possess linear viscous dampers with small constants ελ. Assuming that
impulsive excitations F1(t) and F2(t) are applied to the primary system and that no
direct forcing excites the nonlinear attachment, the equations of motion are given
by
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ü1 + (ω2
0 + α)u1 − αu2 + ελ1u̇1 = F1(t)

ü2 + (ω2
0 + α + ε)u2 − αu1 − εv1 + ελ1u̇2 = F2(t)

µv̈1 + C1(v1 − v2)
3 + ε(v1 − u2)+ ελ2(v̇1 − v̇2) = 0

µv̈2 + C1(v2 − v1)
3 + C2(v2 − v3)

3 + ελ2(2v̇2 − v̇1 − v̇3) = 0

µv̈3 + C2(v3 − v2)
3 + ελ2(v̇3 − v̇2) = 0 (4.4)

As mentioned in the previous section, in the limit ε → 0 system (4.4) is decomposed
into two uncoupled oscillators: a two-DOF linear primary system with natural fre-

quencies ω1 =
√
ω2

0 + 2α and ω2 = ω0 < ω1 corresponding to the out-of-phase
and in-phase linear modes, respectively; and a three-DOF NES with a rigid body
mode, and two flexible nonlinear normal modes – NNMs (Tsakirtzis et al., 2004).
Our first aim is to study the dynamics of system (4.4), and, in particular, the effi-
ciency (strength) of TET from the forced primary system to the NES. In this section
the study of the damped dynamics is performed through direct numerical simula-
tions of the equations of motion and post-processing of the transient results. We do
this in order to establish the ranges of parameters for which efficient targeted energy
transfer from the primary system to the NES takes place. In later sections we will
study TET in (4.4) using analytic techniques.

An extensive series of numerical simulations is performed over different regions
of the parameter space of the system, in order to establish the system parameters for
which optimal passive TET from the primary system to the NES occurs. Moreover,
by varying the linear coupling stiffness α of the primary system, we study the influ-
ence of the spacing of the two eigenfrequencies ω1, and ω2 on TET. The numerical
simulations are carried out by assigning different sets of initial conditions of the pri-
mary system, with the NES always being initially at rest. To assess the strength of
passive TET from the primary system to the NES, the following energy dissipation
measure (EDM) is numerically computed:

E(t) = ελ

Ein

∫ t

0

[
(v̇1(τ )− v̇2(τ ))

2 + (v̇2(τ )− v̇3(τ ))
2]dτ (4.5)

where Ein is the input energy provided to the system by the initial conditions. This
non-dimensional EDM represents the instantaneous portion of input energy dissi-
pated by the NES up to time instant t ; it follows that by means of (4.5) we can
obtain a qualitative measure of the effectiveness of the MDOF NES to passively
absorb and locally dissipate vibration energy from the primary system. Clearly, due
to the fact the system examined is purely passive (with energy being continuously
lost due to damping dissipation) the instantaneous EDM should reach a definite as-
ymptotic limit which is symbolically denoted as

ENES = lim
t�1
E(t) (4.6)



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 309

Fig. 4.6 EDM for varying values of single impulse Y (impulsive forcing condition I1) and coupling
stiffness a of the primary system.

This asymptotic EDM represents the portion of input energy that is eventually dis-
sipated by the NES. In the following exposition, the asymptotic evaluation (4.6) is
used as a measure of the efficiency of TET from the primary system to the MDOF
NES. We note, however, that the EDMs (4.5) and (4.6) can not describe the time
scale of TET, i.e., how rapidly energy gets transferred and dissipated by the NES;
clearly, in certain applications the time scale of energy transfer is an important fac-
tor for assessing NES efficiency but this issue will not be pursued further in this
section (however, it will be revisited in later sections and chapters). It suffices to
state that the use of NESs with non-smooth nonlinearities drastically decreases the
time scale of energy dissipation (Georgiadis et al., 2005); in addition, as shown in
Section 3.4.2.5 the excitation of impulsive orbits affects the time-scale of TET dy-
namics.

As shown below, for weak coupling between the primary system and the NES,
efficient passive TET from the primary system to the NES can be achieved for small
values of the mass parameter µ and nonlinear characteristic C2 of the NES with all
other parameters being quantities of O(1). This combination of system parameters
leads to large relative displacements between the particles of the NES, which, in
turn, leads to large energy dissipation by the dampers of the NES. Hence, a basic
conclusion drawn from the numerical study is that lightweight MDOF NESs with
weak nonlinear stiffnesses C2 are effective energy absorbers and dissipaters; this
is an interesting conclusion from the practical point of view, since it renders such
lightweight NESs applicable for a diverse set of engineering applications.

The numerical simulations were performed for the following system parameters:

ε = 0.2, α = 1.0, C1 = 4.0, C2 = 0.05, ελ1 = ελ2 = ελ = 0.01,

µ→ ε2µ = 0.08, ω2
0 = 1.0
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Fig. 4.7 EDM for varying values of the in-phase impulses Y (impulsive forcing condition I2) and
coupling stiffness a of the primary system.

Fig. 4.8 EDM for varying values of the out-of-phase impulses Y (impulsive forcing condition I3),
and coupling stiffness a of the primary system; symbols A and B at the plot corresponding to α = 1
refer to the results depicted in Figures 4.11 and 4.12, respectively.

and three types of impulsive forcing conditions – IFCs (or, equivalently, initial con-
ditions – velocities) for the primary system: (i) single IFC designated by I1, corre-
sponds to F1(t) = Yδ(t) (or, equivalently, u̇1(0) = Y ), and all other initial condi-
tions zero; (ii) in-phase IFC designated by I2, with F1(t) = F2(t) = Yδ(t) and all
other initial conditions zero; and (iii) out-of-phase IFC I3, with F1(t) = −F2(t) =
Yδ(t) and all other initial conditions zero.

In Figures 4.6–4.8 we depict the asymptotic EDM ENES (e.g., the portion of
input energy eventually dissipated by the NES) as function of the magnitude of the
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Fig. 4.9 The system with SDOF NES attachment whose dynamics is compared to the system
depicted in Figure 4.2.

impulse Y and the linear coupling stiffness of the primary system α, for the above
three types of IFCs. In all cases, a significant portion (reaching as high as 86% for
IFC I1; 92% for IFC I2; and 90% for IFC I3) of the input energy gets passively
absorbed and dissipated by the MDOF NES. This significant passive TET occurs in
spite of the fact that the (directly forced) primary linear system and the NES have
identical dashpots. Moreover, the energy transfer is broadband, since the vibration
energy absorption takes place over wide frequency ranges.

Whereas the portion of energy eventually dissipated at the NES depends on the
level of energy input and the closeness of the natural frequencies of the primary
system (as expected, since the system considered is nonlinear), this dependence is
less pronounced compared to the case of the SDOF NES. This is concluded when
comparing the performance of the MDOF NES to that of the SDOF NES depicted
in Figure 4.9 (Vakakis et al., 2004) – this is performed in the comparative plot of
Figure 4.10 for a system with α = 0.2, and IFCs I1-I3 – and also by considering
the results reported in Chapter 3. The system with SDOF NES whose response is
depicted in Figure 4.10 is identical to that of Figure 4.2, but with the MDOF NES
being replaced by a single mass of magnitude 3εµ grounded by means of an es-
sential cubic stiffness nonlinearity with characteristic C = 1.0 and weak viscous
damper ελ. So it is clear that a significant improvement of efficiency of TET is
achieved by using the multi-DOF NES; in addition, TET for the case of the MDOF
NES is more robust to variations of the input force compared to the SDOF case.

Particularly notable is the capacity of the MDOF NES to absorb a significant
portion of the input energy even for low applied impulses. Such low-energy targeted
energy transfer is markedly different from the performance of SDOF NESs, where,
as reported in previous works (Vakakis et al., 2004, McFarland et al., 2004) and in
Chapter 3 of this work, TET is ‘activated’ only when the magnitude of input energy
exceeds a certain critical threshold. For the case of the MDOF NES such a critical
energy threshold can only be detected in the energy plot for α = 4 of Figure 4.8,
e.g., only in the case when the primary system possesses well separated natural
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Fig. 4.10 Comparisons of EDMs for primary systems attached to SDOF and MDOF NESs, and
impulsive forcing conditions: (a) I1, (b) I2, and (c) I3.
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frequencies and is excited by out-of-phase initial conditions. In all other cases (Fig-
ures 4.6–4.8) no such critical input energy threshold is identified. This interesting
dynamical feature of the MDOF NES will be reconsidered in more detail in a later
section; here it suffices to state that the capacity of MDOF NES for low-energy TET
is enabled by the rich structure of periodic orbits (NNMs) of the underlying Hamil-
tonian system, a subset of which localize to the NES with decreasing energy due to
damping dissipation.

Of particular interest is the plot of ENES depicted in Figure 4.8 corresponding to
α = 1 (for the case when the natural frequencies of the uncoupled primary system
are equal to ω1 = 1.7321, ω2 = 1.0 rad/sec) and out-of-phase impulse excita-
tions. In that plot we note that for sufficiently small impulse magnitudes, the portion
of energy dissipated by the MDOF NES develops an initial local minimum before
reaching higher values. To gain insight into the dynamics of targeted energy trans-
fer in that region, in Figures 4.11 and 4.12 the numerical spectra of Cauchy wavelet
transforms (WTs) of the internal relative NES displacements [v2(t) − v1(t)] and
[v3(t)− v2(t)] at points labeled A and B of Figure 4.8 are depicted. Point A corre-
sponds to the case of relatively weak TET from the primary system to the MDOF
NES, whereas, point B to a case where nearly 90% of the input energy gets ab-
sorbed and eventually dissipated by the NES. The WT spectra depict the amplitude
of the WT as function of frequency (vertical axis) and time (horizontal axis). Heavy
shaded areas correspond to regions where the amplitude of the WT is high whereas
lightly shaded regions correspond to low amplitudes. Such plots enable one to de-
duce the temporal evolutions of the dominant frequency components of the signals
analyzed.

Comparing the two responses of Figures 4.11 (point A) and 4.12 (point B), it
is clear that the enhanced TET noted in the later case is due mainly to the large-
amplitude transient relative response [v3(t)− v2(t)]. Moreover, judging from the
corresponding WT spectrum, this time series consists of a ‘fast’ oscillation with
frequency close to ω1, that is modulated by a large-amplitude ‘slow’ envelope. Ad-
ditionally, one notes that this modulated response is not sustained over time, but
takes place only in the initial phase of the motion and escapes from this regime of
the motion at approximately t = 50. Similar behavior is noted for the time series of
the other relative response, [v2(t) − v1(t)] depicted in Figure 4.12. It is well estab-
lished (Vakakis et al., 2004; Panagopoulos et al., 2004; McFarland et al., 2004) that
this represents a TRC of the NES dynamics on a resonance manifold near the out-of-
phase linear mode of the uncoupled primary system, which results in enhanced and
irreversible energy transfer from the primary system to the NES. Comparing the re-
sponses of Figures 4.12 and 4.11, it is clear that in the later case (where weaker TET
occurs) the transient responses are dominated by sustained frequency components
indicating excitation of NNMs, rather than occurrence of TRCs. The frequencies of
some of the excited NNMs differ from the linearized natural frequencies ω1 and ω2,
indicating the presence of essentially nonlinear modes in the response, having no
linear analogs.

From the above discussion it is clear that the transient dynamics of the dissipative
system of Figure 4.2 is rather complex. Moreover, the numerical results depicted in
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Fig. 4.11 Internal NES relative displacements for out-of-phase impulses (IFC I3) with Y = 1 and
α = 1 (point A in Figure 4.8): (a) Time series, (b) Cauchy wavelet transforms; the linear natural
frequencies of the uncoupled (ε = 0) primary system are indicated by dashed lines.

Figures 4.6–4.12 indicate that the MDOF NES leads to enhanced TET compared
to the SDOF NES, a conclusion that provides amble motivation for a systematic
and detailed study of the corresponding transient dynamics. This is performed in
the following sections. We start our study by considering the underlying Hamil-
tonian system (i.e., the corresponding system with no dissipation), and show that
the Hamiltonian dynamics influences drastically the weakly damped responses and,
hence, controls TET.
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Fig. 4.12 Internal NES relative displacements for out-of-phase implulses (IFC I3) with Y = 1.5
and α = 1 (point B in Figure 4.8): (a) Time series, (b) Cauchy wavelet transforms; the linear
natural frequencies of the uncoupled (ε = 0) primary system are indicated by dashed lines.

4.2 The Dynamics of the Underlying Hamiltonian System

The results reported in the previous sections provide ample motivation to study the
dynamics of the system depicted in Figure 4.2. Our aim is to better understand the
different regimes of the motion, and the dynamic mechanisms that govern passive
TET from the directly excited primary system to the MDOF NES (Tsakirtzis, 2006;
Tsakirtzis et al., 2007). A first step towards analyzing the dynamics of system (4.4)
is to study the structure of the periodic orbits of the corresponding Hamiltonian sys-
tem (with no damping terms, ελ = 0). Then, to show that passive TET as well as
other type of complicated transient dynamics of the weakly damped system (4.4)
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can be explained and interpreted in terms of transitions between different branches
of periodic orbits of the Hamiltonian system in an appropriate frequency-energy plot
(FEP). The reasoning behind this plan has to do with the intricate relationship be-
tween the damped and weakly undamped systems, and on the paradoxical fact that
the weakly damped dynamics is mainly determined by the underlying Hamiltonian
dynamics (Lee et al., 2005; Kerschen et al., 2006). Indeed, the effect of damping in
the transient dynamics is parasitic, as it does not generate new dynamics but only
invokes transitions between different branches of solutions (NNMs) of the underly-
ing Hamiltonian system. It follows that although damping is prerequisite for TET,
the dynamics of TET is mainly determined by the underlying Hamiltonian structure
of the dynamics.

We will employ both analytical and numerical techniques to show that the un-
damped (Hamiltonian) system possesses a surprisingly complicated structure of pe-
riodic orbits that give rise to complicated phenomena and damped transitions. This
result should not be unexpected given the high degeneracy of the linear structure
of the dynamical system (4.4), which is expected to lead to complicated, high-
codimension bifurcations on the corresponding high-dimensional center manifold.
Although such a general bifurcation study is beyond the scope of this work, we
will show that the underlying Hamiltonian dynamics influence the weakly damped
transient dynamics of Figure 4.2, and, in essence, governs TET.

To provide an indication of the degeneracy of the system with an attached MDOF
NES, we reconsider equations (4.4) and set the damping parameters equal to zero.
Changing into modal coordinates of the primary (linear) system, the equations of
motion can be placed in the following form:

ẅ1 + ω2
1w1 = 0

ẅ2 + ω2
2w2 − εv1 = 0

µv̈1 + C1(v1 − v2)
3 + ε(v1 − c1w1 − c2w2) = 0

µv̈2 + C1(v2 − v1)
3 + C2(v2 − v3)

3 = 0

µv̈3 + C2(v3 − v2)
3 = 0 (4.7)

where c1 and c2 are scalars resulting from the modal coordinate transformations.
Placing these equations intro state form we obtain

[
ẇ1 q̇1 ẇ2 q̇2 v̇1 q̇3 v̇2 q̇4 v̇3 q̇5

]T =
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[
0 0 0 0 0 (v1 − v2)

3 0
(v2 − v1)

3+
κ(v2 − v3)

3 0 κ(v3 − v2)
3
]T

(4.8)

with κ = C2/C1. In the limit of zero coupling between the primary system and
the MDOF NES, the combined system degenerates into a system with two pairs of
imaginary eigenvalues and three double zero eigenvalues. Clearly, this is a highly
degenerate dynamical system, with a 10-dimensional center manifold (which coin-
cides with the entire phase space of the system). Such degenerate dynamical systems
possess highly co-dimensional bifurcation structures, which give rise to complicated
regular and chaotic dynamics (Guckenheimer and Holmes, 1983; Wiggins, 1990),
and their study is beyond the current state-of-the-art. However, by narrowing our
aim to the study of TET, it is possible to apply analytical techniques to the study of
the dynamics of this highly degenerate system.

Hence, we reconsider the dynamics of the five-DOF essentially nonlinear Hamil-
tonian system which is derived by removing the damping terms from equations
(4.4). There are various numerical algorithms that compute the periodic orbits of
this system, and in this work the numerical algorithm described in Tsakirtzis et al.
(2004) is followed. To compute the periodic orbits of this system, first it is assumed
that a periodic orbit of the Hamiltonian system is realized for the initial velocity
vector [u̇1(0) u̇2(0) v̇1(0) v̇2(0) v̇3(0)] with zero initial displacements; then,
the algorithm computes this initial condition vector together with the period T , for
which the following periodicity condition is satisfied:

[u1(T ) u2(T ) v1(T ) v2(T ) v3(T ) u̇1(T ) u̇2(T ) v̇1(T ) v̇2(T ) v̇3(T )]T
− [0 0 0 0 0 u̇10 u̇20 v̇10 v̇20 v̇30]T = 0 (4.9)

The algorithm has been implemented in Matlab�using optimization techniques. For
a given value of the period T , the objective function to minimize is the norm of the
left-hand side of equation (4.9), with the optimization variables being the five non-
zero initial velocities. By varying the period, a frequency-energy plot (FEP) can be
drawn, depicting the dominant frequency of a periodic motion (NNM) as function
of the corresponding (conserved) energy of the Hamiltonian system. When more
than one dominant frequencies exist (for example, when two coordinates have dif-
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ferent dominant frequency components), the lowest of these dominant frequencies
is depicted in the FEP.

In the following sections we consider two configurations of MDOF NESs, princi-
pally distinguished by the order of magnitude of their masses. The aim of the study
is to assess the influence of the masses of the NESs on TET.

4.2.1 System I: NES with O(1) Mass

The first system configuration considered (referred to from now on as ‘System I’)
consists of a relatively heavy nonlinear attachment, and system parameters:

µ = 1.0, ω2
0 = 1.0, α = 1.0, ε = 0.1, C1 = 2.0, C2 = ε2 (System I)

The small value of the nonlinear characteristic C2 was dictated by the numerical
results of the previous section, where it was found that for small values of C2 en-
hanced TET from the primary system to the NES was realized. First, we discuss
certain features of the dynamics of this system in the frequency-energy plot (FEP).

A first observation related to the system of equations (4.4), is that for no damping
and forcing, and in the limit of small energy and finite frequencies the dynamics of
the system is approximately governed by the following linear subsystem of equa-
tions (4.4):

ü1 + (ω2
0 + α)u1 − αu2 = 0

ü2 + (ω2
0 + α + ε)u2 − αu1 − εv1 = 0 (Limit of low energies finite frequencies)

µv̈1 + ε(v1 − u2) = 0 (4.10)

In that case the periodic orbits of the full undamped and unforced nonlinear system
tend to the three eigenmodes of the linear subsystem (4.10), with corresponding
eigenfrequencies, f1 = 1.7473, f2 = 1.0265, and f3 = 0.3054 rad/s.

A second observation is that in the limit of high energies and finite frequencies the
essentially nonlinear stiffnesses of system (4.4) behave approximately as massless
rigid links, resulting in the following alternative approximate linear subsystem:

ü1 + (ω2
0 + α)u1 − αu2 = 0

ü2 + (ω2
0 + α + ε)u2 − αu1 − εv1 = 0 (Limit of high energies finite frequencies)

3µv̈1 + ε(v1 − u2) = 0 (4.11)

Then the periodic motions of the Hamiltonian system tend asymptotically to the
linear eigenfrequencies, f̂1, f̂2 and f̂3 of subsystem (4.11). For System I these fre-
quencies are equal to f̂1 = 1.766, f̂2 = 1.0248, and f̂3 = 0.1766 rad/s.
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Fig. 4.13 Frequency-energy plot (FEP)of the Hamiltonian dynamics of System I; symbols A, B
and C are the initial conditions for the damped transitions depicted in Figures 4.26, 4.27 and 4.28,
respectively.

These observations are important in order to understand the complicated struc-
ture of periodic orbits of the Hamiltonian System I in the FEP. This will lead also
to clear interpretations of multi-frequency damped transitions, as sudden jumps be-
tween distinct branches of solutions in the FEP. The FEP for the periodic orbits of
System I is depicted in Figure 4.13, together with two enlarged regions Z1, and Z2
showing in detail certain domains of the plot (see Figures 4.14, 4.15). Indicated also
in the plot are the natural frequencies fi , f̂i of the limiting linear systems (4.10)
and (4.11). Unless in the neighborhood of one of the six natural frequencies fi ,
f̂i , i = 1, 2, 3, the response of the primary subsystem is small, and the motion is
localized to the nonlinear attachment.

Regarding the general features of the FEP, we note that it contains two basic types
of branches: backbone (global) branches consisting of multi-frequency periodic mo-
tions defined over extended frequency and energy ranges; and local branches termed
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Fig. 4.14 Enlarged region Z1.

Fig. 4.15 Enlarged region Z2.

subharmonic tongues consisting of multi-frequency periodic motions, with frequen-
cies defined only in neighborhoods of certain basic frequencies. Each tongue is de-
fined over a finite energy range, and consists of two subharmonic branches of peri-
odic solutions (NNMs), which at a critical energy value coalesce in a bifurcation that
signifies the end of that particular tongue and the elimination of the corresponding
subharmonic motion.
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Moreover, there exists a regular backbone branch where the last mass of the non-
linear attachment (the NES) has nearly zero amplitude (e.g., v3 ≈ 0). Periodic mo-
tions (NNMs) on this regular backbone are approximately monochromatic, that is,
all coordinates of System I vibrate approximately in-unison with identical dominant
frequencies; NNMs on that regular backbone branch correspond to either in-phase
or out-of-phase relative motions of the particles of the system. On this branch, the
motion is always localized to the first two masses of the nonlinear attachment, except
in the vicinity of the natural frequencies of the low-energy limiting linear subsystem
(4.10), and at the extremities of the two lower tongues observed in Figure 4.13; one
of these tongues occurs at f1/3 = 0.58 rad/s, and the other at f2/3 = 0.34 rad/s.

A countable infinity of additional subharmonic tongues occurs in the neighbor-
hoods of frequencies that are in rational relationships to the basic frequencies f1, f2
and f3 of subsystem (4.10), but these are not represented in the FEP of Figure 4.13.
The time histories depicted in Figures 4.16a, b (points 1 and 2) show that the mo-
tion on the regular backbone branch is mainly monochromatic, and that, indeed, the
MDOF NES vibrates with the same frequency as the primary system. At point 1
the displacements of the two masses of the primary system oscillate in out-of-phase
fashion, whereas at point 2 in in-phase fashion.

Another interesting feature of the FEP of System I is that, besides the regular
backbone branch, there exist additional singular backbone branches at higher values
of the energy (the term ‘singular’ is justified by the analysis of the next section).
Each of the singular backbone branches may also carry tongues of subharmonic
periodic motions. For instance, a lower tongue appears around f2/3 = 0.34 rad/s
for each of the three singular backbone branches depicted in Figure 4.14. There
are basic qualitative differences between the additional singular backbone branches
and the main backbone branch: first, the amplitude of oscillation of the last mass of
the NES takes finite values at the singular backbone branches; second, for periodic
motions on the singular backbone branches the particles of the system oscillate with
differing dominant frequency components (this contrasts to the regular backbone
branch where all particles oscillate with identical dominant frequency components).
Indeed, the singular backbone branches consist of subharmonic motions that are
defined over wide frequency ranges of the FEP, in contrast to subharmonic motions
on the tongues that are localized to frequencies rationally related to fi and f̂i .

It is interesting that the additional family of backbone curves of System I is not
limited to the three singular branches depicted in Figure 4.13. Indeed, as shown
later a countable infinity of singular backbone branches exists in the FEP, a result
substantiated by numerical evidence. In particular, an extended computation of the
periodic orbits of System I performed at a fixed dominant frequency ω = 1.5 rad/s,
yielded as many as eleven distinct periodic orbits (NNMs) distinguished by their en-
ergy and frequency contents (i.e., they possess different composition of harmonics);
however, some of these orbits are unstable. The computed initial conditions of these
orbits are listed in Table 4.1, together with their corresponding energies. All these
periodic orbits (NNMs) on the singular backbones have two common features: first,
the motion of System I is always strongly localized to the nonlinear attachment;
second, they all correspond to approximately the same motion of the primary sys-
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Table 4.1 Initial conditions and energies of the periodic orbits of System I for ω = 1.5 rad/s.

Solutions Feature u̇1(0) u̇2(0) v̇1(0) v̇2(0) v̇3(0) Energy
1 1:1 0.9388 –0.2456 –7.4273 –6.2384 13.2846 2.1327
2 1:1 0.9649 –0.2484 –8.1159 –5.5059 13.2263 2.1337
3 1:3 0.7854 –0.2296 –2.4476 –10.9023 13.0534 2.1701
4 1:3 0.7855 –0.2269 –3.0519 –10.5010 13.2539 2.1701
5 1:3 0.7851 –0.2240 –3.6277 –10.0961 13.4223 2.1701
6 1:4 0.7333 –0.2291 3.8334 –15.0532 10.9568 2.2576
7 1:4 0.7278 –0.1484 –14.3179 1.5783 12.4052 2.2576
8 1:5 0.7300 –0.1582 –19.7692 7.2405 12.1996 2.4718
9 1:5 0.7105 –0.2134 8.1081 –19.7099 11.3402 2.4649
10 1:6 0.7083 –0.2091 13.9267 –25.9124 11.7220 2.7004
11 1:6 0.7081 –0.1551 –25.9220 14.0430 11.5617 2.7004

tem, since the linear out-of-phase mode is predominantly excited at this particular
frequency.

The differentiation between these periodic solutions becomes clear when the
Fast Fourier Transforms (FFTs) of the corresponding time series are considered.
Whereas the relative displacement [v2(t) − v3(t)] contains always the dominant
component at ω = 1.5 rad/s, the dominant harmonic component of [v1(t) − v2(t)]
varies depending on the specific orbit considered. This enables us to label the singu-
lar backbone branches with the notation S1jp. The first index refers to the dominant
frequency of the primary system (in this case ω = 1.5 rad/s), whereas the second
indicates that the dominant frequency of [v1(t)− v2(t)] is j times the dominant fre-
quency of the primary system; the third index indicates that the dominant frequency
of [v2(t)− v3(t)] is p times of that of the primary system. Following this notation,
the regular backbone branch of the FEP of Figure 4.13 is labeled as S111 (since
it is approximately monochromatic, i.e., all particles oscillate with identical domi-
nant frequency), and the additional backbones as S131, S141, S151, . . . . Generally
speaking, the higher the dominant harmonic of [v1(t) − v2(t)] is, the higher is the
energy of the corresponding periodic orbit.

Starting from ω ≈ 0.22 rad/s coalescences between different backbone branches
occur sequentially as shown in Figure 4.15; these are saddle-node (SN) bifurcations.
Coalescences occur between two branches with similar motion, labeled by (a) and
(b) (for instance, S151a coalesces with S151b). At the coalescence points, the mo-
tion is identical to that on the regular backbone branch, meaning that the coalescing
branches meet the regular backbone branch at the coalescence points. Hence, with
diminishing frequency the different families of singular backbone branches eventu-
ally disappear through coalescences, and a single low frequency singular backbone
branch eventually emerges, termed lower singular backbone branch. On this branch,
the last mass of the NES has very small displacement but the overall motion of Sys-
tem I is still localized to the first two masses of the nonlinear attachment; this is
confirmed by the simulations of Figures 4.16c, d corresponding to points 3 and 4 on
the lower singular backbone branch.
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Fig. 4.16 Time series of the periodic motions of System I corresponding to the indices indicated
at the FEP of Figures 4.13 and 4.14.

Summarizing, the most interesting feature of the frequency-energy plot (FEP) of
System I is the existence of a countable infinity of closely spaced singular backbone
branches that extend over wide ranges of frequencies and energies. This feature of
the dynamics is novel, and differs from the FEPs discussed in Chapter 3 correspond-
ing to SDOF NESs. In the following section we consider the same primary system
– MDOF NES configuration but with O(ε) masses, in order to assess the effect on
the dynamics of a reduction of the NES masses.

4.2.2 System II: NES with O(ε) Mass

We now reconsider the system depicted in Figure 4.2 with weak nonlinear stiffness
C2 and small NES masses; this system we label as ‘System II’. It is shown that by
reducing the masses of the NES the complexity of the dynamics is enhanced, and
the capacity of the system for TET is significantly enhanced. Hence, the unforced
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and undamped system (4.4) is considered again with parameters:

ε = 0.2, α = 1.0, C1 = 4.0, C2 → ε2C2 = 0.05,

µ→ ε2µ = 0.08, ω2
0 = 1.0 (System II)

We are interested to study the effect on the dynamics of a reduction of the masses
of the nonlinear attachments, and to relate TET to the topological structure of pe-
riodic orbits of the FEP of the underlying Hamiltonian system. Moreover, we wish
to compare the FEP of this system to that of System I. The underlying Hamiltonian
system in this case takes the form:

ü1 + (ω2
0 + α)u1 − αu2 = 0

ü2 + (ω2
0 + α + ε)u2 − αu1 − εv1 = 0

ε2µv̈1 + C1(v1 − v2)
3 + ε(v1 − u2) = 0

ε2µv̈2 + C1(v2 − v1)
3 + ε2C2(v2 − v3)

3 = 0

ε2µv̈3 + ε2C2(v3 − v2)
3 = 0 (4.12)

Regarding ε as a perturbation parameter of the problem, system (4.12) is expected to
possess complicated dynamics as ε → 0 since it is essentially (strongly) nonlinear,
high-dimensional, and singular [in three of equations (4.12) the highest derivatives
are multiplied by the perturbation parameter squared].

The periodic orbits of System II were computed utilizing the numerical algo-
rithm described in the previous section for System I. In Figure 4.17 the periodic
orbits of (4.12) are presented in a FEP, and in Figure 4.18 some representative orbits
are presented. Since the numerical algorithm could not reliably capture the lowest
frequency branch, this was analytically computed (as discussed later) and superim-
posed to the numerical results. These results provide an indication of the complexity
of the dynamics.

As for the case of System I, the FEP contains both a regular backbone and a fam-
ily of singular backbones. In this case, however, the singular backbone branches are
not densely packed as in System I. Moreover, for System II the backbone branches
of periodic orbits (NNMs) are defined over wider frequency and energy ranges com-
pared to System I, and no subharmonic tongues exist. Hence, it appears that by re-
ducing the masses of the NES the local subharmonic tongues are eliminated; that is,
there are no subharmonic motions at frequencies rationally related to the natural fre-
quencies f1, f2, f3 of the linear subsystem (4.10) (for System II these frequencies
assume the values f1 = 1.8529, f2 = 1.5259, f3 = 0.9685 rad/s). As for the case of
System I, in the limit of high energies and moderate frequencies, System II reaches
the linear limiting system (4.11), with corresponding limiting natural frequencies
given by f̂1 = 1.7734, f̂2 = 1.1200, and f̂3 = 0.7960 rad/s.

It is interesting to consider the dynamics of System II at points A, B and C of
the plot of Figure 4.17, i.e., at points where the regular backbone branch crosses
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Fig. 4.17 FEP of the periodic orbits of System II; indices refer to the time series depicted in
Figure 4.18.

the natural frequencies of the low-energy limiting linear system (4.10). At these
points it holds approximately that, v1 ≈ v2 and v2 ≈ −v3, so the system may be
approximately decomposed into two subsystems: the subsystem (4.10) (the limiting
linear system for low energies and finite frequency), and a strongly nonlinear sys-
tem composed of the first two masses of the NES with their center of mass being
approximately motionless. At points A, B and C the linear subsystem vibrates on
one of its linear modes at frequencies f1, f2 or f3, whereas the nonlinear attachment
adjusts its energy to oscillate with the same frequency. Hence, the energy of the non-
linear subsystem (together with the energy of the linear subsystem) determines the
points of crossing A,B and C of the regular backbone curve with each of the natural
frequencies of the linear limiting subsystem (4.10).

An additional remark is that the reduction of the masses of the NES causes a
‘spreading out’ of the closely spaced members of the family of singular backbones
of System I. As a result, multiple subharmonic periodic orbits coexist over wider
energy ranges compared to System I (though some of these orbits are unstable and,
hence, not physically realizable). The elimination of the subharmonic tongues and
the spreading of the family of singular backbone curves imply that in System II
subharmonic motions are realized only on the singular backbone curves (instead of
tongues as in System I) that extend over wide regions of the FEP. These features of
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Fig. 4.18 Periodic orbits at specific points (indicated by numbers) in the FEP of Figure 4.17 (Sys-
tem II).

the FEP will have profound effects on the transient responses of the weakly damped
System II, which are examined in the next section. Moreover, it will be shown that
System II possesses enhanced TET properties compared to System I.

4.2.3 Asymptotic Analysis of Nonlinear Resonant Orbits

In this section we initiate the analytical study of the Hamiltonian dynamics of sys-
tem (4.4) (with zero damping and forcing terms). Specifically, we mathematically
study certain aspects of NNMs on the regular and singular backbone curves, and ex-
plain analytically the multiplicity (fine structure) of the family of singular backbone
branches in the FEP. In the following analysis we consider in detail only the un-
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Fig. 4.18 Continued.
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damped and unforced System I, and show that the results can be extended to System
II by an appropriate time transformation.

To this end we consider the system of coupled oscillators (Tsakirtzis, 2006;
Tsakirtzis et al., 2007),

ü1 + (ω2
0 + α)u1 − αu2 = 0

ü2 + (ω2
0 + α + ε)u2 − αu1 − εv1 = 0

µv̈1 + C1(v1 − v2)
3 + ε(v1 − u2) = 0

µv̈2 + C1(v2 − v1)
3 + ε2C2(v2 − v3)

3 = 0

µv̈3 + ε2C2(v3 − v2)
3 = 0 (4.13)

and assume that all parameters other than ε are O(1) scalars. The main goal of
the analysis is to study the periodic motions (NNMs) of this system that possess a
dominant frequency ω away from the natural frequencies of the limiting linear sys-
tem that results as ε → 0. First, only non-resonant motions are considered. Under
the condition of absence of linear resonances, and assuming that the system exe-
cutes a periodic oscillation with frequency ω, the approximations ü1 ≈ −ω2u1 and
ü2 ≈ −ω2u2 are introduced, which approximately reduce the two leading differen-
tial equations of (4.13) to the following algebraic relations (taking α = ω2

0 = 1 for
simplicity):

u1 ≈ εv1
(1−ω2)(3−ω2)+ε(2−ω2)

= O(ε) (ω away from roots

u2 ≈ εv1(2−ω2)

(1−ω2)(3−ω2)+ε(2−ω2)
= O(ε) of denominator)

(4.14)

These approximate algebraic relations replace (and thus simplify) two of the ordi-
nary differential equations of system (4.13). The rationale behind this approximation
is that away from their resonances the two linear oscillators vibrate approximately
in a harmonic fashion with common frequency ω.

It follows that in the absence of resonance the Hamiltonian dynamics is governed
mainly by the MDOF NES, as the response of the linear system is approximately
computed by (4.14). Moreover, for frequencies ω away from the roots of the de-
nominator of (4.14) (i.e., the linearized natural frequencies of the limiting system as
ε → 0), the periodic orbits of (4.13) are mainly localized to the MDOF NES, and
governed approximately by the following reduced system:

v̈1 + C1(v1 − v2)
3 + εv1 = 0

v̈2 + C1(v2 − v1)
3 + ε2C2(v2 − v3)

3 = 0

v̈3 + ε2C2(v3 − v2)
3 = 0 (4.15)

where the rescaling of time t → √
µt was introduced. Finally, with the change of

variables, 3z = v1 + v2 + v3, q1 = v1 − v2 and q2 = v2 − v3, the reduced system
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(4.15) is expressed as:

z̈+ (ε/3)[z+ (2q1/3)+ (q2/3)] = 0

q̈1 + (ε/3)[z+ (2q1/3)+ (q2/3)] + 2C1q
3
1 − ε2C2q

3
2 = 0

q̈2 + 2C2ε
2q3

2 − C1q
3
1 = 0 (4.16)

The variable z describes the (slow time scale) oscillation of the center of mass
of the MDOF NES, whereas the variables q1 and q2 are the relative oscillations
between the NES masses (which occur at a faster time scale). As a result, the re-
duced system can be further decomposed into a ‘slowly varying’ component, i.e.,
the z-oscillator, and two ‘fast varying’ components, namely the coupled oscillators
governing q1 and q2.

The reduced system (4.16) is the starting point for the pertubation analysis that
follows. Before proceeding further we show that the dynamics of System II (pos-
sessing small NES masses) can be reduced also to the form (4.16) by a transforma-
tion of the time variable. Indeed, considering the undamped and unforced System II
– equations (4.12) – the time transformation τ = ε√µ is introduced. Assuming that
the dominant frequency ω of the periodic orbit is away from the linear resonances,
it can be shown that the responses of the linear subsystem can be expressed approx-
imately as, u1 ≈ u2/(2ε2µ−ω2) and u2 ≈ εv1[ε+ 2ε2µ−ω2 − 2/(2ε2µ−ω2)],
so the system reduces again to system (4.16). Hence, the following analytical results
derived for System I also apply to System II for the rescaled time variable τ = ε√µ.

4.2.3.1 The Low-Frequency Limit

Assuming that ω 	 √
ε/3, i.e., that the dominant frequency of the response is

much less than the linearized natural frequency of the first equation of the set (4.16),
we may approximately neglect the second derivative z̈ from the first equation, and
derive the following approximate algebraic expression for z:

z ≈ −(2q1/3)− (q2/3) (4.17)

This approximation is valid only in the low-frequency limit, since only for suffi-
ciently small frequencies the inertia term in the linear oscillator in (4.16) is of much
smaller magnitude that the stiffness terms. Hence, we can reduce further system
(4.16) to a system of two essentially nonlinear coupled oscillators:

q̈1 + 2C1q
3
1 − ε2C2q

3
2 = 0

q̈2 + 2C2ε
2q3

2 − C1q
3
1 = 0

(Low frequency limit) (4.18)

This is a symmetric system in the terminology of Rosenberg (1966), and its periodic
solutions are similar nonlinear normal modes (NNMs) satisfying linear modal re-
lationships of the form q2 = kq1, where k is the modal constant (see Section 2.1).
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In addition, these are synchronous periodic motions of system (4.18) where both
coordinates oscillate in-unison, reaching their extreme values of the same instant of
time, so that the resulting motion is represented by a straight line in the configura-
tion plane (q1, q2) of the reduced system. Substituting the relation q2 = kq1 into
(4.18), and imposing the requirement that both equations produce identical periodic
solutions, we derive the following equation for determining the modal constant k,
possessing two real roots:

ε2 (C2/C1) k
4 + 2 (C2/C1) ε

2k3 − 2k − 1 = 0 ⇒

k1 = −1

2
− 3ε2C2

32C1
+O(ε2) (Regular root)

k2 =
(

2C1

C2

)2/3

ε−2/3 − 1

2
+O(ε2/3) (Singular root) (4.19)

The characterization of the two roots as ‘regular’ and ‘singular’ is related to the
analysis that follows below.

Summarizing, at the low frequency (and low energy) limit the system possesses
two branches of periodic solutions. These are precisely the two low regular and low
singular backbones shown in the FEP of Figure 4.13 of System I and of Figure 4.17
for System II. The periodic solutions (NNMs) of the system on these low frequency
branches are computed through integration by quadratures of either one of equations
(4.18) after the modal relation q2 = kq1 is imposed:

q̈1 + (2C1 − ε2C2k1,2)q
3
1 = 0

q2 = k1,2 q1, z ≈ −(2q1/3)− (q2/3),
(Low frequency limit) (4.20)

The solutions of the reduced system (4.20) can expressed analytically in terms of
elliptic functions. These periodic solutions represent the low-frequency/low-energy
asymptotic limits of the branches of NNMs of System I (and also of System II
through the time transformation discussed previously).

4.2.3.2 The Case of Finite O(1) Frequencies

The other limiting case is when the basic frequency ω of the periodic orbit is of
O(1), but away from the linear resonances. In this case the term εz/3 in the first
equation of system (4.16) is small compared to the second derivative z̈, so we may
neglect it and express approximately the (slow) oscillation of the center of mass of
the MDOF NES as follows:

z ≈ (ε/3ω2)[(2q1/3)+ (q2/3)] +O(ε2) = (ε/9ω2)(2q1 + q2)+O(ε2) (4.21)

It follows that in this case we may reduce the system (4.16) to a two-DOF system,
similarly to the low-frequency case [see equation (4.18)]:
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q̈1 + ε

9

(
1 + 1

ω2

)
(2q1 + q2)+ 2C1q

3
1 − ε2C2q

3
2 = 0 (O(1) frequency)

q̈2 + 2C2ε
2q3

2 − C1q
3
1 = 0 (4.22)

System (4.22) represents a perturbed system of two coupled nonlinear oscillators,
with ε being the perturbation parameter. This may be regarded as a non-symmetric
perturbation of the symmetric system (4.18) derived for the low-frequency limit;
however the added non-symmetric term (ε/9)(1 + 1/ω2)(2q1 + q2) may produce
non-trivial perturbations to the dynamics (since it represents a perturbation of an
already degenerate-symmetric system), and requires careful consideration in the as-
ymptotic analysis. Indeed, in what follows it is proved that there exist two general
classes of periodic solutions of (4.22): regular solutions based on regular perturba-
tion analysis of the reduced set; and singular solutions based on singular asymptotic
expansions of that set. These two types of asymptotic solutions correspond to the
two types of backbone curves identified in previous sections in the FEP of System I,
namely, regular and singular backbone branches with each type possessing distinct
topological features and dynamical characteristics.

Starting with regular perturbation analysis, and omitting terms that depend on ε
from (4.22) the following generating symmetric system is obtained:

q̈10 + 2C1q
3
10 = 0

q̈20 − C1q
3
10 = 0 (4.23)

whose periodic solutions may be exactly computed by quadratures (and expressed
in terms of elliptic functions). The solutions are similar NNMs in the terminology of
Rosenberg (1966), since they satisfy the linear modal relationship q2 = (−1/2)q1.
Recalling the previous analysis of the lower limiting case, we infer that solutions of
(4.22) that are expressed as perturbations of the generating solutions obtained from
system (4.23) can be regarded as finite-frequency analogs of the ones lying on the
low regular backbone branch corresponding to the regular root k1 = −1/2 +O(ε2)

in relations (4.19).
The perturbed solutions for q1(t) and q2(t) are expressed as regular perturba-

tions of the generating solutions of (4.23):

q1(t) = q10(t)+ εq11(t)+ ε2q12(t)+ · · ·
q2(t) = q20(t)+ εq21(t)+ ε2q22(t)+ · · · (4.24)

Substituting (4.24) into (4.22) an hierarchy of problems is derived (in increasing
powers of ε) that govern the higher-order corrections to the high-frequency periodic
solutions. These regular perturbation solutions lie on a single backbone branch of
the FEP of System I, which is the high-frequency (and high-energy) limit of the
regular backbone curve. Based on this approximation it is confirmed that the regular
backbone in System I consists of a single branch and does not possess the fine struc-
ture of the family of singular backbone branches (see Figures 4.13–4.15). Moreover,
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this analytic approximation leads to the following estimate for the oscillation of the
right end mass of the NES,

v3 ≈ εq1

6ω2
+O(ε2), ω = O(1) (4.25)

which in the high-frequency limit is negligible. This fully confirms the numerical
results reported in Section 4.2.1.

We now consider periodic solutions of (4.22) that may be regarded as finite fre-
quency continuations of periodic solutions on the low singular backbone, and corre-
spond to the singular root k2 = (2C1/C2)

2/3ε−2/3 in (4.19). Based on the numerical
findings of Figures 4.13–4.15, we deduce that for increasing frequency (and energy)
there occurs a series of bifurcations giving rise to additional singular backbones
containing solutions of increasingly higher frequency content. For finite [i.e.,O(1)]
frequencies we obtain an entire family of singular backbone branches that is densely
packed in energy. The following analysis aims to analytically study this family of
singular backbones for O(1) frequencies (but away from linear resonances).

In this case we approximate the solutions through singular asymptotic analysis,
and introduce the transformations (q1, q2) → (Q2 = εq2, η = q2 − k2q1). Sub-
stituting these transformations into (4.22) the following rescaled equations are ob-
tained, which govern periodic solutions (NNMs) on the family of singular backbone
branches:

Q̈2 + (3/2)C2Q
3
2 + (3ε/2)C2Q

2
2η = 0

ε2/3η̈ + 6

(
C2

2

2C1

)1/3

Q2
2η = 1

9

(
2C1

C2

)1/3 (
1 + 1

ω2

)
Q2 (4.26)

The first equation represents anO(ε) parametric perturbation of a strongly nonlinear
oscillator. The second equation is singular, as noted from the small coefficient of the
derivative term. It is a quasi-linear equation with combined parametric and external
excitations. It is well known that this type of excitation produces families of periodic
solutions of increasingly higher frequency content (in the case of pure parametric
excitation these periodic solutions lie on stability-instability boundaries according to
Floquet theory). Hence, from the model (4.26) we may indirectly infer the existence
of countable infinities of periodic solutions (due to combined parametric/external
resonances) with increasingly higher frequency contents. These correspond to the
family of periodic solutions realized on the family of singular backbone curves in
the FEP; moreover, the previous analytical arguments indicate that the numerically
observed fine structure of singular backbones of Figure 4.13 consists of a countable
infinity of distinct branches. Apart from the common basic frequency ω, different
members of the family of singular backbones possess increasingly higher harmonics
at frequencies nω, n = 2,3,. . . , which are generated by the previously described
combined parametric and external resonances in the second of equations (4.26).

The fine structure of the family of singular backbone branches (interestingly
enough, it resembles quantization at closely spaced discrete values of energy) is
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analytically studied by defining the averaged energy of oscillation, E, of a periodic
orbit (NNM):

〈E〉t =
〈
v̇2

1

2
+ v̇2

2

2
+ v̇2

3

2
+ εv2

1

2
+ C1q

4
1

4
+ ε2C2q

4
2

4

〉
t

= (4.27)

=
〈

3ż2

2
+ 1

3

(
q̇2

1 + q̇1q̇2 + q̇2
2

)
+ ε

2

(
z+ 2q1

3
+ q2

3

)
+ C1q

4
1

4
+ ε2C2q

4
2

4

〉
t

We claim that the averaged value of the potential energy between NNMs on distinct
singular branches is almost unaffected by the perturbation due to the fine structure
of the family. This claim is based in the following reasoning. As mentioned pre-
viously, the fine structure is formed due to parametric and external resonances in
the second of equations (4.26), which, in addition to oscillations at the basic fre-
quency ω, produce high-frequency harmonics in η possessing similar amplitudes
but increasingly higher frequency components nω, n = 2, 3, . . . . Actually, it holds
that |η| ∼ |q2|/k2 ∼ ε2/3|q2|. Hence, the corrections to the potential energies due
to singular perturbations will be insignificant, and, as a result, the fine structure of
the family of singular backbones will be determined mainly by fluctuations of the
averaged kinetic energy T .

The fluctuations of the kinetic energy between different branches of the family
of singular backbones is evaluated as follows:

〈T 〉t =
〈

3ż2

2
+ 1

3

(
q̇2

1 + q̇1q̇2 + q̇2
2

)〉
t

∼
〈

3ż2

2
+ 1

3

(
k−2

2 (q̇2 − η̇)2 + q̇2k
−1
2 (q̇2 − η̇)+ q̇2

2

)〉
t

∼
〈

3ż2

2
+ q̇2

2

3

(
1 + 1

k2
+ 1

k2
2

)
+ η̇2

3k2
2

〉
t

∼ T0 + 1

3k2
2

〈η̇2〉t (4.28)

where T0 is the average value of the kinetic energy, and we have taken into account
that since q̇2 and η̇ have different dominant frequencies they average out from the
final expression in (4.28). Now, taking into account that at high frequencies it holds
that, Q2 ∼ ω ⇒ q2 ∼ ε−1ω, and that |η| ∼ |q2|/k2 ∼ ε2/3|q2| ∼ ε−1/3ω, it
follows that η̇2 ∼ n2ω2|η|2 ∼ ε−2/3n2ω4. From (4.28) it is concluded that in the
high frequency limit the averaged kinetic energy behaves according to

〈T 〉t = T0 + ε2/3

3
C0ω

4n2 ⇒

〈E〉t = E0 + ε2/3

3
C0ω

4n2 ∼ ω4(ε−2 +D0n
2ω2ε2/3) (4.29)

since E0 ∼ ε−2ω4.
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Hence, the splitting distances between members of the family of singular back-
bones of System I is of O(n2ω2ε2/3), where n is the order of parametric reso-
nance of the periodic solution for η (or equivalently, the high-frequency harmonic
component in η). On the logarithmic scale used to depict energy in the numeri-
cal FEP of Figure 4.13, the splitting distance is scaled according to ln(〈E〉t ) ∼
ln(ε−2 + D0n

2ω2ε2/3) ∼ n2ω2ε8/3. This analytical result is in agreement with the
numerical results depicted in the FEP.

The previous analysis directly applies also to System II. Indeed, taking into ac-
count the previous rescaling of time that relates Systems I and II, we only need to
apply the frequency rescaling, ω → ω/(ε

√
µ), to extend the previous analytical

findings to System II. The resulting scaling in the frequency-energy plot of Sys-
tem II is ln(〈E〉t ) ∼ n2ω2ε2/3, correctly predicting the ‘spreading out’ of the fine
structure of the family of singular backbone branches.

4.2.4 Analysis of Resonant Periodic Orbits

We now consider resonant nonlinear responses and transient resonance captures
(TRCs) of system (4.4) by reducing the dynamics of system to a single integro-
differential equation; we then discuss methodologies for the analytical treatment of
the reduced system.

First, we focus on the resonant motions of system (4.4). Specifically, we study
the nonlinear undamped and damped dynamics in the neighborhoods of the linear
natural frequencies of the system, and discuss methods to analyze the resonant non-
linear interactions between the linear primary system and the MDOF NES. Contrary
to the non-resonant analysis of Section 4.2.3, during resonance the components of
the linear subsystem oscillate with finite amplitudes, and strong energy exchanges
with the NES take place. It is precisely these motions close to resonances that lead
to TET phenomena when damping is introduced.

First, we study analytically the periodic orbits (NNMs) of the undamped and un-
forced system (4.4) that result from resonance interactions, i.e., that possess domi-
nant frequency components close to the O(1) natural frequencies of the linear lim-
iting system (4.10). To this end, we introduce again the coordinate transformation

R = v1 + v2 + v3

3
, X1 = v2 − v1, X2 = v3 − v2 (4.30)

whereX1,X2 and R denote the two relative displacements, and the displacement of
the center of mass of the MDOF NES, respectively. Substituting (4.30) into (4.4),
and omitting damping terms for the moment, the undamped equations of motion
take the form:

ü1 + (ω2
0 + α)u1 − αu2 = 0

ü2 + (ω2
0 + α + ε)u2 − αu1 − εR = −ε

3
(2X1 + X2)
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3µR̈ + εR − εu2 = ε

3
(2X1 +X2)

µẌ1 + 2C1X
3
1 − C2X

3
2 − ε(R − (2X1 + X2)

3
− u2) = 0

µẌ2 + 2C2X
3
2 − C1X

3
1 = 0 (4.31)

In the following analysis, unless explicitly noted, the system parameters are assumed
to beO(1) quantities. Considering the transformed set of equations (4.31), it is noted
that the motion of the center of mass of the NES also executes a linear (but slow)
motion which results as weak perturbation of the rigid body mode R̈ = 0.

The next step of the analysis involves a linear coordinate transformation that
brings the leading three linear equations of system (4.31) into Jordan canonical form
(note that the last two equations are perturbations of essentially nonlinear, i.e., non-
linearizable, equations). To this end, we introduce the linear modal transformation⎧⎪⎨

⎪⎩
u1

u2

R

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1
/√

3µ

⎤
⎥⎦

⎡
⎢⎣

T1,1 T2,1 T3,1

T1,2 T2,2 T3,2

T1,3 T2,3 T3,3

⎤
⎥⎦

⎧⎪⎨
⎪⎩
Q1

Q2

Q3

⎫⎪⎬
⎪⎭ (4.32)

where Tij denotes the j -th component of the i-th eigenvector of the following sym-
metric matrix:

� =
⎡
⎢⎣
(ω2

0 + α) −α 0

−α (ω2
0 + α + ε) −ε/√

3µ

0 −ε/√
3µ ε

/
3µ

⎤
⎥⎦ (4.33)

Substituting the transformation (4.32) into (4.31), the following alternative set of
equations of motion is obtained:

Q̈1 + ω̂2
1Q1 = ε

3
(2X1 +X2)(T1,3/

√
3µ− T1,2

Q̈2 + ω̂2
2Q2 = ε

3
(2X1 +X2)(T2,3/

√
3µ− T2,2

Q̈3 + ω̂2
3Q3 = ε

3
(2X1 +X2)(T3,3/

√
3µ− T3,2

µẌ1 + 2C1X
3
1 − C2X

3
2 + ε (2X1 +X2)

3

= ε
(
(T1,3/

√
3µ− T1,2)Q1 + (T2,3/

√
3µ− T2,2)Q2 + (T3,3/

√
3µ− T3,2)Q3

)
µẌ2 + 2C2X

3
2 − C1X

3
1 = 0 (4.34)

where the linearized natural frequencies are defined as follows:

ω̂2
1 = ω2

1 + ε/2 +O(ε2), ω̂2
2 = ω2

2 + ε/2 +O(ε2), ω̂2
3 = ε/3µ+O(ε2) (4.35)
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and ω1 > ω2 are the two natural frequencies of the uncoupled linear system corre-
sponding to ε = 0. The elements Tij in (4.34) are defined as follows:

T1,1 = −1/
√

2 +O(ε), T1,2 = +1/
√

2 +O(ε), T1,3 = 0 +O(ε),
T2,1 = +1/

√
2 +O(ε), T2,2 = +1/

√
2 +O(ε), T2,3 = 0 +O(ε),

T3,1 = 0 +O(ε), T3,2 = 0 +O(ε), T3,3 = 1 +O(ε)
Physically, the variables Q1(t) and Q2(t) are modal coordinates of the out-of-

phase and the in-phase modes, respectively, of the uncoupled linear primary system;
whereasQ3(t) is the coordinate describing the (slow) motion of the center of mass
of the MDOF NES. It is noted that the following relations hold between the lin-
earized frequencies ω̂i and the natural frequencies fi of the linear limiting (4.10)
(these are defined in Section 4.2.1):

ω̂1 = f1 +O(ε), ω̂2 = f2 +O(ε), ω̂3 = f3 +O(√ε) = O(√ε)
Considering the system of equations (4.34), we partition it into two subsets: a set

of three linear uncoupled oscillators that are weakly ‘forced’ by terms that depend
linearly on the NES relative displacements; and a set of two coupled, essentially
nonlinear oscillators that govern the relative displacements within the MDOF NES.
This partition is very useful in the following analysis in order to perform a reduction
of the dynamics to a single integro-differential equation.

Finally, motivated again by the numerical results of the previous section, we
introduce the additional assumption that the stiffness characteristic C2 of the NES
is small; this is imposed by introducing the rescaling C2 → ε2C2 = O(ε2). Under
these assumptions, and assuming that 0 < ε 	 1, the first subset of three uncoupled
linear equations of the system (4.34) can be solved explicitly as follows:

Q1(t) = Q1(0) cos ω̂1t + Q̇1(0)

ω̂1
sin ω̂1t

+ ε
(−T1,2 + T1,3/

√
3µ

)
3ω̂1

∫ t

0
[2X1(τ )+ X2(τ )] sin ω̂1(t − τ )dτ

Q2(t) = Q2(0) cos ω̂2t + Q̇2(0)

ω̂2
sin ω̂2t

+ ε
(−T2,2 + T2,3/

√
3µ

)
3ω̂2

∫ t

0
[2X1(τ )+X2(τ )] sin ω̂2(t − τ )dτ

Q3(t) = Q3(0) cos ω̂3t + Q̇3(0)

ω̂3
sin ω̂3t

+ ε
(−T3,2 + T3,3/

√
3µ

)
3

∫ t

0
[2X1(τ )+ X2(τ )] sin ω̂3(t − τ )dτ

(4.36)
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Hence, the modal coordinates of the linear subsystem and the displacement of the
center of mass of the MDOF NES are expressed (in exact form) in terms of the
relative displacements X1(t) and X2(t) between the particles of the NES. Note,
however, that since ω̂3 = O(

√
ε), the center of mass of the NES executes a slow

oscillation; this was anticipated previously by the observation that this motion is the
weak perturbation of the rigid body motion Q̈3 = 0.

Considering now the last of equations (4.34), and taking into account the previ-
ous rescaling C2 → ε2C2 = O(ε2), the following analytic approximation for the
variable X2(t) is obtained:

µẌ2 = C1X
3
1 − 2ε2C2X

3
2 ⇒

X2(t) = µ−1
∫ t

0

∫ τ

0
C1X

3
1(s)dsdτ +O

(
ε2

)
(4.37)

where we have taken into account that the MDOF NES is initially at rest [so that
the initial conditions X2(0) = Ẋ2(0) = 0 were imposed in (4.37)]. As a result,
the relative displacement X2(t) is approximately expressed in terms of the rela-
tive displacement X1(t). Finally, substituting the previous results into the fourth of
equations (4.34) the full dynamics is approximately reduced to a single, essentially
nonlinear integro-differential equation in terms of the dependent variable X1(t):

Ẍ1 + (2C1/µ)X
3
1 + (2ε/3µ)X1

= −(ε/3µ2
∫ t

0

∫ τ

0
C1X

3
1(s)ds dτ + ε2Ĉ2

[
µ−1

∫ t

0

∫ τ

0
C1X

3
1(s)ds dτ

]3

+ (ε/µ)
[
(T1,3/

√
3µ− T1,2)

(
Q1(0)cosω̂1t + Q̇1(0)

ω̂1
sin ω̂1t

+ ε(−T1,2 + T1,3/
√

3µ)

3ω̂1

∫ t

0

×
[

2X1(τ )+ µ−1
∫ τ

0

∫ w

0
C1X

3
1(s)ds dw

]
sin ω̂1(t − τ )dτ

)

+ (T2,3/
√

3µ− T2,2)

(
Q2(0) cos ω̂2t + Q̇2(0)

ω̂2
sin ω̂2t

+ ε(−T2,2 + T2,3/
√

3µ

3ω̂2

∫ t

0

×
[

2X1(τ )+ µ−1
∫ τ

0

∫ w

0
C1X

3
1(s)ds dw

]
sin ω̂2(t − τ )dτ

)

+ (T3,3/
√

3µ− T3,2)

(
Q3(0)cos ω̂3t + Q̇3(0)

ω̂3
sin ω̂3t
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+ ε(−T3,2 + T3,3/
√

3µ)

3

∫ t

0

×
[

2X1(τ )+ µ−1
∫ τ

0

∫ w

0
C1X

3
1(s)ds dw

]
sin ω̂3(t − τ )dτ

)]
+O(ε3)

≡ εf1(X1; ε)+ ε2f2(X1; ε)+O(ε3) (4.38)

Strongly nonlinear dynamical systems with similar structure to (4.38) were an-
alyzed asymptotically in Vakakis et al. (2004) and Panagopoulos et al. (2004). So-
lutions that possess a dominant (fast frequency) harmonic component, may be por-
tioned into slow and fast components by imposing the following ansatz:

X1(t) ≈ A(t)cosθ(t) (4.39)

where A(t) and θ(t) represent the slowly-varying amplitude and phase of the re-
sponse, respectively. Hence, by expressing the solution of (4.38) in the form (4.39)
the solution is expressed as a fast oscillation modulated by slowly varying envelope.
Clearly the (slow) variation of the envelope represents the important (essential) dy-
namics that govern the resonance interactions between the primary system and the
MDOF NES. Substituting (4.39) into (4.38) we obtain the following approximate
modulation equations that govern the slow evolution of the amplitude and phase,

dA(t)

dt
≈ εg1(A(t), θ(t), ε

1/2t, ω̂1t, ω̂2t)+ ε2g2(A(t), θ(t), ε
1/2t, ω̂1t, ω̂2t)

dθ(t)

dt
≈ �(t)+ εh1(A(t), θ(t), ε

1/2t, ω̂1t, ω̂2t)

+ ε2h2(A(t), θ(t), ε
1/2t, ω̂1t, ω̂2t)

�(t) = πA(t)
√

2C1/µ

2K(1/
√

2)
(4.40)

where �(t) = O(1) is the instantaneous frequency of the fast oscillation, and
K(1/

√
2) is the complete elliptic integral of the first kind. The functions gi and

hi , i = 1, 2 in (4.40) are 2π-periodic in the slow angle θ and the slow time ε1/2t ,
but their dependences on the other time scales ω̂1t and ω̂2t depend on the specific
values of the linearized natural frequencies ω̂1 and ω̂2. This means that the terms
on the right-hand sides of relations (4.40) might be either periodic or quasi-periodic
functions in terms of the fast time t , depending on if the frequency ratio ω̂1/ω̂2 is a
rational or irrational number, respectively. We note that these terms also depend on
the slow time ε1/2t .

Equations (4.40) are modulation equations and apply for arbitrary values of the
basic fast frequency of the solution. For further analysis we need to impose addi-
tional restrictions on the fast frequency �(t), and confine the analysis locally in
frequency; this will introduce an additional slow independent variable in the modu-
lation equations that will enable us to analyze resonant periodic orbits of the Hamil-
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tonian system with frequencies close to the natural frequencies of f1 and f2 of the
linear subsystem (4.10) [or equivalently – correct to O(ε) – to the frequencies ω̂1
and ω̂2].

To provide an example of such a local analysis we restrict the fast frequency�(t)
to be approximately equal to ω̂1, and aim to study resonant periodic motions of the
Hamiltonian system with dominant frequencies close to the higher natural frequency
of the linear subsystem. To this end, we define the amplitude of oscillation, R, by
the following frequency relation:

ω̂1 = πR
√

2C1/µ

2K(1/
√

2)
(4.41)

and introduce two new variables, namely, a slow angle variable χ(t) and an ampli-
tude perturbation α(t):

χ(t) = θ(t)− ω̂1t, A(t) = R + √
εα(t) (4.42)

By considering the relations (4.42) into (4.40) we study periodic motions in an
O(

√
ε)-neighborhood of the 1-1 resonance manifold in the phase space of the sys-

tem, defined by the resonance condition (4.41). Hence, we aim to reduce the general
modulation equation (4.40) to a local system valid in the O(

√
ε)-neighborhood of

this 1-1 resonance manifold.
Substituting (4.42) into the general modulation equations (4.40) the following

local modulation equations are obtained:

dα(t)

dt
≈ ε1/2G

(
α(t), χ(t) + ω̂1t, ω̂1t, ω̂2t, ε

1/2t; ε)
dχ(t)

dt
≈ ε1/2πα(t)

√
2C1/µ

2K(1/
√

2)
+ εH (

α(t), χ(t) + ω̂1t, ω̂1t, ω̂2t, ε
1/2t; ε)

(4.43)

whereG andH represent appropriately defined functions with the arguments shown
above. Further analysis of the reduced modulation equations (4.43) can be per-
formed by applying perturbation techniques, for example by applying the method
of averaging [indeed, equations (4.43) are in standard form for applying averaging
over the ‘fast’ time variable t] or the method of multiple scales [as performed in
Panagopoulos et al. (2004)]. The analysis will yield approximate asymptotic ex-
pressions for the periodic orbits and their frequencies. In addition, the dynamical
flow in the approximate slow phase plane of the modulation equations (4.43) can
be derived. It is clear that the analysis (and the dynamics of the local model) will
depend among other factors on the nature of the ratio of the linearized natural fre-
quencies ω̂1/ω̂2. For example, if this ratio is rational the functions ε1/2G and εH
in (4.43) become periodic functions in the fast time t (so, for example, simple av-
eraging can be applied with respect to the fast time scale in order to analyze the
local dynamics); whereas, if the frequency ratio is irrational the same functions be-
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come quasi-periodic in the fast time scale. These observations will dictate the type
of asymptotic analysis that should be applied to study the dynamics of the local
undamped system (4.43).

We note that the above reduction into modulation equations governing the slow
flow dynamics can be applied also to analytically study transient resonance captures
(TRCs) in the weakly damped dynamics (for example, the dynamics depicted in
Figure 4.12). Indeed, considering the weakly damped system (4.4), and applying
the previous reduction process, the five equations of motion can be reduced to the
following single reduced integro-differential equation:

Ẍ1 + (2C1/µ)X
3
1 + ελ̂Ẋ1 + (2ε/3µ)X1 = εf̂1(X1)+ ε2f̂2(X1)+O(ε3) (4.44)

where ελ̂ denotes a weak damping coefficient, and εf̂1, ε
2f̂2 are integro-differential

operators analogous to the operators εf1, ε2f2 in (4.38), respectively, but modified
to account for the additional weak damping terms. The analysis follows the general
steps discussed previously, and can be applied to study local TRCs in neighborhoods
of resonance manifolds defined by frequency relations similar to (4.41) (Panagopou-
los et al., 2004).

Perhaps a disadvantage of the described approach for studying resonant mo-
tions is that the resulting integro-differential equations are quite complicated, which
makes their analytical treatment cumbersome. To address this limitation, in the re-
mainder of this section we formulate an alternative approach for analyzing the global
structure of the resonant periodic orbits (NNMs) of the undamped and unforced
system (4.4), based on complexification and averaging (CX-A). This approach is
similar to the analytical approach introduced in Chapter 3, and in the context of the
present analysis, it is applied only to study the resonant periodic orbits that lie on the
regular backbone branch [where all particles of system (4.4) oscillate with identical
dominant frequencies]; however, similar analysis can be applied to develop analytic
approximations for solutions on the family of singular backbone branches and on
the local subharmonic tongues. This can be performed by selecting in each case the
appropriate ansatz to replace the one utilized in the following analysis.

The alternative method for analyzing resonant motions in system (4.4) relies on
complexification of the dynamics, followed by slow / fast partition of the response
(see Section 2.4). The analysis is performed under the assumption that the reso-
nant response possesses a single ‘fast’ frequency (satisfying a rational relation with
a linear eigenvalues of the primary system), that is modulated by a ‘slowly’ vary-
ing envelop containing the important (essential) dynamics that we wish to study.
The following procedure outlines the formulation of a slow flow problem, e.g., the
derivation of the set of slow modulation equations governing the essential dynamics.
As discussed in Lee et al. (2006) and demonstrated in Section 3.3.2 this procedure
can be extended to study periodic or quasi-periodic motions possessing more than
one ‘fast’ frequencies.

The first step of the alternative analytical method based on CX-A is to introduce
the following set of complex dependent variables, each of which contains as real
part the velocity of a particle of the system and as imaginary part the corresponding
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displacement multiplied by the (single) fast frequency:

ψ1 = u̇1 + jωu1, ψ2 = u̇2 + jωu2,

ψ3 = v̇1 + jωv1, ψ4 = v̇2 + jωv2 and ψ5 = v̇3 + jωv3

where j = (−1)1/2, and ω is the dominant (fast) frequency of the periodic reso-
nant motion that we wish to study. Then, the displacements and accelerations can be
expressed in terms of the new complex variables and their complex conjugates; for
example, considering the velocity and acceleration of the first mass of the primary
system we obtain, u̇1 = (ψ1 − ψ∗

1 )/2jω and ü1 = ψ̇1 − (jω/2)(ψ1 + ψ∗
1 ), where

(∗) denotes complex conjugate. Moreover, since we seek approximately monochro-
matic periodic solutions in the fast time scale (i.e., solutions that possess a single
common fast frequency), the previous complex variables may be expressed in polar
form as

ψ1 = φ1e
jωt , ψ2 = φ2e

jωt ,

ψ3 = φ3e
jωt , ψ4 = φ4e

jωt , ψ5 = φ5e
jωt (4.45)

where the complex, time-varying amplitudesφi(t), i = 1, . . . , 5, are slowly-varying
amplitude modulations of the ‘fast’ oscillations ejωt .

Employing the ansatz (4.45) it is possible to perform a partition of the resonant
response of the system into slow and fast components, and to derive the approxi-
mate set of modulation equations governing the slow flow dynamics. This is per-
formed by expressing the undamped and unforced equations (4.4) in terms of the
complex variables (ψi and then) φi , and averaging the transformed equations over
the fast variable ωt to retain only terms of fast frequency ω. In essence, this aver-
aging process amounts to disregarding terms in the nonlinear equations of motion
that possess fast components possessing frequencies higher than ω; the resulting ap-
proximate set of averaged equations is expected to be valid only in neighborhoods
of the FEP close to the fast frequency ω.

Adopting the previously described averaging procedure we derive the following
approximate set of first-order complex equations governing the amplitudes φi :

φ̇1 + φ1

(
jω

2
− jω2

0

2ω

)
− jα

2ω
(φ1 − φ2) = 0

φ̇2 + φ2

(
jω

2
− jω2

0

2ω

)
− jα

2ω
(φ2 − φ1)− jε

2ω
(φ2 − φ3) = 0

µ

(
φ̇3 + jω

2
φ3

)
− jε

2ω
(φ3 − φ2)+ jC1

8ω3

[ − 3 |φ3 − φ4|2 (φ3 − φ4)
] = 0

µ

(
φ̇4 + φ4

jω

2

)
+ jC1

8ω3

[ − 3 |φ4 − φ3|2 (φ4 − φ3)
]
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+ jC2

8ω3

[ − 3 |φ4 − φ5|2 (φ4 − φ5)
] = 0

µ

(
φ̇5 + φ5

jω

2

)
+ jC2

8ω3

[ − 3 |φ5 − φ4|2 (φ5 − φ4)
] = 0 (4.46)

This represents the (approximate) slow flow of the undamped and unforced dynam-
ical system (4.4) under the specific assumptions made. In a final step we introduce
the following polar transformations:

φ1 = A1e
ja1, φ2 = A2e

ja2, φ3 = A3e
ja3, φ4 = A4e

ja4, φ5 = A5e
ja5

which, when substituted into (4.46), and upon setting separately the real and imag-
inary parts equal to zero, yield the following set of ten real modulation equations
governing the (real) amplitudes Ai and phases ai :

Ȧ1 − A2
α

2ω
sin(a2 − a1) = 0

A1ȧ1 + A1

(
ω

2
− ω2

0

2

)
− α

2ω
(A1 − A2 cos(a2 − a1)) = 0

Ȧ2 − A1
α

2ω
sin(a2 − a1)− A3

ε

2ω
sin(a3 − a2) = 0

A2ȧ2 + A2

(
ω

2
− ω2

0

2

)
− α

2ω
(A1 cos(a2 − a1)− A2)

− ε

2ω
(A2 − A3 cos(a3 − a2)) = 0

µȦ3 − εA2

2ω
sin(a3 − a2)− A4

(A2
3 + A2

4)C1

8ω3 sin(a4 − a3) = 0

µA3ȧ3 + µA3
ω

2
− ε

2ω
(A3 − A2 cos(a3 − a2))

− 3
(A2

3 + A2
4)C1

8ω3
(A3 − A4 cos(a4 − a3)) = 0

µȦ4 + 3
(A2

3 + A2
4)C1A3

8ω3
sin(a4 − a3)− 3

(A2
4 + A2

5)C2A5

8ω3
sin(a5 − a4) = 0

µA4ȧ4 + µA4
ω

2
− 3

(A2
4 + A2

3)C1

8ω3 (A4 − A3 cos(a4 − a3))

− 3
(A2

4 + A2
5)C2

8ω3 (A4 − A5 cos(a5 − a4)) = 0

µȦ5 + 3
(A2

5 + A2
4)A4

8ω3 sin(a5 − a4) = 0
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µA5ȧ4 + µA5
ω

2
− 3

(A2
5 + A2

4)C2

8ω3 (A5 − A4 cos(a5 − a4)) = 0 (4.47)

An inspection of (4.47) verifies that the steady state amplitudes satisfy the alge-
braic relationship A2

1 + A2
2 + µ(A2

3 + A2
4 + A2

5) = N2, which may be regarded
as an energy-like expression indicating conservation of total energy of the resonant
periodic motion of the unforced and undamped system (4.4). Alternatively, this rep-
resents a first integral of the slow flow (4.47).

To compute periodic resonant solutions of the system, we impose two stationarity
requirements in (4.47), namely, that, (i) the phase differences are trivial, a1 = a2 =
a3 = a4 = a5 = a, where a is arbitrary; and (ii) the derivatives of the amplitudes
are equal to zero, Ȧi = 0. The first condition holds since the system is undamped,
and it does not restrict in any way the generality of the analysis. By imposing these
stationarity conditions we obtain the following set of nonlinear algebraic equations:

A1

(
ω

2
− ω2

0

2ω

)
− α

2ω
(A1 − A2) = 0

A2

(
ω

2
− ω2

0

2ω

)
− α

2ω
(A2 − A1)− ε

2ω
(A2 − A3) = 0

µA3
ω

2
− ε

2ω
(A3 − A2)− 3C1

8ω3 (A3 − A4)
3 = 0

µA4
ω

2
− 3C1

8ω3 (A4 − A3)
3 − 3C2

8ω3 (A4 − A5)
3 = 0

µA5
ω

2
− 3C2

8ω3 (A5 − A4)
3 = 0 (4.48)

which governs the steady state amplitude of the resonant motions with fast fre-
quency ω. By numerically solving it for varying frequency ω we obtain an approx-
imation for the main backbone branch of the system (based on the assumption that
the averaging operation is valid). Once the state amplitudes are numerically com-
puted, the analytical approximation for the corresponding periodic orbit (NNM) of
the system is given by

u1 = A1

ω
sin(ωt + a), u2 = A2

ω
sin(ωt + a)

w1 = A3

ω
sin(ωt + a), w2 = A4

ω
sin(ωt + a), w3 = A5

ω
sin(ωt + a)

(4.49)

In Figure 4.19 we depict the approximate main backbone branches in the FEP
for Systems I and II, resulting from the numerical solution of the set of steady state
equations (4.48). The analytical results are in agreement with the numerical FEPs
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(a) (b)

Fig. 4.19 Approximate regular backbone branches obtained from equations (4.48): (a) System I,
(b) System II.

depicted in Figures 4.13 and 4.17; this validates the outlined analytical complexifi-
cation/averaging method.

As mentioned previously, by modifying appropriately the ansatz (4.45) the pre-
vious analysis can be extended to approximate other types of periodic solutions in
the FEPs of Systems I and II. Depending on the dominant fast frequencies of the
motions of the particles of the system, one should define appropriate complex vari-
ables ψi , i = 1, . . . , 5, and select suitable slow/fast partitions of the dynamics.
Moreover, the complexification / averaging analysis can be applied to study damped
transient responses of the full system (4.4), in similarity to the analysis performed
in Chapter 3.

These results conclude the study of the FEP of periodic orbits of the underly-
ing Hamiltonian system which results by neglecting the damping and forcing terms
from (4.4). In the following section we present a study of damped transitions and
TET in system (4.4) by adding weak damping and considering impluses applied to
the linear primary system. We will show that the weakly damped transitions (and
TET) of the impulsively forced system can be studied in terms of the underlying
Hamiltonian dynamics.
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4.3 TRCs and TET in the Damped and Forced System

The topological portraits of the FEPs of the Hamiltonian Systems I and II provide
a clear indication of the complex topology of the periodic orbits of the undamped
and unforced dynamics. In this section we show that this rich topological struc-
ture of periodic orbits of the underlying Hamiltonian systems leads to complicated
transient dynamics of the forced and damped systems, including multi-frequency
transitions between different branches of solutions, isolated TRCs and resonance
capture cascades.

The study of transitions in the damped dynamics is performed by superimposing
the wavelet transform (WT) spectra of the transient responses to the FEPs of the
underlying Hamiltonian systems (Tsakirtzis, 2006; Tsakirtzis et al., 2007). In that
way, and given that the effect of weak damping is purely parasitic (as it cannot gen-
erate ‘new dynamics,’ but rather acts as perturbation of the underlying Hamiltonian
response), the transient responses occur in neighborhoods of branches of periodic
(or quasi-periodic) solutions of the corresponding Hamiltonian systems. Once this
is recognized, the interpretation of the damped dynamics is possible, and an under-
standing of the resulting multi-frequency transitions can be gained.

4.3.1 Numerical Wavelet Transforms

The transient dynamics of the damped and forced system is processed by numerical
wavelet transforms (WTs). The results are presented in terms of WT spectra, which
are contour plots depicting the amplitude of the WT as function of frequency (verti-
cal axis) and time (horizontal axis). Heavy shaded areas correspond to regions where
the amplitude of the WT is high whereas lightly shaded regions correspond to low
amplitudes. Both Morlet and Cauchy WTs were considered, but these two mother
wavelets provided similar results when applied to the signals considered herein.

Representative WT spectra of the transient nonlinear responses of system (4.4)
are presented in Figures 4.20–4.25. Specifically, we reconsider the responses of Sys-
tem II for α = 1.0 and impulsive forcing condition (IFC) I3, studied previously
in Figures 4.8, 4.11 and 4.12. Referring to the plot depicted in Figure 4.8 (with
α = 1.0), a peculiar behavior of the efficiency of targeted energy transfer (TET)
from the primary linear system to the MDOF NES was noted. In particular, when
the primary system was excited by a pair of out-of-phase impulses of magnitude Y ,
strong TET to the NES occurs at low energy levels (i.e., for weak applied impulses),
with values of EDM reaching levels of 90% for Y = 0.1 (point C in Figure 4.8).
By increasing the magnitude of the applied impulse the eventual energy transfer to
the NES first decreases (with EDM reaching nearly 50% for Y = 1.0 – point A in
Figure 4.8), before increasing again to higher levels (with EDM being nearly equal
to 90% for Y = 1.5 – point B in Figure 4.8); further increase of Y decreases the
portion of input energy eventually dissipated by the NES.
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Fig. 4.20 WT spectrum of the relative NES displacement (v1 − v2) of System II for out-of-phase
impulse magnitude ; the linear natural frequencies of the uncoupled (ε = 0) primary system are
indicated by dashed lines.

Fig. 4.21 WT spectrum of the relative NES displacement (v2 − v3) of System II for out-of-phase
impulse magnitude ; the linear natural frequencies of the uncoupled (ε = 0) primary system are
indicated by dashed lines.
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In an attempt to understand the reason for this peculiar behavior of TET in this
system, we computed the WT spectra of the relative NES displacements [v1(t) −
v2(t)] and [v2(t) − v3(t)]. In Figures 4.20 and 4.21 the WT spectra of System II
for out-of-phase impulsive excitation of magnitude Y = 0.1 are depicted. In this
case there occurs strong TET from the primary system to the NES (amounting to
nearly 90% of input energy). Examination of the corresponding WT spectra reveals
the following features of the dynamics:

(i) There occurs a strong TRC of the dynamics of the relative displacement
[v1(t) − v2(t)] with an essentially nonlinear mode (i.e., with no counterpart
in the linearized system) whose frequency varies in time and lies between the
two linearized natural frequencies of the primary system. The fact that this is
an essentially (strongly) NNM is signified by the fact that its frequency does
not lie close to either one of the linearized natural frequencies of the system;
this implies that this mode localizes predominantly to the NES. The strong
nonlinearity of the response of the NES is further signified by the occurrence
of an initial multi-frequency beat oscillation (subharmonic or quasi-periodic),
as evidenced by the existence of an initial high frequency component in the
spectrum of [v1(t)− v2(t)].

(ii) The second nonlinear stiffness-damper pair of the MDOF NES (corresponding
to the relative displacement [v2(t)−v3(t)]) absorbs (and dissipates) broadband
energy from the primary system; this is evidenced by the fact that the WT
spectrum of [v2(t) − v3(t)] exhibits a wide range of frequency components,
which includes the linearized natural frequencies of the primary system.

These results indicate that strong TET in this case is associated with TRCs of the dy-
namics by strongly nonlinear modes that predominantly localize to the NES; more-
over these TRCs take place over a wide frequency range, resulting in broadband
TET from the primary structure to the NES. These results underline the validity of
the numerical WT, which in this complicated dynamical problem provides important
information not only on the frequency contents of the nonlinear responses, but also
on the temporal evolution of each individual frequency component as the strongly
nonlinear interaction between the linear and nonlinear subsystems progresses in
time.

By increasing the magnitude of the impulse to Y = 1.0, we note a marked de-
terioration of TET from the primary system to the NES. In Figures 4.22 and 4.23
we depict the WT spectra for [v1(t) − v2(t)] and [v2(t) − v3(t)] for this case, re-
vealing the reason for poor TET: namely, the dynamics of the MDOF NES appears
to engage in sustained resonance capture (SRC) predominantly with two weakly
nonlinear modes lying in neighborhoods of the linearized in-phase and out-of-phase
modes of the primary system. The fact that both of these weakly nonlinear modes
localize predominantly to the primary system, prevents significant localization of
the vibration to the NES, and, hence, leads to weaker TET. This prevents strong
broadband TET from the primary system to the NES. We conclude that weak TET
in this case is associated with SRC of the NES dynamics with weakly nonlinear
modes which are predominantly localized to the primary system.
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Fig. 4.22 WT spectrum of the relative NES displacement (v1 − v2) of System II for out-of-phase
impulse magnitude Y ; the linear natural frequencies of the uncoupled (ε = 0) primary system are
indicated by dashed lines.

Fig. 4.23 WT spectrum of the relative NES displacement (v2 − v3) of System II for out-of-phase
impulse magnitude Y = 1.0; the linear natural frequencies of the uncoupled (ε = 0) primary
system are indicated by dashed lines.
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Fig. 4.24 WT spectrum of the relative NES displacement (v1 − v2) of System II for out-of-phase
impulse magnitude Y = 1.5; the linear natural frequencies of the uncoupled (ε = 0) primary
system are indicated by dashed lines.

Fig. 4.25 WT spectrum of the relative NES displacement (v2 − v3) of System II for out-of-phase
impulse magnitude Y = 1.5; the linear natural frequencies of the uncoupled (ε = 0) primary
system are indicated by dashed lines.
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Finally, in Figures 4.24 and 4.25 we depict the corresponding WT spectra for
Y = 1.5. Similarly to the case for Y = 0.5 (see Figures 4.20 and 4.21), we note
the occurrence of strong TRC of the dynamics of the NES with a strongly nonlin-
ear mode localized predominantly to the NES; this TRC leads to strong TET from
the primary system to the NES. Comparing the WT spectra of Figures 4.22 and
4.23 to those corresponding to weak TET (Figures 4.22 and 4.23), we note that in
the later case the transient responses are dominated by sustained frequency compo-
nents (i.e., by SRCs), indicating excitation of weakly nonlinear modes that are mere
analytic continuations of linearized modes of System II. On the contrary, in cases
where strong TET is realized, the frequencies of the nonlinear modes involved in the
corresponding TRCs are not close to the linearized natural frequencies ω1 and ω2,
indicating the presence in the response of strongly nonlinear modes with no linear
counterparts; these modes localize predominantly to the NES.

4.3.2 Damped Transitions on the Hamiltonian FEP

Starting with System I, we perform a series of numerical simulations to study the
transient dynamics of system (4.4) with weak damping, in an effort to demonstrate
that complicated transitions in the dynamics of the weakly damped system closely
follow branches of the underlying Hamiltonian system. We aim to show that, for
sufficiently weak damping, damped transitions can be interpreted as jumps between
different branches of periodic solutions of the FEP of Figure 4.14. Hence, we aim
to show that TET in the system of Figure 4.2 [or in system (4.4)] is governed, in
essence, by the topological structure of the NNMs of the underlying Hamiltonian
system; this, occurs in spite the fact that, as discussed in Chapter 3, damping is a
prerequisite for TET for the systems considered.

In the following simulations the motion of the system is initiated with different
initial conditions, and there is no external forcing; the system parameters for System
I were defined in Section 4.2.1, and the damping coefficients in (4.4) were assigned
the (small) values ελ1 = 8 × 10−3 and ελ2 = 1.6 × 10−3. Hence, in what follows
only weakly damped nonlinear transitions are examined. First, the motion is initi-
ated at point A of a lower subharmonic tongue emanating from the main backbone
curve of the FEP of the system in Figure 4.13, and the resulting damped transient re-
sponses are depicted in Figure 4.26. It is noted that although the MDOF NES starts
with almost no energy, after t = 1500 s it passively absorbs nearly all of the energy
of the (initially excited) linear primary system in an irreversible fashion.

Moreover, TET from the linear primary system to the NES coincides with the
transition from a subharmonic tongue to the main backbone curve with decreasing
energy (due to damping dissipation) as evidenced from the plots of Figure 4.26c;
these plots depict the superposition of the FEP of Figure 4.13 to the WT spectra of
the transient responses [v1(t) − v2(t)] and [v2(t) − v3(t)]. These plots should be
viewed from a purely phenomenological point of view, as they superpose weakly
damped (the WT spectra) to undamped (the branches of periodic orbits on the FEP)
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Fig. 4.26 Transient response of the weakly damped System I for initial conditions at point A of
the FEP of Figure 4.13: (a) Time series, (b) partition of instantaneous energy of the system, and (c)
WT spectra depicted in the FEP of the underlying Hamiltonian System I.

responses, and they should be used only for descriptive purposes. Nevertheless this
type of superpositions help us interpret transitions that occur in the damped re-
sponses in terms of the topological portrait of the periodic orbits of the underly-
ing Hamiltonian system; in this particular case, the only transition in the dynamics
takes place from the subharmonic branch where the motion is initiated, to the main
backbone branch, and there are no other transitions or jumps between branches of
solutions (i.e., the transition is smooth with decreasing energy – see Figure 4.26c).
Concerning the damped responses of Figure 4.26a, we note the nearly complete
absence of motion of the third particle of the MDOF NES, in accordance to our pre-
vious discussion regarding the periodic motions (NNMs) on the regular backbone
branch of System I.
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Fig. 4.27 Transient response of the weakly damped System I for initial conditions at point B of
the FEP of Figure 4.13: (a) Time series, (b) partition of instantaneous energy of the system, and (c)
WT spectra depicted in the FEP of the underlying Hamiltonian System I.

Next, the motion is initiated at point B on a branch of the family of singular
backbones of the FEP of Figure 4.13, namely, on branch S161. The results of this
simulation are depicted in Figure 4.27, and some major qualitative differences are
observed compared to the previous simulation. In this case the last mass of the NES
executes large-amplitude oscillations, and the dominant frequency components of
the WT spectra of [v1(t) − v2(t)] and [v2(t) − v3(t)] differ (in contrast to motions
on the regular backbone curve that are nearly monochromatic); finally, the motion
is nearly localized to the MDOF NES. Indeed, the WT spectrum of the relative dis-
placement [v2(t)−v3(t)] follows a singular backbone branch, engaging at t ≈ 550 s
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Fig. 4.28 Transient response of the weakly damped System I for initial conditions at point C of
the FEP of Figure 4.13: (a) Time series, (b) partition of instantaneous energy of the system, and (c)
WT spectra superimposed to the FEP of the underlying Hamiltonian System I.

in 1:1 TRC with the in-phase linearized mode at the natural frequency f2 of system
(4.10). On the other hand, the WT spectrum of [v1(t)−v2(t)] does not generally fol-
low the same singular backbone branch since its dominant harmonic component is
six times the dominant harmonic component of [v2(t)− v3(t)]. When the dominant
frequency of [v1(t)− v2(t)] gets close to the neighborhood of the regular backbone
branch, it is possible that TRCs occur involving the regular backbone S111 and the
singular backbone S161.

An additional simulation is depicted in Figure 4.28, with the motion initiated on
point C of S131c (see Figure 4.13) not far from the coalescence point of this branch
with S131d (see Figure 4.15). Once the motion reaches the coalescence point for di-
minishing energy, a bifurcation occurs, which is clearly evidenced by the envelopes
of the relative displacements of the NES. In addition, we note the occurrence of an
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Fig. 4.29 Weak TET in System I for IFC I1 of magnitude Y = 1.5: (a) Time series, (b) partition of
instantaneous energy of the system, and (c) WR spectra superimposed to the FEP of the underlying
Hamiltonian System I.

interesting resonance capture at the final stage of the motion when the dominant har-
monic component of the relative displacement [v1(t)− v2(t)] (which is three times
the dominant harmonic component of [v2(t) − v3(t)]) appears to engage in reso-
nance capture with one of the lower tongues emanating from the regular backbone
curve. This is precisely the type of resonance capture conjectured previously, lead-
ing to strong energy exchanges between the particles of the NES. As in the previous
simulation, throughout the motion almost all of the energy of vibration is localized
to the MDOF NES.

It is interesting to note that in general weak TET occurs in System I. This is
concluded by performing a series of numerical simulations with initial forcing con-
ditions similar to those considered in Section 4.1.2 (with IFCs I1-I3), and computing
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the portion of total impulsive energy eventually dissipated by the MDOF NES. In
all cases it was found that only a small portion of input energy is eventually trans-
ferred to (and locally dissipated by) the NES. A representative result of weak TET
is depicted in Figure 4.29 for the case of single impulsive excitation with magnitute
Y = 1.5 applied to the left mass of the linear subsystem (corresponding to impulsive
forcing condition I1).

We now consider the transient damped dynamics leading to TET in System II,
corresponding to weak nonlinear stiffness C2 and small NES masses. We will show
that by decreasing the masses of the MDOF NES the complexity of the dynamics is
enhanced, and the capacity for TET significantly improves compared to System I. In
the following simulations the motion of the system is initiated with different initial
conditions, and no external forcing is considered; the system parameters for System
II were defined in Section 4.2.2, and the damping coefficients in (4.4) were assigned
the values ελ1 = ελ2 = ελ = 0.01. So, again, only weakly damped nonlinear
transitions are considered in what follows.

Revisiting an earlier result, we wish to reconsider and study in more detail the
damped transitions associated with the peculiar behavior of the TET plot of System
II for α = 1.0 and IFC I3 depicted in Figure 4.8. More specifically, in Section 4.1.2
it was numerically shown that when the linear system is excited by a pair of out-of-
phase impulses of magnitude Y, strong TET from the linear primary system to the
NES occurs even at low values of the impulse (with EDM as high as 90% for Y =
0.1); by increasing the magnitude of the impulse, initially TET deteriorates (with
EDM reaching nearly 50% for Y = 1.0), before improving back to high levels (with
EDM increasing up to nearly 90% for Y = 1.5). Further increase of Y decreases
the portion of input energy that is eventually dissipated by the NES, so that TET
deteriorates.

The WT spectra of the responses of the particles of the NES for System II were
depicted in Figures 4.20–4.25, and it was postulated that strong TET is associated
with transient resonance captures (TRCs) of the transient dynamics by strongly non-
linear modes predominantly localized to the NES; whereas, weak TET is associated
with sustained resonance captures (SRCs) of the dynamics by weakly nonlinear
modes predominantly localized to the linear system. We wish to confirm these re-
sults by studying the WT spectra of the NES responses superimposed to the FEP
of System II (depicted in Figure 4.17); by doing so we wish to observe directly
the resulting TRCs and transitions between branches of periodic solutions. The WT
spectra superimposed to the FEP for System II are depicted in Figures 4.30–4.32.

In Figure 4.30 the damped responses corresponding to IFC I3 and Y = 0.1 [i.e.,
impulses F1(t) = −F2(t) = Yδ(t) and zero ICs in system (4.4)] are presented.
These responses correspond to point C of the TET diagram of Figure 4.8. In this
case both relative displacements [v1(t) − v2(t)] and [v2(t) − v3(t)] of the NES
follow regular backbone branches in the FEP as energy decreases due to damping
dissipation. The relative displacement [v1(t)−v2(t)] has a dominant frequency com-
ponent which approaches the linearized natural frequency f2 of the limiting system
(4.10) with decreasing energy; in contrast, [v2(t) − v3(t)] has two strong harmonic
components that approach the linearized natural frequencies f2 and f3 with de-
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Fig. 4.30 Damped responses of System II for IFC I3 with Y = 0.1: (a, b) Cauchy WT spectra
of the relative displacements [v1(t) − v2(t)] and [v2(t) − v3(t)] superimposed to the FEP of the
Hamiltonian System II; these responses correspond to point C of the TET diagram of Figure 4.8.
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Fig. 4.30 Damped responses of System II for IFC I3 with Y = 0.1: (c) partition of instantaneous
energy of the system; these responses correspond to point C of the TET diagram of Figure 4.8.

creasing energy; this indicates that TET occurs simultaneously with two modes of
the linear limiting system (4.10). Moreover, the same regular backbone branches
are tracked by the response throughout the motion, and strong TET occurs right
from the early stage of the dynamics. This explains the high value of EDM (˜90%)
that is realized even for this low level of impulsive excitation; clearly, this can not
be realized through the use of SDOF NESs, as TET to this type of attachments takes
place (is ‘activated’) only above a certain critical energy level. Hence, the described
low-energy TET is a unique feature of the MDOF NES configuration.

By increasing the magnitude of the impulse to Y = 1.0 TET from the primary
system to the MDOF NES significantly decreases. The damped response of System
II in this case is depicted in Figure 4.31. Some major qualitative differences are
observed compared to the lower-impulse simulation of Figure 4.30. Judging from
the partition of the instantaneous energy among the linear and nonlinear systems, it
is concluded that targeted energy transfer is significantly delayed, and, hence, occurs
at lower energy levels; this explains the weak TET to the NES (EDM˜50% in this
case). This delay is explained when one studies the WT spectra of the NES relative
responses superimposed to the FEP of Figure 4.31a. Noting that in the initial stage of
the motion the dominant WT components of the NES relative displacements occur
close to the linearized frequency f1, we conclude that in the initial (high energy)
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Fig. 4.31 Damped responses of System II for IFC I3 with Y = 1.0: (a, b) Cauchy WT spectra
of the relative displacements [v1(t) − v2(t)] and [v2(t) − v3(t)] superimposed to the FEP of the
Hamiltonian System II; these responses correspond to point A of the TET diagram of Figure 4.8.
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Fig. 4.31 Damped responses of System II for IFC I3 with Y = 1.0: (c) partition of instantaneous
energy of the system; these responses correspond to point A of the TET diagram of Figure 4.8.

stage of the motion there occurs strong resonance capture of the damped motion
by the linearized out-of-phase mode of the limiting system (4.10). This yields a
motion mainly localized to the (directly excited) primary linear system, with only
a small portion of energy ‘spreading out’ to the NES. As energy decreases due
to damping dissipation, the damped motion ‘escapes’ from the initial out-of-phase
resonance capture, and follows regular backbone branches; this results in TET (as
in the simulations of Figure 4.30), which, however, occurs with a delay, at a stage
where the energy of the system is small due to damping dissipation. Hence, no
significant TET from the primary system to the NES takes place in this case.

By increasing the magnitude of the impulse to Y = 1.5, the dynamics escape
from the strong initial out-of-phase resonance capture, yielding once again strong
TET. This is depicted in Figure 4.32, showing that the NES relative responses pos-
sess multiple strong frequency components, indicating that strong TET takes place
over multiple frequencies. Note in this case the early strong TET from the primary
system to the NES, resulting in EDM of nearly 90%.

These results are in agreement with the conclusions drawn from the study of the
WT spectra of the NES relative responses of the same system (see Figures 4.20–4.25
in Section 4.3.1). The superposition of the WT spectra to the FEP of the underlying
Hamiltonian System II provides additional valuable insight to the sequences of reso-
nance captures (transient or sustained) that facilitate or hinter TET from the primary
system to the NES. This confirms the value of the FEP as a tool for interpreting the
transient dynamics of the strongly nonlinear systems considered herein.
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Fig. 4.32 Damped responses of System II for IFC I3 with Y = 1.5: (a, b) Cauchy WT spectra
of the relative displacements [v1(t) − v2(t)] and [v2(t) − v3(t)] superimposed to the FEP of the
Hamiltonian System II; these responses correspond to point B of the TET diagram of Figure 4.8.
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Fig. 4.32 Damped responses of System II for IFC I3 with Y = 1.5: (c) partition of instantaneous
energy of the system; these responses correspond to point B of the TET diagram of Figure 4.8.

Similar results were obtained for alternative forcing excitations of the linear pri-
mary system, confirming the strong TET capacity of the NES in System II. A last
example of strong TET is depicted in Figure 4.33, for the case of single impulse
excitation of magnitude Y = 1.5 (IFC I1 – Figure 4.6, case α = 1.0). Notice the
strong multi-frequency content of the WT spectra of the internal displacements of
the MDOF NES, proving that TET from the primary system to the NES takes place
in a broadband fashion [i.e., simultaneously from the three linearized modes of the
limiting subsystem (4.10)]; this results in nearly 85% of input energy being even-
tually transferred to, and dissipated by the MDOF NES. Compare this picture to
the corresponding plot of Figure 4.29c for System I, where the NES dynamics is
narrowband and weak TET occurs.
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Fig. 4.33 Damped responses of System II for IFC I1 with Y = 1.5: (a, b) Cauchy WT spectra
of the relative displacements [v1(t) − v2(t)] and [v2(t) − v3(t)] superimposed to the FEP of the
Hamiltonian System II.
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4.4 Concluding Remarks

The results presented in this chapter demonstrate that MDOF essentially nonlinear
attachments (MDOF NESs) can be designed to be efficient and robust passive broad-
band absorbers of vibration or shock energy from the primary systems to which
they are attached. Moreover, the extraction of vibration energy occurs in a multi-
frequency fashion, through simultaneous dynamic interactions of multiple modes of
the nonlinear attachments with multiple modes of the primary systems. This form
of multi-frequency energy exchange is different than the resonance capture cascades
encountered in the previous chapter, where TET to SDOF NESs occurs in a sequen-
tial manner, i.e., through resonance capture cascades.

The dynamical systems considered in this work possess complicated dynamics
due to their degenerate structures. The considered MDOF NES has strong passive
TET capacity, extracting in some cases as much as 90% of the vibration energy of
the primary system to which it is attached. The capacity of the MDOF essentially
nonlinear attachment to absorb broadband vibration energy was demonstrated nu-
merically in this section, but it can also be analytically studied by a reduction process
of the governing system of ordinary differential equations, and local slow/fast par-
tition of the damped dynamics.

It was shown that MDOF essentially nonlinear attachments may be more efficient
energy absorbers compared to SDOF ones, since they are capable of absorbing en-
ergy simultaneously from multiple structural modes, over wider frequency and en-
ergy ranges. Passive TET by the MDOF NES can be related to transient resonance
captures (TRCs) of the damped dynamics, whereby orbits of the system in phase
space are transiently captured in neighborhoods of resonance manifolds.

An interesting dynamical feature of the considered MDOF NES configurations
is the existence of two classes of backbone branches in their frequency-energy
planes: isolated regular backbone branch containing NNMs where all particles of
the primary system and the NES oscillate with identical dominant frequencies;
and additional families of densely packed singular backbone branches containing
NNMs where particles oscillate with differing dominant harmonic components. It
was proved that these families of singular backbones contain countable infinities of
backbone branches, which are mainly generated by combined parametric and exter-
nal resonances between the two relative displacements of the particles of the NES.
It is conjectured that this interesting energy ‘quantization’ of the families of singu-
lar backbone branches may represent different modes of nonlinear interaction and
energy exchange between the particles of the essentially nonlinear, MDOF attach-
ment.

Finally, it was shown that complex transitions in the damped dynamics of the
system with attached MDOF NES may be related to transitions or jumps between
branches of NNMs of the underlying Hamiltonian system. In that context, TRCs
leading to TET may be related to damped motions in neighborhoods of certain in-
variant manifolds of the underlying Hamiltonian system.

The methodologies and results presented in this chapter pave the way for ap-
plying lightweight MDOF essentially nonlinear attachments as shock and vibration
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absorbers of unwanted disturbances of structures. The proposed designs are modu-
lar and can be designed to be lightweight; hence they can be conveniently attached
to existing structures with minimal structural modifications. Application of MDOF
NESs for shock isolation of elastic continua is considered in the next chapter.
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