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Chapter 5
Targeted Energy Transfer in Linear Continuous
Systems with Single- and Multi-DOF NESs

Up to now we have considered passive targeted energy transfer from linear discrete

we extend the study of TET dynamics to linear elastic continua possessing attached
NESs attached to their boundaries. Our study builds on the formulations, method-
ologies and results discussed in previous Chapters, in an effort to demonstrate that
appropriately designed and placed essentially nonlinear local attachments may af-
fect the global dynamics of the elastic systems to which they are attached. More im-
portantly, we show that such nonlinear attachments can passively absorb and locally
dissipate significant portions of shock-induced energy inputs from directly excited
linear continua. This paves the way for the practical implementation of TET and the
concept of NES to flexible systems encountered in engineering practice.

5.1 Beam of Finite Length with SDOF NES

The first class of elastic systems considered is composed of linear beams with at-
tached NESs, with general configuration depicted in Figure 5.1 (Georgiades, 2006;
Georgiades at al., 2007). Specifically, we consider an impulsively forced, simply
supported, damped linear beam, with an attached essentially nonlinear, damped
SDOF oscillator (the NES). As in the case of discrete oscillators considered in Chap-
ters 3 and 4, we will show that the NES can passively and irreversibly absorb a major
portion of the impulsive energy of the beam. Moreover, TET from the linear beam to
the NES can be optimized by appropriate design and placement of the attachment.

5.1.1 Formulation of the Problem and Computational Procedure

Assuming that the beam dynamics is governed by linear Bernoulli–Euler theory, the
equations of motion of the integrated system are given by

1

systems of coupled oscillators to attached SDOF and MDOF NESs. In this chapter
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Fig. 5.1 Linear beam with attached SDOF NES.

EIyxxxx(x, t)+ ελyt (x, t)+mytt(x, t)
+ {C[y(d, t)− v(t)]3 + ελ[yt (d, t)− v̇(t)]}δ(x − d) = F(t)δ(x − a)

εv̈(t)+ C[(v(t) − y(d, t)]3 + ελ[v̇(t)− yt (d, t)] = 0 (5.1)

with zero initial conditions. In (5.1), E is the Young’s modulus, I the moment of
inertia of the cross section, and m the mass per unit length of the beam; more-
over, proportional distributed viscous damping is assumed for the beam, and the
short-hand notation for partial differentiation is enforced, e.g., (·)xx ≡ ∂2(·)/∂x2,
(·)t ≡ ∂(·)/∂t , . . . . By adopting the usual assumption 0 < ε 	 1, the system is as-
sumed to possess weak viscous damping, and the NES is assumed to be lightweight
compared to the mass of the beam. Clearly, this last assumption is important for the
practical implementation of this design, since in practical engineering applications
one requires that the NES does not add significant new weight or modify consider-
ably the overall structural configuration. In addition, we assume that the attachment
possesses essential cubic stiffness nonlinearity, which, together with viscous damp-
ing dissipation are prerequisites for the realization of TET.

We now discuss certain aspects of the computational study of the transient dy-
namics of the essentially nonlinear damped system (5.1). First, we consider the set
of linear normal modes of the simply supported beam with no damping, external
forcing, or NES attached. This is given by

φr(x) = (2/mL)1/2 sin(rπx/L),

ωr = (rπ)2(EI/mL4)1/2, r = 1, 2, . . . (5.2)

where φr(x) and ωr are the mode shape and natural frequency of the mode, respec-
tively. Since these modes are solutions of a Sturm–Liouville eigenvalue problem
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they satisfy the following orthonormality relations:

∫ L

0
mφrφsdx = δrs and

∫ L

0
EI
∂2φr

∂x2

∂2φs

∂x2 dx = ω2
r δrs, r, s = 1, 2, . . .

Considering now the integrated damped beam-NES system, its transient response
is numerically computed by projecting the dynamics of the partial differential equa-
tion (with attached NES) in the functional space defined by the complete and ortho-
normal base of normal modes (5.2). To this end, we non-dimensionalize the system
(5.1) by introducing the following new normalized parameters and variables:

τ = t EI
m
, ε1 = ε

m
, c = C

EI
, λ1 = ελ

m
, Q(x, τ ) = F(x, τ )

EIm

which bring (5.1) into the following non-dimensional form:

yxxxx(x, τ )+ λ1yτ (x, τ )+ yττ (x, τ )
+ {c[y(d, τ )− v(τ )]3 + λ1[yτ (d, τ )− v̇(τ )]}δ(x − d) = Q(τ)δ(x − a)

ε1v̈(τ )+ c[(v(τ )− y(d, τ )]3 + λ1[v̇(τ )− yτ (d, τ )] = 0 (5.3)

In (5.3) dots denote differentiation with respect to the scaled time variable τ .
To project the dynamics of (5.3) in the infinite-dimensional base of orthonormal

normal modes (5.2) we express the transverse displacement field y(x, t) in the series
form

y(x, τ ) =
∞∑
r=1

ar(τ )φr(x) (5.4)

Substituting (5.4) into (5.3), leads to

∞∑
r=1

ar(τ )
d4φr(x)

dx4
+ λ1

∞∑
r=1

ȧr (τ )φr (x)+
∞∑
r=1

är (τ )φr (x)

+
⎧⎨
⎩c

[ ∞∑
r=1

ar(τ )φr9d)− v(τ )
]3

+ λ1

[ ∞∑
r=1

ȧr (τ )φr(d)− v̇(τ )
]⎫⎬
⎭ δ(x − d)

= F(τ)δ(x − a)

e1v̈(t)− c
[ ∞∑
r=1

ar(τ )φr(d)− v(τ )
]3

− λ1

[ ∞∑
r=1

ȧr (τ )φr (d)− v̇(τ )
]

= 0 (5.5)

By multiplying (5.5) by an arbitrary modeshape φp(x), integrating with respect to
x from 0 to L, and enforcing the orthonormality conditions satisfied by the normal
modes, yields the following set of coupled nonlinear ordinary differential equations
governing the modal amplitudes ap(τ ), p = 1, 2, . . . :
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äp(τ )+ ω2
pap(τ )+ ε1ȧp(τ )

+
⎧⎨
⎩c

[ ∞∑
r=1

ar(τ )φr(d)− v(t)
]3

+ λ1

[ ∞∑
r=1

ȧr (τ )φr(d)− v̇(τ )
]⎫⎬
⎭φp(d)

= q(τ )φp(a)

ε1v̈(τ )+ c
[
v(τ )−

∞∑
r=1

ar(τ )φr(d)

]3

+ λ1

[
v̇(τ )−

∞∑
r=1

ȧr (τ )φr (d)

]
= 0

(5.6)

We note that the essential nonlinearity and the damping term of the NES cou-
ples all modes through the infinite summation terms, whereas, the linear part of the
system decouples completely by the projection to the orthonormal basis of normal
modes of the uncoupled linear beam. It follows that although the NES is local and
lightweight it introduces global effects in the dynamics of the integrated system. This
is due, of course, to the essential (strong) stiffness nonlinearity of the system.

As in Chapters 3 and 4, a quantitative measure of TET (that is, a measure of
the effectiveness of the NES to passively absorb and locally dissipate energy from
the directly forced beam) is given by the energy dissipation measure (EDM) which
quantifies the instantaneous portion of impulsive energy of the beam that is dissi-
pated by the damper of the NES:

ENES(τ ) ≡

∫ τ

0
λ1

[
v̇(u)−

∞∑
r=1

ȧr (u)φr(d)

]2

du

∫ T

0
F(τ)

∞∑
r=1

ȧr (τ )φr(a)dτ

(5.7)

In this passive system, the EDM (5.7) reaches an asymptotic limit denoted by
ENES,τ�1 ≡ limτ�1 ENES(τ ), which quantifies the portion of impulsive energy
that is eventually dissipated by the NES over the entire duration of the decaying
motion.

In the numerical simulations the infinite series (5.4) was truncated to include only
a finite number of modes; this is equivalent to performing an approximate projec-
tion of the dynamics to a finite-dimensional basis of orthonormal normal modes. The
dimensionality of the truncated space that is required for accurate numerical simu-
lations is determined by performing a convergence study. It was found that N = 5
modes were sufficient for accurately computing the transient dynamics. Represen-
tative examples of typical convergence results are depicted in Figures 5.2a, b, were
we depict the EDM ENES,τ�1 ≈ ENES (τ = 150) as function of the nonlinear
coefficient c and the position d of the NES, respectively. For these simulations the
impulsive force was selected as a half sine pulse,
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Fig. 5.2 Convergence study of the EDM ENES,τ�1 for the truncated system with N = 1, 2 and 5
modes as function of (a) NES stiffness C and (b) NES position d.
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q(t) =
{
A sin(2πτ/T ), 0 ≤ τ ≤ T/2
0, t > T/2

(5.8)

with A = 10.0 and T = 0.4/π . Moreover, the system parameters were assigned the
numerical values: EI = 1.0, m = 1.0, L = 1.0, ε1 = 0.1, a = 0.3, λ1 = 0.05,
with d = 0.65 for the convergence plot of Figure 5.2a, and c = 1.322 × 103 for that
depicted in Figure 5.2b. Studying the plots of Figures 5.2a, b we note convergence
of the results for N = 5 modes, justifying the mode truncation implemented in the
following results.

Considering the dependence of the EDM ENES,τ�1, on the nonlinear coefficient
c of the NES (see Figure 5.2a), we note that for c ofO(103) the EDM is significant,
reaching values above 80%; this indicates that strong TET is realized in this case.
Considering the dependence of ENES,τ�1 on the NES position (Figure 5.2b), we
note two regions of strong TET (with the EDM reaching values of the order of 80%),
corresponding to placement of the NES between the boundaries and the center of
the beam. On the contrary, significantly weaker TET is realized when the NES is
placed near the center of the beam (where the second and fourth normal modes of
the uncoupled beam possess nodes), or near the boundaries of the beam where the
response of the beam is small.

These results indicate that an appropriately designed and placed NES can pas-
sively absorb and locally dissipate a major portion of the energy induced to the
beam by the external shock; moreover, this passive energy absorption is broadband
and irreversible (on the average), as verified by the significant levels of energy even-
tually dissipated by the damper of the NES. In the following section we present the
results of a parametric study of TET in the system, in an effort to optimize TET from
the beam to the NES. Although an optimization study of TET should address not
only maximization of the EDM ENES,τ�1, but also the issue of the time scale gov-
erning the energy transfer, in this section we only focus on the former issue, leaving
the discussion of the later issue (i.e., of the time scale of TET) for Chapters 7, 9 and
10.

5.1.2 Parametric Study of TET

The following simulations are performed for the half-sine shock excitation (5.8)
with A = 10.0, T = 0.4/π and system parameters, EI = 1.0, m = 1.0, L = 1.0,
ε1 = 0.1, a = 0.3 and λ1 = 0.05. In addition, by the results of the convergence
study we truncate the discretized set of equations (5.6) to N = 5 terms, which cor-
responds to a strongly nonlinear set of five coupled modal oscillators. In the first
parametric study we keep the (light) mass of the NES fixed and compute the as-
ymptotic EDM ENES,τ�1 as function of the nonlinear coefficient c and the position
d of the NES. Viewed in context, the plots of Figure 5.2 for N = 5 modes can be
regarded as different ‘slices’ of the three-dimensional plot of Figure 5.3a.
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Fig. 5.3 EDM ENES,τ�1 as function of the NES c and the position d: (a) three-dimensional plot,
(b) contour projection in the (c, d) plane.
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There are two regions of strong TET in the (c, d) plane realized for c =
1.32 × 103 and d = 0.348, with optimal NES energy dissipation reaching the level
of 83.3%. Moreover, for c of O(103) the effectiveness of the NES appears to be
robust in variations of the nonlinear coefficient c; this is indicated by the two dis-
tinct ‘strips’ of sustained high values of energy dissipation in the plots of Figure 5.3.
Moreover, the plots of Figure 5.3 reveal a strong dependence of TET on NES posi-
tion d . This should be expected, given that by placing the NES closer to the center
of the beam, the NES is hindered from interacting with half of the beam modes that
possess nodes near that position.

A general conclusion drawn from the plots in Figure 5.3 is that a lightweight,
essentially nonlinear NES can be designed and appropriately placed to passively
absorb a major portion (of the order of 80%) of shock energy induced in the beam.
The described energy absorption is broadband (as it involves shock excitation and
multi-modal beam response), and is realized over a wide frequency range. This ob-
servation highlights the advantage of the proposed NES design compared to exist-
ing designs based on linear vibration absorbers: this is the capacity of the NES to
absorb effectively broadband energy over wide ranges of frequencies and system
parameters, in contrast to the linear absorber whose action is narrowband. As we
discussed in Chapters 3 and 4, the main reason behind the capacity of the NES for
broadband passive vibration absorption is its essentially nonlinearity (and the corre-
sponding absence of preferential resonance frequencies), which enables it to engage
in transient resonance captures (TRCs) or resonance capture cascades (RCCs) with
isolated or sets of structural modes on arbitrary frequency ranges.

To demonstrate the significant reduction in amplitude of the beam vibrations
achieved due to passive TET, in Figure 5.4 we depict the transient responses of
the NES, of the point of attachment of the beam and of another point of the beam
at position x = 0.8. The system parameters for these simulations were fixed to the
values c = 1.322 × 103 and d = 0.65; by the results depicted in Figure 5.3 this cor-
responds to a case of strong TET with ENES,τ�1 ≈ 83%; for comparison purposes
we also depict the corresponding responses of the beam with no NES attached. We
note the drastic reduction in the envelope of oscillation of the transient responses of
the beam when the NES is attached, due to the rapid absorption and local dissipation
of impulsive energy by the NES. The multi-frequency content clearly evidenced in
the NES transient response indicates broadband absorption of vibration energy by
the NES from different structural modes of the beam, and demonstrates clearly the
capacity of the NES to absorb and dissipate broadband energy from the beam. We
note, especially, the early high frequency transients resembling a nonlinear beat
(i.e., a transient ‘bridging’ orbit) followed by the transition of the dynamics towards
lower frequencies – and resonance capture – as time progresses.

In the plots in Figure 5.5 we depict the transient responses for the system for
parameters c = 2 and d = 0.65 where TET is much weaker, corresponding to
EDM ENES,τ�1 ≈ 58%. In this case, we note a much smaller reduction of the
envelope of the beam responses when the NES is attached; moreover, the reduction
of the envelope occurs over a longer time scale compared to the case of efficient
TET of Figure 5.4. In addition, in this case the response of NES is of much smaller
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Fig. 5.4 Case of strong TET to the NES, transient responses of the system with and without NES
attached: (a) NES response, (b) beam response at the point of attachment.

amplitude than the beam response, which indicates the inability of the NES to absorb
and dissipate a major part of the impulsive energy of the beam.

These results highlight the usefulness of the parametric plots of Figure 5.3. In-
deed, using such plots one can determine optimal NES parameters for which strong
and robust TET from the beam to the NES takes place. Moreover, these plots can
form the basis for practical NES designs, capable of significantly reducing the level
of unwanted vibration of flexible structural components forced by external shocks.
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Fig. 5.4 Case of strong TET to the NES, transient responses of the system with and without NES
attached: (c) beam response at x = 0.65.

To be able to better study the robustness of TET, one needs to extend the present
parametric study to include changes in initial conditions and system parameters of
the linear structure (in this case the beam). This addresses the need of studying how
the effectiveness of the NES is affected by changes due to structural degradation,
and the initial state of the system.

The results of this section provide a first evidence of TET from a linear elastic
continuum to an attached NES. In contrast to our study of TET in discrete systems
carried out thus far, to address passive energy transfers in the beam-NES configu-
ration we needed to carefully study the effect that the location of the NES had on
TET efficiency. This is due to the fact that if the NES is attached close to a node of a
structural mode of the flexible system, its capacity to passively absorb and dissipate
energy from that mode is drastically diminished so TET deteriorates. In this respect,
the performance of parametric studies similar to the one presented in this section
can help us determine optimal placements of NESs to structural assemblies.

5.2 Rod of Finite Length with SDOF NES

In an effort to extend our study of TET from linear elastic continua to attached
NESs we now consider an impulsively forced (dispersive) rod of finite length that
rests on a linear elastic foundation and possesses a SDOF NES attached to its end.
The results reported in this section are drawn from the works by Georgiades (2006),
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Fig. 5.5 Case of weak TET to the NES, transient responses of the system with and without NES
attached: (a) NES response, (b) beam response at the point of attachment.

Tsakirtzis (2006), Tsakirtzis et al. (2007a) and Panagopoulos et al. (2007), which
should be consulted for more details. We mention that a new feature of the analy-
sis presented in this section is the detailed post-processsing of the time series of
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Fig. 5.5 Case of weak TET to the NES, transient responses of the system with and without NES
attached: (c) beam response at x = 0.65.

the nonlinear dynamical interaction between the NES and the elastic continuum
through a combination of numerical wavelet transforms (WTs) and Empirical Mode
Decompositions (EMDs). It will be shown that the combination of these numerical
transforms will enable us to study in detail the mechanisms governing the strongly
nonlinear dynamical interactions and energy exchanges between the rod and the
NES. This task will be performed by computating the evolutions of the dominant
harmonic components of the corresponding time series, ultimately yielding multi-
scale analysis of the transient nonlinear dynamics, and identification of the principal
resonance modal interactions that occur between the continuum and the NES that
are responsible for TET (or lack of it).

In the following exposition we systematically study passive broadband TET from
the linear dispersive rod to the attached ungrounded, strongly (essentially) nonlinear
SDOF NES. What distinguishes (and complicates) the present study compared to
our studies of discrete oscillators discussed in Chapters 3 and 4, is the fact that due to
the essentially nonlinear coupling between the continuum and the NES there occurs
simultaneous nonlinear coupling between the NES and the infinity of modes of the
rod, opening the possibility for transient nonlinear modal interactions of increased
complexity. It is precisely this type of compicated nonlinear modal interactions,
however, that give rise to TET in the system under consideration.

In the previous section we considered a beam with an attached NES, and demon-
strated that strong TET was possible in that system. Moreover, in Vakakis et al.
(2004a) the different types of dynamic interactions of a semi-infinite dispersive rod
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with a grounded essentially nonlinear attachment were analytically and numerically
studied, but no attempt to systematically study TET was undertaken. In that work
(which will be reviewed in Section 5.2��Section correct? Please note that this is
Section 5.2 already��) it was shown that the attachment initially engages in nonlin-
ear resonance with incoming traveling elastic waves; as the energy of the attachment
decreases due to damping and radiation of energy back to the rod, the attachment
engages in 1:1 transient resonance capture (TRC) with the in-phase mode of the
dispersive rod, leading to TET from the rod to the attachment; further decrease of
energy of the NES leads to escape of the dynamics from TRC and appearance of
the linearized regime of the motion. No study of the efficiency of TET, however,
was undertaken in that work. Nevertheless, the computational and analytical results
reported in Vakakis et al. (2004a) reveal that resonant interactions of elastic con-
tinua with local essentially nonlinear attachments can give rise to complex resonant
phenomena; this can be justified by the observation that local essentially nonlinear
attachments may introduce global changes in the dynamics of the elastic continua
to which they are attached.

5.2.1 Formulation of the Problem, Computational Procedure and
Post-Processing Algorithms

The system under consideration consists of an linear elastic rod of mass distribution
M and length L resting on a linear elastic foundation with distributed stiffness k
and distributed viscous damping δ. At its right boundary the rod is coupled to an
ungrounded, lightweight end attachment of mass m 	 M by means of an essen-
tially nonlinear cubic stiffness of constant C in parallel to a viscous damper ελ (see
Figure 5.6). The elastic foundation renders the dynamics of the rod dispersive and
introduces a cut-off frequency; in the frequency spectrum of the corresponding rod
of infinite length this frequency separates traveling waves from attenuating waves.
As the constant of the elastic foundation tends to zero this cut-off frequency also
tends to zero, and the dynamics of the rod become non-dispersive. It is assumed
that the left boundary of the rod is clamped, that an impulsive force (shock) F(t) is
applied at position x = d (where x is measured from the left clamped end of the
rod), and that the entire system is initially at rest.

Under these assumptions, the governing equations of motion of the system are
expressed as follows:

EA
∂2u(x, t)

∂x2
− ku(x, t)− δ ∂u(x, t)

∂t
+ F(t)δ(x − d)

− C[u(L, t) − v(t)]3δ(x − L)− ελ
[
∂u(L, t)

∂t
− v̇(t)

]
δ(x − L)

= M∂
2u(x, t)

∂t2
, 0 ≤ x ≤ L
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Fig. 5.6 Linear dispersive rod with attached SDOF NES.

Table 5.1 Leading eigenfrequencies of the uncoupled undamped rod (k = 1).

Normal Mode 1 2 3 4 5 6 7 8
Eigenfrequency (Hz) 0.29 0.77 1.26 1.76 2.26 2.75 3.25 3.75

u(0, t) = 0, C[u(L, t) − v(t)]3 + ελ
[
∂u(L, t)

∂t
− v̇(t)

]
= mv̈(t)

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, v(0) = 0, v̇(0) = 0 (5.9)

This an initial value (Cauchy) problem governed by a set of coupled partial and
ordinary differential equations, with an essentially nonlinear local element. Clearly,
(5.9) represents a well-posed mathematical problem, but no analytic solution for the
transient dynamics is possible; hence, one must resort to numerical methods for its
solution.

It is emphasized that of interest in this work is the study of the transient nonlinear
dynamics of the system, especially, at the initial stage of the motion (i.e., immedi-
ately after the imposition of the external shock) where the energy of the system is
at its highest and strong nonlinear dynamical interactions between the rod and the
NES are anticipated. It is precisely, these strongly nonlinear dynamical interactions
that we aim to analyze in detail in this section. In the following numerical simu-
lations the transient dynamics was computed by performing a finite element (FE)
discretization of the equations of motion (5.9). The methodology was developed in
the thesis by Georgiades (2006) and is reproduced here.

First we mention that the eigenfrequencies of the linear rod on an elastic foun-
dation with no damping and forcing terms, and no NES attached, are given by (in
rad/s):

ωq =
√
(2q − 1)2

π2

4L2

EA

M
+ k

M
, q = 1, 2, . . . (5.10)

In Table 5.1 we present the leading eigenfrequencies of the uncoupled and un-
damped rod [with NES detached – expression (5.10)] for parameters L = 1,
EA = 1.0, M = 1.0, δ = 0.05, m = 0.1, ε = 0.1, λ = 0.5, and elastic foun-
dation equal to k = 1.
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Fig. 5.7 FE discretization of the rod.

To construct the FE model of (5.9) it is necessary to perform the discretization of
the continuous part of the system, i.e., the elastic rod this means that the governing
partial differential equation of the rod will be approximated by a discrete equation
using shape functions. Let us consider that the rod is divided into n elements, each
of length he (see Figure 5.7); then the displacement field in the p-th element with
edges at coordinates xe and xe+1 (with xe+1 − xe = he) is interpolated by the
following formula:

up(x, t) =
2∑
j=1

uj (t)ψj (x) (5.11)

In (5.11), uj (t) is the axial displacement at each end of the element, and ψj(x)
are the shape functions (or interpolating functions) of the element. The determina-
tion of the shape functions can be performed by assuming that the displacement,
although a function of time at each time step of the numerical integration, can be
regarded as a constant, and, moreover, that the axial stiffness is constant over the
element; then the axial displacement up(x, t) is determined by the following proce-
dure. First, the equation satisfied by the axial displacements is given by

EA
d2up(x, t)

dx2 = 0, xe < x < xe+1 (5.12)

which by double integration leads to

up(x, t) = c1(t)+ c2(t)x (5.13)

where c1(t) and c2(t) are constants of integration (with respect to x). Imposing the
boundary conditions at the two end of the element, we obtain the following system
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of equations:

up(xe, t) = c1(t)+ c2(t)xe = ee(t)
up(xe+1, t) = c1(t)+ c2(t)xe+1 = ue+1(t) (5.14)

with solutions

c1(t) = ue(t)xe+1 − ue+1(t)xe

he
, c2(t) = ue+1(t)− ue(t)

he
(5.15)

These lead to the following expression for (5.13):

up(x, t) = ue
(
xe+1 − x
he

)
+ ue=1

(
x − xe
he

)
(5.16)

Combining the expressions (5.16) and (5.11), we obtain the following expres-
sions for the shape functions:

ψ1 = xe+1 − x
xe+1 − xe = xe+1 − x

he
, ψ2 = x − xe

xe+1 − xe = x − xe
he

(5.17a)

with

dψ1

dx
= − 1

xe+1 − xe = − 1

he
,

dψ2

dx
= 1

xe+1 − xe = 1

he
(5.17b)

There are different ways for discretizing system (5.9), and in the following formu-
lation we use the variational formulation. This method consists in multiplyin equa-
tion (5.1) with the previous shape functions, and integrating the resulting residual
over one element. The overall residual (resulting by superposing the residuals at all
nodes in the problem domain) is then assembled and set equal to zero in order to
establish the system equation for the entire system (Reddy, 1993; Liu and Quek,
2003).

We start by constructing a local discretized model for the p-th element, by ap-
plying the afore-mentioned procedure in the interval xe < x < xe+1:

EA
∂2u

∂x2
− ku− δ ∂u

∂t
+ F(t)δ(x − d) = M∂

2u

∂t2

⇔
∫ xe+1

xe

[
ψ1
ψ2

]{
EA

∂

∂x2
[ψ1 ψ2]

[
ue
ue+1

]
− k[ψ1 ψ2]

[
ue
ue+1

]

− δ[ψ1 ψ2] ∂
∂t

[
ue
ue+1

]}

+
∫ xe+1

xe

[
ψ1
ψ2

]{
F(t)δ(x − d)− δ[ψ1 ψ2] ∂

∂t

[
ue
ue+1

]
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−M[ψ1 ψ2] ∂
2

∂t2

[
ue
ue+1

]}
dx = 0 (5.18)

Integrating by parts,

∫ xe+1

xe

[
ψ1
ψ2

]
EA

∂2

∂x2
EA

∂2

∂x2
[ψ1 ψ2]

[
ue
ue+1

]
dx

= −
∫ xe+1

xe

EA
∂

∂x
[ψ1 ψ2] ∂

∂x
[ψ1 ψ2]

[
ue
ue+1

]
dx

+
[
EA

∂

∂x
[ψ1 ψ2]

[
ue
ue+1

]]xe+1

xe

and noting that the second term in the above expression vanishes due to (5.17b), the
discretized equation assumes the form:

∫ xe+1

xe

{
EA

∂

∂x

[
ψ1
ψ2

]
∂

∂x
[ψ1 ψ2]

[
ue
ue+1

]
+ k

[
ψ1
ψ2

]
[ψ1 ψ2]

[
ue
ue+1

]

+ δ
[
ψ1
ψ2

]
[ψ1 ψ2] ∂

∂t

[
ue
ue+1

]}
dx

+
∫ xe+1

xe

{
δ

[
ψ1
ψ2

]
[ψ1 ψ2] ∂

∂t

[
ue
ue+1

]
−

[
ψ1
ψ2

]
F(t)δ(x − d)

+M
[
ψ1
ψ2

]
[ψ1 ψ2] ∂

2

∂t2

[
ue
ue+1

]}
dx = 0 (5.19)

This leads to the following discrete model for a single element of the linear rod in
axial vibration:

(K1
el +K2

el)

{
ue
ue+1

}
+D1

el

{
u̇e
u̇e+1

}
+Mel

{
üe
üe+1

}
= F (5.20)

where the elementary structural matrices are defined by:

K1
el =

∫ xe+1

xe

EA
d

dx

[
ψ1
ψ2

]
d

dx
[ψ1 ψ2]dx = EA

he

[
1 −1

−1 1

]

K2
el = k

∫ xe+1

xe

d

dx

[
ψ1
ψ2

]
[ψ1 ψ2]dx = khe

6

[
2 1
1 2

]

Mel = M
∫ xe+1

xe

[
ψ1
ψ2

]
[ψ1 ψ2]dx = Mhe

6

[
2 1
1 2

]
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D1
el = δ

∫ xe+1

xe

[
ψ1
ψ2

]
[ψ1 ψ2]dx = δhe

6

[
2 1
1 2

]
, F = F(t)

[
δ(x − d)
δ(x − d)

]

These elementary structural matrices are assembled into an integrated model, which,
when the NES is added, leads to the following global discretized model of system
(5.9):

(K1 +K2)

{
u

v

}
+D

{
u̇

v̇

}
+M

{
ü

v̇

}
+ FNES = F (5.21)

Considering n discrete elements for the clamped-free rod, the response vectors u, u̇
and ü are (n − 1)× 1 vectors containing the displacements, velocities and acceler-
ations of the nodes of the rod, respectively; v denotes the (scalar) displacement of
the NES; and the global system matrices in (5.21) with NES attached at the free end
of rod are given by

K1 = EA

he

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0

−1 2 −1 0 .

0 −1 . .

. 0 . .

. . −1 0

. −1 1 0

0 . . . 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n×n)

(5.22a)

K2 = khe

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 . . . 0

1 4 1 0 .

0 1 . .

. 0 . .

. . 1 0

. 1 2 0

0 . . . 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n×n)

(5.22b)

M = Mhe

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 . . . 0

1 4 1 0 .

0 1 . .

. 0 . .

. . 1 0

. 2 0

0 . . . 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n×n)

+

⎡
⎢⎢⎢⎢⎢⎣

0 . . . 0

. . .

. . .

. 0 0

0 . . 0 mNES

⎤
⎥⎥⎥⎥⎥⎦
(n×n)

(5.22c)
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D = ∂he

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 . . . 0

1 4 1 0 .

0 1 . .

. 0 . .

. . 0

. 2 0

0 . . . 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n×n)

+ ελ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

0 0 0 0 .

0 0 . .

. 0 . .

. . 0

. 1 −1

0 . . . 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n×n)

(5.22d)
The coupling of the NES with the rod is incorporated in the global model with the
following vector,

FNES =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0

0 . .

. . .

. . .

. . . 0 C 0

0 . . . 0 −C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(n×n)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0
.

.

.

(un−1 − v)3
(un−1 − v)3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(n×1)×1

(5.22e)

and, since the excitation is a point force applied at x = d corresponding to the k-th
node of the FE discretization, the excitation vector in (5.21) is given by:

F =
⎡
⎢⎣0 . . . 0 F(t)︸ ︷︷ ︸

k-th position

0 . . . 0

⎤
⎥⎦
T

(n−1)×1

(5.22f)

The discrete equation (5.21) has been integrated using the adaptive Newmark
Algorithm (Geradin and Rixen, 1997). As an excitation of the rod, the following
impulsive half-sine pulse is considered:

F(t) =
{
A sin(2πτ/T ), 0 ≤ τ ≤ T/2
0, t > T/2

(5.23)

with varying amplitude A and period T = 0.1T1, where T1 is the period of the first
mode of the linear rod with no NES attached; this assures that the impulsive excita-
tion is of sufficiently small duration compared to the characteristic time scale of the
system T1. The shock is applied at position d = 0.3 on the rod (see Figure 5.6), and
the system parameters were assigned the numerical values,

L = 1, EA = 1.0, M = 1.0, δ = 0.05, m = 0.1, ε = 0.1, λ = 0.5

In the performed simulations the results are post-processed by computing a set
of energy measures, in order to study the energy absorbed and dissipated in the NES
attachment, as well as the energy exchanges between the NES and the rod during
their transient nonlinear interaction. Post-processing of the numerically computed
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time series of the rod and the NES was performed in two different ways. First,
we perform a spectral analysis of the computed time series by employing numeri-
cal Wavelet Transforms (WTs), and constructing numerical WT spectra of the re-
sponses. As explained in Section 2.5, WT spectra enable one to determine accurately
the dominant frequency components in the transient responses, and, in addition, to
study the evolutions of these dominant harmonic components in time. Such wavelet
spectra enable one to better understand the ‘slow flow’ dynamics of the studied rod-
NES interactions.

In an alternative approach, the time series were analyzed by Empirical Mode
Decomposition (EMD) (see Section 2.5). Through this numerical algorithm one
decomposes the computed time series (signals) in terms of intrinsic mode func-
tions (IMFs) which can be regarded as oscillatory modes embedded in the signal.
By construction, the superposition of all IMFs regenerates the signal. Further ana-
lyzing the IMFs by means of the Hilbert Transform one determines the dominant
frequency components of the IMFs, which, when compared to the corresponding
WT spectra, enables one to examine in detail the resonant dynamic interactions that
occur between the rod and the NES. The nonlinearity and the non-stationarity of
the computed transient signals force us to combine both mentioned techniques for
post-processing of the data.

The initial step of the post-processing analysis, however, is to introduce certain
energy measures. These were first introduced by Georgiades (2006). Certain of these
measures help us assess the accuracy of the numerical simulations: indeed, the total
energy of the system – including the energy dissipated by the dampers – should be
approximately preserved, not only at each time step of the numerical integration, but
also for the entire time window of the numerical simulation. Additional energy mea-
sures enable us to study carefully the energy exchanges that occur between the rod
and the NES; as shown below, by constructing energy transaction histories between
the rod and the NES, we are able to identify the distinct dynamical mechanisms that
govern TET (i.e., nonlinear beats, irreversible, one-way TET, or a combination of
the two). It is interesting to note that the aforementioned energy exchange mecha-
nisms can be eventually related to the results of WT and EMD of the computed time
series of the rod and NES responses.

The normalized energy dissipated by the damper of the NES at time , is computed
by the following EDM,

ENES(t) =
ελ

∫ t

0
[u̇(L, τ ) − v̇(τ )]2dτ

1
2

∫ t

0
F(t)u̇(d, t)dt

× 100 (5.24)

which is the percentage of impulsive energy applied to the rod that is dissipated
by the damper of the NES up to time t . For the passive system considered here
this EDM reaches a definitive asymptotic limit with increasing time, ENES,t�1 =
limt�1ENES(t). This represents the percentage of impulsive energy that is eventu-
ally dissipated by the NES during the entire duration of the motion.
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For each simulation we estimate the normalized total dissipated energy over the
entire duration of the motion, which, to ensure accuracy of the FE simulation, should
be approximately equal to unity:

ηtotal(t) ≡ lim
t�1

Edamp,NES(t)+ Edamp,rod(t)

Ein
≈ 1 (5.25)

In (5.25), Edamp,NES(t) and Edamp,rod(t) are the energies dissipated by the NES
and the rod up to time t , respectively, whereas Ein is the input impulsive energy.
By ensuring that this ratio assumes numerical values close to unity, we also ensure
that the FE simulation is performed for a sufficiently large time interval, so that
no essential transient dynamics is omitted from the time window of the numerical
study. Additional energy measures utilized to check the accuracy of the simulations
are discussed in Georgiades (1996).

An additional important energy measure computes the instantaneous transction
of energy between the rod and the NES. Assuming that the NES is an open system
that exchanges continuously energy with the rod (through energy absorption from
incoming waves or energy backscattering to the rod), one defines the following En-
ergy Transaction Measure (ETM), ETrans, between the NES and the rod:

ETrans = 
Ek,NES +
Ed,NES +
Edamp,NES (5.26)

In the above relation 
 denotes the corresponding energy difference between two
subsequent time steps;Ek,NES(t) = (1/2)mv̇2(t) is the instantaneous kinetic energy
and Ed,NES(t) = (1/4)C[u(L, t)− v(t)]4 the instantaneous potential energy of the
NES; whereas

Edamp,NES(t) = ελ
∫ t

0
[u̇(L, τ )− v̇(τ )]2dτ

is the energy dissipated by the damper of the NES up to the time instant t . The
ETM is an important energy measure from a physical point of view, since it helps
one identify instantaneous inflow or outflow of energy from the rod to the NES or
vice versa; in particular, when there is inflow from the rod to the NES, it holds
that ETrans > 0, whereas, negative values of the ETM (ETrans < 0) correspond
to backscattering of energy from the NES to the rod. Moreover, in the limit when
the time step 
t of the numerical simulation tends to zero, the ratio ETrans/
t

represents the instantaneous power inflow to or outflow between the rod and the
NES.

Clearly, efficient TET from the rod to the NES is signified by strong positive en-
ergy transactions (ETrans > 0) throughout the transient response of the system, but
especially in the initial regime of the motion (i.e., immediately after the imposition
of the external shock), when the energy of the system is at its highest level. In cases
where there are only positive spikes of the ETM, there occurs irreversible energy
transfer from the rod to the NES, that is, energy is continuously transferred from the
rod to the NES where it is eventually dissipated by viscous damping. This optimal
scenario for TET will be designated as irreversible TET.
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As shown below, there are alternative, non-optimal TET scenarios corresponding
to different types of energy transactions between the rod and the NES. For example,
it is possible to obtain TET through nonlinear beats, corresponding to alternating
series of positive and negative spikes in the energy transaction between the rod and
the NES. This indicates that energy flows back and forth from the rod to the NES,
with the overall average of the ETM ETrans being positive; in this case the NES
backscatters significant portions of energy back to the rod, but, on the average, it
absorbs and dissipates a certain portion of the input energy of the rod. Finally, it is
possible to obtain a combination of the aforementioned energy transaction scenar-
ios, i.e., an initial stage of irreversible TET, followed by a regime of TET through
nonlinear beats.

Finally, we make some remarks concerning the post-processing of the numeri-
cal results through WT and EMD. In the following numerical simulations we will
be interested mainly in the high-energy transient dynamics at the early stage of the
response, i.e., immediately after the imposition of the external shock. Therefore, in
certain cases we will need to divide the time series into early and late parts, since,
as the amplitudes of the responses get smaller due to damping dissipation the cor-
responding numerical wavelet traces are too light to be tracable. As in Chapters 3
and 4, the WT spectra will be employed to study the temporal evolutions of the
dominant frequency components of the time series, as well as the nonlinear modal
interactions occurring between the rod and the NES. One disadvantage of the WT
compared to the EMD is its ineffectiveness to detect complex details of the time
series, such as, intrawaves in the nonlinear signals, i.e., oscillatory components of
the time series possessing frequency components that vary rapidly within a charac-
teristic period. This is one of the reasons that EMD is employed as an alternative
tool for the post-processing the numerical time series.

As discussed in Section 2.5, EMD provides the characteristic time scales of the
dominant nonlinear dynamics of the rod-NES interaction. Moreover, by adopting
this analysis one can identify and analyze the most important nonlinear resonance
interactions between the rod and the NES which are responsible for the nonlinear
energy exchanges between these two subsystems. To this end, we say that a k:m
transient resonance capture (TRC) occurs between the IMF c1(t) of the rod, and
the IMF c2(t) of the NES (with corresponding phases ϕ1(t) and ϕ2(t), respectively),
whenever their instantaneous frequencies satisfy the following approximate relation:

kϕ̇1(t)−mϕ̇2(t) ≈ const, for t ∈ [T1, T2]
The time interval [T1, T2] defines the duration of the said TRC. A more complete
picture of the TRC between the two mentioned IMFs can be gained by constructing
appropriate phase plots that involve the phase difference 
ϕ12(t) ≈ ϕ1(t) − ϕ2(t)

and its time derivative. More specifically, a TRC is signified by the existence of
a small loop in the phase plot of 
ϕ12(t) versus 
ϕ̇12(t); whereas absence of (or
escape from) TRC is signified by time-like (that is, monotonically varying) behavior
of 
ϕ12(t) and 
ϕ̇12(t). In addition, the ratio of instantaneous frequencies of the
IMFs, ϕ̇1(t)/ϕ̇2(t), provides a confirmation of the order of the k:m TRC.
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It is precisely these features that make EMD useful for studying the strongly
nonlinear transient problem considered in this section. Indeed, the decomposition
of the rod and NES transient responses in terms of their oscillatory components (the
IMFs), and the subsequent computation of their instantaneous frequencies, provide
a useful tool for studying nonlinear resonant interactions between the NES and the
modes of the rod. In what follows we provide results of this analysis.

5.2.2 Computational Study of TET

In Georgiades (1996) four main sets of FE simulations were performed for the sys-
tem parameters and the half-sine applied external shock defined in the previous sec-
tion. What distinguished the first and second sets of FE simulations was the different
parameter values for the elastic foundation of the rod, k, the NES stiffness, C, and
the magnitude of the applied shock, A. Specifically, the first set of simulations was
performed for a dispersive rod with fixed distributed elastic foundation k = 1.0 , for
22 values of the nonlinear characteristic in the rangeC ∈ [0.001, 20], and 15 values
of the shock amplitude in the rangeA ∈ [0, 500]. This gave a total of 22×15 = 330
possible pairs (C,A), all of which were simulated in the first series. Similarly, the
second set of numerical simulations involved the same 330 numerical simulations
but for an elastic foundation with k = 0, corresponding to a non-dispersive rod.
Each of the transient simulations of the first two series was performed for a suffi-
ciently large time interval, so that at the end of the simulation at least 99% of the
input shock energy was damped by the distributed viscous damping of the rod and
the discrete viscous damper of the NES.

The numerical study has multiple objectives. The first objective is to study the
ranges of parameters for which the NES is capable of passively absorbing and lo-
cally dissipating a significant portion of the shock energy applied to the rod, and,
in addition, to investigate robustness of the NES performance to certain parameter
variations. The second objective is to study the dynamical mechanisms that influ-
ence TET from the rod to the NES, and in the way, to determine the most favorable
conditions for the realization of strong TET. An additional objective is to analyze in
detail the TRCs between the NES and the rod responsible for TET (and the charac-
teristic time scales of these interactions) though the use of WTs and EMD.

In Figure 5.8 we depict the contour plot of the EDM ENESt�1, as function of
the parameters C and A for the FE simulations corresponding to the dispersive rod,
k = 1 (the results corresponding to the non-dispersive rod k = 0 can be found in
Georgiades (2006) and Georgiades et al. (2007). In the remainder of this work, wher-
ever we mention ‘the EDM’, we will be referring to the asymptotic value ENES,t�1.
Regions of the plot where the EDM is relatively large correspond to strong TET
from the rod to the NES, indicating that a significant percentage of the shock energy
of the rod is eventually absorbed and dissipated by the NES. These numerical re-
sults reveal that when strong shocks are applied, enhanced TET occurs (with more
than 75% of shock energy eventually dissipated by the NES) when the essential
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Fig. 5.8 Contour plot of the percentage of shock energy eventually dissipated by the NES,
ENES,t�1, as function of the nonlinear stiffness, C, and the shock amplitude, A, for a dispersive
rod (k = 1).

stiffness nonlinearity is relatively weak. By contrast, when smaller shocks are ap-
plied, strong TET occurs (corresponding to ENES,t�1 > 75%) over a wide range
of values of the essentially nonlinear stiffness of the NES. This should be expected,
since when the energy is high, a stiff essential nonlinearity amounts to a near-rigid
connection between the rod and the NES, yileding small relative velocities across
the NES damper, and, hence, small energy dissipation by the NES.

In an additional set of FE simulations four distinct values of the nonlinear stiff-
ness of the NES are considered, namely, C = 0.004, 0.01, 2.0, 10.0, for varying
mass of the NES in the range m ∈ [0.01, 0.1] (for a total of 11 values), and shock
amplitude in the range A ∈ [1, 420] (for a total of 13 values). Therefore for each
value of C there were 11 × 13 = 143 possible pairs (m,A), all of which were re-
alized in the numerical simulations. Again, to ensure that the numerical integration
was of sufficient duration, an additional requirement was imposed, namely that at
least 99% of the shock energy should be dissipated at the end of each of FE sim-
ulation. In Figure 5.9 we depict the EDM as function of the NES mass m and the
shock amplitude A for four chosen values of the nonlinear stiffness characteristic
(C = 0.004, 0.01, 2.0, 10.0), and a dispersive rod (k = 1). As in Figure 5.8, we
deduce that there are parameter regions where strong TET from the rod to the NES
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Fig. 5.9 Contour plots of the percentage of shock energy eventually dissipated by the NES,
ENES,t�1, as function of the NES mass m, and the shock amplitude A for four different values
of the nonlinear stiffness C, and a dispersive rod (k = 1).

is realized. Moreover, as the value of the nonlinear stiffness characteristic increases
the region of strong TET shifts to smaller shock amplitudes and becomes narrower.
In addition, in parameter ranges where relatively strong TET occurs there appears
to be nearly negligible dependence of the EDM on the NES mass for values of
m > 0.02.

These results indicate that the NES can be designed to passively absorb and lo-
cally dissipate a significant portion of the applied (broadband) shock energy of the
rod. Moreover, the NES can be designed so that the passive TET from the rod to
the NES is both strong and robust to small changes in the impulsive energy and
the system parameters. These results demonstrate the efficacy of using lightweight
essentially nonlinear local attachments as passive absorbers and local energy dis-
sipaters of broadband energy from elastic continua. This result extends the results
reported in previous chapters where discrete linear oscillators with local essentially
nonlinear attachments were studied.

We now proceed to a detailed analysis of the dynamics governing TET from the
rod to the NES in the system of Figure 5.6. Considering the dispersive rod with
k = 1, 21 FE simulations [termed from now on ‘Applications’ (Georgiades, 2006)]
were considered for the system whose TET plot is depicted in Figure 5.8. In Ta-
ble 5.2 we present the system parameters used for each application, together with
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Table 5.2 FE simulations of the system whose TET plot appears in Figure 5.8.

FE Simulation Phenomena Group C A ENES,t�1
– Application No. (%)

1 B b 0.02 180 76
2 B-I b 0.004 180 72
3 B a 6 10 76
4 B a 9 10 74
5 B a 2 20 75
6 B c 5 50 60
7 B c 5 100 51
8 I a 0.01 20 67
9 B b 0.01 260 76

10 B b 0.005 400 75
11 B b 0.02 200 75
12 B b 0.06 100 76
13 B c 0.08 420 60
14 B b 0.09 100 74
15 B b 0.1 60 74
16 B c 0.2 460 52
17 B-I a 0.8 10 71
18 B c 0.8 180 56
19 B-I a 5 3 69
20 I a 0.2 5 67
21 B c 20 500 21

the corresponding EDMs and the characterization of the corresponding dynamical
phenomena. ‘B’ indicates the occurrence of nonlinear beat phenomena in the tran-
sient responses of the rod and the NES. ‘I’ indicates irreversible (one-way) energy
transfer from the rod to the NES; we note, however, even in these cases there exists
an initial region, albeit small, where very early nonlinear beat phenomena occur,
so we may designate the phenomenon as being predominantly irreversible energy
transfer. Finally, the designation ‘B-I’ indicates early nonlinear beat phenomena in
the transient dynamics, followed by irreversible energy transfer from the rod to the
NES. These designations refer to the previous discussion regarding energy transac-
tions between the linear and nonlinear components of the system considered.

A simple comparison of the different applications listed in Table 5.2 reveals that,
with the exception of Applications 7, 16, and 21, all applications correspond to
rather strong TET, since a major part of the input (broadband) vibration energy in
the rod is passively absorbed and dissipated by the NES. This observation is in it-
self interesting since it shows that strong TET in the system under consideration
occurs over wide combinations of input energy and system parameters. It follows
that comparisons of TET efficiency between different applications can only be per-
formed on a relative basis, and in that context the EDM can only be considered as
a relative indicator of TET efficiency. Specific examples for all three types of the
afore-mentioned dynamical mechanisms (‘B’, ‘B-I’ and ‘I’) are discussed below.
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Fig. 5.10 Relative responses between the end of the rod and the NES for Applications 1, 17, 20
(see Table 5.2).

The applications listed in Table 5.2 are partitioned into three main groups. Group
(a) consists of Applications 3, 4, 5, 8, 17, 19 and 20 with relatively strong TET
from the rod to the NES, corresponding to relatively small input energies (shocks).
All three dynamical mechanisms (B, I, and B-I) are realized in the applications of
Group (a). The second group of Applications 1, 2, 9, 10, 11, 12, 14 and 15 [labeled
as Group (b)] is again characterized by relatively strong TET, but corresponds to
higher levels of input energy; these applications involve the dynamical mechanisms
B and B-I. Finally, Group (c) consists of Applications 6, 7, 13, 16, 18 and 21 with
relatively weak energy transfers, and higher levels of input energy; all applications
in this group are characterized by persistent nonlinear beat phenomena (mechanism
B), involving continuous energy exchanges between the rod and the NES.

Typical transient relative displacements of the NES with respect to the edge of
the rod are presented in Figures 5.10 and 5.11. In each of these plots (as in the
ones that follow), each application is characterized by its group and the governing
dynamical mechanism; for example, in Figure 5.10 Application 1 is labeled by (b,
B), and so on. The measure of relative displacement between the NES and the edge
of the rod affects directly the efficiency of TET, since the capacity of the NES to
dissipate energy transferred from the rod is directly related to the relative velocity
across its viscous damper. It follows that enhanced energy dissipation by the NES is
realized when this relative displacement (and its time derivative) attains large mag-
nitudes, especially in the critical initial regime of the motion where the energy is
still relatively large (and energy dissipation due to damping in the rod is still small).



28 5 TET in Linear Continuous Systems with Single- and Multi-DOF NESs

Fig. 5.11 Relative responses between the end of the rod and the NES for Applications 2, 7, 14, 19
(see Table 5.2).

Examples of cases where large, early relative displacement between the rod and
the NES occur are Applications 1 (Figure 5.10) and 2 (see Figure 5.11) with cor-
responding dissipation measures ENES,t�1 = 76% and 72%, respectively; whereas
an example where small relative displacement occurs is Application 7 (Figure 5.11)
corresponding to ENES,t�1 = 51%.

An interesting feature of the NES is its capacity to interact with more than one
structural modes of the rod (this is done sequentially through resonance capture
cascades – RCCs, see below). Indeed, due to the essential coupling nonlinearity,
the NES is simultaneously ‘coupled’ to all modes of the rod [as can be realized
from the differential equations (5.9)], so it has the capacity to nonlinearly resonate
with structural modes over wide frequency ranges, provided, of course, that the ini-
tial conditions are appropriate. Such multi-modal and multi-frequency interactions
of the NES with the rod may lead to multi-frequency energy pumping and com-
plex dynamic phenomena, such as, abrupt transitions between different dynamical
regimes. These interactions become apparent in the WT spectra of the dynamics,
although in some cases they may be visible in the time series themselves. For in-
stance, in Figure 5.10 – Application 1 the frequency content of the NES is rich, and
the RCC is evident; this is also the case in Figure 5.11 – Application 14.

A useful computational tool for studying the nonlinear dynamic interaction be-
tween the rod and the NES is the study of the transient energy transaction history
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Fig. 5.12 Case of strong TET, ETMs between the rod and the NES for (a) Application 1 (case ‘B’,
nonlinear beats); (b) Application 17 (case ‘B-I’, initial nonlinear beats followed by irreversible
energy transfer).

between these two subsystems. In Figures 5.12a, b we depict the energy transaction
histories between the NES and the rod for Applications 1 and 17, where strong TET
from the rod to the NES occurs (76% of shock energy dissipated by the NES in Ap-
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Fig. 5.13 Case of weak TET, ETMs between the rod and the NES for (a) Application 7 (case ‘B’,
nonlinear beats); (b) Application 21 (case ‘B’, nonlinear beats).

plication 1, and 71% in Application 17) (Georgiades, 2006). In these plots we note
the strong positive spikes of energy transmission from the rod to the NES and the
small negative spikes of energy backscattered from the NES to the rod; this explains
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Fig. 5.14 Case of strong TET, ETMs between the rod and the NES for Application 21 (case ‘I’,
irreversible energy transfer).

the relatively high values of the EDM realized in these applications. In addition, in
both applications there is a positive net balance of energy transferred from the rod
to the NES during the critical early regime of the response where the overall energy
of the motion is relatively high. In Figures 5.13a, b we depict the energy transac-
tion histories for two applications (7 and 21) corresponding to relatively weak TET
(51% of shock energy eventually dissipated by the NES in Application 7, and 21%
in Application 21); in these simulations we note that strong backscattering of energy
from the NES to the rod occurs, which explains the corresponding weaker energy
transfers.

An alternating series of positive and negative spikes of energy transfers is an indi-
cation that nonlinear beat phenomena between the rod and the NES occur (dynami-
cal mechanism ‘B’ in Table 5.2). This is especially evident in the energy transaction
history of Application 1 (see Figure 5.12a), where nonlinear beat phenomena with
strong positive spikes are clearly detected. In Application 17 (see Figure 5.12b) the
series of strong initial nonlinear beats is followed by irreversible (one-way) energy
transfer (dynamical mechanism I in Table 5.2) from the rod to the NES, as evidenced
by the late series of positive – only energy spikes. Similar persisting nonlinear beats
are observed in the energy transaction histories depicted in Figures 5.13a, b where
applications with relatively weaker TET are depicted. The distinctive feature of the
beats in these cases is that the negative and positive energy spikes are of compa-
rable magnitudes, preventing strong ‘flow of energy’ from the rod to the NES. In
Figure 5.14 we depict the energy transaction for Application 20 where irreversible
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energy transfer from the rod to the NES occurs right from the beginning of the
dynamics, and nonlinear beat phenomena are completely absent; indeed, in Appli-
cations 8 and 20 there is only irreversible ‘flow of energy’ from rod to the NES,
where the energy is localized to the NES and dissipated by the NES damper. The
resulting TET is relatively strong in this case, and comparable to the strong TET
realized in applications governed by the dynamical mechanisms B and B-I.

In all considered simulations, the energy exchanges between the rod and the NES
are realized in the form of spikes, which reflects the fact that the external excitation
itself is in the form of a spike (short pulse); this generates forward- and backward-
propagating pulses in the rod which are either reflected at the left (clamped) bound-
ary of the rod, or are partially reflected and transmitted into the NES at its right
boundary. Numerical plots such as the ones depicted in Figures 5.12–5.14 enable
one to study in detail the transient energy exchanges between the rod and the NES,
and, more importantly, to determine the dynamical mechanisms that govern these
energy exchanges. In addition, it is possible to deduce the precise time windows
of the dynamics where, either strong TET to the rod, or backscattering of energy
from the NES back to the rod take place. In the following study we relate the previ-
ous energy transaction histories to the TRCs that take place due to nonlinear modal
interactions between the rod and the NES.

In Figure 5.15 we depict the WT spectra of the relative transient responses be-
tween the edge of the rod (from now referred to as ‘the rod’) and the NES, for four
cases where either strong TET occurs [cases (a, B-I) – Application 17; (a, B) – Ap-
plication 1; and (a, I) – Application 20] or weaker TET is realized [case (c, B) –
Application 7]. The WT spectra reveal the dominant frequency components of the
corresponding responses, as well as their temporal evolutions with decreasing en-
ergy due to damping dissipation. Considering Application 17 [case (a, B-I)] where
strong TET from the rod to the NES occurs (see Figure 5.15c), we observe early (i.e.,
high energy) transient resonant interactions of the NES with predominantly the first
and second modes of the rod, as well as a weaker early NES resonant interaction
with the third mode of the rod; all these early interactions are realized in the form
of nonlinear beats. Moreover, we observe a nonlinear transient capture of the dom-
inant frequency component of the dynamics by a nonlinear mode whose frequency
shifts below the first linearized mode of the rod. During this low-frequency transi-
tion the dynamics localizes gradually to the NES with decreasing energy; similar
transitions were detected in previous chapters (see also Lee et al., (2005; Kerschen
et al., 2005) in the dynamics of discrete linear oscillators coupled to NESs. The
aforementioned early resonant interactions explain the nonlinear beats observed in
the early response regime (mechanism ‘B’), whereas the low frequency transition of
the dominant harmonic yields one-way irreversible energy transfers from the rod to
the NES (mechanism ‘I’) in this application.

Similar transient capture of the dynamics by a nonlinear mode is deduced in
the WT spectrum of Figure 5.15a [Application 1 – (a, B)], however, in this case
the frequency variation of the nonlinear mode (dominant harmonic) takes place in
between the first and second eigenfrequencies of the rod. Similarly to Application 17
(Figure 5.15c) this transition yields strong TET from the rod to the NES. Additional
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Fig. 5.15 WT spectrum of the relative motion of the NES with respect to the edge of the rod:
(a) Application 1 – case ‘B’; (b) Application 7 – case ‘B’.

early beats between the NES and the second and third modes of the rod take place
(mechanism ‘B’, as in Application 17); more importantly, however, there occurs a
secondary late transition of the dynamics from the nonlinear mode to the first rod
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Fig. 5.15 WT spectrum of the relative motion of the NES with respect to the edge of the rod:
(c) Application 17 – case ‘B-I’; (d) Application 20 – case ‘I’; the first three eigenfrequencies of the
uncoupled linear rod are indicated.
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mode, after which additional persistent beats between the NES and the first rod
mode are realized (mechanism ‘B’). This late transition is qualitatively different
from the dynamics depicted in Figure 5.15c.

No such low frequency transitions occur in the WT spectra of the relative tran-
sient responses of Applications 7 [case (c, B) – weaker TET from the rod to the
NES], and 20 [case (a, I) – strong TET], that are presented in Figures 5.15b, d,
respectively. In the case of weaker TET (Figure 5.15b) we observe strong and per-
sistent resonance locking of the relative response at the frequency of the second
linearized mode of the rod, which explains the corresponding persistent nonlinear
beats observed in the transient response. It is interesting to note that in this case
there is complete absence of resonance interactions between the relative response
and the first mode of the rod. In the case of stronger TET in Application 20 (see
Figure 5.15d) there is similar resonance locking of the relative response at the first
linearized mode of the rod, which, however, is not as persistent as in the WT spec-
trum of Figure 5.15b. In both cases, there is the absence of transient capture of the
early (high energy) relative motion by a nonlinear mode localized at the NES (as in
Figures 5.15a, c).

Finally, we note clearly the multi-modal content of the dynamics of the rod-NES
interaction, reaffirming our previous comment with regard to the capacity of the
NES to sequentially interact with a set of linearized modes of the rod. In general,
such multi-modal resonant interactions enhance the effectiveness of nonlinear TET
in the system, and lead to complex dynamical phenomena such as resonance capture
cascades (RCCs). The WT spectra, when combined with empirical mode decom-
position (EMD) of the transient responses of the rod and the NES form a powerful
computational tool that can be utilized to reveal additional dynamical features of the
resonance interactions occurring between the rod and the NES. This is discussed in
what follows.

For a more detailed study of the nonlinear resonance interactions between the
rod and the NES two representative cases of EMD analysis concerning Applica-
tions 7 and 17 are considered (Georgiades et al., 2007). To increase the accuracy
of the analysis, the early and late transient responses of Application 7 are analyzed
separately, whereas, no such separation was deemed necessary for Application 17.
In each case we analyze through EMD the transient responses of the edge of the
rod and of the NES. Examination of the IMFs of these transient responses and their
instantaneous frequencies provides insightful information concerning the resonance
interactions that occur between the rod and the NES. Indeed, the computation of
the instantaneous frequencies of the IMFs, combined with the previous WT spectra
provide us with the opportunity to interpret the WT results in terms of resonance
interactions between specific IMFs of the rod and the NES. In what follows we will
apply this methodology to examine in detail resonance interactions in Applications
17 [case (a, B-I)] and 7 [case (c, B)].

In Figure 5.16a we present IMF-based reconstructions of the transient responses
of the edge of the rod and the NES for Application 17; complete agreement between
numerical simulation and IMF-based reconstruction is observed, proving the valid-
ity of the EMD analysis for decomposing the transient nonlinear responses through
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Fig. 5.16 EMD analysis of Application 17 – case ‘B-I’: (a) IMF-based reconstructed transient
response of the edge of the rod and the NES compared to numerical simulations.

IMFs. Representative IMFs are depicted in Figure 5.16b. Next, decompositions of
the IMFs in terms of their instantaneous amplitudes and phases were performed in
order to examine their individual frequency contents. This information should be
analyzed together with the corresponding WT spectrum of the relative transient re-
sponse between the edge of the rod and the NES (see Figure 5.15a); from that plot
it is clearly observed that in this case strong nonlinear TET is associated with low
frequency ‘locking’ of the dynamics to a nonlinear mode below the first eigenfre-
quency of the rod (at 0.29 Hz). In Figure 5.17a we depict the transient evolutions
of the IMF frequency components of the rod and the NES, i.e., the instantaneous
frequencies φ̇2NES(t) and φ̇9Rod(t), respectively, superimposed to the WT spectra of
the respective numerical time series.

The following conclusions are drawn from these results. It is clear that the 2nd
IMF of the NES and the 9th IMF of the rod possess nearly constant instantaneous
frequencies precisely at the low frequency range of the nonlinear mode of the WT
spectrum of Figure 5.15a; hence, these IMFs engage in 1:1 TRC in the initial (high
energy) stage of the transient dynamics. This 1:1 TRC becomes apparent by consid-
ering the corresponding phase plot of the phase difference φ2NES(t) − φ9Rod(t) in
the early time window where the 1:1 TRC occurs (see Figure 5.17b). Indeed, reso-
nance capture between two IMFs is indicated by the non-time-like, ‘slow’ evolution
of the difference between their corresponding phase difference, so that the averag-
ing theorem cannot be applied with respect to that phase difference and preventing
averaging out of the dynamics. It is precisely such resonance captures that lead to
passive TET from the rod to the NES, as quantified by the EDM. �Moreover, the fact
that the mentioned 1:1 TRC takes place in the early stage of the dynamics where
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Fig. 5.16 EMD analysis of Application 17 – case ‘B-I’: (b) IMFs of the transient response of the
edge of the rod and the NES.
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Fig. 5.17 Nonlinear 1:1 TRC in Application 17 between the 2nd IMF of the NES and the 9th IMF
of the edge of the rod: (a) instantaneous frequencies of the two IMFs; (b) phase plot of the phase
difference indicating the 1:1 TRC.
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the energy of the system is at its highest level, explains the strong TET observed in
this application. In this resonance capture regime, the 2nd (dominant) IMF of the
rod coincides in frequency with the dominant harmonic component of the transient
response of the NES, whereas the 9th IMF of the rod coincides with the lowest of
the dominant harmonic components of the transient response of the edge of the rod.

These results (together the ones presented below) demonstrate the capacity of the
combined EMD-WT analysis to accurately identify the oscillatory components of
the rod and NES time series that engage in TRC, and, are ultimately responsible for
passive TET phenomena from the rod to the NES.

In Figure 5.18a we depict the exact and IMF-based reconstructed responses for
Application 7 [case (c, B) – weaker TET], from which again complete agreement
between simulations and IMF reconstructions is observed. Representative IMFs of
the early (high energy) responses of the edge of the rod and the NES are depicted in
Figure 5.18b. Consideration of the resonance interactions between the IMFs of the
rod and the NES reveals the reason that weak TET is realized in this application.
Referring to the WT spectrum of the relative response between the edge of the rod
and the NES for this application (see Figure 5.15c), we established ‘locking’ of the
dynamics in the vicinity of the second linearized eigenfrequency of the rod (close to
0.77 Hz). Examining the temporal evolutions of the instantaneous frequencies of the
IMFs of the early transient responses of the edge of the rod and the NES (see Fig-
ure 5.19a), we note that the 1st IMF of the NES and the 5th IMF of the rod develop
delayed frequency ‘plateaus’ close to 0.77 Hz for t > 12. Moreover, examining the
phase plot of the phase difference φ1NES(t)− φ5Rod(t) over the time window where
the frequency plateaus are realized, we note the characteristic loops that are indica-
tive of 1:1 resonance capture between these two IMFs (see Figure 5.19b). However,
since this TRC occurs at a late stage of the response (i.e., at the stage where a sig-
nificant portion of the initial energy of the system has already been dissipated due
to damping), the resulting TET from the rod to the NES is not as strong as in the
previously discussed Application 17, where the corresponding TRC takes place at
the early highly eneregetic stage of the dynamics. In Figure 5.19 we also show that
in Application 7 there occurs an additional ‘delayed’ 1:1 TRC between the 2nd IMF
of the NES and the 6th IMF of the edge of the rod at a frequency near the first eigen-
frequency of the rod (0.29 Hz), which, however, does not lead to significant energy
transfer from the rod to the NES. Finally, from the plots of Figure 5.19a we note
that, by superimposing the instantaneous frequencies of the IMFs to the WT spectra
of the respective numerical time series, we infer that the 1st and 2nd IMFs of the
NES coincide with the higher and lower dominant harmonics, respectively, of the
time series of the NES, but only during the later, low-energy stage of the motion.
Similar conclusions can be drawn with regard to the 5th and 6th IMFs of the rod.

Summarizing, it appears that strong TET in the system under consideration is
associated with TRCs between IMFs of the NES and rod responses at specific fre-
quency ranges and during the critical early stage of the motion where the energy of
the system is at high levels; delayed TRCs between IMFs of the rod and the NES that
occur at diminished energy levels result in weaker TET from the rod to the NES. In
terms of the corresponding WT spectra, strong energy exchanges and early (high-
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Fig. 5.18 EMD analysis of Application 17 – case ‘B’: (a) IMF-based reconstructed transient re-
sponses of the edge of the rod and the NES versus numerical simulations – early and late responses
are treated separately.
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Fig. 5.18 EMD analysis of Application 17 – case ‘B’: (b) IMFs of the early transient responses of
the edge of the rod and the NES.
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Fig. 5.19 Nonlinear 1:1 TRCs in Application 7 between the 1st IMF of the NES and the 5th IMF
of the edge of the rod, and the 2nd IMF of the NES and the 6th IMF of the rod: (a) instantaneous
frequencies of the IMFs of the NES and the edge of the rod; (b) phase plots of the phase differences
indicating the two 1:1 TRCs.
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energy regime) TRCs between IMFs are associated with ‘locking’ of the dynamics
with nonlinear normal modes that localize to the NES as the energy of the system
diminishes due to damping dissipation.

The results of this section demonstrate the efficacy of using lightweight essen-
tially nonlinear attachments – NESs as passive absorbers of broadband (shock) en-
ergy from elastic structures. The resulting irreversible TET of shock energy from
the rod to the NESs, eliminate in an effective way unwanted structural disturbances.
Hence, the proposed design can be regarded as a new paradigm for passive shock
isolation of elastic structures. An interesting (and appealing) feature of the NES
concept is that, although an NES represents a local alteration of the physical con-
figuration of a structure, it can affect the global structural dynamics. The reason
behind this seemingly paradoxical finding (and also being the basic feature that dis-
tinguishes the NES from previous absorber designs mentioned in the literature), is
the essential stiffness nonlinearity of the NES, which enables it to resonantly interact
(i.e., to engage in resonance captures) with structural modes at arbitrary frequency
ranges, provided, of course, that its point of attachment is not close to nodes of the
structural modes of interest.

A new feature of the study of TET carried out in this section is the use of com-
bined Wavelet Transforms (WTs) and Empirical Mode Decomposition (EMD) as a
tool for identifying the specific TRCs responsible for nonlinear modal interactions
between the NES and the structure to which it is attached. It was found that there
exist at least three distinct dynamical mechanisms governing the NES-rod nonlinear
resonance interactions; namely, nonlinear beat phenomena (mechanism ‘B’), direct
one-way irreversible energy transfers from the rod to the NES (mechanism ‘I’), or
a combination of the two (mechanism ‘B-I’). Although no direct association of any
one of these three mechanisms to the strength of TET to the NES can be discerned
based on the results presented, some interesting observations based on the previous
computational findings can still be made.

Indeed, relatively strong TET is associated with the occurrence of early nonlinear
beats in the response (cases ‘B’ and ‘B-I’); this is not to say, however, that nonlinear
beats always give rise to relatively strong TET (counterexamples are Applications
7, 16, 18 and 21 in Table 5.2). These observations regarding early nonlinear beats
are consistent with results reported in Sections 3.3 and 3.4 (see also Kerschen et al.,
2005), where it was found that the most efficient mechanism for TET in the two-
DOF system considered there is the excitation of early nonlinear beats (or, of stable
IOs close to the 1:1 resonance manifold of the dynamics).

Returning to the results reported in this section and motivated by the previous
discussion, we conjecture that strong TET in the rod-NES configuration is similarly
‘triggered’ by early nonlinear beat phenomena occurring in the neighborhood of
the 1:1 resonance manifold of the frequency-energy plot (FEP) of the underlying
Hamiltonian system (i.e., of the undamped rod with undamped attached NES). To
prove this conjecture one needs to follow a methodology similar to the one devel-
oped in Sections 3.3 and 3.4 for the two-DOF system. First, we need to construct the
nonlinear FEP of the periodic (and quasi-periodic) orbits of the underlying Hamil-
tonian system (a challenging task in itself). Then, we need to compute periodic and
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quasi-periodic orbits with initial conditions that ‘trigger’ strong TET; finally, by su-
perimposing the computed FEP to WT spectra of the numerical transient responses
of the damped system we wish to prove that transient responses producing strong
TET are ‘triggered’ by periodic or quasi-periodic nonlinear beats in the FEP. In the
following section we provide some preliminary results towards interpreting damped
transitions of the finite rod-NES system in terms of the FEP of the underlying Hamil-
tonian system.

5.2.3 Damped Transitions on the Hamiltonian FEP

In this section we follow an alternative approach in our study of multi-frequency
transitions in the transient dynamics of the viscously damped dispersive finite rod
with the NES (see Figure 5.6). First, we will compute the periodic orbits of the un-
derlying Hamiltonian system with no damping and external forcing and depict them
in a frequency-energy plot (FEP); this will be similar to the plots constructed for the
Hamiltonian dynamics of the discrete systems examined in the previous chapters. As
shown in Section 3.3 this representation enables one to clearly distinguish between
the different types of periodic motions in terms of backbone curves, subharmonic
tongues and manifolds of impulsive orbits (IOs).

Then, the dynamics of the damped and forced system will be considered and the
corresponding WT spectra will be depicted in the FEP in an effort to interpret com-
plex damped multi-frequency responses in terms of transitions between different
branches of periodic solutions on the FEP. Finally, the damped dynamics will be de-
composed by EMD, that is, the computed time series will be decomposed in terms
of intrinsic mode functions (IMFs) at different characteristic time (or frequency)
scales. Comparisons of the evolutions of the instantaneous frequencies of the IMFs
with the WT spectra of the corresponding time series, will enable us to identify the
dominant IMFs of the signals and the time scales at which the dominant dynamics
evolve at different time windows of the responses. Moreover, by superimposing the
WT spectra of the damped responses to the FEP of the underlying Hamiltonian sys-
tem, will be able to clearly relate multi-scaled transitions occurring in the transient
damped dynamics, to transitions between different solution branches in the FEP. As
a result, we aim to develop a physics-based, multi-scaled approach and provide the
necessary computational tools for multi-scaled analysis of complex multi-frequency
transitions occurring in the dynamics of essentially nonlinear dynamical systems
(Tsakirtzis, 2006; Panagopoulos et al., 2007).

The first step in our computational approach is to study the Hamiltonian system
derived by omitting damping and forcing terms from the equations of motion (5.1).
The reason for studying the Hamiltonian dynamics, is that, as shown in Chapters 3
and 4, for sufficiently weak damping the transient damped dynamics of system (5.1)
is expected to approximately trace the branches of periodic or quasi-periodic solu-
tions of the corresponding Hamiltonian system. To this end, we rewrite the equations
of motion (5.8) in normalized form, omitting the forcing terms and adding general
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initial conditions for the rod and the NES:

−∂
2u(x, t)

∂x2 + ω2
0u(x, t)+ ελ1

∂u(x, t)

∂t
+ ∂2u(x, t)

∂t2
= 0, 0 ≤ x ≤ L

∂u(L, t)

∂x
= −εv̈(t), u(0, t) = 0

C[u(L, t)− v(t)]3 + ελ2

[
∂u(L, t)

∂t
− v̇(t)

]
= εv̈(t)

u(x, 0) = r(x), ∂u(x, 0)

∂t
= s(x), v(0) = v0, v̇(0) = v̇0 (5.27)

In addition, we explicitly denote the lightweightness of the NES by the small para-
meter 0 < ε 	 1, and allow for different damping coefficients for the rod and the
NES.

Setting λ1 = λ2 = 0 we derive the following Hamiltonian system:

∂2u(x, t)

∂t2
+ ω2

0u(x, t)−
∂2u(x, t)

∂x2 = 0, 0 ≤ x ≤ L

εv̈(t)+ C[v(t) − u(L, t)]3 = 0, u(0, t) = 0,
∂u(L, t)

∂x
= −εv̈(t) (5.28)

Initial conditions are omitted from (5.28) since the problem of computing the un-
damped periodic orbits of the Hamiltonian system constitutes a nonlinear boundary
value problem (NLBVP); this is in contrast to problems (5.8) and (5.27) which are
formulated as Cauchy (initial value) problems. To compute T -periodic solutions of
system (5.28) the displacements of the rod and the NES are expressed in the follow-
ing series forms (Panagopoulos et al., 2007):

u(x, t) =
∞∑
k=1

Ck(x) cos[(2k − 1)�t] +
∞∑
k=1

Sk(x) sin[(2k − 1)�t]

v(t) =
∞∑
k=1

Vc,k cos[(2k − 1)�t] +
∞∑
k=1

Vs,k sin[(2k − 1)�t] (5.29)

where by � = 2π/T we denote the basic frequency of the time-periodic motion.
We note that the above infinite series expressions represent exact periodic solutions
of the NLBVP (5.28), as they are, in essence, the Fourier series expansions of the
sought solutions. Approximations in the computations will be made when the infi-
nite series are truncated for computational purposes.

Substituting (5.29) into the (linear) partial differential equation in (5.28) and tak-
ing into account the imposed boundary conditions, the following series of linear
boundary value problems (BVPs) are obtained, governing the evolutions in space of
the distributions Ck(x) and Sk(x), k = 1, 2, . . . :
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d2Ck(x)

dx2
+ [(2k − 1)2�2 − ω2

0]Ck(x) = 0

d2Sk(x)

dx2 + [(2k − 1)2�2 − ω2
0]Sk(x) = 0

Ck(0) = Sk(0) = 0,
dCk(L)

dx
= ε(2k − 1)2�2Vc,k,

dSk(L)

dx
= ε(2k − 1)2�2Vs,k (5.30)

The general solutions of the first two linear ordinary differential equations in (5.30)
are expressed as

Ck(x) = Ĉk ∈
[
x

√
(2k − 1)2�2 − ω2

0

]

Sk(x) = Ŝk ∈
[
x

√
(2k − 1)2�2 − ω2

0

]
(5.31)

where

Ĉk = ε(2k − 1)2�2Vc,k

cos
[
L
√[(2k − 1)2�2 − ω2]

]√
[(2k − 1)2�2 − ω2

0]

Ŝk = ε(2k − 1)2�2Vs,k

cos
[
L
√

[(2k − 1)2�2 − ω2]
]√

[(2k − 1)2�2 − ω2
0]

The expressions (5.31) are valid over the entire frequency range� ∈ [0,∞), i.e.,
for harmonics with frequencies in both the propagation zone (PZ) and attenuation
zone (AZ) of the uncoupled linear rod of infinite length. However, depending on the
value of the frequency �, the solutions (5.31) may change qualitatively assuming
the form of traveling waves or attenuating standing waves. Indeed, for values of the
fundamental frequency� satisfying (2k−1)2�2 −ω2

0 < 0 for some k ∈ N+ (inside
the AZ of the dispersive rod), the following well-known relations can be employed:

sin(jα) = j sinh(α), cos(jα) = cosh(α) with j = √−1

then expressions (5.31) yield time-periodic standing waves with attenuating spa-
tial envelopes. On the contrary, time-periodic solutions satisfying the condition
(2k − 1)2�2 − ω2

0 > 0 for some k ∈ N+ (inside the PZ of the rod), correspond to
time-periodic traveling waves of constant amplitude that propagate freely in the rod
until they reach either one of its boundaries where they scatter. We note that reso-
nances (standing waves) in the rod can only occur inside the PZ of the corresponding
infinite rod, as they result from positive interference of left- and right-going travel-
ing waves.
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Expressions (5.31) are derived in terms of the amplitudes Vs,k and Vc,k of the
harmonics of the NES. These are computed by substituting (5.29) and (5.31) into the
nonlinear ordinary differential equation in (5.28), yielding the following algebraic
expression in terms of an infinite series with respect to the index k (Panagopoulos
et al., 2007):

−ε
{ ∞∑
k=1

(2k − 1)2�2
(
Vc,k cos[(2k − 1)�t] + Vs,k sin[(2k − 1)�t]

)}

+ C
{ ∞∑
k=1

(
1 − ε(2k − 1)2�2[(2k − 1)2�2 − ω2

0]−1/2 tan

(
L

√
(2k − 1)2�2 − ω2

0

))

×
(
Vc,k cos[(2k − 1)�t] + Vs,k sin[(2k − 1)�t]

)}3

= 0 (5.32)

Expanding the cubic power in (5.32), and setting the resulting coefficients of the
trigonometric functions cos[(2k−1)�t] and sin[(2k−1)�t], k = 1, 2, . . . separately
equal to zero, one derives an infinite set of nonlinear algebraic equations for the
amplitudes Vs,k and Vc,k , whose solution completely determines the time-periodic
solutions of the Hamiltonian system (5.28).

In the numerical computations the infinite set of nonlinear algebraic equations
resulting from (5.32) was truncated by considering terms only up to the fifth har-
monic (i.e., k = 1, 2, 3), and omitting higher harmonics. The resulting truncated set
of six nonlinear algebraic equations was then numerically solved for the amplitudes
Vs,k and Vc,k , which also determined approximately the time-periodic response of
the rod through relations (5.29) and (5.31).

In Figure 5.20 we depict the approximate branches of time-periodic solutions of
the Hamiltonian system in the FEP; specifically we employ the previously derived
truncated system to compute the approximate amplitude of the relative displacement
[v(t) − u(L, t)] of the truncated system (for k = 1, 2, 3) for varying values of the
fundamental frequency� and fixed parameters ε = 0.05, ω0 = 1.0, C = 1.0, L =
1.0 and λ1 = λ2 = 0. Only the frequency range covering the two leading modes
of the uncoupled linear rod is considered in the FEP, which depicts the logarithm of
the energy of a periodic orbit, log10(E), as function of the fundamental frequency�
(in rad/s) of that orbit. The (conserved) energy E of the periodic orbit is computed
by the following expression:

E = 1

2

∫ L

0

[
∂u(x, t)

∂t

]2

dx + 1

2

∫ L

0

[
∂u(x, t)

∂x

]2

dx + 1

2
ω2

0

∫ L

0
u2(x, t)dx

+ 1

2
εv2(t)+ 1

4
C[v(t)− u(L, t)]4 (5.33)

Considering the FEP of Figure 5.20, we discern the existence of two low-
frequency asymptotes. These correspond to the two leading modes of the linear
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Fig. 5.20 FEP of the Hamiltonian system (5.28) based on the truncated system (5.31, 5.32) with
k = 1, 2, 3: (a) backbone branches of periodic motions and tonges of subharmonic motions.

uncoupled rod,

ωn =
√
ω2

0 + (2n− 1)2π2

4L2
, n = 1, 2 (5.34)

where for the chosen parameters these are given by ω1 = 1.8621 rad/s and
ω2 = 4.8173 rad/s. In addition, there exist two high-frequency asymptotes at fre-
quencies ω̂1 and ω̂2. Noting that at high energies and finite frequencies the es-
sentially nonlinear stiffness of system (5.28) behaves as a massless rigid link, the
high-frequency asymptotes are computed as the eigenfrequencies of the following
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Fig. 5.20 FEP of the Hamiltonian system (5.28) based on the truncated system (5.31, 5.32) with
k = 1, 2, 3: (b) details of regions I and II; numbers (�) correspond to the periodic orbits depicted
in Figures 5.21 and 5.22, and letters (•) to the numerical simulations of damped transitions.

alternative limiting linear system:

∂2u(x, t)

∂t2
+ ω2

0u(x, t)−
∂2u(x, t)

∂x2 = 0, 0 ≤ x ≤ L

u(0, t) = 0,
∂u(L, t)

∂x
= −ε ∂

2u(L, t)

∂t2
(5.35)
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Fig. 5.20 FEP of the Hamiltonian system (5.28) based on the truncated system (5.31, 5.32) with
k = 1, 2, 3: (c) details of regions I and II; numbers (�) correspond to the periodic orbits depicted
in Figures 5.21 and 5.22, and letters (•) to the numerical simulations of damped transitions.

i.e., of the dispersive rod with a mass ε attached to its right end. The eigenfrequen-
cies of this limiting system are computed by solving the following transcendental
equation,

tan
[
L

√
ω̂2 − ω2

0

]
=

√
ω̂2 − ω2

0

εω̂2
(5.36)

which for the chosen parameters are given by ω̂1 = 1.7728 rad/s and ω̂2 =
4.5916 rad/s.

Since the principal aim for constructing the FEP is to interpret the (weakly)
damped dynamics of system (5.27) in terms of the topological structure of the peri-
odic solutions of the underlying Hamiltonian system, it is necessary to discuss cer-
tain qualitative features of this plot. A first observation concerns the complexity of
the FEP. For comparison purposes, we note that for the system where the attachment
is connected by means of a linear stiffness, the FEP consists of straight horizontal
lines corresponding to the countable infinity of linear vibration modes whose mode
shapes and frequencies do not depend on the energy of the vibration. It follows that
all curves in the FEP deviating from the horizontal direction represent essentially
nonlinear periodic motions of the nonlinear system, having no counterparts in lin-
ear theory and localizing mainly to the nonlinear attachment. By the same token,
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branches of solutions that are nearly horizontal represent weakly nonlinear motions,
as they can be regarded as mere perturbations of linearized vibration modes; these
solutions are mainly confined to the elastic rod. That the addition of a single, light-
weight essentially nonlinear NES introduces such drastic, strongly nonlinear effects
in the FEP (occurring over wide frequency and energy ranges), proves that the ad-
dition of the local NES induces global effects on the dynamics of the system. This
is caused by the fact that, due to its essential nonlinearity, the NES is capable of
interacting with any of the modes of the rod over arbitrary frequency ranges.

Proceeding to discuss the specific details of the FEP of Figure 5.20, there ex-
ist two types of branches of periodic motions, namely backbone (global) branches
and subharmonic tongues (local) tongues. These are similar to the corresponding
branches and tongues of the FEP of the two-DOF discussed in Section 3.3.1.2 (see
Figure 3.20). Backbone branches consist of nearly monochromatic time-periodic
solutions possessing dominant harmonic components and higher harmonics at inte-
ger multiples of the dominant harmonics. These branches are defined over extended
frequency and energy ranges, and typically are composed of strongly nonlinear peri-
odic solutions that are mainly localized at the nonlinear attachment. Exceptions are
in neighborhoods of the linearized eigenfrequencies of the rod, ω1, ω2, . . . , where
the spatial distributions of the periodic motions resemble those of the corresponding
rod mode shapes and are localized at the rod; and in neighborhoods of the high-
energy asymptotes ω̂1, ω̂2, . . . , , where the relative displacements between the non-
linear attachment and the rod end tend to zero (i.e., the nonlinear coupling stiffness
is nearly unstretched) and, as a result, the nonlinear effects are nearly negligible. In
these energy ranges the corresponding segments of the backbone branch in the FEP
appear as nearly horizontal segments.

In the plots depicted in Figure 5.21 some representative periodic motions on
the backbone branch are depicted. These solutions are regarded as analytically pre-
dicted time-periodic solutions of the system, since their initial conditions are deter-
mined by solving the truncated system (5.32) with the index assuming the values
k = 1, 2, 3. The accuracy of these solutions is confirmed by comparing them to di-
rect numerical simulations of the equations of motion (Tsakirtzis, 2006; Panagopou-
los et al., 2007).

An additional set of periodic solutions of the FEP of Figure 5.20 are realized
on subharmonic tongues (local branches); these are multi-frequency time-periodic
motions, with frequencies being approximately equal to rational multiples of the
eigenfrequencies ωn of the uncoupled rod. Each tongue is defined over a finite en-
ergy range and is composed of two distinct branches of subharmonic solutions. At
a critical energy level the two branches coalesce in a bifurcation that signifies the
end of that particular tongue and the elimination of the corresponding subharmonic
motions at higher energy values. It can be proven that there exists a countable in-
finity of tongues emanating from the backbone branches at frequencies being in
rational relation with respect to the eigenfrequencies of the uncoupled linear rod,
ωn. On a given subharmonic tongue the responses at any point of the rod and of
the attachment resemble those of two linear oscillators, albeit possessing different
(but rationally related) eigenfrequencies. Hence, the interesting (and paradoxical)
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Fig. 5.21 Periodic orbits on backbone branches of the FEP: (1) � = 0.6 rad/s, (2) � = 1.3 rad/s,
(3) � = 1.75 rad/s, (4) � = 2.3 rad/s, (5) � = 4.5 rad/s, (6) � = 1.87 rad/s, (7) � = 4.83 rad/s;
— rod end, - - - NES.

observation can be drawn, that on the essentially nonlinear subharmonic tongues
(they are characterized as such since they exist due to the strong stiffness nonlin-
earity of the system) the rod-attachment system behaves nearly as an equivalent
two-frequency linear system. This observation, which is similar to what was found
for the subharmonic orbits of the two-DOF system studied in Section 3.3.1.2 [also
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see Kerschen et al. (2005)] provides a hint on the rich and complex dynamics of the
system considered herein.

In the FEP of Figure 5.20, we depict only a subset of leading subharmonic
tongues. For example, the tongue depicted in Region I (see Figure 5.21b) is in the
vicinity of ω4/3; it follows that subharmonic motions on this tongue correspond to
responses where the nonlinear attachment possesses a dominant harmonic with fre-
quency ω4/3 (and a minor harmonic at ω4), whereas the response of the rod end
possesses a dominant harmonic at frequency ω4 (and a minor harmonic at ω4/3).
In the following exposition a tongue labeled as T (n)p/q will denote the branch of sub-
harmonic motions where the frequency of the dominant harmonic component of
the nonlinear attachment is nearly equal to (p/q)ωn, whereas that of the rod end
equals ωn. It follows that the relative displacement [v(t) − u(L, t)] during a sub-
harmonic motion on tongue T (n)p/q possesses two main harmonics at frequencies ωn
and (p/q)ωn. Using this notation, the subharmonic tongue depicted in Figure 5.21b
is labeled as T (4)1/3. In Figure 5.22 three subharmonic orbits on the tongue T (4)1/3 of
the FEP are depicted in the neighborhood of frequency ω4/3. We mention that al-
though all these subharmonic orbits coexist, i.e., they possess the same fundamental
frequency�, they correspond to qualitatively different dynamics.

We now focus on the damped dynamics of system (5.27). This study was
performed through direct simulations of the governing equations of motion and
post-processing of the computed time series. The transient responses of the rod-
attachment system with viscous dissipation are computed by a finite element code
developed for Matlab�. This code is different from the FE code discussed in Sec-
tion 5.2.1 and will be employed also in Section 5.3 to model a rod or infinite length;
comparison of the results given by this code with the results obtained by the FE
code described in Section 5.2.1 was also performed in order to ensure convergence
and accuracy of the results. For these computations the rod was discretized into 200
finite elements, which ensured a five-digit convergence regarding the computation
of the three leading modes of the rod. This was deemed to be sufficient for the
computations presented herein, as we will be interested only in a frequency range
encompassing the first three linearized modes of the rod.

Regarding the numerical integrations of the equations of motion (5.27), the New-
mark algorithm was utilized with parameters chosen to ensure unconditional stabil-
ity of the numerical algorithm. The sampling frequency was such that the eigenfre-
quencies of the leading three modes of the rod were less than 6% of the sampling
frequency. Regarding viscous dissipation, proportional damping in the rod was as-
sumed, by expressing the damping matrix in the form D = a1M + a2K , whereM
andK are the mass and stiffness matrices of the rod. The parameters used for the FE
computations were chosen as ε = 0.05, C = 1.0, L = 1.0, ω0 = 1.0, λ2 = 0.02,
α1 = 0.001, and α2 = 0.0, and the damped responses were initiated with different
sets of initial conditions of the rod and the NES.

The first numerical simulation is performed with initial conditions corresponding
to point A on the main backbone branch of the FEP at frequency� = 0.6 rad/s (see
Figure 5.20a). These initial conditions for the rod and the nonlinear attachment are
approximately computed as follows:
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Fig. 5.22 Periodic orbits on the subharmonic tongue T (4)1/3 (Region I, Figure 5.20b): (8) � =
3.72 rad/s, log(Energy) = 0.645; (9) � = 3.72 rad/s, log(Energy) = 1.015; (10) � = 3.72 rad/s,
log(Energy) = 0.48; — rod end, - - - NES.
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v(0) ≈ {Vc,1 cos(ωt)+ Vc,2 cos(3ωt)+ Vc,3 cos(5ωt)}t=0 ⇒

u(x, 0) ≈
{
Ĉ1 sin

(√
ω2 − ω2

0

)
cos(ωt)+ Ĉ2 sin

(
x

√
9ω2 − ω2

0

)
cos(3ωt)

+ Ĉ3 sin
(
x

√
[25ω2 − ω2

0]
)

cos(5ωt)
}
t=0

⇒
u(0, 0) ≈ −0.0052 (5.37)

with Vc1 = −0.1597, Vc2 = −0.054, Vc3 = 0.0001, and Ĉ1 = 0.0027, Ĉ2 =
−0.0079 and Ĉ3 = −0.00002. In the undamped system these initial conditions
correspond to a periodic motion that is predominantly localized to the nonlinear at-
tachment (the NES). In Figure 5.23 we depict the damped responses of the NES
and the point of its connection to the rod, together with the wavelet transform spec-
trum of the damped relative motion [v(t)−u(L, t)] superimposed to the FEP of the
Hamiltonian system. We observe that as energy decreases due to damping dissipa-
tion the motion appears to trace closely the lower, in-phase backbone branch of the
corresponding Hamiltonian system. This observation confirms that for sufficiently
weak damping the damped response lies close to the dynamics of the underlying
Hamiltonian system (in fact, as discussed in Chapters 3 and 4 the damped motion
takes place on the damped invariant NNM manifold lying on the neighborhood of
the corresponding NNM manifold of the Hamiltonian system). The nonlinear dy-
namic interaction between the rod and the NES during this damped transition is
now examined in more detail.

In this particular application the damped motion is initiated close to the subhar-
monic tongue T (1)1/3 (see Figure 5.23b), so a weak 1:3 TRC occurs at least in the
beginning of the motion; indeed, in that early response regime both the rod end and
the NES execute in-phase oscillations, with the rod oscillating nearly three times
faster than the NES. Since there is a countable infinity of low subharmonic orbits
emanating from the lower in-phase backbone branch of the FEP with decreasing en-
ergy, the damped dynamics passes through a sequence of TRCs of increasing order;
hence, as energy decreases the rod oscillates increasingly faster compared to the
NES. Moreover, since the lower in-phase backbone branch of the FEP does not un-
dergo any major topological changes with decreasing energy – apart from the minor
topological changes related to the bifurcations that generate the countable infinities
of low-energy subharmonic tongues – the damped transition is also smooth and does
not undergo major sudden transitions in frequency.

The transient energy transaction measure (ETM) [defined by relation (5.26)] be-
tween the rod and the NES is depicted in Figure 5.24. It indicates the presence
of (weak) nonlinear beat phenomena between the rod and the NES, with continu-
ous energy being exchanged between them. We note that in the damped transition
of Figure 5.23 the motion is predominantly localized to the nonlinear attachment
throughout the motion, so that only weak energy exchanges occur between the two
subsystems. As shown in Section 5.2.2 [but also in Georgiades et al. (2007)] for
different sets of initial conditions stronger energy exchanges may occur, resulting
in strong TET from the rod to the NES. There we showed that TET may be real-
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Fig. 5.23 Damped response initiated at point A of the FEP of Figure 5.20a: (a) transient responses
v(t) and u(L, t); (b) WT spectrum of the relative response [v(t) − u(L, t)] superimposed to the
FEP of the Hamiltonian system.

ized through either nonlinear beats, one-way energy transfers from the rod to the
attachment (evidenced by a series of positive-only spikes in the ETM plot), or a
combination of both these mechanisms.
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Fig. 5.24 ETM between the rod and the NES for damped responses depicted in Figure 5.23.

Summarizing, with decreasing energy the damped transition traces the lower in-
phase backbone branch of the FEP. Since the damped orbit is initiated in the neigh-
borhood of the subharmonic tongue T (1)1/3, the rod and the NES are initially locked
into 1:3 TRC, with the rod oscillating nearly three times as fast as the NES, al-
beit with much smaller amplitude. As energy decreases due to damping dissipation
the oscillation of the rod becomes increasingly faster than the NES (with ever de-
creasing amplitude), as the damped dynamics visits neighborhoods of higher-order
tongues T (1)(1/n), n > 3 lying along the lower in-phase backbone branch (see Fig-
ure 5.23b). As a result, the dynamics engages in increasingly higher-order in-phase
TRCs, which, however, are realized at increasingly smaller time intervals. Since the
lower backbone branch of the FEP does not undergo any major topological changes,
no major (abrupt) transitions occur in the damped dynamics for this particular sim-
ulation.

An interesting series of nonlinear transitions is observed in the second numerical
simulation of the damped dynamics depicted in Figures 5.25–5.27, and correspond-
ing to initial condition of the system at point B on the subharmonic tongue T (4)1/5 of
the FEP. That is, the motion is initiated on an undamped subharmonic orbit with
dominant frequencies � = 2.214 rad/s ≈ ω4/5 and ω4, see Figure 5.20a. Tran-
sitions in the damped dynamics are clearly evidenced by the irregular amplitude
modulations of the time series (especially the one corresponding to the nonlinear
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Fig. 5.25 Damped response initiated at point B of the FEP of Figure 5.20a. Transient responses
v(t) and u(L, t).
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Fig. 5.26 Damped response initiated at point B of the FEP of Figure 5.20a. WT spectrum of the
relative response [v(t) − u(L, t)] superimposed to the FEP of the Hamiltonian system.

Fig. 5.27 ETM between the rod and the NES for the damped responses depicted in Figures 5.25
and 5.26.

attachment), or equivalently, by their multi- frequency contents. A better represen-
tation of the transitions in the damped dynamics is achieved by superimposing the
WT spectrum of the relative motion [v(t)−u(L, t)] to the FEP of the undamped sys-
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Fig. 5.28 EMD analysis of the NES response at Stage 1 of the damped transition of Figure 5.26:
(a) instantaneous frequency of the 1st IMF superimposed to the WT spectrum of the transient
response; (b) reconstruction of the transient response using the 1st IMF.

tem (see Figure 5.26). The following transitions are then discerned with decreasing
energy of the motion:
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I. Initial high energy transition from the subharmonic tongue T (4)1/5 (where the mo-

tion is initiated) to tongue T (1)2/3; two dominant harmonics appear at frequencies
ω4 and ω4/5 during this early stage of the response;

II. Subharmonic transient resonance capture (TRC) on T (1)2/3 with the nonlinear at-
tachment possessing a nearly constant dominant harmonic component at fre-
quency 2ω1/3 and a minor harmonic at frequency ω1;

III. Transition from tongue T (1)2/3 to tongue T (1)1/3 and subharmonic TRC on T (1)1/3; this
secondary TRC is signified by the strong harmonic at frequency ω1/3 and the
weaker harmonic at frequency ω1;

IV. Final low-energy transition to the linearized (low-amplitude) state, where the re-
sponse of the nonlinear attachment is nearly zero and the dynamics is dominated
by the response of the linear rod; the motion ends up being confined predomi-
nantly to the linear rod as its response decays to zero.

These complex transitions are caused by the fact that the essentially nonlinear at-
tachment lacks a preferential frequency of oscillation (since it possesses zero lin-
earized stiffness), which enables it to engage in fundamental or subharmonic TRCs
with different modes of the linear rod over broad frequency ranges. Equivalently,
the essential stiffness nonlinearity of the attachment generates a series of resonance
capture cascades (RCCs) between the NES and the rod. As discussed in Section 3.5
such RCCs may lead to strong, multi-frequency TET.

The WT spectra of the relative responses superimposed to the FEP provide a
clear picture of the TRCs occurring in the damped transitions (see Figures 5.23b
and 5.26). Even in cases were complex, multi-scale transitions take place, the de-
piction of WT spectra against appropriate FEPs provides a clear explanation and
interpretation of the damped transitions. Hence, the methodology followed in this
work can be extended to other applications were post-processing analysis of com-
plex multi-frequency signals is performed.

We now proceed to the multi-scale analysis of the damped transition initiated on
the subharmonic tongue T (4)1/5 (depicted in Figure 5.25) by applying EMD. Each of
the four transitions I–IV identified in Figure 5.26 will be examined separately, with
the aim to model the dynamics during each transition and determine the character-
istic time scales where the nonlinear resonance interactions between the rod and the
nonlinear attachment (or NES) take place.

Starting with the initial high-energy transition from tongue T (4)1/5 (where the mo-

tion is initiated) to tongue T (1)2/3 (Stage I, 0 < t < 160 s), EMD analysis indicates
that the NES response is dominated by its 1st IMF (see Figure 5.28), whereas, the
rod end response is approximately modeled by two dominant IMFs, namely, its 1st
and 2nd IMFs (see Figure 5.29). Proceeding to the analysis of the instantaneous
frequencies of the dominant IMFs of the NES and rod end responses, we notice
that these coincide with dominant harmonic components of the corresponding tran-
sient responses; hence, one concludes that the nonlinear dynamics of the rod-NES
transient interaction during Stage I of the damped transition is low-dimensional,
with the dynamics of the NES resembling the response of a single-DOF oscillator
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Fig. 5.29 EMD analysis of the rod end response during Stage I of the damped transition of Fig-
ure 5.26: (a, b) instantaneous frequencies of the 1st and 2nd IMFs superimposed to the WT spec-
trum of the corresponding transient response.
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Fig. 5.29 EMD analysis of the rod end response during Stage I of the damped transition of Fig-
ure 5.26: (c) reconstruction of the transient response using the 1st and 2nd IMF.

with frequency being approximately equal to ω4/5 ≈ 2.214 rad/s, and the dynam-
ics of the rod end resembling the superposition of two single-DOF oscillators with
frequencies ω4 and ω4/5, respectively.

Hence, the EMD analysis indicates there is one dominant time scale in the tran-
sient dynamics of the NES and two dominant time scales in the dynamics of the
rod end. These results are confirmed by the time series reconstructions depicted in
Figures 5.28b and 5.29c, which prove the low-dimensionality of the NES-rod end
nonlinear interaction during this initial (and highly energetic) stage of the motion.
Moreover, during Stage I it is observed that the 1st IMF of the NES response is in
near 1:5 resonance with the 1st IMF of the rod end response, and in near 1:1 reso-
nance with 2nd IMF of the rod end response. These IMF TRCs are responsible for
the energy exchanges that occur between the rod and the NES during Stage I of the
transition.

Proceeding now to the more complicated damped transition occurring during
Stage II (160 < t < 420 s – where the dynamics is captured on tongue T (1)2/3), the
NES response appears to be dominated (and modeled) by its two leading IMFs (see
Figure 5.30), which indicates that in this case the NES responds like a two-DOF
oscillator. Considering the rod end response one establishes the existence of three
dominant IMFs (the leading three IMFs depicted in Figure 5.31), with the instanta-
neous frequency of the 1st IMF executing modulated oscillations, and that of the 2nd
IMF suffering sudden transitions (jumps) with increasing time. This type of com-
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Fig. 5.30 EMD analysis of the NES response in Stage II of the damped transition of Figure 5.26:
(a, b) instantaneous frequences on the 1st and 2nd IMFS superimposed to the WT spectrum of the
corresponding transient response.
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Fig. 5.30 EMD analysis of the NES response in Stage II of the damped transition of Figure 5.26:
(c) reconstruction of the transient response using the 1st and 2nd IMF.

plex behavior of the IMFs is distinctly different from what was observed in Stage I
and is characteristic of intrawaves in the time series. The existence of intrawaves in
oscillatory modes (IMFs) is one of the nonlinear effects detected in typical nonlin-
ear systems, such as the forced Duffing oscillator, the Lorenz system and the Rossler
chaotic attractor, with the WT spectra not being able to detect them; as mentioned
in Huang et al. (1998), ‘. . . in fact such an instantaneous frequency presentation
actually reveals more details of the system: it reveals the variation of the frequency
within one period, a view never seen before . . . ’. The time series reconstructions
depicted in Figures 5.30b and 5.31b confirm that the superposition of the dominant
IMFs accurately models the damped transition during this Stage of the motion. Note
that the higher dimensionality of the NES and rod end responses observed in this
case, signifies that the complexity of the dynamics increases compared to Stage I.

Considering the resonance interactions between the IMFs of the NES and the rod
end responses during Stage II of the damped response, the 1st IMF of the NES is
in near 2:3 internal resonance with the 2nd IMF of the rod end in the time interval
160 < t < 250 s, and with the 3rd IMF of the rod end in the interval 250 < t <
350 s. Moreover, there appears to be 1:1 internal resonance between the 1st IMF
of the NES and the 3rd IMF of the rod end in the time interval 160 < t < 250 s.
The transition of the dynamics from tongue T (1)2/3 to tongue T (1)1/3 is signified by the
decrease of the instantaneous frequency of the 1st IMF of the NES in the interval t <
350 s. The 1st IMF of the rod end possesses an oscillatory instantaneous frequency
close to ω4 in the interval 160 < t < 300 s, and between ω3 and ω4 in the interval
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Fig. 5.31 EMD analysis of the rod end response in Stage II of the damped transition of Figure 5.26:
(a, b) instantaneous frequencies of the 1st and 2nd IMFs superimposed to the WT spectrum of the
corresponding transient response.
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Fig. 5.31 EMD analysis of the rod end response in Stage II of the damped transition of Fig-
ure 5.26: (c) instantaneous frequencies of the 3rd IMFs superimposed to the WT spectrum of the
corresponding transient response; (d) reconstruction of the transient response using the 1st, 2nd
and 3rd IMF.
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300 < t < 420 s (due to intrawaves, as discussed above). This EMD result agrees
qualitatively with the late excitation of the 3rd linear mode of the rod, as indicated
by the WT spectrum of the time series. The 2nd IMF of the rod end possesses an
instantaneous frequency that is approximately equal to ω1 for 160 < t < 250 s, and
is oscillatory about ω2 for 250 < t < 350 s; note that the WT spectrum of the time
series of the rod end response does not indicate any excitation of the second mode
of the rod during Stage II (which demonstrates the clear advantage of using EMD
when analyzing complex signals, compared to the WT).

In Figures 5.32–5.34 the results of the EMD analysis of the damped response
in Stages III and IV (t > 420 s) are depicted. In this case the NES response pos-
sesses three dominant IMFs, whereas the response of the rod end possesses four.
Resonance capture of the dynamics on tongue T (1)1/3 is signified by the fact that the
instantaneous frequency of the 3rd IMF of the NES response (which is dominant) is
approximately equal to ω1/3 in the time interval 420 < t < 820 s (with the excep-
tion of a ‘high frequency burst’ in the neighborhood of t = 500 s, which, however
is of no practical significance as it corresponds to small amplitude of the IMF and is
noise dominated); whereas, the transition from T (1)1/3 to the linearized regime is sig-
nified by the decrease of the instantaneous frequency of the same IMF for t > 820 s.
It is interesting to note that in the time interval where the ‘high frequency burst’ of
the 3rd IMF of the NES occurs, the 4th IMF of the NES ‘locks’ to the value ω1/3,
and, hence, through superposition provides the necessary correction in the recon-
struction of the overall time series in that time interval. Moreover, by studying the
waveform of the 5th IMF of the NES one notes that this IMF dominates the tran-
sition from T (1)1/3 to the linearized regime occurring for t > 800 s. Considering the
IMFs of the rod end response, one notes intrawaves centered at the linearized eigen-
frequencies of the rod, ω1, . . . , ω4, similarly to those observed in the EMD analysis
of the response in Stage II.

These results demonstrate the usefulness of EMD as a computational tool for
post-processing transient nonlinear responses that involve multiple resonance cap-
tures and escapes. In fact, the previous results indicate that the EMD can capture del-
icate features of the dynamics (such as intrawave effects or participation of modes)
that are not evident in the corresponding WT spectra. Nevertheless, the presented
computational analysis shows that the combination of EMD and WT forms a power-
ful computational methodology for post-processing and modeling of complex non-
linear transient responses of practical structural systems.

In summary, damped nonlinear transitions of system (5.27) can be analyzed by a
combination of numerical WT and EMD. These post-processing algorithms are ca-
pable of analyzing even complex nonlinear transitions, by providing the dominant
frequency components (or equivalently the time scales) were the nonlinear phenom-
ena take place. In addition, the EMD can detect delicate features of the dynamics,
such as intrawaves – i.e., IMFs with modulated instantaneous frequencies, which the
WTs cannot accurately sense. More importantly, the superposition of the dominant
IMFs of the signal accurately reconstructs the signal, and, hence, these dominant
IMFs may be interpreted in terms of outputs of intrinsic modal oscillators. It fol-
lows, that the determination of the dominant IMFs of a complex nonlinear signal,
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Fig. 5.32 EMD analysis of the NES response in Stages III–IV of the damped transition of Fig-
ure 5.26: instantaneous frequencies (superimposed on the wavelet transform of the response), and
time series of the (dominant) 3rd, 4th and 5th IMFs.
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Fig. 5.33 EMD analysis of the NES response in Stages III–IV of the damped transition of Fig-
ure 5.26. Reconstruction of the response by superposing the three dominant IMFs.

paves the way for modeling this signal as a superposition of the responses of intrin-
sic modal oscillators, for determining the dimensionality of the governing dynamics,
and for ultimately performing multi-scaled system identification of the underlying
dynamics of the system.

5.3 Rod of Semi-Infinite Length with SDOF NES

We now extend our study of strongly nonlinear dynamic interactions and TET in
elastic continua with strongly nonlinear end attachments, by analyzing the damped
dynamics of a semi-infinite linear dispersive rod possessing a local essentially non-
linear end attachment. We study resonant interactions of the attachment with inci-
dent traveling waves from the rod, as well as 1:1 TRCs of the nonlinear attachment
with an in-phase mode at the bounding frequency between the PZ and AZ of the rod.
This study can be considered as extension of the study of finite rod-NES dynamics
carried out in Section 5.2, and of the analysis of semi-infinite linear chain-NES dy-
namic interaction studied in Section 3.5.2.

As pointed out by Goodman et al. (2002), the interaction of incident traveling
solitary waves with a local defect can lead to various dynamic phenomena, such as,
speed up or slow down of the traveling wave; scattering of the wave to multiple inde-
pendent wavepackets; or even trapping of the wave at the point of defect in the form
of a localized mode (standing wave). Goodman et al. (2002) investigated in detail
the complicated dynamics resulting from soliton – local impurity interaction for the
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Fig. 5.34 EMD analysis of the rod end response in Stages III–IV of the damped transition of
Figure 5.26. Instantaneous frequencies (superimposed on the WT spectrum of the response) of the
(dominant) 1st, 2nd, 3rd and 4th IMF.

case of the sine – Gordon equation. If the local nonlinear attachment considered in
this section is regarded as a type of ‘defect’, the dynamical phenomena considered
are similar, but in the context of linear wave-guide/local nonlinear defect interac-
tion. Additional studies on soliton-defect dynamic interactions were performed in
Cao and Malomed (1995), Zei et al. (1992), Goodman and Haberman (2004) and in
references therein.

In other related works, localized modes in a multi-coupled periodic system of
infinite extent with a single nonlinear disorder were analyzed by Cai et al. (2000);
symmetric, anti-symmetric and asymmetric localized modes were computed, and
their stability was analyzed in that work. Komech (1995) studied the dynamics of
an infinite string with an attached nonlinear oscillator and showed that each finite-
energy solution of the integrated system tends to a stationary solution as t → ±∞.
Trapped (localized) modes in stop bands (AZs) of two-dimensional waveguides with
obstacles were discussed in Linton et al. (2002) and in a series of works referenced
therein. In a more applied work (Qu, 2002), order reduction techniques for engineer-
ing systems with local nonlinearities were discussed. In related works, Kotousov
(1996) studied wave propagation in elastic continua with local nonlinearities; El-
Khatib et al. (2005) studied suppression of bending waves in a beam by means
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of a tuned vibration absorber; and Komech and Komech (2006) studied long-term
asymptotics of finite-energy solutions of a Klein–Gordon equation with a local os-
cillator attachment.

5.3.1 Reduction to Integro-differential Form

We consider a general linear undamped elastic waveguide (designated as the pri-
mary system), coupled to an essentially nonlinear attachment (the NES) by means of
a weak linear stiffness. The local attachment is grounded, and possesses unit mass,
viscous damping and nonlinearizable stiffness nonlinearity of the third degree. De-
noting by v(t) the displacement of the NES, and by u(xO, t) the displacement of
the primary system at the point of attachment O in the direction of v(t), we ob-
tain the following governing differential equation for motion of the attachment (see
Figure 5.35):

v̈(t)+ λv̇(t)+ εv(t)+ Cv3(t) = εu(xO, t) (5.38)

In (5.38) the small parameter 0 < ε 	 1 scales the weak coupling, λ denotes the
viscous damping coefficient, and C the coefficient of the stiffness nonlinearity; the
spatial coordinate x parametrizes the undeformed configuration of the primary sys-
tem in its configuration space. Assuming that the primary system is initially at rest
and that an external force F(xA, t) is applied at point A at t = 0 (see Figure 5.35),
we express its response at the point of attachment O, u(xO, t), in terms of its corre-
sponding Green’s functions gOO and gOA:

u(xO, t) =
∫ t

−∞
F(xA, τ )gOA(t − τ )dτ −

∫ t

−∞
ε[u(xO, τ)− v(τ )]gOO(t − τ )dτ

(5.39)
The Green’s function gOO denotes the displacement at point O of the primary sys-
tem in the direction of v(t) due to a unit impulse applied at the same point and
the same direction; whereas gOA denotes the displacement at point O of the pri-
mary system in the direction of v(t), due to a unit impulse applied at point A in the
direction of the external force.

Substituting (5.39) into (5.38) and iterating repeatedly the previous procedure in
order to express u(xO, t) on the right-hand side in terms of the afore-mentioned
Green’s functions and the NES displacement v(t), we obtain the following general
integro-differential equation governing the oscillation of the nonlinear attachment

v̈(t)+ λv̇(t)+ εv(t) + Cv3(t) = ε[F(xA, t) ∗ gOA(t)]
+ ε2[−F(xA, t) ∗ gOA(t) ∗ gOO(t)+ v(t) ∗ gOO(t)] + · · ·

+ εn
[
(−1)n−1F(xA, t) ∗ gOA(t) ∗ gOO(t) ∗ · · · ∗ gOO(t)︸ ︷︷ ︸

(n−1) terms
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Fig. 5.35 Elastic wave guide with a weakly coupled grounded NES.

+ (−1)nv(t) ∗ gOO(t) ∗ · · · ∗ gOO(t)︸ ︷︷ ︸
(n−1) terms

]
+ · · · (5.40)

where (∗) denotes the convolution operator. What makes possible the reduction
of the governing equations of motion to integro-differential form is the assump-
tion of linearity of the primary system (i.e., the elastic waveguide). Terms on the
right-hand side of (5.40) containing only the external excitation F(xA, t) represent
non-homogeneous ‘forcing’ terms of the above dynamical system, and govern, in
essence, the dynamics of the attachment predominantly influenced by the external
excitation. Similarly, terms on the right-hand side that contain integrals in terms of
v(t) represent the dynamics of the attachment predominantly influenced by its com-
plex nonlinear dynamic interaction with the primary system, including scattering of
waves from the NES back to the waveguide and targeted energy transfer effects. We
conclude that the representation (5.40) leads to a natural partition of the dynamics
of the attachment.

In the remainder of this section we employ the general expression (5.40) to study
the nonlinear dynamic interaction of a dispersive linear rod of infinite spatial extent
resting on a continuous elastic foundation (the primary system), with an essentially
nonlinear grounded attachment that is weakly coupled to its right boundary. This
system can be regarded as the semi-infinite extension as L → ∞ of the rod-NES
system depicted in Figure 5.6 (but with a grounded instead of an ungrounded NES).
The analysis follows closely (Vakakis et al., 2004).

Depending on the specific initial conditions and the external forces considered,
we distinguish between two systems, and label them as Systems I and II. System I is
forced by an impulsive excitation applied to a single point of the semi-infinite rod,
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Fig. 5.36 Rod on elastic foundation with weakly coupled grounded NES.

with all initial conditions of the primary system and the local attachment being as-
sumed as zero. System II is unforced with the excitation being provided by an initial
displacement of the rod in the form of a finite unit step, with all other initial condi-
tions being set equal to zero. After providing detailed mathematical descriptions of
the two systems, a study of the different regimes of the rod-attachment interaction
is carried out using computational and analytical tools.

5.3.1.1 System I: Impulsive Excitation

Assuming for the moment that the primary system is an undamped linearly elastic
rod of finite length L resting on a continuous linear elastic foundation, the dynamics
become one-dimensional with governing equations of motion given by

−∂
2u(x, t)

∂x2
+ ω2

0u(x, t)+
∂2u(x, t)

∂t2
= Fδ(x + e)δ(t), −L ≤ x ≤ 0

v̈(t) = λv̇(t)+ Cv3(t)+ ε[v(t) − u(0, t)] = 0

∂u(0, t)

∂x
+ ε[v(t)− u(0, t)] = 0, u(−L, t) = 0

u(x, 0) = ∂u(x, 0)

∂t
= v(0) = v̇(0) = 0 (5.41)

The point of attachment is situated at x = 0, normalized material properties for the
rod are used, and the normalized stiffness of the elastic foundation is denoted by
ω2

0; in addition, all geometric and material properties of the rod are assumed to be
uniform. It is assumed that an impulse of magnitude F is applied at x = −e > −L
at t = 0.

Taking the limit L = ∞ one obtains a semi-infinite, impulsively loaded disper-
sive rod. The rod of infinite length possesses a PZ corresponding to ω > ω0, where
traveling wave solutions exist, and an AZ for 0 < ω < ω0 where localized stand-
ing waves (near-field) solutions are realized. At the bounding frequency ωb = ω0
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(separating the AZ and the PZ) the rod oscillates in an ‘in-phase’ normal mode with
all points executing an identical synchronous time-periodic oscillation of constant
amplitude.

The Green’s function of the rod of infinite length describing the response of the
rod at position x and time t due to a unit impulse applied at point x̄ and time instant
t̄ is given by

g1(x − x̄, t − t̄ ) = J0

[
ω0

√
(t − t̄ )2 − (x − x̄)2

]
H(t − t̄ − x + x̄) (5.42)

where J0(·) denotes the Bessel function of zero-th order and first kind, and H(·)
Heaviside’s function. Then, in terms of the general expression (5.40), the two
Green’s functions gOO and gOA are expressed as follows:

gOO(t) = g1(0, t) = J0(ω0t)H(t)

gOA(t) = g1(0 + e, t) = J0

[
ω0

√
t2 − (0 + e)2

]
H(t − 0 − e) (5.43)

Substituting (5.43) into (5.40), we obtain the following governing integro-
differential equation for the nonlinear attachment for System I (Vakakis et al., 2004):

v̈(t)+ λv̇(t)+ Cv3(t)+ εv(t) − ε2
∫ t

0
v(τ )J0[ω0(t − τ )]dτ

= εFJ0

[
ω0

√
t2 − e2

]
H(t − e)

− ε2F

∫ t

0
J0

[
ω2

√
τ 2 − e2

]
H(τ − e)J0[ω0(t − τ )]dτ +O(ε3)

≡ εF1(t)+ ε2F2(t)+O(ε3)

v(0) = v̇(0) = 0, L→ ∞ (System I) (5.44)

Hence, System I is an impulsively loaded semi-infinite dispersive rod with an es-
sentially nonlinear end attachment. The two expressions on the right-hand side are
pure non-homogeneous terms and represent the leading-order ‘direct forcing’ of the
nonlinear attachment due to the impulsive excitation. The integral term on the left-
hand side models the leading-order interaction of the NES with the dispersive rod,
including energy radiation from the NES back to the rod and energy entrapment by
the NES in the form of localized vibrations. These effects will be studied in more de-
tail in the following exposition. Note, however, that the system (5.44) provides only
an approximation to the dynamics since it omits O(ε3) and higher-order terms; it
follows, that the derived results can only be asymptotically valid in the limit of weak
coupling as εto0.

For the case of finite rod the above dynamical system must be modified to account
for wave effects due to reflections at the boundaries of the rod. The modifications of
(5.44) due to finiteness of the dispersive rod can be analytically studied by applying
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Laplace transform with respect to the temporal variable directly to the system of
equations (5.41) for 0 > x > −L > −∞. To this end, we Laplace-transform the
corresponding equations of motion (5.41) and solve the first equation to obtain

Y ′′(x, s)− (s2 + ω2
0)Y (x, s) = Fδ(x + e)⇒

Y (x, s) = A cosh[(s2 + ω2
0)

1/2(L+ x)] + B sinh[(s2 + ω2
0)

1/2(L+ x)]

+
∫ −L

0
Fδ(ξ + e)h(x − ξ, s)dξ (5.45)

where Y (x, s) = �[u(x, t)] is the Laplace transform of u(x, t), s the Laplace vari-

able, and h(x, s) = α−1 sinhαx, α = α9s) =
√
s2 + ω2

0.
The unknowns A and B in (5.45) are computed by imposing the transformed

boundary conditions [the third of relations (5.41)]. Evaluating the resulting expres-
sion at x = 0 we obtain the following expression for the Laplace-transformed dis-
placement of the point of connection of the rod with the nonlinear attachment,

Y (0, x) = �(s) coshαL

+ [α cothαL+ ε]−1{εV (s)− ε�(s) cothαL −�(s)α sinhαL} (5.46)

where V (s) is the Laplace transform of v(t), and �(s) is computed as

�(s) =
∫ 0

−L
Fδ(x + e)h(−L− x, s)dx = h(−L+ e, s)

For ε 	 1 we expand (5.46) in ascending powers of the small parameter to obtain
the following final approximate expression for Y (0, s),

Y (0, s) = Fα−1(− tanhαL cosh αe + sinhαe)[1 − εα−1 tanhαL]
+ εα−1V (s) tanhαL+O(ε2) (5.47)

with a = a(s) =
√
s2 + ω2

0, and x = −e being the point of application of the
impulsive load.

The Laplace inversion of relation (5.47) can be expressed in terms of left- and
right-going waves propagating in the finite rod (Caughey, 1987). Since this approach
can add to our physical insight of the early-time nonlinear dynamic interactions
occurring in System I we proceed to discuss it briefly. To this end, we express the
hyperbolic functions in (5.47) in terms of exponentials as follows:

tanhαL = 1 − 2e−2αL + 2e−4αL − 2e−6αL + · · ·

sinhαe = eαe − e−αe
2

, cosh αe = eαe + e−αe
2
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Substituting these expressions into (5.47) we obtain the following approximate ex-
pression approximating the early-time dynamics of the point of connection of the
rod to the NES:

Y (0, s) = Fα−1[−e−αe + eα(−2L+e) + eα(−2L−e) + · · ·]
− εFα−2[−e−αe + eα(−2L+e) + eα(−2L−e) + · · ·]
+ εα−1V (s)[1 − 2e−2αL + · · ·] +O(ε2) (5.48)

The exponentials in (5.48) represent arrivals of individual longitudinal waves at the
point of attachment O of the rod, caused either due to the impulsive excitation or due
to reflections from the boundaries of the finite rod. The advantage of considering
the Laplace-transformed response in the form (5.48) instead of (5.47) is that the
former can be directly inverted to yield an approximation of the early-time transient
dynamics of the system. Indeed, applying inverse Laplace transform to (5.48) we
obtain the following early-time approximation of the dynamics of the connecting
point, u(0, t) = �−1[Y (0, s)], in the form of left- and right-going traveling waves:

u(0, t) =
− F

{
J0

[
ω0

√
t2 − e2

]
H(t − e)J0

[
ω0

√
t2 − (2L− e)2

]
H(t − (2L− e)) + · · ·

}

+ εF
{∫ t

0
J0[ω0(t − τ)]J0

[
ω2

√
τ 2 − e2

]
H(τ − e)dτ

−
∫ t

0
J0[ω0(t − τ)]J0

[
ω0

√
τ 2 − (2L− e)2

]
H(τ − (2L− e))dτ − · · ·

}

+ ε
{∫ t

0
v(τ)J0[ω0(t − τ)dτ − 2

∫ t

0
v(t − τ)J0

[
ω0

√
τ 2 − (2L)2

]
H(τ − 2L)dτ + · · ·

}

+O(ε2) (5.49)

Terms in the above expression multiplied by the Heaviside function H(t − e) are
waves arriving at the nonlinear attachment after propagating through a length equal
to e, i.e., they originate at the point of forcing directly after application of the im-
pulsive load; terms multiplied by H(t − 2L) are waves arriving at the nonlinear
attachment after traveling through the entire length of the rod and after being re-
flected from the fixed boundary at x = −L, and so on. Hence, expression (5.49)
enables us to study in detail the early-time dynamic interaction of the nonlinear at-
tachment with individual incoming wavepackets propagating through the dispersive
rod.

Substituting (5.49) into the second of relations (5.41) we obtain a model for the
early time dynamics of the nonlinear attachment; this model is in the form of inci-
dent and reflected traveling waves. Hence, one is able to study the early- time non-
linear dynamic interaction of the nonlinear attachment with the leading incoming
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wavepackets from the rod generated by the impulse. In the limit of the semi-infinite
rod, L = ∞ , we recover System I [equation (5.44)]. A similar wave-based early-
time analysis can be applied to the dynamics of System II, which we now proceed
to examine.

5.3.1.2 System II: Initial Step Displacement Distribution

Considering again the finite rod-NES configuration, we assume that there is no ex-
ternal excitation, and that a finite-step initial displacement distribution is imposed.
This leads to the following system of governing equations:

∂2u(x, t)

∂t2
+ ω2

0u(x, t)−
∂2u(x, t)

∂x2
= 0, −L < x < 0

v̈(t)+ λv̇(t)+ Cv3(t)+ ε[v(t)− u(0, t)] = 0

∂u(0, t)

∂x
+ ε[v(t) − u(0, t)] = 0, u(−L, t) = 0

u(x, 0) = D[H(x + d1)−H(x + d2)], −L ≤ −d2 < −d1 ≤ 0

∂u(x, 0)

∂t
= v(0) = v̇(0) = 0 (5.50)

where d2 − d1 = d > 0, D denotes the magnitude of the step of the initial dis-
placement, and L the length of the rod. In this case, we need to modify the pre-
vious Green’s function formulation in order to compute the transient response. In-
deed, an initial rod displacement u(x0, t0) produces the equivalent force distribution
u(x0, t0)δ

′(t0) (Morse and Feshbach, 1953), where prime denotes generalized dif-
ferentiation (Richtmyer, 1985) of the delta function with respect to its argument.

Following the methodology of Section 5.3.1.1 and letting L→ ∞ we obtain the
following approximate integro-differential equation governing the dynamics of the
nonlinear attachment:

v̈(t)+ λv̇(t)+ εv(t) + Cv3(t)

=
{
ε

∫ t

0

∫ 0

−∞
u(ξ, 0)δ′(τ )g1(x − ξ, t − τ )dξdτ

− ε2
∫ t

0

[∫ τ

0

∫ 0

−∞
u(ξ, 0)δ′(τ )g1(x − ξ, t − λ)dξdλ

]
g1(0, t − τ )dτ

+ ε2
∫ 1

0
v(t − τ )g1(0, τ )dτ

}
x=0

+O(ε3) (5.51)
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Performing manipulations on the right-hand side of the above equation we derive the
following integro-differential equation governing the nonlinear dynamics of System
II:

v̈(t) + λv̇(t) + Cv3(t) + εv(t) − ε2
∫ t

0
v(τ)J0[ω0(t − τ)]dτ

= εD
{
H(t − d1)−H(t − d − 2)− tω0

∫ −d1

−d2

H(t + ε)√
t2 − ξ2

J1

[
ω0

√
t2 − ξ2

]
dξ

}

− ε2D

∫ t

0

{
H(τ − d1)−H(τ − d2)− τω2

∫ −d1

−d2

H(τ + ξ)√
τ 2 − ξ2

J1

[
ω0

√
τ 2 − ξ2

]
dξ

}

× J0[ω0(t − τ)]H(t − τ)dτ +O(ε3)

≡ εF1(t)+ ε2F2(t) +O(ε3)

v(0) = v̇(0) = 0, L→ ∞ (System II) (5.52)

As for System I, this asymptotic model is approximate [since terms of O(ε3) or
of higher order are omitted], and converges to the exact system in the limit of weak
coupling ε → 0. In summary, System II models a semi-infinite, unforced dispersive
rod with a finite-step initial displacement distribution, zero initial velocity, and an
essentially nonlinear end attachment to its free end. Similarly to System I the two
integrals on the right-hand side of equation (5.52) are pure non-homogeneous terms
representing the leading-order ‘direct forcing’ of the nonlinear attachment due to the
initial step displacement distribution of the rod. The integral term on the left-hand
side models the leading-order interaction between the attachment and the dispersive
rod and is identical to the corresponding term for System I. Moreover, one can
develop expressions analogous to (5.48) and (5.49) to study the early time dynamic
interaction of the nonlinear attachment with incoming waves propagating through
the dispersive finite rod.

In the following section we perform computational simulations of Systems I and
II to study the nonlinear dynamical interaction of the semi-infinite rod with the non-
linear attachment (the NES). Two computational models will be considered. The
first model utilizes Neumann expansions to replace the integrals on the left-hand
sides of Systems I and II by an infinite set of first-order ordinary differential equa-
tions; the second model is based on finite element simulations of the original equa-
tions of motion.

5.3.2 Numerical Study of Damped Transitions

To study damped transitions in Systems I and II it is necessary to numerically in-
tegrate the corresponding governing equations of motion (5.44) and (5.52). Both
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systems can be reduced to the following compact form:

v̈(t)+ λv̇(t)+ Cv3(t)+ εv(t) − ε2
∫ t

0
v(τ )J0[ω0(t − τ )]dτ

= εF1(t)+ ε2F2(t)+O(ε3)

v(0) = v̇(0) = 0 (5.53)

which, as we proceed to show can be expressed as an infinite set of ordinary differ-
ential equations. To perform this operation we take into account the property of the
Bessel function of zero-th order (Watson, 1980),

J0[ω0(t − τ )] =
∞∑

k=−∞
Jk(ω0t)Jk(ω0τ ) (5.54)

which upon substitution into (5.53) leads to the following alternative representation
of Systems I and II in terms of infinite sets of ordinary differential equations:

v̈(t)+ λv̇(t)+ Cv3(t)+ εv(t)− ε2

⎡
⎢⎢⎢⎢⎣

Neumann Series Expansion︷ ︸︸ ︷
J0(ω0t)ϕ0(t)+ 2

∞∑
k=1

Jk(ω0t)ϕk(t)

⎤
⎥⎥⎥⎥⎦

= εF1(t)+ ε2F2(t)+O(ε3)

ϕ̇k(t) = Jk(ω0t)v(t), k = 0, 1, 2, . . .

v(0) = v̇(0) = 0, ϕk(0) = 0, k = 0, 1, 2, . . . (5.55a)

In essence, the O(ε2) integral term in relation (5.53) was expressed as a Neu-
mann series expansion. It is interesting to note that the set (5.55a) presents a clear
representation of the effects of dispersion of the linear medium on the dynamics;
indeed, in the limit ω0 → 0 (i.e., in the limit of no elastic foundation and a non-
dispersive semi-infinite rod) only the zero-th amplitude ϕ0(t) survives in (5.55a),
and the infinite set degenerates to the following set of two ordinary differential equa-
tions:

v̈t)+ λv̇(t)+ Cv3 + εv(t) − ε2ϕ0(t) = εF1(t)+ ε2F2(t)+O(ε3)

ϕ̇0(t) = v(t)
v(0) = v̇(0) = 0, ϕ0(0) = 0 (Non-dispersive limit) (5.55b)

It follows that non-zero amplitudes ϕk(t), k = 1, 2, . . . represent the dispersive
effects on the dynamics. From a mathematical point of view the amplitudes ϕk(t) in
(5.55a) are the coefficients of the Neumann expansion (Watson, 1980) of the integral
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term ∫ t

0
v(τ )J0[ω0(t − τ )]dτ

in (5.53), following the Neumann expansion of the Bessel function in expression
(5.54). As mentioned previously, this integral term models the leading-order dynam-
ical interaction of the nonlinear attachment with the rod, including energy exchanges
between these two subsystems.

It will be shown below that a disadvantage of the described Neumann series-
based model (5.55a) is that it fails to converge for t � 1, since high-order terms
of the infinite summation on the left-hand side grow to finite values as time in-
creases, and Jk(u) ≈ O(1/

√
u) as t � 1 independently of the order k. No such

convergence problem is encountered, however, in the simpler non-dispersive model
(5.55b). Nevertheless, as we shall see, the representation (5.55a) is still valid for
early time prediction of the transient interaction between the rod and the nonlinear
attachment.

In Figure 5.37 we present numerical simulations for System I [equations (5.55a)]
with parameters ε = 0.1, ω0 = √

0.9, C = 5.0, F = −10, λ = 0.5, e = 1 and
11 amplitudes, ϕ0(t), . . . , ϕ10(t), being taken into account. In Figures 5.55a, b we
depict the forcing functions εF1(t) and ε2F2(t) as defined by equations (5.44), and
in Figure 5.37c we present the response v(t) of the nonlinear attachment computed
using the Neumann series-based model (5.55a).

The response of the same system computed by the finite element (FE) approach
is presented in Figure 5.37d. For the FE computations, we consider directly the orig-
inal System I, relations (5.41), with the length of the rod being chosen sufficiently
long (L = 400) to avoid numerical pollution of the results by reflected waves origi-
nating from the free right boundary. The number of elements used in the simulations
ensured a five-digit convergence of the leading modes of the rod. In the case of im-
pulse excitation (System I), the delta function in equation (5.41) was modeled using
a half-sine pulse whose area was equal to the amplitude F of the delta function. The
frequency of the pulse was set to 10 Hz (higher frequency pulses were also consid-
ered but it was found that above 10 Hz, the response was no longer influenced by
the pulse frequency). Regarding the FE numerical integration of the equations of
motion (5.41), the Newmark algorithm (Geradin and Rixen, 1994) was considered
with parameters chosen to ensure unconditional stability of the algorithm (the same
FE model was employed for the simulations carried out in Section 5.2.3 to discretize
the finite rod). In some cases, slight numerical damping was added to ensure stabil-
ity of the numerical results. Finally, in the FE simulations the sampling frequency
was such that the distance travelled by the waves in one time step never exceeded
the distance between two successive nodes (so the Courant condition was satisfied).

Comparing the Neumann series-based and FE simulations (Figures 5.37c and
5.37d), good agreement is obtained in the early time (highly nonlinear) phase of the
motion, approximately up to t = 20 s. After that early time regime the predictive
capability of the Neumann representation deteriorates, and there is disagreement
between the two computations. The reason for the lack of convergence of the Neu-
mann series as time increases can be understood by examining the behavior of the
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Fig. 5.37 Damped response of System I with forcing F = −10: (a) εF1(t); (b) ε2F2(t); (c) NES
response v(t), model (5.55a) based on Neumann series expansions; (d) NES response v(t) based on
FE computations; (e) leading amplitudes ϕk(t), k = 0, 1, . . . , 10; (f) instantaneous NES frequency
of v(t).
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time series of the amplitudes ϕk(t), as depicted in Figure 5.37e. We conclude that
the participation of the high-order amplitudes is no longer negligible with increasing
time. As a result, the Neumann expansion,

ε2

[
J0(ω0t)ϕ0(t)+ 2

∞∑
k=1

Jk(ω0t)ϕk(t)

]

[which replaces the integral in the integro-differential equation (5.53)] no longer
converges with increasing time as more terms are added to the summation.

We note at this point that the Bessel functions of the first kind behave asymp-
totically as follows, Jk(ω0t) ∼ O(ω

−1/2
0 t−1/2), t � 1 irrespective of the order

k = 0, 1, . . . . It is concluded, therefore, that the model (5.55a) based on Neumann
series expansions is valid only in the early-time dynamics [this does not apply, how-
ever, for the non-dispersive model (5.55b) as discussed previously]. The Neumann
series-based model, however, has the advantage not to possess any integral term and
to directly depict the effects of dispersion through the amplitudes ϕp(t), p = 1, 2,
. . . .

In Figure 5.37f we present the time evolution of the instantaneous frequency�(t)
of the nonlinear attachment, computed by applying a numerical Hilbert transform to
the exact (FE) time series depicted in Figure 5.37d [but see also the work by Chandre
et al. (2003) for alternative methods of frequency extraction from a time series].
Such instantaneous frequency plots will be useful in what follows, in our study
of transitions of the damped dynamics between different dynamical regimes. From
Figure 5.37f we conclude that the transient response takes place in the neighborhood
of the cut-off frequency ω = ω0 = 1 that separates the attenuation and propagation
zones of the dispersive rod of infinite spatial extent.

To demonstrate that the described rod-attachment dynamics is caused by the es-
sential stiffness nonlinearity of the attachment, in Figure 5.38 we depict the response
of System I with the essential nonlinearity replaced by a linear stiffness of constant
C = 5.0, and all other parameters being left unchanged. We note the low reten-
tion of energy by the linear attachment and the nearly negligible amplitudes ϕk(t),
k = 0, 1, . . . , 10 in this case.

We now proceed to study the different regimes of the rod-nonlinear attachment
dynamic interaction through FE computations. This investigation reveals the main
regimes of the transient dynamics, and the mechanisms that govern the energy ex-
changes between the rod and the NES during different stages of the damped tran-
sient motion. To study the different regimes of the motion, we analyze the effect that
the variation of the magnitude of the excitation has on the rod-nonlinear attachment
dynamics. Specifically, the response v(t) and the instantaneous frequency �(t) of
the nonlinear attachment are computed using FE computations for System II with
parameters, ε = 0.1, ω0 = √

0.9, C = 5.0, λ = 0.05, d1 = −6.0, d2 = −8.0,
d = 2.0 and varying magnitudeD. In the following discussion we only consider FE
computations, although as mentioned previously the Neumann series-based models
(5.55a, b) can also be used to study the early-time nonlinear response.



84 5 TET in Linear Continuous Systems with Single- and Multi-DOF NESs

Fig. 5.38 System I with linear attachment and forcing F = −10: (a) attachment response v(t)
based on the model (5.55a) with Neumann series expansion; (b) leading amplitudes ϕk(t), k =
0, 1, . . . , 10.

Different amplitudes D will be considered and start our study by examining
the case D = 4.5. In Figure 5.39 we depict the transient responses of System II,
from which we deduce the presence of three different regimes of motion labeled as
Regimes 1 (0–100 s), 2 (100–300 s) and 3 (470–800 s). Moreover, the Regimes 2
and 3 are separated by a relatively large transition period (300–470 s). We make the
following remarks concerning these Regimes of the motion.

In the early-time, high-frequency Regime 1 (see Figures 5.39b, c) the nonlinear
attachment (NES) interacts with incoming travelling wavepackets possessing fre-
quencies inside the PZ of the dispersive rod (i.e., with ω > ω0). As a result, the
instantaneous frequency of the attachment also is situated inside the PZ�(t) > ω0.
Considering the transitions of the damped dynamics of the nonlinear attachment,
after an early amplitude build up to a maximum level, the dynamics makes a tran-
sition to a weakly modulated oscillation (Regime 2 in Figures 5.39b, c) caused by
wave radiation from the nonlinear attachment back to the rod. This regime of weakly
modulated, nearly time-periodic oscillation of the NES possesses a (fast) frequency
nearly equal to ω0, which is the bounding frequency between the AZ and PZ of the
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Fig. 5.39 FE simulations for System II with D = 4.5: (a) NES response v(t); (b) NES instan-
taneous frequency �(t); (c) forces in the linear and nonlinear springs; (d) responses v(t) — and
u(0, t) - - - for t � 1 (Regime 3a).

rod; this frequency is also the frequency of the in-phase mode of the rod. Such a
weakly modulated motion of the NES possessing a single fast-frequency is typical
in fundamental TET regimes (see for example, the discussion in Section 3.4.2.1).
Hence, during Regime 2, the NES engages in 1:1 TRC with the in-phase normal
mode of the dispersive rod at frequency ω0, which yields nonlinear passive extrac-
tion of energy from that mode.

As the energy of the NES decreases due to energy radiation and damping dissipa-
tion the dynamics can no longer sustain the 1:1 TRC, so escape from TRC follows;
hence, energy is radiated back to the rod and the instantaneous frequency of the NES
decreases until it reaches the low level �(t) = O(ε1/2) [a discussion regarding the
linearized motion occurring at this frequency is given below (Panagopoulos et al.,
2004)]. At the end of this transition the dynamics becomes almost linear (see Fig-
ures 3.39b, c, d) and Regime 3 of the motion is reached. In actuality there are two
alternative possibilities for the evolution of the dynamics of the integrated rod-NES
system after escape from TRC (Regime 2); these will be denoted as Regimes 3a and
3b from here on. Both Regimes correspond to low-amplitude linearized oscillations
of the system.
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Fig. 5.40 System II, shape of the rod for t � 1: (a) case D = 4.5 (Regime 3a); (b) case D = 10.0
(Regime 3b).

Regime 3a (see Figures 3.39b, c, d) consists of weakly modulated periodic mo-
tions in the neighborhood of �(t) ≈ ω0. The in-phase mode of the rod is excited,
and the NES vibrates in an out-of-phase fashion and with much smaller amplitude
than the rod. These assertions can be proved analytically in this case, due to the
nearly linear nature of the dynamics (Panagopoulos et al., 2004). Following the
analysis in that work, for sufficiently small amplitudes of oscillation of the NES and
ignoring damping for the moment, it can be shown that the response of System II in
Regime 3a can be approximated as

u(x, t) ≈
(
εω2

0x

ε − ω2
0

+ 1

)
Yejω0t + cc, x ≤ 0

v(t) ≈ V ejω0t + cc = εYejω0t

ε − ω2
0

+ cc (5.56)

where ‘cc’ denotes the complex conjugate. Taking into account the actual numerical
values of the parameters used for the simulations, we obtain the analytical estimate
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V/Y = −0.125, which is in satisfactory agreement with the FE numerical simula-
tion of Figure 3.39d. The mode shape of the rod in Regime 3a computed through FE
computations is depicted in Figure 3.40a; it is noted that it is not exactly a straight
line [as predicted by the analytical expression (5.56)], a discrepancy attributed to
the finiteness of the rod in the FE simulations and to higher-order terms that were
neglected from the above simplified linearized approximation.

This type of linearized motion with approximate frequency ω0 is not the only
possible long-time settling response of System II. The numerical confirmation of
this assertion is given in Figure 5.41 which corresponds to amplitudeD = 10.0 with
parameters as defined above and damping added to the rod. We note that until the
long-time Regime of the motion is reached, the dynamics is qualitatively similar to
the undamped case presented in Figure 5.39. However, after escape from 1:1 TRC
the NES settles into Regime 3b, consisting of low-frequency, weakly modulated
oscillations of the system well inside the AZ of the dispersive rod; moreover, from
the mode shape of the assembly depicted in Figure 5.40b, we conclude that this
low-frequency motion is strongly localized to the NES, with the rod undergoing
small amplitude, near-field oscillations close to the point of connection. This type
of localized motion is similar to the localized modes studied inside AZs of discrete
linear chains with essentially nonlinear attachments [we recall the results reported in
Section 3.5.2 and in Manevitch et al. (2003)]. The frequency of this localized motion
into which the system settles was analytically approximated in Panagopoulos et al.
(2004) for the case of a discrete linear chain with a nonlinear end attachment, as
ωesc = O(√ε). In addition, as shown in Figure 3.41c, in Regime 3b the attachment
and the point of connection of the rod execute nearly in-phase motions. Following
Panagopoulos et al. (2004), the response of the system in this linearized regime is
approximated as follows:

u(x, t) ≈ Y (x)ejωt + cc

=
[
A exp

(
−
√
ω2

0 + ω2x

)
+ B exp

(√
ω2

0 − ω2x

)]
ejωt + cc, ω < ω0, x ≤ 0

v(t) ≈ V ejωt + cc (5.57a)

with the frequency ω computed by solving(
εω2

ε − ω2 −
√
ω2

0 + ω2

)
exp

(
−2L

√
ω2

0 − ω2

)
= − εω2

ε − ω2 −
√
ω2

0 − ω2

(5.57b)
For ε = 0.1, ω2

0 = 0.9 and L = 400 we compute the frequency of the lo-
calized mode as ω = 0.3 rad/s = O(

√
ε), which agrees with the correspond-

ing values derived from the numerical simulations of Figure 5.41. Moreover, the
same approximate analysis estimates the steady state localized mode shape as
V/Y (0) ≈ [1 − (ω2/ε)]−1, which confirms that when ω = O(

√
ε) it holds that

V � Y (0). Hence, the linearized motion is localized to the nonlinear attachment,
which oscillates in an in-phase fashion with respect to the rod end.
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Fig. 5.41 FE simulations for System II with D = 10.0; (a) NES response v(t); (b) NES instanta-
neous frequency �(t); (c) response v(t) — and u(0, t) - - - for t � 1 (Regime 3b).

In Figure 5.42 we examine the dynamics of System II for amplitudesD = 2 and
D = 8. For the weakest excitation (Figure 5.42a), Regime 1 is of short duration,
whereas Regime 2 (1:1 TRC) cannot be realized since the excitation is not suffi-
ciently strong; as a result, the entire motion takes place entirely in Regime 3a, i.e., it
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Fig. 5.42 FE simulations for System II with (a) D = 2.0 and (b) D = 8.0.

is nearly linear. Since no 1:1 TRC takes place in the neighborhood of the frequency
ω0, the strength of TET is minimal in this case. For the case of strongest excitation
(Figure 5.42b), Regimes 1 and 2 can clearly be deduced, whereas, the eventual tran-
sition to Regime 3a is not depicted in the time window considered for the numerical
simulations.

Similar dynamics is noted in the FE numerical simulations of System I. In Fig-
ure 5.43 we depict the response of System I with parameters identical to System
II and F = −10, ε = 0.1, ω0 = √

0.9, C = 5.0, λ = 0.05. The response of the
nonlinear attachment v(t) is presented in Figure 5.43a, whereas the corresponding
instantaneous frequency �(t) is shown in Figure 5.43b. After early time transients
due to dynamic interaction of the nonlinear attachment with incoming travelling
waves (Regime 1), the response settles into a weakly modulated periodic oscillation
with frequency near ω0 (Regime 2). For t > 200 s, escape from TRC occurs, and
from t > 400 s, the nearly linear Regime 3a is reached. By adding damping to the
rod, the localized mode can also be excited (i.e., Regime 3b) as in the case of System
II. Hence, the dynamics is qualitatively similar to what is depicted in Figure 5.39.

The previous numerical results are in agreement with the TET scenario outlined
in Section 3.5.2 for the semi-infinite chain with an essentially nonlinear end at-
tachment. That is, that there is an initial dynamic interaction during which wave
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Fig. 5.43 FE simulations for System I with F = −10.0: (a) NES response v(t); (b) NES instanta-
neous frequency �(t).

radiation from the nonlinear attachment to the semi-infinite chain is realized. This
is followed by TET due to 1:1 TRC of the NES with the in-phase mode of the
chain at the lower bounding frequency ωb1 = ω0, followed by escape from TRC,
and eventual transition to nearly linear motion. A similar scenario is realized in the
continuous system examined in this section, but now the 1:1 TRC occurs between
the normal mode of the rod at the bounding frequency ωb = ω0 of the rod of in-
finite extent (note that in this case a single bounding frequency exists, whereas in
the semi-infinite chain considered in Section 3.5.2 there were two such bounding
frequencies). This shows the robustness of the TET phenomenon, as it is realized in
the two semi-infinite systems with different configurations. In the following section
we perform an analytical study of the different regimes of the transient response
of System I, in order to gain more insight into the underlying nonlinear dynamical
mechanisms governing the nonlinear attachment-rod interaction. The analysis can
be extended also for System II and for more general classes of transient excitations.
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5.3.3 Analytical Study

In this section we will analyze dynamic interactions of the NES with impeding trav-
eling waves possessing frequencies inside the PZ of the rod of infinite length (that is,
nonlinear interactions in Regime 1 of the dynamics). In addition, we will study ana-
lytically weakly modulated responses of the NES possessing fast frequencies close
to the bounding frequency ωb, under conditions of 1:1 TRC; this will correspond to
Regime 2 of the dynamics (Vakakis et al., 2004).

We initiate our analytical study by examining the dynamic interaction of the es-
sentially nonlinear attachment with incoming traveling waves with frequencies in-
side the PZ (ω > ω0) of the dispersive rod of infinite spatial extent. To this end,
we analyze the dynamics of the NES forced by a single monochromatic incident
wave, Aej(ωt−kx , with j = (−1)1/2 and k being the wavenumber. If, to a first ap-
proximation, we neglect higher-frequency components in the reflected wave (that
are generated by the essential stiffness nonlinearity of the NES), and consider only
wave components at the basic frequency of the incident wave, we can express the
rod response as follows:

u(x, t) = Aej(ωt−kx) + Bej(ωt+kx) + cc (5.58a)

that is, as a superposition of the incident and reflected waves. In (5.58a), B is the
amplitude of the reflected wave, the (prescribed) amplitude of the incident wave,
and ‘cc’ denotes complex conjugate. Substituting (5.58a) into the governing lin-
ear partial differential equation of the rod with no NES attached, we compute the
wavenumber k by the following dispersion relation (which also defines the PZ of
the rod of infinite length):

k = (ω2 − ω2
0)

1/2, ω ≤ ω0 (5.58b)

We now make the basic assumption that the NES engages in resonance with the
incoming wave. This resonance interaction may be regarded as analog of the reso-
nance interaction of the NES with nonlinear normal modes (NNMs) of the discrete
chain of particles, inside the PZ of that system (Vakakis et al., 2003). Assuming that
the nonlinear attachment possesses no damping (λ = 0), and that (approximately)
oscillates with frequency ω (i.e., the frequency of the incident wave), we express its
response as:

v(t) = Zejωt + cc (5.58c)

Clearly, this ansatz is only an approximation, as it omits higher harmonics gener-
ated by the essential nonlinearity. Substituting (5.58c) together with (5.58a, b) into
the governing differential equations (5.41) (with F = 0), we obtain the following
approximate algebraic relationships for the complex amplitudes A, B and Z,

(−jk + ε)B ≈ εZ − (jk + ε)A
−ω2Z + 3CZ2Z∗ − ε(A+ B − Z) ≈ 0 (5.59)
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where (*) denotes complex conjugate. Combining these two equations, expressing
the complex amplitude of the attachment in polar form, Z = |Z|ejφ , and setting
separately equal to zero the real and imaginary parts of the resulting complex equa-
tion we obtain the following relations in terms of real variables:

(−m− ω2
0 + 3C|Z|2 + ε)|Z| cosφ + ε2m−1/2|Z| sinφ = 2εA

(−m− ω2
0 + 3C|Z|2 + ε)|Z| sinφ − ε2m−1/2|Z| cosφ = −2ε2Am−1/2 (5.60)

where m = ω2 − ω2
0 > 0, and without loss of generality we assume that the pre-

scribed amplitude A is a real number. Eliminating φ from this set of equations we
derive the following frequency-amplitude relationship between |Z| andm, that com-
putes the approximate steady state response of the nonlinear attachment caused by
the incident monochromatic traveling wave of amplitude A (Vakakis et al., 2004),

m3 + 2(ω2
0 − 3C|Z|2 − ε)m2 + [(ω2

0 − 3C|Z|2 − ε)2 − 4ε2(A/|Z|)2]m
+ [ε4 − 4ε4(A/|Z|)2] ≈ 0 (5.61)

with m assumed to be an O(1) quantity. Once a solution m = m(|Z|) is computed,
the corresponding phase φ is obtained by either one of equations (5.60), as follows:

tan(φ/2) ≈ (1/2)(m+ ω2
0 − 3C|Z|2 − ε − 2εA/|Z|)−1

×
{

− 2ε2m−1/2 ± [
4ε4m−1 − 4(m+ ω2

0 − 3C|Z|2 − ε − 2εA/|Z|)

× (−m− ω2
0 + 3C|Z|2 + ε − 2εA/|Z|)]1/2

}
(5.62)

For the considered system parameters equation (5.61) possesses always two or
three real roots for m as functions of |Z|. However, if we take into account that
due to our previous assumptions we seek solutions only inside the PZ of the rod
we must pose the additional inequality constraints, m > 0 and ω2

0 − 3C|Z|2 < 0,
which restrict the solution to a single branchm = m(|Z|). This branch is depicted in
Figure 5.44a for system parameters ω2

0 = 1.0, C = 3.0, ε = 0.1, A = 5.0; the cor-
responding phase φ is presented in Figure 5.44b. We note that in the neighborhood
of the bounding frequency ωb = ω0 the incoming traveling wave degenerates into
a standing wave, i.e., the in-phase normal mode, and so the previous analysis is not
valid in that region. The inapplicability of the presented analysis close to ωb = ω0 is
manifested in Figure 5.44a by the elimination of the single-validness of the solution
branch m = m(|Z|) in the neighborhood of point O; this is an indication that bifur-
cations take place as the bounding frequency is approached from above, but these
cannot be analytically studied by the simplified analysis considered herein. In fact,
this series of bifurcations can be studied analytically by considering the solutions of
equation (5.61) in the neighborhood of the bounding frequency ωb = ω0, through
appropriate rescaling of the frequency variable and modification of the ansatz for
the sought analytical solution.
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Fig. 5.44 Resonance interaction of the NES traveling with amplitude A = 5.0: (a) NES amplitude
|Z| as function of the frequency variable m; (b) NES phase φ as function of amplitude |Z|; shaded
regions denote inadmissible ranges of solutions.

Regarding the plot of the phase depicted in Figure 5.44b, we note that as the am-
plitude |Z| of the NES increases the phase φ reaches the limit π/2. Moreover, we
make the observation that in the limit A → 0, i.e., for small-amplitude incoming
waves, the point of crossing of solutions E tends to O and there is single-validness
of the solution m = m(|Z|) over the entire permissible region of the plot of Fig-
ure 5.44a.

In Figure 5.45 we verify the analytically predicted dynamic interactions in the
PZ of the dispersive rod by performing direct numerical simulations for System I
with parameters ω2

0 = 1.0, C = 3.0, ε = 0.1, λ = 0, F = −40, e = 1.0 and
11 terms considered in the Neumann expansion [expressions (5.44) and (5.55a)].
In this case the undamped nonlinear attachment undergoes a steady state periodic
oscillation with amplitude approximately equal to 1.5 and frequency equal to 2 rad/s;
clearly, this represents a resonance of the nonlinear attachment inside the PZ of
the dispersive rod, which, although differing from the case of single incident wave
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Fig. 5.45 Resonance interaction of the NES in the PZ of the dispersive rod: (a) NES response v(t);
(b) instananeous NES frequency �(t).

(since in the numerical simulation the excitation of the attachment is in the form of
an incident wave packet), nevertheless it reveals a frequency-amplitude dependence
that agrees with the resonance plot of Figure 5.44a.

The nonlinear dynamic interactions of the NES with incident traveling waves are
responsible for the built up of the NES response during Regime 1 of the motion,
as depicted in the FE simulations of Figures 5.39 and 5.41–5.43. As the frequency
of the NES decreases due to damping dissipation and energy radiation (backscat-
tering) to the rod, the dynamics of the NES enters into the regime of 1:1 TRC with
the in-phase normal mode of the rod at the bounding frequency ωb = ω0 (that is,
Regime 2 of the motion). Then the NES executes slowly modulated oscillations with
fast frequency which can be analytically studied by applying the complexification-
averaging (CX-A) technique (Manevitch, 2001) discussed in Section 2.4 and applied
in Chapter 3.

To study the transition of the damped dynamics from Regime 1 to Regime 2
of the motion, we will apply an order reduction methodology based on CX-A by
assuming that the dynamics possesses a single fast frequency in the neighborhood
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of the bounding frequency ωb. To this end, we reconsider System I with e = 1,
ω0 = 1 and weak viscous damping:

v̈(t)+ ελv̇(t)+ Cv3(t)+ εv(t)− ε2

[
J0(t)ϕ0(t)+ 2

∞∑
k=1

Jk(t)ϕk(t)

]

= εFJ0

[√
t2 − e2

]
H(t − e)

− ε2F

∫ t

0
J0

[√
τ 2 − e2

]
H(τ − e)J0(t − τ )dτ +O(ε3)

≡ εF1(t)+ ε2F2(t)+O(ε3)

ϕ̇k(t) = Jk(t)v(t), k = 0, 1, 2, . . .

v(0) = v̇(0) = 0, ϕk(0) = 0, k = 0, 1, 2, . . . (5.63)

Since we aim to study the transient dynamics of this system under condition of 1:1
TRC, we express the NES response v(t) in the form of a weakly modulated fast
oscillation with frequency ωb = ω0, and the amplitudes ϕk(t) as slowly varying
functions. Without loss of generality we assume from this point on that ω0 = 1.

Hence, we will introduce a slow-fast partition of the dynamics of (5.63) that will
enable us to focus on the slow dynamics of the system, and thus study the transition
of the damped dynamics towards 1:1 TRC. To perform this task we introduce the
new complex variables,

zk(t) = ϕ̇k(t)+ jϕk(t), k = 0, 1, . . .

ψ(t) = v̇(t)+ jv(t) (5.64)

where j = (−1)1/2, and express (5.63) as the following set of complex ordinary
differential equations,

ψ̇(t)− j

2
[ψ(t) + ψ∗(t)] + ελ

2
[ψ(t) + ψ∗(t)]

+ jC

8
[ψ(t) − ψ∗(t)]3 + ε

{
− j

2
[ψ(t) − ψ∗(t)]

+ εj

2
J0(t)[z0(t)− z∗0(t)] + εj

∞∑
k=1

Jk(t)[zk(t)− z∗k(t)] +O(ε2)

}

≡ εF1(t)+ ε2F2(t)+O(ε3)

zk(t)+ z∗k(t) = −jJk(t)[ψ(t) − ψ∗(t)], k = 0, 1, 2, . . . (5.65)

where (∗) denotes the complex conjugate. These equations are exact, since they
involve no simplifications compared to the original System I [relation (5.63)]. We
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now introduce the slow-fast partition of the dynamics by adopting the following
representations for the dependent complex variables in (5.65),

zk(t) ≈ Bk(t), k = 0, 1, 2, . . .

ψ(t) ≈ A(t)ejt (5.66)

where A(t) and B(t) are slowly varying complex amplitudes. By these represen-
tations we approximate ψ(t) as a slowly modulated time-periodic oscillation with
fast frequency ω0 = 1, and zk(t) as slowly varying complex functions. These ex-
pressions are expected to be valid only in the regime of 1:1 TRC, i.e., in Regime
2.

Before we substitute the approximations (5.66) into (5.65), we need to represent
the Bessel functions and the forcing functions εF1(t) and ε2F2(t) in terms of com-
plex slow-fast partitions, in a way compatible to our CX-A analysis. One way to
perform this task is by means of two-point quasi-fractional approximants as shown
in Guerrero and Martin (1988), Martin and Baker (1991) and Chalbaud and Martin
(1992). Indeed, employing the results of Guerrero and Martin (1988), we can ap-
proximately partition the leading-order Bessel functions of the first kind in terms of
‘slow’ and ‘fast’ components as follows:

Jn(t) ≈ (1 + t)−1/2wn(t)e
jt + cc ≡ On(t)ejt + cc, n = 0, 1

wn(t) = 1

2
[un(t)− jvn(t)], un(t) ≈

∑N
i=0 Pit

i∑N
j=0 qit

i
, vn(t) ≈

∑N
i=0 pit

i∑N
j=0 qit

i
(5.67)

where ‘cc’ denotes complex conjugate. Hence, the two leading-order Bessel func-
tions are expressed in terms of a fast oscillation ejt modulated by the slowly varying
functions On(t). Choosing q0 = 1, the remaining (3N + 2) parameters are deter-
mined by solving the equations(

N∑
s=0

qst
s

)( ∞∑
k=0

akt
k

)
=

(
N∑
i=0

Pit
i

)( ∞∑
k=0

(−1)k
t2k

(2k)!

)

+
(
N∑
i=0

pit
i

)( ∞∑
k=0

(−1)k
t2k+1

(2k + 1)!

)

(
N∑
s=0

qN−s t−s
)( ∞∑

k=0

Bkt
−k

)
=

N∑
i=0

PN−i t−i

(
N∑
s=0

qN−s t−s
)( ∞∑

k=0

bkt
−k

)
=

N∑
i=0

pN−i t−i (5.68a)

where
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ak = 2−n
(k/2)∑
p=0

(
n+ 1/2

k − 2p

)
(−1)p

22pp!�(p + n+ 1)
,

Bk = 2Re (βk), bk = −2Im (βk),

βk = (−j)n√
π (1 + j)

⎧⎨
⎩
(

1/2
k

)
+

k∑
p=1

(
1/2
k − p

)
(−j)p
2pp!

p∏
s=1

[
s(s − 1)+ 1

4
− n2

]⎫⎬
⎭ ,

j = (−1)1/2 (5.68b)

In Guerrero and Martin (1988) the numerical values for the coefficients qi , pi and
Pi in the above expressions are provided for N ≤ 5. Our numerical computations
showed that the quasi-fractional approximations (5.67) and (5.68) provide approxi-
mations to the leading-order Bessel functions of the first kind, J0(t) and J1(t), that
are virtually indistinguishable from the exact values of these functions. Moreover,
we may use these relations to approximate higher-order Bessel functions of the first
kind using the following recursive formula:

Jp−1(t)+ Jp+1(t) = 2p

t
JP (t)⇒

Jp+1(t) = 2p

t
Jp(t)− Jp−1(t), p = 1, 2, . . . (5.69)

Our numerical computations indicate that as the order of the Bessel function in-
creases we need to consider increasingly more terms in the quasi-fractional approx-
imations (5.67) (i.e., we must increase N) in order to achieve good agreement with
the exact solutions as t → 0. However, except for a small neighborhood of t = 0,
there is complete agreement of the quasi-fractional approximations with the exact
solutions when N ≤ 5.

Considering now the forcing functions εF1(t) and ε2F2(t), we will apply the
slow-fast partition (5.67) to represent these functions in terms of slow and fast com-
plex components. Considering first the forcing function εF1(t), we can express it in
the following form:

εF1(t) ≈ εFO0

(√
u2 + 2eu

)
ej (

√
u2+2eu−ue−jeH(u)︸ ︷︷ ︸

Slow component

ejt︸ ︷︷ ︸
Fast component

+cc

≡ εWi(u)H(u)ejt + cc, u = t − e (5.70)

whereW1(u) denotes the ‘slow’ modulation of the ‘fast’ oscillation with frequency
ω0 = 1. Similarly, the second-order forcing function ε2F2(t) can be approximately
partitioned in terms of slow and fast dynamics, by introducing the new variable
s = τ = −e:
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ε2F2(t) ≈

−ε2FH(u)e−je
∫ u

0
O0(u− s)O0

(√
s2 + 2es

)
ej (

√
s2+2es−s)ds︸ ︷︷ ︸

Slow component

ejt︸ ︷︷ ︸
Fast component

+cc

≡ ε2W2(u)H(u)e
jt + cc, u = t − e (5.71)

Returning now to the equations of motion (5.65), we substitute into them the
slow-fast partitions (5.66), (5.67), (5.70) and (5.71), and retain only fast terms of
frequency ω0 = 1 (or equivalently, we average out harmonic components with fast
frequencies higher than unity). This yields the following set of approximate modu-
lation equations governing the slow evolutions of the complex amplitudes A(t) and
Bk(t), k = 0, 1, . . . :

Ȧ+
(
j

2
+ ελ

2

)
A+ 3jC

8
|A|2A

+ ε
[
−j

2
A+ jε

2
O0(B0 − B∗

0 )+ jε
∞∑
k=1

Ok(Bk − B∗
k )+O(ε2)

]

= εW1(t − e)H(t − e)+ ε2W2(t − e)H(t − e)+O(ε3)

Bk = −jAO∗
k , k = 0, 1, 2, . . . (5.72)

Substituting the infinite set of algebraic equations governing the slowly varying
functions Bk(t) into the first of differential equations (5.72), this set can be reduced
to a single complex differential equation governing the slow evolution of the ampli-
tude A(t):

Ȧ+
(
j

2
+ ελ

2

)
A+ 3jC

8
|A|2A+ ε

{
− j

2
A+ jε

2
O0[−jAO∗

0 − (−jAO∗
0 )

∗]

+ jε
∞∑
k=1

Ok[−jAO∗
k − (−jAO∗

k )
∗] +O(ε2)

}

= εW1(t − e)H(t − e)+ ε2W2(t − e)H(t − e)+O(ε3) (5.73)

Hence, the slow flow nonlinear dynamic interaction between the dispersive rod and
the nonlinear attachment in the 1:1 TRC regime (Regime 2) is approximately gov-
erned by the reduced complex modulation equation (5.73). This means that the slow
flow dynamics can be reduced to a set of two first-order real amplitude and phase
modulations for the motion of the attachment. These are determined by expressing
the complex amplitudes in polar form:

A = aejb, Ok = γkejδk , k = 0, 1, 2, . . .
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Wi = ζiejσi , i = 1, 2 (5.74)

which when substituted into (5.73) and upon separation of real and imaginary parts,
leads to the following set of real (slow flow) modulation equations:

ȧ(t) + (ελ/2)a(t)

+ ε2

{
(1/2)a(t)γ 2

0 (t) sin 2[b(t) − δ0(t)] +
∞∑
k=1

a(t)γ 2
k (t) sin 2[b(t) − δk(t)] +O(ε)

}

=
{
εζ1(t − e) cos[σ1(t − e) − b(t)] + ε2ζ2(t − e) cos[σ2(t − e) − b(t)] +O(ε3)

}
H(t − e)

ḃ(t)+ (1/2) − (3C/8)a2(t)

+ ε
{
(−1/2) + εγ 2

0 (t) sin2[b(t) − δ0(t)] + 2ε
∞∑
k=1

γ 2
k (t) sin2[b(t) − δk(t)] +O(ε2)

}

=
{
ε[ζ1(t − e)/a(t)] sin[σ1(t − e) − b(t)]

+ ε2[ζ2(t − e)/a(t)] sin[σ2(t − e) − b(t)] +O(ε3)
}
H(t − e) (5.75)

An inspection of the reduced slow flow (5.75) indicates that the condition of
slow amplitude modulation is always satisfied, since ȧ(t) = O(ε). In order to get
a similar condition for the slow modulation for the phase as well, we impose the
following additional restriction:

ḃ(t) = O(ε)⇒ (1/2)− (3C/8)a2(t) = O(ε) (5.76)

Provided that this condition is satisfied, the solution of (5.75) provides the following
analytic approximation for the NES-rod nonlinear interaction in Regime 2 of the
motion

v(t) = ψ(t) − ψ∗(t)
2j

≈ a(t) sin[t + b(t)]

v̇(t) = ψ(t) + ψ∗(t)
2j

≈ a(t) cos[t + b(t)] (5.77)

with approximate frequency of the NES given approximately by�(t) ≈ 1 + ḃ(t) =
1 +O(ε).

Numerical integrations of system (5.75) were performed and compared to ex-
act solutions derived by direct numerical simulations of System I [relations (5.63)].
Provided that the assumptions of the analysis were satisfied, satisfactory agreement
between analysis and numerics was noted; a representative result is depicted in Fig-
ure 5.46 for System I with parameters ε = 0.1, ω0 = 1.0, C = 5.0, F = −15.0,
e = 1.0, λ = 3, and 11 terms taken into account in the Neumann expansion. We
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note that, except for the early stage t < 10 where the frequency correction ḃ(t) is
not of O(ε) , the analytical approximation for v(t) is close to the exact numerical
simulation. In the early regime t < 10 the amplitude modulation is not small, and
hence it may not be studied by the analytical model (5.75); this regime of the motion
(Regime 1 in the computational simulations of Section 5.3.2) represents interaction
of the NES with impeding traveling waves from the rod, and, hence, is away from
the 1:1 resonance manifold of the system (and so conditions for 1:1 TRC are not
met). It follows that the NES response in Regime 1 cannot be studied by the sim-
ple ansatz (5.64–5.66) (but refer to the previous analysis in this section leading to
expressions (5.61) and (5.62)]. From Figure 5.46a we note that the analytical ap-
proximation predicts accurately the slow amplitude decrease of the oscillation of
the NES due to damping dissipation in Regime 2 of the motion.

Since the low-order analytical model (5.75–5.76) results from the Neumann
series-based model (5.55a), its validity is restricted only to the early-time response
of the system, i.e., during the transition from Regime 1 to the regime of 1:1 TRC,
that is, Regime 2. The analytical model, however, is not valid in the regime of es-
cape from TRC when the transition of the dynamics to the linearized Regimes 3a
or 3b is realized (this is discussed in Section 5.3.2). This becomes clear when we
consider the FE simulation of the dynamics of System I with system parameters
as set above (see Figure 5.46d), where divergence from the Neumann series-based
numerical solution is noted with progressing time. However, the derived low-order
analytical model accurately models the dynamics in the transition towards, and dur-
ing the Regime 2, i.e., at least up to t = 40 s.

The analytical approach presented can be used to analyze alternative rod-NES
configurations. For example, one can prove that the unforced and undamped non-
dispersive rod-attachment system with ω0 = 0 cannot sustain 1:1 TRC and, hence,
no Regime 2 can occur in its transient dynamics. This should be expected as in
the non-dispersive case the bounding frequency is zero (ωb = 0) and the rod of
infinite extent does not possess an AZ; in this case the rod of infinite extent supports
traveling waves with every possible frequency. In this case the dynamics is governed
by the set of equations (5.55b) with no forcing and damping terms,

v̈(t)+ Cv3(t)+ ε[v(t)− εϕ0(t)+O(ε2)] = 0, v(0) �= 0, v̇(0) = 0

ϕ̇0(t) = v(t), ϕ(0) = 0 (5.78)

where an initial displacement for the nonlinear attachment is assumed, and all other
initial conditions are set to zero. Introducing the variables z0(t) = ϕ̇0(t) + jϕ0(t),
and ψ(t) = v̇(t) + jv(t), and expressing these into the polar forms, ψ(t) ≈
a(t)ejb(t)ejωt and z0(t) ≈ B0(t), we derive the following set of amplitude and
phase modulation equations [that are analogous to relations (5.75)]:

ȧ(t)+ ε2a(t)[1 − cos 2b(t)] +O(ε3) = 0

ḃ(t)+ [ω − (1/2)− (3C/8)a2(t)] − ε/2(ε2/2) sin 2b(t)+O(ε3) = 0 (5.79)
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Fig. 5.46 Transition from Regime 1 to 2, System I: (a, b) evolutions of amplitude a(t) and of the
frequency correction ḃ(t); (c) analytical - - - and (Neumann series-based) numerical — solutions
for v(t); (d) FE numerical solution for v(t).

where ω being an arbitrary reference frequency. Due to the lack of a bounding
frequency (in view of the non-dispersiveness of the rod), by varying the refer-
ence frequency ω the analytical model (5.79) is valid during the entire decay-
ing motion of the attachment. Indeed, imposing the condition that the quantity
ω − 1/2 − (3C/8)a2(t) in the second of equations (5.79) is a quantity of O(ε),
one guarantees that the frequency correction ḃ(t) is also of O(ε), and the relations
(5.79) describe slow-varying modulations. As a result, the entire decaying motion of
the nonlinear attachment consists of a single regime, that is, a decaying oscillation
with energy being continuously radiated to the rod in the form of traveling waves.
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Fig. 5.47 Non-dispersive semi-infinite rod with nonlinear attachment: (a) Neumann series-based
response of the attachment v(t); (b) FE response v(t); (c) amplitude ϕ0(t); (d) instantaneous fre-
quency of the attachment �(t).

This analytical prediction is confirmed by the numerical simulation of equations
(5.78) depicted in Figure 5.47; this numerical simulation is performed for system
parameters ε = 0.1, ω0 = 0, C = 5.0, λ = 0, and initial condition v(0) = 0.7. We
note that in agreement with our previous discussion, the response of the attachment
v(t) is composed of a single regime, that is, of a continuously decaying oscillation.
The decay of the NES oscillation is due to radiation of energy to the rod during the
entire regime of the motion; this is confirmed by the nearly-constant oscillation of
the amplitude ϕ0(t), which decays only after the motion of the NES reaches a suf-
ficiently low level and the level of radiated energy from the attachment to the rod
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also diminishes. This result indicates that the dispersiveness of the rod dynamics
influences in an essential way the qualitative dynamics of the rod-nonlinear attach-
ment interaction. Moreover, in contrast to the dispersive case we note good agree-
ment between the Neumann series-based and FE simulations (Figures 5.47a, b) of
the transient dynamics. This should be expected, since, as discussed previously, the
cause of non-convergence of the Neumann series-based numerical solution is the
non-negligible contributions to the response from high-order terms of the Neumann
series expansion in (5.55a) with increasing time. These non-converging terms, how-
ever, are completely missing in the non-dispersive case since only the leading am-
plitude ϕ0(t) survives from the infinite series of amplitudes ϕi(t), see expression
(5.55b).

This concludes our examination of the nonlinear dynamics of the semi-infinite
dispersive rod possessing an end nonlinear attachment (NES). The lack of a linear
part in the NES stiffness nonlinearity enables the NES to engage in resonance in-
teractions not only with incident traveling waves from the rod, but also with the
in-phase standing wave (normal mode) of the semi-infinite rod at the bounding fre-
quency separating its propagation and attenuation zones. Relating the results of this
section to the previous results of this work, resonance interactions of the NES with
traveling waves in the PZ of the linear continuous medium can be considered as the
‘continuum limit’ of resonance capture cascades (RCCs) occurring between normal
modes of finite-DOF discrete oscillators with attached NESs (Panagopoulos et al.,
2004). Viewed in that context, the complicated resonance interactions occurring in
Regime 1 of the NES response can be viewed as resonance interactions of the NES
with traveling waves in the continuous spectrum of frequencies in the PZ of the
linear elastic medium.

As the energy of the NES decreases due to damping dissipation and energy radia-
tion back to the rod in the form of traveling waves is realized, the instantaneous fre-
quency of the NES continuously decreases and approaches the bounding frequency
ωb = ω0 from above. Then, the nonlinear attachment engages in 1:1 TRC with the
in-phase mode of the rod, in similarity to TRCs studied in previous sections. This
TRC can only occur due to the dispersion property of the linear medium [hence,
termed by Manevitch (2003) as apotheosis of dispersion!], and provides conditions
for the realization of passive TET from the linear medium to the NES.

5.4 Rod of Finite Length with MDOF NES

In this section we reconsider the finite dispersive rod and study its complex non-
linear dynamic interactions with a multi-DOF essentially nonlinear end attachment
(a MDOF NES). This can be considered as extension of our studies of the discrete
linear oscillator with an attached MDOF NES of Chapter 4, and of the finite rod
with an end SDOF NES of Section 5.2. We will make use of frequency energy-
plots (FEPs) for depicting and interpreting essentially nonlinear damped transitions
in terms of the undamped dynamics, and, additionally, of Empirical Mode Decom-
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position (EMD) for decomposing the transient dynamics in terms of multi-scaled
intrinsic mode functions (IMFs). This will enable us to perform multi-scale iden-
tification of the dominant nonlinear resonant interactions that occur between the
rod and the MDOF NES, and to formulate an integrated physics-based, multi-scale
method for analyzing and modeling strongly nonlinear, complex dynamical inter-
actions. The analysis of this section closely follows the works by Tsakirtzis (2006)
and Tsakirtzis et al. (2007a), which should be consulted for further details.

5.4.1 Formulation of the Problem and FEPs

We consider a finite, dispersive linear rod on an elastic foundation clamped at its
left end, and coupled at its right end to an essentially nonlinear MDOF ungrounded
attachment (the NES). The MDOF NES possesses three small masses coupled by
means of essentially nonlinear (nonlinearizable) stiffnesses situated in parallel to
weak viscous dampers (see Figure 5.48). Moreover, the masses of the NES are as-
sumed to be small, so that their summation is equal to the mass of the SDOF NES
considered in Section 5.2, i.e., m1 + m2 + m3 = 0.1. This will enable us to make
direct comparisons of the performances of the SDOF and MDOF NESs without
considering added mass effects in the dynamics. In addition, viscous damping in the
system is assumed to be weak by setting λ	 1.

Assuming unidirectional vibration of the system, and denoting by v1(t), v2(t)

and v3(t) the displacements of the three masses of the NES, and by u(x, t) the
distributed displacement of the rod at position x, we obtain the following governing
differential equations for the rod:

∂2u(x, t)

∂t2
+ ω2

0u(x, t)+ λ1
∂u(x, t)

∂t
− ∂2u(x, t)

∂x2 = F(t)δ(x − d), 0 ≤ x ≤ L

u(0, t) = 0,
∂u(L, t)

∂x
= ε[v1(t)− u(L, t)], u(x, 0) = 0,

∂u(x, 0)

∂x
= 0

(5.80a)

and the MDOF NES:

m1v̈1(t)+ ε[v1(t)− u(L, t)] + C1[v1(t)− v2(t)]3 + λ[v̇1(t)− v̇2(t)] = 0

v1(0) = v̇1(0) = 0

m2v̈2(t)+ C1[v2(t)− v(t)]3 + C2[v2(t)− v3(t)]3

+ λ[v̇2(t)− v̇1(t)] + λ[v̇2(t)− v̇3(t)] = 0

v2(0) = v̇2(0) = 0

m3v̈3(t)+ C2[v3(t)− v2(t)]3 + λ[v̇3(t)− v̇2(t)] = 0
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Fig. 5.48 Linear dispersive elastic rod with an attached MDOF NES.

v3(0) = v̇3(0) = 0 (5.80b)

Hence, we assume that the system is initially at rest, and that a shock is applied at
position x = d of the rod. In the above equations ε is the constant of the linear
coupling stiffness between the rod and the MDOF NES, and, depending on its value
there is either weak or strong coupling between the rod and the NES; in fact, one of
the aims of this computational study is to investigate the effect of the coupling term
on the TET performance. In (5.80) λ1 and λ denote the viscous damping coefficients
of the rod and the NES, respectively, andC1, C2 the coefficients of the essential stiff-
ness nonlinearities of the MDOF NES (see Figure 5.48). Moreover, in the following
analysis the length of the rod is normalized to L = 1 . The frequency ω0 is the non-
dimensional distributed elastic support of the rod and introduces dispersive effects
in its dynamics; as discussed in previous sections this frequency represents the cut-
off frequency in the spectrum of the dynamics of the uncoupled, infinite dispersive
rod; that is, the bounding frequency separating the attenuation (0 < ω < ω0) and
propagation zones (ω > ω0) of the rod on the elastic foundation.

For prescribed excitation the equations of motion (5.80a, 5.80b) were solved nu-
merically using the Matlab� FE code described in Section 5.2.1, employing an im-
plicit time integration scheme based on the adapted Newmark algorithm (Gerandin
and Rixen, 1997). At each time step of the numerical integration the total energy
balance was computed in order to ensure that the relative energy error between
subsequent steps of the computation was kept less than 0.001%, and that the to-
tal accumulative energy error throughout the entire computation was kept less than
1%.

Strong coupling between the clamped rod and the NES is a prerequisite for the
occurrence of strong nonlinear modal interactions between the linear and nonlin-
ear subsystems. The reason is that weak coupling would not excite sufficiently the
NES, so insignificant nonlinear effects in the damped responses would be realized.
We point out that this holds due to the clamped condition at the left boundary of
the rod, which restricts the rod response to low amplitudes. We note, however, that
for different boundary conditions (e.g., free left boundary) the rod response might



106 5 TET in Linear Continuous Systems with Single- and Multi-DOF NESs

Table 5.3 The leading eigenfrequencies of the uncoupled dispersive rod (ω0 = 1, L = 1.0).

Normal Mode 1 2 3 4 5 6 7 8 9 10

Eigenfrequency 1.8621 4.8178 7.9194 11.046 14.184 17.329 20.48 23.638 26.802 29.973
(rad/sec)

attain higher amplitudes for the shock excitation, so that strong nonlinear modal in-
teractions might be realized even for weak coupling with the NES (see, for example,
the discrete system of Figure 4.2).

In Table 5.3 we present the leading eigenfrequencies of the uncoupled clamped
rod (with MDOF NES detached) on an elastic foundation with ω0 = 1. The first step
of our study is to construct the FEP of the corresponding undamped and unforced
Hamiltonian system with λ = λ1 = 0 and F(t) = 0 in (5.80a, 5.80b). Then, as
shown in our previous studies, the FEP can help us understand and interpret damped
transitions involving strongly nonlinear modal interactions between the rod and the
NES. To this end, we consider the following Hamiltonian system:

∂2u(x, t)

∂t2
∂t2 + ω2

0u(x, t)−
∂2u(x, t)

∂x2 = 0, 0 ≤ x ≤ L = 1

u(0, t) = 0,
∂u(L, t)

∂x
= ε[v1(t)− u(L, t)]

m1v̈1(t)+ ε[v1(t)− u(L, t)] + C1[v1(t)− v2(t)]3 = 0

m2v̈2(t)+ C1[v2(t)− v1(t)]3 + C2[v2(t)− v3(t)]3 = 0

m3v̈3(t)+ C2[v3(t)− v2(t)]3 = 0 (5.81)

We omit initial conditions at this point since we will examine the nonlinear bound-
ary value problem (NLBVP) governing the periodic orbits of this system; in con-
trast, the original problem (5.80a, 5.80b) is formulated as an initial value (Cauchy)
problem.

Analytical approximations of the T -periodic orbits are sought in the form of the
following Fourier series:

u(x, t) =
∞∑
k=1

Ck(x) cos[(2k − 1)�t ], v1(t) =
∞∑
k=1

V1,k cos[(2k − 1)�t]

v2(t) =
∞∑
k=1

V2,k cos[(2k − 1)�t ], v3(t) =
∞∑
k=1

V3,k cos[(2k − 1)�t] (5.82)

where � = 2π/T denotes the basic frequency of the periodic motion. Substituting
(5.82) into the differential equations (5.81) and taking account the imposed bound-
ary conditions for the rod, we obtain the following series of linear BVPs governing
the spatial distributions Ck(x) of the rod:



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 107

−
∞∑
k=1

[(2k − 1)�]2Ck(x) cos[(2k − 1)�t]

+ ω2
0

∞∑
k=1

Ck(x) cos[(2k − 1)�t] −
∞∑
k=1

C′′
k (x) cos[(2k − 1)�t] = 0

⇒ −C′′
k (x)+ [ω2

0 − [(2k − 1)�]2]Ck(x) = 0

Ck(0) = 0,
dCk(L)

dx
= ε[v1k − Ck(L)] (5.83)

An explicit solution of (5.83) provides the following analytical expression forCk(x),
k = 1, 2, 3, . . . , in terms of the corresponding coefficients V1k of the NES:

Ck(x) = Ĉk sin

[
x

√
(2k − 1)2�2 − ω2

0

]
(5.84)

Ĉk = εV1k√
(2k − 1)2�2 − ω2

0 cos

[
L

√
(2k − 1)2�2 − ω2

0

]
+ ε sin

[
L

√
(2k − 1)2�2 − ω2

0

]

For example, taking into account only the three leading terms in the series of
u(x, t), we derive the following expression for the displacement at the end of the
rod during the time-periodic motion:

u(L, t) ≈ εV11 cos�t√
�2 − ω2

0 cot

[
L

√
�2 − ω2

0

]
+ ε

+ εV13 cos 3�t√
9�2 − ω2

0 cot

[
L

√
9�2 − ω2

0

]
+ ε

+ εV15 cos 5�t√
25�2 − ω2

0 cot

[
L

√
25�2 − ω2

0

]
+ ε

Clearly, this expression holds only as long as

(2k − 1)2�2 − ω2
0 ≤ 0 ⇒ �2 ≥ ω2

0(2k − 1)−2, k = 1, 2, 3, . . .

i.e., only when � lies in the PZ of the k-th harmonic; this requirement is satisfied
for all harmonics if �2 ≥ ω2

0, i.e., for periodic orbits with basic frequency in the PZ
of the rod of infinite extent). In that case the solution of the rod response is spatially
extended (non-localized) in the form of traveling waves, whose positive interference
produces the vibration modes evidenced in the transient dynamics.
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However, if (2k̃− 1)2�2 −ω2
0 < 0 for some k̃, then, for k ≥ k̃ the trigonometric

functions in expressions (5.83) and (5.84) should be replaced by hyperbolic ones,
and the spatial distributions of the k̃-th and higher harmonics of the rod response
u(x, t) become spatially localized (representing near-field solutions with exponen-
tially decaying envelopes). In that case the corresponding time-periodic motion of
the rod possesses a set of harmonics (starting from the k̃-th harmonic and higher)
in the form of spatially decaying standing waves, or near-field solutions localized
close to the boundaries of the rod. The qualitative changes in the time-periodic mo-
tion of the rod (that is, from spatially extended harmonics to spatially decaying ones)
due to changes in the frequency of oscillation, are caused by the dispersion effects
introduced by its elastic foundation.

Assuming that �2 ≥ ω2
0, i.e., that the basic harmonic of the response is situated

inside the PZ of the rod (a similar procedure holds if a harmonic lies inside the
AZ), the corresponding amplitudes, V1,k, V2,k and V3,k, k = 1, 2, 3, . . . , of the
corresponding harmonics of MDOF NES are computed by substituting the relations
(5.84) into the last three nonlinear differential equations of the set (5.81). Expanding
the powers of the resulting trigonometric expressions, and setting the coefficients of
the resulting trigonometric functions cos[(2k − 1)�t], k = 1, 2, . . . , equal to zero,
we derive an infinite set of coupled nonlinear algebraic relations in terms of the
amplitudes V1,k, V2,k and V3,k governing the time-periodic response of the MDOF
NES with basic frequency . For computational reasons, this infinite set of algebraic
equations must be truncated by considering terms only up to the fifth harmonic (i.e.,
k = 1, 2, 3 only), and omitting higher harmonics. The resulting truncated set of nine
nonlinear algebraic equations is then numerically solved for the amplitudes V1,k,
V2,k and V3,k, which completes the analytic approximation of the periodic motion
of the system through relations (5.82) and (5.84). The set of nine equations is too
lengthy to be reproduced here and can be found in the thesis by Tsakirtzis (2006).

In the following numerical results we consider two configurations of MDOF
NESs, which are principally distinguished by the strength of the coupling stiffness
ε, and the magnitudes of the nonlinear coefficients C1 and C2. Indeed, our aim is to
study the influence of the coupling stiffness and the coefficients of the essential non-
linear stiffnesses of the MDOF NES on TET. The first configuration considered (re-
ferred to from now on as ‘System I’) consists of a highly asymmetric MDOF NES,
in the sense that it possesses strongly dissimilar nonlinear stiffness coefficients. The
parameters of System I are listed below:

C1 = 1.0, C2 = 0.001, ε = 6.6, λ = λ1 = 0,

L = 1.0, ω0 = 1.0, m1 = m2 = m3 = 0.1/3 (System I)

In Figure 5.49 we depict the FEP of System I, computed by the previously out-
lined analytical approximation. The FEP of Figure 5.49 depicts the dependence of
the basic frequency � in rad/s of the time-periodic oscillation on the (conserved)
logarithm of the energy of this oscillation, log10(E). Only the frequency range cov-
ering the two leading modes of the uncoupled linear rod is considered in the FEP of
Figure 5.49. The energy E of the periodic orbit is computed by the expression
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E = 1

2

∫ L

0

[
∂u(x, t)

∂t

]2

dx + 1

2

∫ L

0

[
∂u(x, t)

∂x

]2

dx + 1

2
ω2

0

∫ L

0
u2(x, t)dx

+ 1

4
ε[v1(t)− u(L, t)]2 + 1

2
m1v

2
1(t)+

1

2
m2v

2
2(t)+

1

2
m3v

2
3(t)

+ 1

4
C1[v2(t)− v1(t)]4 + 1

4
C2[v3(t)− v2(t)]4 (5.85)

In Figure 5.50 some representative periodic orbits on different branches of the FEP
are depicted. Comparisons of these results with direct FE simulations of the equa-
tions of motion (5.81) (computed for the initial conditions predicted by the analyti-
cal model) confirmed their accuracy (Tsakirtzis, 2006).

Considering the FEP depicted in Figure 5.49 one discerns two low-frequency
asymptotes, which correspond to the two leading modes of the linear uncoupled rod
with eigenfrequencies given by:

ωn =
√
ω2

0 + (2n− 1)2π2

4L2 , n = 1, 2 (Low-energy asymptotes) (5.86)

For the parameters corresponding to System I these are computed as, ω1 =
1.8621 rad/s and ω2 = 4.8173 rad/s. In the limit of high energies there exist ad-
ditional frequency asymptotes, denoted by ω̂1, i = 1, 2, . . . , corresponding to
the eigenfrequencies of the system with rigid connections between the rod and the
MDOF NES. High-energy periodic orbits close to these asymptotes are weakly non-
linear motions that predominantly localize to the rod. These high-frequency asymp-
totes are computed as the eigenfrequencies of the dispersive rod with a mass equal
to m1 +m2 +m3 = 0.1 attached to its right end.

As in the FEPs considered in Sections 3.3 and 4.2, the FEP of Figure 5.49
possesses (global) backbone branches of periodic orbits and (local) subharmonic
tongues. Backbone branches consist of nearly monochromatic periodic solutions
possessing a dominant harmonic component and higher harmonics at integer multi-
ples of the dominant harmonic; these branches are defined over extended frequency
and energy ranges and are composed of periodic solutions mainly localized to the
MDOF NES, except in neighborhoods of the linearized eigenfrequencies of the rod
(see Figure 5.50). Subharmonic tongues are composed of multi-frequency periodic
motions with frequencies at rational multiples of the eigenfrequencies ωn of the un-
coupled rod. Each tongue is defined over a finite energy range, and is composed of
two distinct branches of subharmonic solutions, which, at a critical energy level,
coalesce in a bifurcation that signifies the end of that particular tongue and the
elimination of the corresponding subharmonic motions for higher energies. In this
non-integrable dynamical system there exist countable infinite subharmonic tonques
emanating from backbone branches at frequencies in rational multiples of the eigen-
frequencies of the uncoupled linear rod.

To study the effect on the FEP of strong coupling between the rod and the MDOF
NES and of stronger essential nonlinearity C2 we consider a second set of parame-



110 5 TET in Linear Continuous Systems with Single- and Multi-DOF NESs

Fig. 5.49 FEP of System I based on the truncated system (5.82) and (5.84) with k = 1, 2, 3: digits
(�) correspond to the periodic orbits depicted in Figure 5.50; the low- and high-energy asymptotes
close to the first mode of the rod are shown in dashed lines; point A (�) refers to the numerical
simulations, and WT analysis of Section 5.4.3.

ters and label the corresponding system as ‘System II’:

C1 = 1.0, C2 = 0.01, ε = 9.0, λ = λ1 = 0,

L = 1.0, ω0 = 1.0, m1 = m2 = m3 = 0.1/3 (System II)

The FEP of System II is depicted in Figure 5.51. Except in the neighborhoods of
the low- and high-energy asymptotes ωi and ω̂i , i = 1, 2, . . . , the branches of
periodic solutions are essentially nonlinear, as indicated by their high curvatures
and strong dependencies on energy. The fact that all subharmonic tongues in the
FEP are nearly horizontal does not mean that the dynamics are weakly nonlinear;
on the contrary, the dynamics on the subharmonic tongues is essentially nonlinear.
As explained in Section 3.3 and in Lee et al. (2005), on a subharmonic tongue, the
strongly nonlinear system (5.81) oscillates approximately as a system of uncoupled
linear oscillators, albeit with different frequencies, say ωp and (m/n)ωp, where ωp
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Fig. 5.50 Representative periodic orbits of the FEP of System I.
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Fig. 5.51 FEP of System II based on the truncated system (5.82) and (5.84) with k = 1, 2, 3; digits
(�) correspond to the periodic orbits depicted in Figure 5.52; the low- and high-energy asymptotes
close to the first mode of the rod are shown in dashed lines; point B (�) refers to the numerical
simulations, WTs and EMD analysis of Section 5.4.3.

is the p-th eigenfrequency of the uncoupled rod and (m/n) is rational; as a result,
the strongly nonlinear regimes on the subharmonic tongues resemble the dynamics
of coupled linear oscillators with rationally related frequencies.

The high-energy asymptotes of the FEP of System II (in similarity to System I),
indicate – as expected – that at sufficiently high energies System II resembles a rod
with a concentrated end mass equal to m1 + m2 + m3 = 0.1. This means that the
dynamics of System II close to these high-energy asymptotes is weakly nonlinear,
with the corresponding oscillations being predominantly localized to the rod. Hence,
high-energy, weakly nonlinear dynamics may occur in System II (as in System I).
Moreover, there is a region of the FEP (labeled as ‘Region I’ in Figure 5.51), where
the responses of all NES masses and the rod end possess nearly identical amplitudes.
In Figure 5.52 representative periodic motions lying on backbone branches of the
FEP of System II are depicted.
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Fig. 5.52 Representative periodic orbits of the FEP of System II.
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5.4.2 Computational Study of TET

We now study passive TET from the finite rod to the MDOF NES, by studying nu-
merically the damped dynamics of system (5.80a, 5.80b). Indeed, we will examine
the efficacy of using a MDOF NES as passive absorber and efficient dissipater of
broadband energy from the elastic rod under shock excitation. Given that the exam-
ined NESs are lightweight, local and in modular forms (i.e., they can be attached to
existing elastic structures with minimal structural modifications and added mass),
our TET study can pave the way for applying the concept of NES to shock isolation
of practical flexible systems. An additional aim of the following study is to show that
weakly damped, nonlinear transitions in the system examined can be interpreted and
understood by means of the FEP of the underlying Hamiltonian system; in that con-
text, complex, multi-frequency dynamical transitions of the weakly damped system
may be interpreted as transitions between branches of periodic solutions (NNMs)
on the FEP. The same conclusion was drawn from our previous studies of damped
transitions and TET in Sections 3.4, 4.3.2, and 5.2.3. Finally, we will perform multi-
scale analysis of the damped responses by the combined WT-EMD methodology
discussed in Section 5.2.3; this will enable us to study the strongly nonlinear modal
interactions that occur between the rod and the MDOF NES and give rise to TET.

We study TET in the system depicted in Figure 5.48 by computing the asymptotic
values of the corresponding energy dissipation measures (EDMs), i.e., of the per-
centages of shock energy of the rod that are (eventually) dissipated by the dampers
of the MDOF-NES, when system parameters vary. The following parametric study
is performed by numerically integrating the governing equations of motion (5.80a,
5.80b) using the previously described FE discretization. The numerical simulations
are performed for a shock of the form

F(t) =
{
A sin(2πt/T ), 0 < t ≤ T/2
0, t > T/2

(5.87)

where T = 0.1T1, where T1 is the period of the first mode of the linear rod. More-
over, we assume that the shock is applied at position d = 0.2 from the clamped (left)
end of the rod. Although the form of the applied shock is kept fixed throughout the
following parametric study of TET, the shock magnitude A is varied to investigate
the effect of the level of shock energy input on TET (Tsakirtzis, 2006; Tsakirtzis et
al., 2007a).

The finite rod with L = 1.0 and ω0 = 1 was discretized into 200 finite elements,
which ensured a five-digit convergence of the eigenfrequencies and shapes of its
leading modes. In the simulations weak damping for the rod was assumed, mod-
eled by a damping matrix which was expressed as linear superposition of mass and
stiffness matrices, i.e., D = a1M + a2K with a1 = 0 and a2 = 0.01. The leading
eigenfrequencies of the uncoupled rod (with the MDOF NES detached) are listed
in Table 5.3, whereas the corresponding modal critical viscous damping ratios are
presented in Table 5.4. The FE model was integrated by the Newmark algorithm.
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Table 5.4 The leading modal critical viscous damping rations of the uncoupled dispersive rod
(ω0 = 1, L = 1.0).

Normal Mode 1 2 3 4 5 6 7 8 9 10

Modal critical
viscous ratio 0.2685 0.1038 0.0631 0.0453 0.0352 0.0289 0.0244 0.0211 0.0187 0.0166

Finally, the sampling frequency was chosen as less than 6% of the eigenfrequencies
of the excited modes (i.e., the leading three modes) of the rod.

In the following parametric study (Tsakirtzis, 2006; Tsakirtzis et al., 2007a) we
vary the coupling stiffness ε (which ends up as being a critical parameter for TET
efficiency), and the magnitudeA of the applied shock, for five different sets of non-
linear coefficients C1 and C2. Moreover, we wish to study the effect of NES asym-
metry on TET, that is, the effect of asymmetric nonlinear oscillator pairs on the
capacity of the MDOF NES to passively absorb and dissipate shock energy from
the rod. To this end, we consider the following five pairs of nonlinear stiffnesses of
the MDOF NES:

Application I: (C1, C2 = (1.0, 0.001)

Application II: (C1, C2 = (1.0, 0.01)

Application III: (C1, C2 = (1.0, 0.1)
Application IV: (C1, C2 = (1.0, 1.0)
Application V: (C1, C2 = (1.0, 10.0)

In Application I the essential stiffness nonlinearity of the pair of NES oscillators that
lies the furthest from the rod was chosen to be much weaker than the corresponding
nonlinearity of the pair that is directly connected to the rod through the coupling
linear stiffness ε (see Figure 5.48). As we proceed from Application I to V this
asymmetry decreases, until it is completely eliminated in Application III (which
corresponds to a ‘symmetric’ NES), and reversed in Applications IV and V. The
rationale for studying this asymmetry is that TET efficiency (i.e., the capacity of
the MDOF NES to passively absorb and locally dissipate shock energy from the
rod) depends, in essence, on the capacity of the pairs of NES oscillators (or at least
one of these pairs) to execute large-amplitude relative (internal) oscillations, since
only then the dampers of the NES can dissipate major portions of the shock energy
transferred from the rod. Hence, we wish to examine if a relatively weak essential
nonlinearity in at least one pair of the NES oscillators affects the capacity of the NES
to execute large-amplitude relative motions and yield effective TET. On the other
hand, it is clear that in the other extreme, where both essential stiffnesses of the NES
are weak, we should expect deterioration of TET, as this would hinter the capacity
of the MDOF NES to engage in simultaneous multi-modal nonlinear interactions
with the rod (see for example the results of Chapter 4). Hence, it is necessary to
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carefully examine how the asymmetry of the MDOF NES, and, specifically, weak
essential nonlinearity in a pair of NES oscillators affects TET in this system.

In each of the above five applications the FE simulations are performed for pa-
rameters L = 1.0, λ = 0.01/2, m1 = m2 = m3 = 0.1/3, ω0 = 1.0 and nonlinear
stiffnesses as listed above. Zero initial conditions for the system are applied. In the
series of numerical simulations performed for each application we consider cou-
pling stiffness values in the range ε ∈ [0.1, 10] with a step of 
ε = 0.1 for a total
of 100 values; in addition, we consider amplitudes of the applied shock in the range
A ∈ [10, 200] with a step
A = 10 for a total of 20 values. Hence, to each applica-
tion corresponds a total of 20 × 100 = 2000 pairs (ε,A) all of which are realized in
the parametric study.

The computational procedure for studying TET efficiency in each of the five
applications is as follows. For each pair (ε,A) we integrate numerically the FE
model of the system (5.80a, 5.80b) for a sufficiently large time interval so that at
least 99.5% of the input shock energy is eventually damped during the simulation;
this ensures that no essential dynamics is missed in the transient simulations due
to inappropriate selection of the time interval of integration. Then, we assess TET
efficiency from the rod to the MDOF NES by computing the following EDM:

ENES,t�1 = lim
t�1

∫ L

0
ελ{[v̇2(τ )− v̇1(τ )]2 + [v̇3(τ )− v̇2(τ )]2}dτ∫ T

0
F(τ)

∂u(d, τ )

dτ
dτ

× 100 (5.88)

i.e., the percentage of shock energy of the rod that is eventually dissipated by the
MDOF NES; high values of ENES,t�1 indicates strong TET. As mentioned previ-
ously, the EDM (5.88) does not provide any information regarding the time scale
of the TET dynamics, i.e., on how fast energy fom the rod is passively absorbed
and dissipated by the MDOF NES. Instead, we will focus only on the percentage of
input energy dissipated by the NES, and postpone the discussion of how rapid the
realization of TET is for Chapters 8, 9 and 10.

In Figure 5.53 we depict contour plots of the EDM ENES,t�1 as function of the
parameters ε and A for Application I, i.e., for the highly asymmetric MDOF NES.
We note that there is a wide region of strong TET corresponding to relatively strong
coupling (ε > 4) and moderate to large amplitudes of input shock (A > 70); in this
region the MDOF NES is highly efficient and dissipates a major portion of input
shock (ENES,t�1 > 75%); what is even more significant from a practical point of
view is that this high TET efficiency is robust to variations in the system parameters
considered. However, we should note that these results correspond to zero initial
conditions of the system, so there can be no assurance regarding robustness of NES
efficiency with respect to different sets of initial conditions. In summary, for strong
linear coupling there occurs strong TET from the rod to the MDOF NES over a wide
range of initial shocks. Moreover, the weaker the applied shock is, the stronger the
coupling stiffness should be for strong TET to occur.
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Fig. 5.53 Application I – contour plots of EDMENES,t�1, as a function of linear coupling stiffness
ε, and the shock amplitude A; Cases 1 and 2 (�) refer to the simulations depicted in Figures 5.54
and 5.55.

An additional conclusion drawn from the plot of Figure 5.53 is that, compared to
the SDOF NES examined in previous chapters, strong TET in the MDOF NES oc-
curs over wider ranges of input energies (shocks). Indeed, in Chapter 3 where SDOF
NESs were considered, it was found that TET was sensitive to the level input energy,
in the sense that optimal TET was achieved for specific levels of input energy and
that away from these levels TET deteriorated markedly (see for example the results
depicted Figures 3.4 and 3.44). On the contrary, the results depicted in Figure 5.53
indicate that the MDOF NES provides better and more robust TET performance,
since strong TET is maintained over wider ranges of input energy. This result is
important from a practical point of view, since in engineering applications requiring
effective shock absorption the demand would be for strong TET performance over
a wide range of shock energies.

In order to study in more detail the damped dynamics governing TET from the
rod to the MDOF NES we examined in detail two specific cases, labeled as Cases
1 and 2 in the contour plot of Figure 5.53. Case 1 (see Figure 5.54) corresponds
to strong coupling, moderate applied shock, (ε,A) = (6, 110), and strong TET,
ENES,t�1 = 81.15%; Case 2 (see Figure 5.55) corresponds to weak coupling, mod-
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Fig. 5.54 Application I – Case 1; (a, b) NES displacements [v2(t) − v1(t)] and [v3(t) − v2(t)]
superimposed to the response of the right end of the rod; (c) transient energy measures.

erate applied shock, (ε,A) = (0.2, 110), and weak TET ENES,t�1 = 11.89%.
Hence, we aim to relate the damped dynamics to the strong or weak NES efficiency
of the MDOF NES for these two cases. It should be clear that the enhanced perfor-
mance of the MDOF NES in Case 1 is mainly due to the large-amplitude relative
displacement [v3(t) − v2(t)], which exceeds that of the rod end especially in the
early stage of the dynamics (i.e., in the most highly energetic regime of the dynam-
ics); this, in turn, leads to a large-amplitude relative velocity [v̇3(t) − v̇2(t)] and to
strong shock energy dissipation by the damper of the second pair of NES oscillators.
This is reflected in the plots of transient damped energies (see Figure 5.54c), where
it is deduced that the NES dampens a significant portion of input energy during the
early (highly energetic) stage of the response. The large amplitude of the relative
displacement [v3(t)− v2(t)] in this case (which is mainly due to the weak nonlinear
coupling stiffness C2) explains the large amount of energy damped by the viscous
damper of the second pair of oscillators of the MDOF NES. It follows that the high
asymmetry of the NES in Application I proves to be beneficial for TET. An investi-
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Fig. 5.55 Application I – Case 2; (a, b) NES displacements [v2(t) − v1(t)] and [v3(t) − v2(t)]
superimposed to the response of the right end of the rod; (c) transient energy measures.

gation of the nonlinear modal (resonance) interactions giving rise to strong TET in
cases like this one will be carried out in Section 5.4.3.

In Figure 5.56 we present the TET efficiency plot for Application II, i.e., for
reduced NES asymmetry compared to Application I. The computational procedure
outlined for Application I was also applied to Application II, that is, we varied the
linear coupling stiffness in the range ε ∈ [0.1, 10] for a total of 100 values, and
the shock amplitude in the range A ∈ [10, 200] for a total of 20 values. This gave
a total of 20 × 100 = 2000 possible pairs (ε,A), all of which where realized for
constructing the NES efficiency plot of Figure 5.56. Similarly to Application I, we
ensured that each of the numerical simulations was performed for a sufficiently long
time interval, so that at least 99.5% of the input shock energy was damped in the time
window considered in the simulations. In Application II (as in Application I) there
is a wide region of the plot where strong TET occurs and the EDM exceeds 75%.
However, we note that the region of strong TET is slightly diminished compared to
Application I (see Figure 5.53). This implies that reducing NES asymmetry, reduces
(even slightly) the capacity of the NES to dissipate a significant portion of the shock
energy of the rod.
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Fig. 5.56 Application II – contour plot of EDM ENES,t�1 as a function of linear coupling stiffness
ε, and the shock amplitude A; Case 3 (�) refers to the simulation depicted in Figure 5.57.

As in Application I strong TET occurs for stiff coupling and moderate to large
amplitudes of applied shock (i.e., at moderate to high energy levels). In addition,
there are small regions in the range A ∈ [100, 120] and ε ∈ [8, 9] where strong
TET from the rod to the NES (ENES,t�1 > 80%) take place; in one of these regions
we have the global optimal value ENES,t�1 ≈ 84.11%. In Figure 5.57 we consider
the simulations corresponding to ε = 8.6 and A = 100 (labeled as Case 3). We
note the rapid dissipation of shock energy by the NES in the early (highly energetic)
regime of the motion; this is primarily due to the high-amplitudes of the relative
displacement [v3(t) − v2(t)]. Moreover, judging from the waveforms of the rod
end response and the relative displacements of the MDOF NES we infer that the
efficient dissipation of energy by the NES is caused by a series of transient resonance
captures (TRCs) occurring in the transient dynamics.

Three additional series of numerical simulations corresponding to Applications
III–V are depicted in Figures 5.58–5.60. As the NES asymmetry reverses, the region
of efficient dissipation of energy by the NES also diminishes. This means that NES
asymmetry by itself is insufficient to improve NES efficiency: for effective TET to
occur the NES asymmetry must be related to strong nonlinear characteristic C1 and
weak nonlinear characteristicC2. This is an interesting conclusion from the practical
(design) point of view of MDOF NESs as passive shock absorbers.
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Fig. 5.57 Application II – Case 3; (a, b) NES displacements [v2(t) − v1(t)] and [v3(t) − v2(t)]
superimposed to the response of the right end of the rod; (c) transient energy measures.

Summarizing these observations, we conclude that strong and robust TET in the
system of Figure 5.48 is realized for strong linear coupling between the rod and the
MDOF NES, weak coupling in the second oscillator pair of the NES (composed
of the coupled masses m2 and m3), and strong coupling in the first oscillator pair
(composed of the coupled massesm1 andm2). In addition, strong TET is realized for
strong to moderate amplitudes of the applied shock. It appears that strong coupling
between the rod and the NES and strong nonlinear stiffness C1 yield strong transfer
of shock energy from the rod to the MDOF NES; whereas, weak nonlinear stiffness
C2 yields effective dissipation of the transferred shock energy as it leads to large-
amplitude relative response [v3(t) − v2(t)]. Moreover, in all cases considered the
passive absorption of energy by the MDOF NES is broadband, contrary to conven-
tional linear designs (based on linear vibration absorbers) where energy absorption
is narrowband. This feature makes the proposed design novel and applicable to a
diverse range of practical applications.

To better understand the nonlinear modal interactions between the rod and the
MDOF NES and the associated TRCs leading to TET, in the next section we an-
alyze two representative numerical simulations by combined numerical wavelet
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Fig. 5.58 Application III – contour plot of EDM ENES,t�1, as a function of linear coupling stiff-
ness ε, and the shock amplitude A.

transforms (WTs) and empirical mode decomposition (EMD). We show that by
superimposing the WT spectra of the responses to the corresponding Hamiltonian
FEPs, and studying TRCs between individual IMFs of the rod and NES responses,
we can study the nonlinear modal interactions occurring in the transient nonlinear
dynamics of the system under consideration.

5.4.3 Multi-Modal Damped Transitions and Multi-Scale Analysis

The aim of this section is to study multi-modal interactions in the transient damped
dynamics of the rod-MDOF NES system. This is performed through the use of nu-
merical WTs and EMDs, which yields the identification of the dominant TRCs in
the rod-MDOF nonlinear dynamic interaction, and paves the way for multi-scale
analysis of the transient dynamics. The numerical simulations considered are com-
puted utilizing the FE model described in the previous sections, but with no ap-
plied shock excitation. Instead, each of the examined damped motions is initialized
with initial conditions corresponding to a specific point of the backbone branch of
the corresponding FEP of the Hamiltonian system (studied in Section 5.4.1). We
then wavelet-transform each of the relative transient responses [v1(t) − u(L, t)],
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Fig. 5.59 Application IV – contour plot of EDM ENES,t�1, as a function of linear coupling stiff-
ness ε, and the shock amplitude A.

[v1(t) − v2(t)] and [v2(t) − v3(t)], superimpose the resulting WT spectra to the
Hamiltonian FEP, and, finally, analyze the time series by EMD. This post-processing
program helps us to clearly identify the entire sequence of multi-frequency, multi-
modal nonlinear transitions that occur in the damped nonlinear dynamics.

The first numerical simulation is performed for System I, i.e., for the system
with parameters, C1 = 1.0, C2 = 0.001, ε = 6.6, λ = 0.01/2, L = 1.0, ω0 = 1.0,
m1 = m2 = m3 = 0.1/3, and initial conditions corresponding to point A on the
backbone branch of the FEP of Figure 5.49. In the undamped system, this initial
condition corresponds to a periodic motion (NNM) that is predominantly localized
to the NES, with both the rod and the NES performing oscillations with an identical
basic frequencies equal to � = 3.4 rad/s. The specific initial conditions for the
rod and the nonlinear attachment are approximately computed using the analytical
method of Section 4.3 (with three terms in the truncated series) as follows:

U(x, 0) = α1 sin

[
x

√
�2 − ω2

0

]

+ α3 sin

[
x

√
9�2 − ω2

0

]
+ α5 sin

[
x

√
25�2 − ω2

0

]
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Fig. 5.60 Application V – contour plot of EDMENES,t�1, as a function of linear coupling stiffness
ε, and the shock amplitude A.

v1(0) =
∞∑
k=1

V1,k, v2(0) =
∞∑
k=1

V2,k, v3(0) =
∞∑
k=1

V3,k

with

α1 = −0.107074, α3 = −0.0430936, α5 = −0.00285114

V11 = 0.0639564, V13 = 0.0781734, V15 = 0.00494063

V21 = 0.835016, V23 = 0.0162039, V25 = −0.00341636

V31 = −0.00116088, V33 = −0.0000465294, V35 = −5.29816 × 10−7

In Figures 5.61a–d we depict the relative responses of the system, together with
their WT spectra superimposed to the FEP of Figure 5.49. As energy decreases due
to damping dissipation the motion makes a damped transition that traces closely the
main backbone branch of the FEP. This observation confirms once again that for
sufficiently weak damping the damped response is dominated by the dynamics of
the underlying Hamiltonian system. The nonlinear dynamic interaction between the
rod and the NES during this damped transition is now examined in more detail. In
the following exposition we adopt the notation regarding subharmonic tongues first
introduced in Section 5.2.3; namely, a subharmonic tongue labeled as, T (n)p/q denotes
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the branch of subharmonic motions where the frequency of the dominant harmonic
component of the NES response is nearly equal to (p/q)ωn, whereas that of the rod
end is equal to ωn (the n-th linearized eigenfrequency of the rod). It follows that
for a subharmonic motion initiated on tongue T (n)p/q , the relative displacement be-
tween the rod and an NES mass, or the relative displacements between NES masses
possess two main harmonics at frequencies ωn and (p/q)ωn. In the present simula-
tion, the motion starts at the point of main backbone with frequency� = 3.4 rad/s.
From Figures 5.61b–d we deduce that the WT spectra of the relative displacements
initially trace the main backbone, as energy decreases. Then, the dynamics makes
transitions along a series of subharmonic tongues, such as T (4)1/5, T (2)2/3, T (3)1/3, T (1)2/3, and

T
(1)

1/2 (the tongues T (1)2/3 and T (1)1/2 are not depicted in the FEP of Figure 5.49).
Specifically, considering the response [v2(t) − v3(t)] (see Figure 5.61b), fol-

lowing its initialization at point A of the backbone curve, its frequency content is
broadband, as there is (weak) excitation of tongues in the range 2–4.5 rad/s, and
also of the lower-frequency tongues T (1)2/3, T (1)1/2 and T (1)1/5. At the late, low-energy
regime of the motion the response possesses low-frequency content. Considering
next the response [v1(t)−v2(t)] (see Figure 5.61c), we note that stronger frequency
components exist compared to the response [v2(t) − v3(t)]. Indeed the frequency
content is broadband in the range 2–5 rad/s, and after the initiation of the motion on
the Hamiltonian backbone branch, subharmonic tongues, such as T (2)2/3, T (3)1/3, T (4)1/5,

T
(1)

2/3 and T (1)1/2, are traced, which indicates that there occur simultaneous TRCs of the
MDOF NES with the 1st, 2nd, 3rd and 4th modes of the rod. This can be explained
by observing that the relative response [v1(t) − v2(t)] corresponds to the deforma-
tion of the (stiffer) nonlinear stiffness C1 which belongs to the part of the MDOF
NES that interacts directly with the rod through the (stiff) coupling stiffness ε. At
the later (low-energy) stage of the motion the response [(v1(t)−v2(t)] makes a final
transition back to the backbone curve, tracing the weakly nonlinear mode close to
the first eigenfrequency of the rod, ω1; this contrasts to the low-frequency content
of the relative response [v2(t) − v3(t)] in the low-energy regime. Hence, we note
strongly broadband frequency content for [v1(t) − v2(t)] reflecting the simultane-
ous transient resonance interaction (TRCs) of the MDOF NES with as many as four
modes of the rod.

Similar broadband content is observed in the WT spectrum of the relative re-
sponse [v1(t) − u(L, t)] (see Figure 5.61d), which corresponds to the deformation
of the linear coupling stiffness ε. However, in this case the frequency content of the
signal is in the range 2.5–5 rad/s, with additional excitation of the lower-frequency
subharmonic tongue T (4)1/5. There is weak excitation of the low-frequency tongues

T
(1)

2/3 and T (1)1/2, and in the late, low-energy stage of the motion the response pos-
sesses higher frequency content compared to the relative displacements of the NES
masses.

Summarizing, the nonlinear dynamical interaction between the rod and the
MDOF NES is broadband, with as many as four modes of the rod participating
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Fig. 5.61 Relative responses of System I for initial condition at point A of the FEP of Figure 5.49
(� = 3.4 rad/s): (a) time series.
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Fig. 5.61 Relative responses of System I for initial condition at point A of the FEP of Figure 5.49
(� = 3.4 rad/s): (b, c) WT spectra superimposed to the FEP.



128 5 TET in Linear Continuous Systems with Single- and Multi-DOF NESs

Fig. 5.61 Relative responses of System I for initial condition at point A of the FEP of Figure 5.49
(� = 3.4 rad/s): (d) WT spectra superimposed to the FEP.

simultaneously in these resonance interactions. Moreover, the dynamics seem to
occur in the neighborhoods of subharmonic tongues of the FEP.

A second numerical simulation was performed for System II, with parameters
C1 = 1.0, C2 = 0.1, ε = 9.0, λ = 0.01/2, L = 1.0, ω0 = 1.0, m1 = m2 =
m3 = 0.1/3, and initial condition at point B on the backbone branch of the FEP of
Figure 5.51. In the undamped system this initial condition gives rise to a periodic os-
cillation (NNM) predominantly localized to the NES, with both the rod and the NES
performing oscillations with identical basic frequencies equal to � = 4.4 rad/s. The
specific initial conditions for the rod and the nonlinear attachment are approximately
computed as follows:

U(x, 0) = α1 sin

[
x

√
�2 − ω2

0

]
+ α3 sin

[
x

√
9�2 − ω2

0

]

+ α5 sin

[
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√
25�2 − ω2

0

]

v1(0) =
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k=1

V2,k, v3(0) =
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k=1

V3,k

with

α1 = −0.30063, α3 = 0.06949, α5 = −0.00229



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 129

Fig. 5.62 Relative responses of System II for initial condition at point A of the FEP of Figure 5.51
(� = 4.4 rad/s): (a) time series.
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Fig. 5.62 Relative responses of System II for initial condition at point A of the FEP of Figure 5.51
(� = 4.4 rad/s): (b, c) WT spectra superimposed to the FEP.
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Fig. 5.62 Relative responses of System II for initial condition at point A of the FEP of Figure 5.51
(� = 4.4 rad/s): (d) WT spectra superimposed to the FEP.

V11 = 0.3329, V13 = 0.115, V15 = 0.005565

V21 = 1.1067, V23 = 0.0331, V25 = −0.001618

V31 = −0.6119, V33 = −0.0263, V35 = −0.00082

In Figures 5.62a–d we depict the three transient relative displacements of this
system, together with the WT spectra of these responses superimposed to the FEP
of Figure 5.51. As in the previous numerical simulation, there occurs a series of
nonlinear multi-frequency transitions in the dynamics. In this case, the motion is
initiated at point B of the main backbone (with frequency � = 4.4 rad/s); during
the initial regime of the motion the damped dynamics traces the main backbone of
the FEP for decreasing energy. Then, there occurs a series of TRCs involving a set
of modes of the rod over broad frequency ranges. Specifically, a study of the WT
spectrum of the relative response [(v2(t) − v3(t)] (see Figure 5.62b) indicates that
there occur broadband resonance interactions between the second pair of oscillators
of the MDOF NES and the 1st, 2nd, 3rd and 5th modes (but not with the 4th mode)
of the rod, as the subharmonic tongues T (5)1/4, T (3)1/3, T (2)3/4 and T (2)2/3 are traced by the
damped dynamics for decreasing energy. Stronger modal interactions are noted in
the spectrum of [v1(t)− v2(t)] in the same broadband range above ω1; this was ex-
pected, since this response represents the deformation of the stiffer nonlinear spring
C1 which belongs to the pair of oscillators of the NES that is directly connected to
the rod. Moreover, in the late, low-energy regime of the motion the dynamics traces
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Fig. 5.63 Relative response [v2(t) − v3(t)] of System II initiated at point B of the FEP of Fig-
ure 5.51 (� = 4.4 rad/s: (a, b) time series of 1st and 2nd (dominant) IMFs superimposed to the
transient response.

the weakly localized nonlinear mode on the backbone curve close to the first rod
eigenfrequency, ω1. Higher frequency components are noted in the spectrum of the
relative response [v1(t) − u(L, t)], with its broadband content being in the range
above 3 rad/s. It is interesting to note that these findings are confirmed by the EMD
analysis performed below.



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 133

Fig. 5.63 Relative response [v2(t) − v3(t)] of System II initiated at point B of the FEP of Fig-
ure 5.51 (� = 4.4 rad/s: (c, d) instantaneous frequencies of the dominant IMFs superimposed to
the WT spectrum of [v2(t) − v3(t)] (early time zoomed plots are also included). (e) signal recon-
struction of the response using the superposition of the two dominant IMFs.
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Fig. 5.64 Relative response [v1(t) − v2(t)] of System II initiated at point B of the FEP of Fig-
ure 5.51 (� = 4.4 rad/s): (a, b, c) time series of 1st, 2nd and 3rd (dominant) IMFs superimposed
to the transient response; (d, e, f) instantaneous frequencies of the dominant IFMs superimposed
to the wavelet spectrum of [v1(t) − v2(t)] (early time zoomed plots are also included); (g) signal
reconstruction of the response using the superposition of the three dominant IMFs.

Compared to the previous numerical simulations of System I (see Figure 5.61),
we conclude that in System II there occur stronger nonlinear multi-modal interac-
tions between the rod and the MDOF NES (since it possesses stiffer rod-NES cou-
pling), over higher and broader frequency ranges. This should be expected, since
the strong coupling between the rod and the MDOF NES excites higher frequency
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Fig. 5.64 Continued.

modes of the rod, compared to System I, and yields higher frequency nonlinear
modal interactions between the rod and the MDOF NES.

We now analyze the numerical simulations of Figure 5.62 of System II by EMD,
in our effort to identify the dominant resonance interactions that occur between the
rod and the MDOF NES, as well as the time scales (or frequencies) at which these
resonance interactions are realized. A more detailed presentation of this analysis,
together with the full EMD study of the numerical simulations of Figure 5.61 for
System I can be found in Tsakirtzis (2006) and Tsakirtzis et al. (2007a). As in Sec-
tion 5.2.3 the dominant IMFs of a time series are designated as the IMFs whose
instantaneous frequencies coincide with dominant harmonics of the corresponding
WT spectrum. Hence, the EMD is a multi-scale analysis with the potential to iden-
tify the ‘essential’ dynamics (resonance interactions) embedded in the measured
responses of coupled systems.

The results of EMD analysis of the transient responses of System II are de-
picted in Figures 5.63–5.65. The EMD of the relative response provided six IMFs,
of [v1(t) − v2(t)] eight IMFs, of [v1(t) − u(L, t)] nine IMFs, and of the rod-end
response nine IMFs. As mentioned previously, the IMFs are oscillatory components
possessing different time scales (or frequencies) embedded in the time series, and
their superposition reconstructs the measured time series. However, since the IMFs
are constructed in an ad hoc fashion (see Section 2.5), only a subset of IMFs are ex-
pected to be dominant, i.e., to capture the essential dynamics embedded of the sig-
nals. Moreover, the dominant IMFs have usually a physical interpretation in terms
of the characteristic time scales of the signal, whereas the ‘artificial’ (unimportant)
IMFs represent artificial (non-physical) oscillating modes in the data.

Comparisons of the instantaneous frequencies of the IMFs to the corresponding
WT spectra indicates that the relative response [v2(t) − v3(t)] is dominated by its
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Fig. 5.64 Continued.

1st and 2nd IMFs (see Figures 5.63c, d); the relative response [v1(t) − v2(t)] by
its 1st, 2nd and 3rd IMFs (see Figures 5.64d–f); and the rod end response u(L, t)
by its 1st, 2nd and 3rd IMFs (see Figures 5.65d–f). These results are confirmed by
the signal reconstructions depicted in Figures 5.63e, 5.64g and 5.65g which prove
that the nonlinear interaction between the rod and MDOF NES is low dimensional,
occurring, at most, over four time (frequency) scales.

By studying the instantaneous frequencies of the dominant IMFs of these re-
sponses we infer that the damped transitions possess four dominant time scales,
corresponding to the 1st, 2nd, 3rd and 5th linearized eigenfrequencies of the rod.
Hence, we confirm the results of the previous section, namely, that the MDOF NES
engages in nonlinear interactions [or transient resonance captures (TRCs)] with four
modes of the rod, so that energy exchanges between the two subsystems occur at
four dominant time scales. It is interesting to note that no nonlinear modal interac-
tions between the 4th mode of the rod and the NES were observed, even though the
NES does interact with the 3rd and 5th rod modes; this result is in agreement with
the WT analysis of the same simulation discussed previously. The specific TRCs
that occur between the IMFs of the relative displacements of the NES masses and
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Fig. 5.64 Continued.

the rod end response can be studied in detail by considering the plots of instan-
taneous IMF frequencies in Figures 5.63c, d, 5.64d–f and 5.65d–f. A synopsis of
these TRCs is given in Table 5.5. The numerous TRCs listed in Table 5.5 provide
an indication of the complexity of the broadband nonlinear modal interactions oc-
curring between the rod and the MDOF NES; these TRCs can be clearly detected
and systematically categorized by analyzing the corresponding time series by EMD.
Judging from the complex nonlinear TRCs occurring between the IMFs of the rod
end response and the IMFs of the relative responses of the MDOF NES, we con-
clude that the increase of the DOF of the NES increases its capacity to resonantly
interact with multiple modes of the linear continuum, compared to the SDOF NES
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Fig. 5.65 Rod end response u(L, t) of System II initiated at point B of the FEP of Figure 5.51
(� = 4.4 rad/s): (a, b, c) time series of 1st, 2nd and 3rd (dominant) IMFs superimposed to the
transient response; (d, e, f) instantaneous frequencies of the dominant IMFs superimposed to the
wavelet spectrum of u(L, t) (early time zoomed plots are also included); (g) signal reconstruction
of the response using the superposition of the three dominant IMFs.

case. This yields a wider range of modal interactions between the rod and the MDOF
NES, and enhanced broadband TET.
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Fig. 5.65 Continued

5.5 Plate with SDOF and MDOF NESs

In our final study of TET in elastic systems we consider a more complicated system,
namely, a thin plate lying on an elastic foundation with SDOF or MDOF NESs at-
tached to it. This study is discussed in more detail in the thesis by Georgiades (2006)
and in the paper by Georgiades and Vakakis (2008), so here we will only present a
synopsis of the main results. In addition to broadband TET, we study the strongly
nonlinear modal interactions in the damped dynamics by employing the combined
WT-EMD post-processing technique outlined previously. The following NES con-
figurations will be considered in this section: (i) a single ungrounded, essentially
nonlinear SDOF NES; (ii) a set of two SDOF NESs attached at different points of
the plate; and (iii) a single MDOF NES with multiple essential stiffness nonlinear-
ities. We will examine in detail the underlying dynamical mechanisms governing
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Fig. 5.65 Continued

TET in these cases by detecting the dominant TRCs that occur between the plate
modes and the NESs. Moreover, we will perform comparative studies of the perfor-
mance of the three considered NES configurations to the case of single or multiple
linear Tuned-Mass-Dampers (TMDs).

The plate on the linear elastic foundation is depicted in Figure 5.66. It consists
of a linear isotropic elastic plate with mass distribution per unit area equal to M ,
width W , length L, thickness h, and distributed proportional viscous damping per
unit area equal to d . The plate is clamped on one edge only, with all other edges
remaining traction-free, and is resting on a distributed elastic foundation with stiff-
ness per unit area equal to k. The plate is assumed to be sufficiently thin, so that to a
first approximation its shear deformation may be neglected (the so-called Kirchhoff
assumptions).

Hence, the governing partial differential equation of motion and the associated
boundary conditions are given by (assuming that the plate is initially at rest)

D∇4w +M∂
2w

∂t2
+ d ∂w

∂t
+ kw = F(t)δ(x − bx, y − by)
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w(x, 0, t) = 0,
∂w(x, 0, t)

∂x
= 0, w(x, y, 0) = 0,

∂w(x, y, 0)

∂t
= 0

My(0, y) =My(W, y) = My(x,L)− 0

Qy(0, y) = Qy(W, y) = Qy(x,L) = 0 (5.89)

where F(t) is the applied external excitation, δ(·, ·) is Dirac’s generalized function,
and the differential operator ∇ applies to both x and y directions. In (5.89) the
variables My(·, ·) and Qy(·, ·) denote the internal bending moments about the y-
axis and the shear forces along the y-axis of the plate, respectively (see Figure 5.66).
Moreover, the flexibility D in the equation of the plate is defined as

D = Eh3

12(1 − ν2)

where E is the modulus of elasticity and ν Poisson’s ratio for the material of the
plate (Leissa, 1993). The problem (5.89) is non-dimensionalized, with the following
numerical values assigned for the plate parameters:

W = L = 1, h = 0.01, M = 1, D = 1, ν = 0.3, k = 100 (5.90)

which are in accordance to the assumptions of thin plate theory; in the following
simulations the damping coefficient is assigned the value d = 10 for the case of a
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Table 5.5 Main TRCs and multimodal interactions in the transient responses of System II (see
Figures 5.63–5.65).

single force (shock) applied to the plate, and d = 15 for the case of multiple forces
applied to the plate.

We assume that at t = 0 a single or multiple transient forces (shocks) are applied
to the plate. Each shock has the form of a half sine pulse:

F(t) =
{
A sin(2πt/T ), 0 ≤ t ≤ T/2
0, t > T/2

(5.91)

In the case of a single applied shock, its position on the plate is given by, (bx, by) =
(1, 1); whereas, in the case of multiple applied shocks, their positions on the plate
are given by (bx1, by1) = (0.6, 0.5) (for shock 1), (bx2, by2) = (0.5, 0.5) (for
shock 2) and (bx3, by3) = (0.4, 0.5) (for shock 3). Unless otherwise stated, in single
shock simulations the shock amplitude is taken as A = 100 and its period as T =
0.1T5 where T5 is the period of the fifth mode of the linear plate no attachment.
This requirement ensures that the applied shock has sufficiently small duration to
directly excite at least the leading five modes of the plate; this enables us to study
the capacity of the NES(s) to passively absorb broadband vibration energy from
multiple plate modes. In multiple shock simulations, the shock amplitudes are taken
as A1 = 25, A2 = −100 and A3 = 25, and the shocks are assumed to possess a
common period equal to T = 0.1T5.
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Fig. 5.66 Linear cantilever plate on elastic foundation.

The partial differential equation in (5.89) was discretized using 4-node quadri-
lateral elements, and non-conforming shape functions with corner nodes (with 12
degrees of freedom) (Zienkiewicz and Taylor, 2000; Liu and Quek, 2003). In each
node, the transverse displacement s and the rotations about the x- and y-axes were
considered. For this specific finite element, the explicit forms of the matrix of shape
functions was derived by Melosh (1963), and expressed simply in terms of local
normalized coordinates at each node. The FE discretization is described in detail in
the thesis by Georgiades (2006), based on the energy approach, i.e., on the estima-
tion of the energies of a single finite element from Kirchoff’s plate theory and based
on this estimate on the derivation of the corresponding FE mass matrices and FE
displacements. Using a connection matrix that indicates which nodes correspond to
adjacent elements, the full structural matrices of the plate were constructed (Geor-
giades, 2006). Then, the discrete system was solved numerically using the Newmark
Algorithm [for details, see (Geradin and Rixen, 1997)]. In Table 5.6 the leading nat-
ural frequencies and corresponding mode shapes of the unforced and undamped
plate estimated using the FE simulation, are presented. A sensitivity analysis was
performed to find the required number of discrete elements for convergence of the
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Table 5.6 FE computation of the leading modes of the plate on elastic foundation (k = 100) with
no NES attached.

results; it was determined that a total of 10 × 10 elements (10 in each direction)
were sufficient for accurate transient numerical simulations. The verification of the
accuracy of the natural frequencies was performed for the case of the plate with no
elastic foundation (k = 0) using a model in ANSYS�, and, also by comparing with
the results reported in Leissa (1993).

We now assume that a single ungrounded NES is attached at position (x, y) =
(dx, dy) of the plate. The NES is assumed to be lightweight – of mass ε 	 1
– and to possesses an essentially nonlinear (nonlinearizable) cubic stiffness with
characteristic C, in parallel to a viscous damper λ. With the addition of the NES the
modified equations of motion together with the boundary and initial conditions take
the form:

D∇4w +M∂
2w

∂t2
+ d ∂w

∂t
+ kw

+ {
C[w(dx, dy)− v(t)]3 + λ[ẇ(dx, dy)− v̇(t)]

}
δ(x − dx, y − dy)

= F(t)δ(x − bx, y − by)
εv̈(t)+ C[v(t)− w(dx, dy)]3 + λ[v̇(t)− ẇ(dx, dy)] = 0

w(x, 0, t) = 0,
∂w(x, 0, t)

∂x
= 0

My(0, y) = My(W, y) = My(x,L) = 0

Qy(0, y) = Qy(W, y) = Qy(x,L) = 0
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w(x, y, 0) = 0,
∂w(x, y, 0)

∂t
= 0, v(0) = 0, v̇(0) = 0 (5.92)

The dynamics of the NES is incorporated into the discretized FE equations of mo-
tion by expanding accordingly the system matrices, and adding a nonlinear stiffness
component (due to the essential cubic nonlinearity) (Georgiades, 2006).

The TET capacity of the NES is studied by estimating the following energy dis-
sipation measure (EDM):

ENES(t) =
λ

∫ t

0
[ẇ(dx, dy, τ )− v̇(τ )]2dτ∫ t

0
F(τ)ẇ(bx, by, τ )dτ

× 100 (5.93)

This represents the percentage of shock energy of the plate dissipated by the damper
of the NES up to time t . It is clear that with increasing time the EDM reaches an
asymptotic limit, ENES,t�1 = limt�1ENES(t), which represents the portion of the
shock energy of the plate that is eventually dissipated by the NES by the end of
the oscillation. The percentage of input shock energy dissipated by the distributed
viscous damping of the plate up to time instant t is computed by:

Eplate(t) =
1

2

∫ L

0

∫ W

0

∫ t

0
d

[
∂w(x, τ )

∂t

]2

dτdxdy∫ t

0
F(τ)ẇ(bx, by, τ )dτ

× 100 (5.94)

Combining (5.93) and (5.94), the percentage of input shock energy dissipated by the
plate-NES system up to time instant t is computed as follows:

Etotal(t) = ENES(t)+ Eplate(t) (5.95)

Similar formulations hold when multiple SDOF NESs, MDOF NESs or linear
tuned mass dampers (TDMs) are attached to the plate. We only mention that for the
case of single MDOF NES attached to the plate the equations of motion are given
by:

D∇4w +M∂
2w

∂t2
+ d ∂w

∂t
+ kw

+ {
C0[w(dx, dy)− v(t)]

}
δ(x − dx, y − dy) = F(t)δ(x − bx, y − by)

m1v̈(t)+ C0[v(t)−w(dx, dy)] + λ[v̇(t)− u̇(t)] + C1[v(t)− u(t)]3 = 0

m2ü(t)+ λ[u̇(t)− v̇(t)] + C1[u(t)− v(t)]3

+ λ[u̇(t)− ṡ(t)] + C2[u(t)− s(t)]3 = 0

m3s̈(t)+ λ[ṡ(t)− u̇(t)] + C2[s(t)− u(t)]3 = 0
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w(x, 0, t) = 0,
∂w(x, 0, t)

∂x
= 0

My(0, y) = My(W, y) = My(x,L) = 0

Qy(0, y) = Qy(W, y) = Qy(x,L) = 0

w(x, y, 0) = 0,
∂w(x, y, 0)

∂t
= 0

v(0) = 0, v̇(0) = 0, u(0) = 0, u̇(0) = 0, s(0) = 0, ṡ(0) = 0(5.96)

Details of the FE formulation and the corresponding structural matrices of the inte-
grated system can be found in Georgiades (2006). The effectiveness of the NES
to passively absorb and locally dissipate the shock energy of the plate (i.e., the
TET efficiency) is studied by computing the following energy dissipation measures
(EMDs):

ENES 1(t) =
λ

∫ t

0
[u̇(τ )− v̇(τ )]2dτ∫ t

0
F(τ)ẇ(bx, by, τ )dτ

× 100

ENES 2(t) =
λ

∫ t

0
[ṡ(τ )− u̇(τ )]2dτ∫ t

0
F(τ)ẇ(bx, by, τ )dτ

× 100 (5.97)

i.e., the percentage of shock energy dissipated by each of the two dampers of the
MDOF NES up to time t . The summation of these two EMDs provides a measure of
the TET efficiency of the MDOF NES. It should be clear that the two EMDs reach
definite asymptotic limits ENES 1,2,t�1 = limt�1ENES 1,2(t) as time progresses.

The results of the simulations are post-processed using numerical WTs and
EMD. In addition, we examine the portion of shock energy dissipated by each of
the two subsystems, i.e., the plate and the NES(s); moreover, in certain simulations
we examine the energy transaction measure (ETM) ETrans, as defined by relation
(5.26) in Section 5.2.1. The ETM is an important energy measure from a physics
point of view, since it helps us identify inflow or outflow of energy from the plate to
the NES or vice versa; in particular, when there is inflow from the plate to the NES it
holds that ETrans > 0, whereas, negative values of the ETM correspond to backscat-
tering of energy from the NES to the plate. We recall that the ratio ETrans/
t where

t tends to zero represents the power flow from the plate to the attachment and vice
versa.

In the following sections all simulations are performed for a sufficiently long
time window so that at least 96.5% of the energy of the system is been eventually
dissipated by damping. This ensures that no essential dynamics is missed in the
transient simulations due to insufficient time of numerical integration. All sets of
simulations with SDOF nonlinear attachments are performed with using a (10 ×
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10) FE mesh for the plate. To better depict the results we divide the plate into ‘y-
slices’ corresponding to fixed values of y. The parametric studies of the plate with
an attached MDOF NES are performed with the NES located at all x-positions on
three ‘y-slices’, namely, y = 1.0, 0.7 and 0.3, again using a (10 × 10) FE mesh.

5.5.1 Case of a SDOF NES

In the first parametric study we examine TET in a plate forced by single or multiple
shocks, possessing a single SDOF NES attachment. We perform four main sets of
FE simulations, and examine the influence of the variation of the NES parameters
and input energy on TET from the plate to the NES, using as criterion the portion of
total energy eventually dissipated by the NES, ENES,t�1 = limt�1ENES(t). Unless
otherwise stated, the mass of the NES is taken as ε = 0.05, the nonlinear stiffness
characteristic as C = 103, and the damping coefficient as λ = 0.1.

In the first set of simulations we examined the influence of the nonlinear stiffness
coefficientC and the NES position on TET. In Figure 5.67 we depict the asymptotic
limit of EMD ENES,t�1, as function of C and the x-position of the NES on the
‘slice’ y = 1. In Figure 5.67a (corresponding to C in the range [100, 3000]) we
depict the results for single shock excitation, whereas in Figure 5.67b (with C ∈
[100, 1000]) we depict the corresponding results for multi-shock excitation; for the
simulations depicted in Figure 5.67b the mass of NES is fixed to the smaller value
ε = 0.005.

We conclude that for a fixed x-position of the NES, TET is robust in variations
of C when C is in the range O(102) − O(103). Moreover, the variation of the x-
position of the NES on a fixed ‘y-slice’ affects strongly TET; this sensitivity can be
explained by the fact that certain locations of the NES may be close to nodal curves
of the different modes of the plate, where the capacity of the NES to passively
absorb and dissipate energy from these particular modes is hintered. This becomes
clear when we depict TET efficiency as function of the position of the NES for
fixed values of C (see Figure 5.68). The maximum efficiency of the NES occurs
when it is positioned at the corners of the plate, with maximum values of the EDM
ENES,t�1 reaching levels of 87.72% and 89.28%, for NES positions (x, y) = (0, 1)
and (1, 1), respectively. The interpretation of the results depicted in Figure 5.68
(corresponding to single shock excitation) must be performed in conjunction with
the results of Table 5.6, which depicts the nodal curves of the five leading modes of
the linear cantilever plate (with no NES attached). The strips close to the ‘y-slices’
y = 0.8 and y = 0.9 are close to the free edge of the plate and the nodal lines of
the 3rd and 5th plate modes; as a result, the NES efficiency is low in these regions.
Similarly, in strips close to x = 0.2, 0.3, 0.7 and 0.8, the NES efficiency is relatively
low (of the order of 40%); again, this can be interpreted by the fact that these strips
are in neighborhoods of nodal curves of the 4th mode of the plate. Finally, there is
a strip in the middle of the plate, x = 0.5, where the lowest value of TET is noted;
this is due to the fact that this region is in the neighborhood of nodes of the 2nd
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Fig. 5.67 Parametric study of TET as function of NES stiffness C, and x-position on the plate for
the ‘y-slice’ y = 1: (a) single shock excitation with NES mass, and (b) multiple shock excitation.
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Fig. 5.68 Parametric study for TET efficiency as function of NES position on the plate for C = 103

and NES mass ε = 0.005; the clamped edge is at y = 0.

and 5th modes of the plate. Moreover, as depicted in Figure 5.68 the efficiency of
the NES decreases when the NES is located closer to the clamped end where the
displacements of the plate are reduced and the nonlinear effects are negligible.

In the second set of numerical simulations, we consider single shock excitation
and examine the influence of the damping coefficient λ on TET, with the NES at-
tached at every possible position on the plate. In Figure 5.69 we depict the asymp-
totic EDM ENES,t�1, as function of the NES damping coefficient λ in the range
λ ∈ [0.01, 0.5], and the x-position of the NES for a representative ‘y-slice’, y = 1.
We note a deterioration of NES efficiency with decreasing damping coefficient.
This trend, however, does not necessarily mean that by indefinitely increasing NES
damping we will achieve continuous enhancement of NES efficiency. Indeed, for
sufficiently large values of NES damping the relative motion between the NES and
the plate is expected to significantly decrease (as the connection between the plate
and the NES becomes more rigid); this, in turn, will result to decrease of the relative
motion across the damper of the NES, and, hence, to the deteoration of the capacity
of the NES damper to dissipate shock energy.

In the final set of simulations of this series, we examine the influence of the input
energy and the nonlinear stiffness characteristic on TET, when the NES is located
at position (x, y) = (0, 1). We assume that a single shock is applied to the plate,
and examine shock amplitudes in the range A ∈ [0.001, 100]. In Figure 5.70 we
depict the results of this parametric study. We note the strong dependence of TET
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Fig. 5.69 Parametric study of TET as function of the damping coefficient λ and the x-position of
the NES on the plate, for fixed y = 1.

Fig. 5.70 Parametric study of TET as a function of the shock magnitude (input energy) and stiff-
ness C, for NES position at (x, y) = (0, 1).

efficiency on the magnitude of the shock: for low shock magnitudes and irrespec-
tive of the values of C TET is of the order of 87%; however, for increasing shock
magnitudes and nonlinear stiffness characteristics, TET efficiency decreases within
a small range, of the order of 7%.

A conclusion from this first parametric study is that strong TET can be realized
from the plate to a SDOF NES, especially when the NES is located at points of
the plate corresponding to antinodes of energetically high plate modes. Indeed, it
is possible to passively transfer from the plate and locally dissipate at the NES as
much as 87% of the shock energy of the plate. Moreover, the integrated plate-NES
system can be designed for robust TET.
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Fig. 5.71 Dominant IMFs of the response of the SDOF NES and of the plate at the point of
attachment, superimposed to the corresponding time series.



152 5 TET in Linear Continuous Systems with Single- and Multi-DOF NESs

To study in more detail the nonlinear modal interactions that give rise to TET in
the plate-SDOF NES system, we isolate a specific case corresponding to a plate with
parameters as specified previously, and the SDOF NES attached at (x, y) = (0, 0.5),
with parameters C = 3 × 103, λ = 0.1 and ε = 0.05. We assume that there is a
single applied shock in the form of a half-sine applied at (x, y) = (1, 1), i.e., at
one of the free corners of the plate. In this specific case 64.35% of the shock energy
of the plate gets eventually transferred to and locally dissipated by the NES. We
examine the transient nonlinear resonance interactions (TRCs) occurring between
the plate response at the point of attachment to the NES, and the NES response, and
focus mainly in the highly energetic, early stage of the response where the nonlinear
effects are expected to be more profound. Specifically we wish to analyze nonlinear
modal interactions and TRCs in the dynamics in the early time interval 0 < t < 5,
where more than 75% of the shock energy is been dissipated. Following the post-
processing methodology outlined in previous sections, the damped responses of the
plate and the NES are analyzed by numerical WTs and then decomposed in terms
of Intrinsic Mode Functions (IMFs) using EMD (Georgiades, 2006). By superim-
posing the instantaneous frequencies of the IMFs to the corresponding WT spectra
of the transient responses we can deduce the dominant IMFs of the responses, as
depicted in Figures 5.71a–e. Following our post-processing methodology, the deter-
mination of the dominant IMFs of the plate and NES responses enables us to detect
the dominant TRCs that govern TET in this case.

Considering the plate response, the 5th and 6th IMFs are dominant (see Fig-
ures 5.72a, b), whereas the 1st, 2nd and 3rd IMF of the NES response are also
dominant (see Figures 5.72c–e). By computing the ratios of the instantaneous fre-
quencies of the dominant IMFs of the plate and the NES responses we can identify
the possible types of k:m TRCs that occur in the transient dynamics, as well as,
the corresponding time intervals where these TRCs occur. Considering the instanta-
neous frequency plots depicted in Figure 5.72 we deduce 1:1 TRCs between (a) the
5th IMF of the plate and the 3rd IMF of the NES at frequency close to 1.9 Hz in the
time interval 0.25 < t < 3.25 (TRC I); (b) the 5th IMF of the plate and the 1st IMF
of the NES close to 1.9 Hz in the time interval 6 < t < 12 (TRC II); and (c) the 6th
IMF of the plate and the 2nd IMF of the NES close to 1.9 Hz in the time interval
8 < t < 14 (TRC III). These TRCs are responsible for passive TET in this specific
case, and this post-processing analysis enables us to identify the corresponding non-
linear resonance interactions between the embedded oscillatory modes in the plate
and NES responses.

5.5.2 Case of Multiple SDOF NESs

The parametric study of TET efficiency in terms of NES location carried out in the
previous section revealed locations where TET is weak, and alternative locations
where TET is strong (with corresponding asymptotic EDM of the order of more than
70%). The computational study carried out in this section aims to investigate possi-
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Fig. 5.72 Instantaneous frequencies of the dominant IMFs superimposed to the WT spectra of the
corresponding responses: (a, b) 6th and 7th IMF of the plate response; (c, d, e, f) 1st, 2nd, 3rd and
4th IMF of the SDOF NES response; dominant 1:1 TRCs between IMFs are indicated by I, II and
III.
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Fig. 5.73 Comparative study of TET efficiency when using two single NESs, and a set of two
NESs; single shock excitation is considered.

ble enhancement of TET through the use of multiple SDOF NESs. The parameters
used for the plate and the applied shock in the following numerical simulations are
identical to those employed in the simulations of Section 5.5.1. In this case, how-
ever, we consider two SDOF NES attached to the plate, with each NES possessing
mass ε = 0.005 (i.e., 0.5% of the total mass of the plate), stiffness C = 103, and
damping coefficient λ = 0.1. A single shock excitation is applied to the plate, of the
same form and position as in the previous section.

In the following numerical simulations we examine seven specific cases (desig-
nated as Cases A–G) where two SDOF NESs are located at various positions on the
plate. Of specific interest are cases where the NESs are located at nodal curves of
plate modes. In Figure 5.73 we depict a bar diagram depicting NES efficiencies for
all seven cases considered. In that diagram we compare the efficiencies of single
NESs attached separately to either one of the two locations occupied by the set of
two NESs, to the efficiency of the set of two NESs when they are both simultane-
ously attached to the plate. In each case we indicate the position of the two NESs.
For case A TET corresponding to attaching separately the two NESs is 36.13% and
21.58%, respectively, but this number increases to 61.02% when both NESs are at-
tached simultaneously to the same locations; we note that the later number exceeds
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the sum of the previous two, i.e., the synergetic TET achieved by the set of two
NESs is enhanced compared to the sum of TETs when each of the two NESs is ap-
plied separately. This demonstrates a positive synergy effect of the set of two NESs,
which, however, is not expected to persist in the other cases where NES locations
more favourable to TET are considered.

In case B, the first NES is located at position (x, y) = (0.2, 0, 8), which is a
crossing point of the nodal curves of the 3rd and 4th plate modes, and the second
NES at (x, y) = (0.5, 1.0), which is the location corresponding to weakest TET
when a single NES is used. Again, in this case synergetic TET for the set of two
NESs increases significantly to 60.4%, which exceeds the sum of the individual
TETs achieved when the NESs are applied separately at the same locations. Hence,
TET is again improved by positive synergy of the set of NESs in this case.

To further investigate synergetic NES effects on TET, in cases C, D, E and F we
consider the set of NESs at positions on the plate where high individual TETs are
achieved for a single SDOF NES (between 60–70% – such locations are at the edges
of the plate, x = 0, 1). For cases C, D, E and F we place the NESs at the edges of the
plate x = 0, 1, with y = 0.6, 0.7, 0.8 and 0.9, respectively. For these cases we note a
slight improvement (about 10%) of the synergetic efficiency of the set of two NESs
(see Figure 5.73). Finally, there are two locations where the efficiency of the single
SDOF NES is very high (more than 80%); these are the two free corners of the plate.
The numerical simulations indicate that by attaching the two NESs simultaneously
to these locations (case G), we obtain a combined TET efficiency of 89.9%, which
can be considered as the optimal synergetic TET efficiency that can be achieved by
the set of two NESs on the plate. We note, however, only marginal improvement in
TET efficiency compared to using the two NESs in isolation at the same locations.

In conclusion, the use of the set of two NESs improves TET efficiency in regions
where the use of single (isolated) NESs leads to poor TET performance. In such
regions there occur positive synergisms between the two NESs of the set, which
leads to TET efficiencies that exceed the sum of the efficiencies of single NESs
when these are used in isolation. The use of multiple NESs, however, improves only
marginally TET efficiency in locations where the isolated NESs already yield good
TET performance.

5.5.3 Case of a MDOF NES

We now consider TET from the plate to a single MDOF NES. The equations of
motion of this system are given by (5.96), and TET efficiency is judged by the
energy dissipation measures (5.97) and their long-time asymptotic values. The first
set of numerical simulations of this series was performed in order to examine the
effect of the linear coupling stiffness on TET. The plate parameters are identical
to the ones used for the case of SDOF NES attachment, and the applied shock is
the half-sine excitation used in previous simulations, defined by relation (5.91); the
duration of the applied shock was selected sufficiently small to directly excite at
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Fig. 5.74 Parametric study of TET for a MDOF NES located at every possible x-position on the
‘slice’ y = 1, for coupling stiffness C0 = 300.

least the leading five modes of the plate – however, additional plate modes may
be indirectly excited through nonlinear coupling provided by the MDOF NES. The
three masses of the MDOF NES are assumed to be small, m1 = m2 = m3 =
0.005/3, with the total mass of the MDOF NES being equal to the smallest mass of
the SDOF NES used in the parametric study of the previous section. In this way we
wish to perform a comparative study of the SDOF and MDOF NESs, without any
effects due to added mass. The two nonlinear stiffnesses of the NES are selected as
C1 = 5.0 and C2 = 0.1, whereas the two dampers of the NES possess identical
damping coefficients λ = 0.1.

In Figure 5.74 we depict the long-time asymptotic value of the combined EDM
ENES 1,t�1 + ENES 2t�1 = limt�1[ENES 1(t) + ENES 2(t)], which represents the
portion of shock energy of the plate eventually dissipated by the two dampers of the
MDOF NES, as function of the coupling stiffness C0 (in the range [10, 1000]), and
the x-position of the NES for the representative ‘y-slice’ y = 1. A conclusion from
these numerical results is that TET appears to be robust for varyingC0 provided that
this is above the threshold C0 = 100, and for every possible x-position of the NES
(as depicted in Figure 5.74). Moreover, strong TET from the plate to the MDOF NES
is realized for relatively stiff coupling stiffnesses. The levels of optimal TET values
attained by using MDOF NESs reaches levels of 80%, which are comparable to the
ones attained by using SDOF NESs. Similarly to the case of the SDOF NES (see
Section 5.5.1), the variation of the position of the MDOF NES appears to strongly
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Fig. 5.75 Parametric study of TET for a MDOF NES located at every possible position on the
plate, for coupling stiffness C0 = 300.

affect TET, as depicted in Figure 5.74; however, this will be more evident in the
second set of simulations that we now proceed to discuss.

In the second set of simulations we examine the influence of the position of the
MDOF NES on TET; for this, we examine MDOF NES placement at every possible
position on the plate, and apply the same NES parameters as in the previous set of
simulations. In addition, we fix the coupling stiffness to C0 = 300. In Figure 5.75
we depict TET as function of the NES position. Predictably, the highest values of
TET are obtained when the MDOF NES is situated at the free corners of the plate,
reaching 85.85% for NES position at (x, y) = (1, 1), and 76.67% at (0, 1). At these
positions the MDOF NES can interact with all plate modes, as no nodal curves
of low-order modes are located nearby. Similarly to the case of the SDOF NES,
the interpretation of the results depicted in Figure 5.75 should be carried out in
conjunction with Table 5.6, which depicts the nodal curves of the leading five modes
of the uncoupled plate with no elastic support (labeled from hereon as the ‘plate
modes’).

From Figure 5.75 we deduce that the efficiency of the NES decreases when it is
located closer to the clamped end, where the displacements of the plate are small
and the nonlinear effects are less profound. Since passive TET is the result of non-
linear resonance interactions (TRCs) between the plate and the NES, it is reasonable
to expect that in low-amplitude regimes the effectiveness of the MDOF should de-
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teriorate. As demonstrated, however, in Section 4.1.2 and in Tsakirtzis (2006) and
Tsakirtzis et al. (2007b) it is possible (under certain forcing conditions and at def-
inite ranges of NES parameters) to achieve efficient TET from a directly forced
linear system to a MDOF NES, even at low amplitude regimes; such a case, how-
ever, was not realized in the simulations considered herein. An additional set of
numerical simulations examining the influence on TET efficiency of the magnitude
of the applied shock and the (linear) coupling stiffness C0 is reported in Georgiades
(2006) and Georgiades and Vakakis (2008). It was found that TET does not depend
significantly on the variation of shock input.

The analysis of the complex nonlinear modal interactions and the correspond-
ing TRCs that govern TET in this system can be performed by applying the com-
bined Wavelet/EMD post-processing methodology. As the analysis becomes quite
involved (since each of the transient responses of all three masses of the NES that
must be considered in this case) we do not present any results here, and refer the
reader to the thesis by Georgiades (2006) for a detailed presentation. In the next
section we conclude our study of TET in the plate-NES system by performing a
comapartive study of energy absorption performance with the linear vibration ab-
sorber (or tuned mass damper – TMD); this study will demonstrate the qualitative
differences in the dynamics and superior shock absorption performance of the non-
linear designs compared to conventional linear ones.

5.5.4 Comparative Study with Linear Tuned Mass Damper

We now present the results of a parametric study of the plate with a linear TMD
attached. We will assess the capacity of the TMD to absorb and locally dissipate
shock energy from the plate by varying the TMD parameters and its position on the
plate. Then we will compare the results with the corresponding ones derived when
applying SDOF or MDOF NESs to the plate. We perform a series of simulations
considering single and multiple shock excitations applied to the plate. In each of
these sets, the efficiency of the TMD to passively absorb and locally dissipate shock
energy from the plate is estimated by the following asymptotic limit:

ETMD,t�1 = lim
t�1
ETMD(t), ETMD(t) =

λ

∫ t

0
[ẇ(dx, dy, τ )− v̇(τ )]2dτ∫ t

0
F(τ)ẇ(bx, by, τ )dτ

× 100

(5.98)
where v(t) is the response of the TMD. This represents the portion of the shock
energy of the plate that is eventually dissipated by the damper of the TMD, and
is similar to the EDMs defined in previous sections to assess the TET capacity of
SDOF and MDOF NESs.

In the first set of these simulations we examine the potential of the TMD to
absorb and dissipate shock energy by varying its stiffness and its location on the
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Fig. 5.76 Efficiency ETMD,t�1 of the linear TMD as a function of its stiffness and its x-position
on the plate for the ‘y-slice’ y = 1, for single shock excitation.

plate, for single shock excitation. The system parameters of the plate were defined
in Section 5.5.1, the TMD mass is selected as ε = 0.05, and its damping coefficient
as λ = 0.1; these are identical to the parameters used for the simulations with
the SDOF NES attachment in Section 5.5.1, so the two sets of simulations can be
directly compared. In Figure 5.76 we depict the efficiency of the TMD, ETMD,t�1,
as function of its stiffness and x-position on the plate, for the fixed ‘y-slice’ y = 1
(i.e., at the free edge of the cantilever plate). This result should be compared to the
plot of Figure 5.67a for the SDOF NES. We note that the variation of the location
of the TMD strongly affects its efficiency, in a manner similar to the SDOF and
MDOF NES attachments examined previously. Indeed, when the TMD is located
at positions close to nodal lines of the plate, the TMD can not interact with the
corresponding plate modes, and therefore the absorption of shock energy from the
plate deteriorates. Moreover, when the TMD is ‘tuned’ to the i-th plate mode, i.e.,
when its stiffness is equal to kln = ω2

i ε, where ωi is the i-th natural frequency
of the (uncoupled and linear) plate, its efficiency in extracting energy from that
mode is high. However, for relatively high stiffness values of the TMD, i.e., when
it is ‘detuned’ from the leading plate modes, its efficiency deteriorates, as expected.
Comparing to the plot of Figure 5.67a we note that the TET efficiency for the case of
SDOF NES does not show such dependence on stiffness, and hence, its performance
is more robust to stiffness variations.
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Fig. 5.77 Efficiency ETMD,t�1 of the linear TMD as a function of its stiffness and its x-position
on the plate for the ‘y-slice’ y = 1, for multiple shock excitation.

In the second set of simulations we examine the effectiveness of the TMD for
variation of its stiffness and its location, for the case of multiple applied shocks.
The parameters used are identical to the first set of simulations presented above, but
the damping coefficient of the plate was selected as d = 15, and the TMD mass as
ε = 0.005; these system parameters are identical to the ones used in Section 5.5.1,
where the efficiency of the SDOF NES for multiple shock excitations was examined.
In Figure 5.77 we present the results for this set of simulations. Again, the stiffness
and position of the TMD appear to strongly affect its efficiency. Comparing these
results to the plot of Figure 5.67b we note again the insensitivity of the performance
of the SDOF NES to stiffness variations for the case of multiple shock excitation.

In order to compare the relative performance of the various nonlinear and linear
absorber configurations considered, we performed an additional set of simulations
for fixed attachment placement at (x, y) = (0, 1), away from the source of the single
applied shock at (bx, by) = (1, 1). For this set of simulations the plate parameters
are defined as in Section 5.5.1, and all SDOF attachments considered possess mass
ε = 0.005 (or 0.005% of the plate mass), and viscous damper coefficients λ = 0.1.
For the simulations corresponding to a MDOF NES, each of the three NES masses
was chosen equal to 0.005/3, and the two viscous damping coefficients where set to
λ = 0.1; hence no added mass effects were introduced. For simulations where the
coupling stiffness C0 varies the two nonlinear stiffness coefficients of the NES are
selected as C1 = 5.0 and C2 = 0.1; when the stiffness C1 varies the other stiffness
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Fig. 5.78 Comparison of TET efficiency of the different nonlinear and linear attachments for vary-
ing coupling stiffness.

coefficients are selected as C0 = 103 and C2 = 0.1; whereas when C2 varies the
other stiffness coefficients are given by C0 = C1 = 103. In Figure 5.78 we depict
the results for this set of simulations, from which we deduce that the strongest and
most robust TET is achieved for the case of SDOF NES. As expected, the TMD
is effective only when it is ‘tuned’ to energetically strong plate modes, and its per-
formance rapidly deteriorates when ‘detuning’ occurs. In contrast, the essentially
nonlinear SDOF and MDOF NESs possess no such detuning limitations as they
lack preferential ‘tuning’ frequencies; hence, these NESs are capable of engaging in
transient resonance (TRC) with plate modes at arbitrary frequency ranges, with the
only controlling parameter determining the resulting sequence of TRCs being their
instantaneous energies which ‘tune’ accordingly their instantaneous frequencies.

Finally, we examine in more detail the performances of the optimal configura-
tions of the SDOF NES and the TMD, in order to compare their corresponding
rates of TET from the plate. For this final set of simulations we considered multi-
ple shock excitations with plate parameters defined in Section 5.5.1 and distributed
damping coefficient d = 15. The attachments are located at one of the free corners
of the plate, (x, y) = (0, 1), and their parameters are given as ε = 0.005, λ = 0.1,
C = 100 for the SDOF NES, and kln for the TMD (i.e., it is tuned to the 4th nat-
ural frequency of the uncoupled linear plate). For the specific optimal configurations
considered, the corresponding TET efficiencies are 88.94% for the SDOF NES, and
82.24% for the TMD. Although the percentages of shock energy eventually dissi-
pated by these two configurations are comparable, the corresponding rates of TET
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Fig. 5.79 Transient energy dissipated for single shock excitation for a plate with or without attach-
ments; the optimal configurations for the SDOF NES and the TMD are considered.

differ drastically. The rates of shock energy dissipation can be deduced from the
plots of Figure 5.79, where the total energy dissipation measure Etotal(t) [see rela-
tion (5.95)] is depicted as a function of time; for comparison purposes the rate of
energy dissipation in the plate with no attachment is also depicted. We note that
for multi-shock excitation the required time for the integrated plate-TMD system to
dissipate 90% of the applied shock energy is approximately t ≈ 10.5, whereas the
corresponding time for the integrated plate-SDOF NES system is less than t = 3
(these results, of course, hold only for this multiple excitation case where three lin-
ear modes are excited with almost equal energy). Hence, nonlinear dissipation of
shock energy occurs on a faster time scale, a result which is in agreement with the
findings of previous works; actually, as shown in the thesis by Georgiades (2006),
the rate of nonlinear energy dissipation can be further increased by employing NESs
with non-smooth stiffness characteristics, a feature which has already been explored
in seismic mitigation designs (Nucera et al., 2007). The issue of vibro-impact NESs
will be studied in detail in Chapter 7, whereas their application to seismic mitiga-
tion will be studied in Chapter 10. In conclusion, apart from the lack of robustness
of TET in the case of the TMD for changes of parameters, the corresponding rate of
shock energy absorption and dissipation in the linear design is smaller compared to
the nonlinear design.

In conclusion, this comparative study demonstrates the improved robustness of
the considered NES designs, as well as the faster rate of nonlinear shock energy
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dissipation when essentially nonlinear attachments are used. This is an expected
finding, given that the NESs do not possess the single-tuning-frequency limitation
of the TMD; instead, since they possess no preferential set of resonance frequencies
they are capable of engaging in TRC with any plate mode (provided that the mode
has no node close to the point of attachment to the NES), over wide frequency
ranges. It is this capacity for broadband energy absorption that renders the NES
an efficient and adaptive passive boundary controller. From a practical point of
view, it is often encountered in engineering practice the situation that due to fatigue
or joint degradation the natural frequencies of a structure may gradually change,
detuning attached TMDs and rendering them inefficient; in such situations NES-
based designs should be able to still remain ‘tuned’ to structural modes and thus
maintain the efficiency of passive shock mitigation, with no further structural or
design modifications required.
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Chapter 6
Targeted Energy Transfer in Systems with
Periodic Excitations

Previous chapters demonstrated that the addition of a relatively lightweight strongly
nonlinear attachment to a primary (discrete or continuous) linear structure under
shock excitation can drastically modify its transient dynamic response and bring
about the TET phenomenon. Hence, it is not unreasonable to expect that similar
salient dynamical behavior will be revealed also for the case of external periodic
excitation. The transition from shock (broadband) to periodic (narrowband) excita-
tion, however, is not trivial, and the application of nonlinear energy sinks (NESs) to
structures under narrowband excitation deserves special consideration. For, exam-
ple, it is not obvious that the capacity for TET of an NES under conditions of shock
excitation of a primary structure can be extended to the case of periodic excitation.
This chapter treats exactly this problem.

We aim to demonstrate that the steady state response of a primary system un-
der harmonic excitation with an attached NES exhibits not only common steady
state and weakly modulated responses, but also a very special type of responses
characterized by large modulations of the resulting oscillations; this response type
is referred to as Strongly Modulated Response (SMR), and may be regarded as the
extension of the TET phenomenon to structures under periodic (narrowband) exci-
tation. Moreover, we demonstrate that SMRs are related to relaxation oscillations
of the corresponding averaged dynamical flows (the slow flows of the dynamics),
and in fact, one can regard SMRs as a form of repetitive TETs under the action of
persisting periodic forcing. The possible application of NESs as strongly nonlin-
ear vibration absorbers for vibration isolation of harmonically forced single- and
multi-DOF primary subsystems is then discussed, and it is shown that under certain
conditions, the efficiency of the NESs as vibration isolators can far exceed that of
properly tuned linear absorbers (or tuned mass dampers – TMDs).
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6.1 Steady State Responses and Generic Bifurcations

6.1.1 Analysis of Steady State Motions

We initiate our study by considering a primary SDOF linear oscillator under har-
monic external excitation with an ungrounded, lightweight and essentially nonlinear
NES attached (Gendelman et al., 2006; Gendelman and Starosvetsky, 2007; Gendel-
man et al., 2008; Starosvetsky and Gendelman, 2008). This system is described by
the following set of equations,

ÿ1 + ελ(ẏ1 − ẏ2)+ (1 + εσ)y1 + 4

3
ε(y1 − y2)

3 = εA cos t

εÿ2 + ελ(ẏ2 − ẏ1)+ 4

3
ε(y2 − y1)

3 = 0 (6.1)

where y1 and y2are the displacements of the linear oscillator and the attachment
respectively, ελ the damping coefficient, εA the amplitude of the external force,
andεσ a frequency detuning parameter. The parameter ε 	 1 is the small parameter
of the problem which scales the coupling between the two oscillators, the damping
forces, the amplitude of the external force, the detuning parameter, and the mass of
the NES. The coefficients A, λ, σ are adopted to be of O(1). The coefficient of the
nonlinear term can be modified by proper rescaling of the dependent variables and
the forcing amplitude; the value (4ε/3) is chosen for the sake of convenience.

We will analyze the steady state periodic responses of (6.1) by the
complexification-averaging (CX-A) methodology introduced in previous chapters.
To this end, we apply the following coordinate transformations, denoting the center-
of-mass and relative displacements of the system,

v = y1 + εy2

w = y1 − y2 (6.2)

and then switch the analysis to complex variables:

ϕ1 exp(j t) = v̇ + jv
ϕ2 exp(j t) = ẇ + jw (6.3)

By (6.3) we partition the dynamics into slow and fast components, and make the
additional ansatz that the sought steady state responses are in the form of fast oscil-
lations exp(j t) modulated by slowly-varying complex amplitudes ϕi(t). Moreover,
it is clear that we seek periodic solutions of (6.1) with dominant frequencies iden-
tical to the frequency of the external periodic force, and approximately equal to the
eigenfrequency of the linear oscillator (that is, the frequency detuning εσ provides a
slight frequency mismatch). Hence, we will be interested in fundamental nonlinear
resonances of system (6.1).
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After substitution of (6.2) and (6.3) into (6.1) and subsequent averaging aver the
fast oscillations of frequency unity, we obtain the following slow flow (complex
modulation) equations:

ϕ̇ + jε

2(1 + ε) (ϕ1 − ϕ2)− jεσ(ϕ1 + εϕ2)

2(1 + ε) = εA

2

ϕ̇2 + λ(1 + ε)ϕ2

2
+ j

2(1 + ε) (ϕ2 − ϕ1)

− jεσ(ϕ1 + εϕ2)

2(1 + ε) − j (1 + ε)
2

|ϕ2|2ϕ2 = εA

2
(6.4)

The system of equations (6.4) has a complicated structure and cannot be solved ana-
lytically. The first step towards analyzing its steady state solutions is to perform local
analysis of its equilibrium (fixed points). Such analysis is of significant physical in-
terest, since these points correspond to periodic responses of the system described
by equation (6.1). To find the fixed points we equate the time derivatives of (6.4) to
zero (ϕ̇1 = ϕ̇2 = 0) thus obtaining the following complex algebraic relations:

jε

2(1 + ε) (ϕ10 − ϕ20)− jεσ(ϕ10 + εϕ20)

2(1 + ε) = εA

2

λ(1 + ε)ϕ20

2
+ j

2(1 + ε) (ϕ20 − ϕ10)

− jεσ(ϕ10 + εϕ20)

2(1 + ε) − j (1 + ε)
2

|ϕ20|2ϕ20 = εA

2
(6.5)

By simple algebraic manipulations system (6.5) may be reduced to the following
more convenient form:[

λ2 + σ 2

(1 − σ)2
]

|ϕ20|2 + 2σ

1 − σ |ϕ20|4 + |ϕ20|6 = A2

(1 − σ)2

θ20 = sign(1 − σ) tan−1

[
σ

λ(1 − σ) + |ϕ20|2
λ

]

ϕ10 = (1 + εσ)ϕ2 − j (1 + ε)A
1 − σ ⇒ |ϕ10| =

(
1 + εσ
1 − σ

) |ϕ20| cos θ20

cos θ10

θ10 = sgn(1 − σ) tan−1
[

tan θ20 − (1 + ε)A
(1 + εσ) |ϕ20| cos θ20

]
(6.6)

The polynomial in the first of equations (6.6) can be brought into the following
compact form,

α1Z + α2Z
2 + α3Z

3 + α4 = 0 (6.7)

where
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|ϕ20|2 = Z, α1 = λ2 + σ 2

(1 − σ)2 ,

α2 = 2σ

(1 − σ)α3 = 1, α4 = −A2

(1 − σ)2 (6.8)

Depending on the system parameters and the coefficients (6.8), the generic poly-
nomial (6.7) can have one or three positive (real) solutions. Therefore, due to conti-
nuity one expects generically that at certain special critical values of the parameters
A, λ and σ two of these solutions will coalesce, yielding bifurcations of steady
state periodic solutions; generically, these will be saddle-node (SN) bifurcations
(although, as we will see later generic Hopf bifurcations can also be realized). At
points of bifurcation, both the polynomial (6.7) and its derivative with respect to Z
should be equal to zero:

3α3Z
2 + 2α2Z + α1 = 0 (6.9)

It follows that to compute the bifurcation points we need to satisfy simultaneously
the set of equations (6.7) and (6.9); this yields the bifurcation curve in parameter
space (A, λ, σ ) where SN bifurcations occur. Quite remarkably, the positions of
fixed points of the slow flow do not depend on the value of the NES mass ε, as indi-
cated by the following relation which yields the SN bifurcation points in parameter
space:

3α3(α1α2 − 9α3α4)
2 + 2α2(α1α2 − 9α3α4)(6α1α3 − 2α2

2)

+ α2(6α1α3 − 2α2
2)

2 = 0 (6.10)

The projections of the solutions of (6.10) to the two-dimensional plane of parame-
ters (A, λ) for σ = 3 are presented in Figure 6.1. Additional projections for various
positive and negative detuning values σ are presented in Figures 6.2 and 6.3. The
three-dimensional surface of the SN bifurcation boundary is presented in Figures 6.4
and 6.5. The plot depicted in Figure 6.4 is related to positive values of the detun-
ing parameter, whereas the plot of Figure 6.5 corresponds to negative values of the
detuning parameter.

In addition to SN bifurcations, where a stable steady state solution of the slow
flow simply disappears when it coalesces with an unstable one, there exists one ad-
ditional generic bifurcation scenario for loss of stability, namely, the realization of
Hopf bifurcations (Guckenheimer and Holmes, 1983; Wiggins, 1990). In order to
study this type of bifurcations of the slow flow (6.4), we should explore the condi-
tions for stability of the steady state solutions. To this end, we reconsider the equa-
tions of the slow flow (6.4) and introduce the small (complex) perturbations δi(t),
i = 1, 2 of the fixed points in the following form:

ϕ1 = ϕ10 + δ1, |δ1| 	 1

ϕ2 = ϕ20 + δ2, |δ2| 	 1 (6.11)
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Fig. 6.1 Curves of SN bifurcations for σ = 3.

Fig. 6.2 Curves of SN bifurcations for fixed positive detuning σ .

Substituting (6.11) into (6.4) and keeping only linear terms with respect to δi , i =
1, 2 in the resulting variational equations we obtains the following linearized system
of equations in terms of the perturbations,

δ̇1 = − jε

2(1 + ε) (δ1 − δ2)+ jεσ(δ1 + εδ2)
2(1 + ε)
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Fig. 6.3 Curves of SN bifurcations for fixed negative detuning σ .

Fig. 6.4 Surface of the SN bifurcations for positive values of detuning σ .

δ̇∗1 = jε

2(1 + ε) (δ
∗
1 − δ∗2)−

jεσ(δ∗1 + εδ∗2)
2(1 + ε)

δ̇2 = −λ(1 + ε)δ2
2

− j (δ2 − δ1)
2(1 + ε) + jεσ(δ1 + εδ2)

2(1 + ε)

+ j (1 + ε)|ϕ20|2δ2 + j (1 + ε)
2

ϕ2
20δ

∗
2
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Fig. 6.5 Surface of the SN bifurcations for negative values of detuning σ .

δ̇∗2 = −λ(1 + ε)δ∗2
2

+ j (δ∗2 − δ∗1 )
2(1 + ε) − jεσ(δ∗1 + εδ∗2)

2(1 + ε)

− j (1 + ε)|ϕ20|2δ∗2 − j (1 + ε)
2

ϕ∗2
20δ2 (6.12)

where asterisk denotes complex conjugate. The characteristic polynomial of the lin-
earized system (6.12) is given by

µ4 + γ1µ
3 + γ2µ

2 + γ3µ+ γ4 = 0 (6.13)

with

|ϕ20| = N20, γ1 = λ(1 + ε), γ3 = λε(εσ 2 + 1)/4,

γ2 =
(

3ε

2
+ 3

4
+ 3ε3

4

)
N4

20 + (ε2σ − 1)N2
20 + (ε + 1)2λ2 + (ε2σ 2 + 1)

4
,

γ4 = 3ε2(1 − σ)2
16

N4
20 + ε2σ(1 − σ)

4
N2

20 + ε2[(1 − σ)2λ2 + σ 2]
16

(6.14)

We note that the amplitude N20 provides the first-order approximation for the
amplitude of steady state periodic oscillation of the relative response w = y1 − y2
[i.e., the displacement between the linear oscillator and the NES – see equations
(6.1)]. This amplitude is directly related to the efficiency of steady state TET in the
system considered, since as discussed in previous chapters the capacity of the NES
to passively absorb and locally dissipate a significant portion of the energy of the
linear oscillator is directly tied to the relative responsew attaining large amplitudes.
Indeed, large amplitudes of the relative responsew signifies resonance interaction of
the NES with the linear oscillator (which is a prerequisite for TET), and, in addition,
it guarantees that the damping element coupling the NES to the linear oscillator
strongly dissipates vibration energy at steady state.
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Returning now to the variational system (6.12), a generic Hopf bifurcation in the
slow flow (6.4) occurs at points where the characteristic polynomial possesses a pair
of pure imaginary roots,

µ = ±j� (6.15)

where � is scalar denoting approximately the characteristic frequency of the peri-
odic orbit that is generated from the bifurcating fixed point. Clearly, this periodic
orbit of the slow flow modulations (6.4) corresponds to a torus of the full dynamical
system (6.1). Before proceeding to study the occurrence of Hopf bifurcations in the
slow flow we mention that the linearized variational equations (6.12–6.14) can also
be employed to recover the previous boundaries for SN bifurcations in parameter
space. Indeed, SN bifurcations of fixed points of the slow flow (6.4) correspond
to points where roots of the characteristic polynomial (6.13) are real and change
sign from negative to positive as the system parameters change. This provides an
alternative way for studying SN bifurcations in the steady state dynamics.

Returning now to our study of Hopf bifurcations, substituting (6.15) into the
characteristic polynomial (6.13) and splitting the resulting expression into real and
imaginary parts, we obtain expressions for the boundary of Hopf bifurcation in pa-
rameter space and for estimating the characteristic frequency�:

γ 2
3 − γ2γ3γ1 + γ4γ

2
1 = 0

�2 = γ3

γ1
⇒ � = ±1

2

(
ε2σ 2 + ε

1 + ε
)1/2

(6.16)

Additional algebraic manipulations reduce the first of expressions (6.16) in the fol-
lowing simpler form, in terms of the amplitudeZ = N2

20,

ν1Z
2 + v2Z + v3 = 0 (6.17)

where the coefficients in (6.17) are given by

v1 = −3

8
ε4σ 2λ2 − 3

8
ε2σλ2 − 3

4
ε3σλ2 − 3

16
λ2ε5σ 2 − 3

16
λ2ε3

− 3

8
ε4σλ2 − 3

16
λ2ε − 3

8
λ2ε2 − 3

16
ε3σ 2λ2

v2 = 1

4
λ2ε − 1

4
λ2ε4σ 3 − 1

4
ε4σ 2λ2 + 1

4
ε2σλ2 + 1

4
ε3σλ2

− 1

4
λ2ε5σ 3 + 1

4
λ2ε2 − 1

4
ε3σ 2λ2

v3 = 1

8
ε3σ 2λ2 − 1

16
λ2ε − 1

8
λ4ε4σ − 1

16
λ4ε3 − 1

16
λ4ε

− 1

8
λ4ε2 − 1

16
λ2ε5σ 4 − 1

8
λ4ε4σ 2 − 1

16
λ4ε5σ 2 − 1

16
λ4ε3σ 2
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Fig. 6.6 Curves of Hopf bifurcations for σ = 0.5 and ε = 0.05 (no SN bifurcations exist for the
parameter values chosen); points I and II refer to the bifurcation points of Figure 6.7.

− 1

8
λ4ε2σ − 1

4
λ4ε3σ

In addition to (6.17), the amplitude Z should also satisfy (6.7). Eliminating Z from
these two equations, we obtain the following Hopf bifurcation boundaries in para-
meter space, which also provide the boundaries of stability exchange of the fixed
points of the slow flow (6.4):

α1Z1 + α2Z
2
1 + α3Z

3
1 + α4 = 0

α1Z2 + α2Z
2
2 + α3Z

3
2 + α4 = 0 (6.18)

At points where Hopf bifurcations are realized the bifurcating fixed points are com-
puted by the expression:

Z1,2 =
(−v2 ∓

√
v2

2 − 4v3v1)

2v1
(6.19)

The region in parameter space of unstable fixed points of the slow flow (6.4) is
bounded by the two boundaries given by (6.18). In Figure 6.6 we depict the pro-
jection of the stability boundary (or boundary of Hopf bifurcations) to the (λ,A)
parameter plane for fixed values of σandε.

By now we have established the boundaries in three-dimensional parameter space
(A, λ, σ ) where SN and Hopf bifurcations of the slow flow (6.4) are realized. How-
ever in cases where more than one periodic solutions co-exist for the same set of
system parameters some uncertainty remains, as to which of these solutions under-
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Fig. 6.7 Hopf bifurcations for the case of a single periodic solution of (6.4), for λ = 0.2,σ = 0.5,
ε = 0.05; no SN bifurcations exist for these parameter values.

goes the bifurcation. In order to address this issue and thus complete the analysis,
we need to combine the previously computed bifurcation results in a single plot.
One way to present these results is the plot of Figure 6.7, where the amplitude of the
periodic solutionN20 = √

Z is depicted as function of the amplitude of the external
harmonic excitation A for fixed values of the detuning σ , the damping λ and the
NES mass ε. An alternative way is the combined bifurcation diagram of Figure 6.8
[which also depicts the boundaries of stability of the steady state periodic solution
of (6.1)] where the SN and Hopf bifurcation curves are presented in the parameter
plane (A, λ) for fixed values of the detuning σ and the NES mass ε. Additional
bifurcation results for several parameter values are depicted in Figures 6.8–6.11.

The bifurcation results presented at Figures 6.6–6.11 require some further dis-
cussion. Considering the bifurcation diagram of Figure 6.6, the region within the
boundaries of Hopf bifurcations relates to the unstable periodic solutions of the
slow flow (6.4), whereas the region outside these boundaries relates to stable ones.
The bifurcation diagram presented in Figure 6.7 depicts Hopf bifurcations for the
case where there exists a single branch of periodic solutions of the slow flow (6.4),
and corresponds to the ‘slice’ for λ = 0.2 of the diagram of Figure 6.6. Considering
now the boundaries for Hopf bifurcation depicted in Figure 6.8, we note that they
lie inside the region where three periodic solutions exist due to SN bifurcations.
In order to determine which of these periodic solutions exhibits Hopf bifurcations
we construct the bifurcation diagram of Figure 6.9, from which it becomes clear
that it is the low-amplitude branch of the periodic solutions. Indeed, the resulting
unstable region of the low branch of solutions refers to the internal region of the
Hopf bifurcation boundary presented in Figure 6.8 for damping value λ = 0.2.
The interior instability region between two SN bifurcation boundaries of Figure 6.8
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Fig. 6.8 Curves of Hopf and SN bifurcations on the plane (λ,A) for σ = 1.2 and ε = 0.05; points
I–IV refer to the bifurcation points of Figure 6.9.

Fig. 6.9 Hopf and SN bifurcations for the case of co-existing periodic solutions of (6.4), for λ =
0.2, σ = 1.2, ε = 0.05.

corresponds to the instability region of the middle-amplitude solution branch in Fig-
ure 6.9 for the same value of the damping. It should be mentioned that for λ = 0.2
the large-amplitude branch of periodic solutions remains always stable for the para-
meter ranges considered in the plot.
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Fig. 6.10 Curves of Hopf and SN bifurcations on the plane (λ,A) for σ = 5 and ε = 0.05; points
I–IV refer to the bifurcation points of Figure 6.11.

Fig. 6.11 Hopf and SN bifurcations for the case of co-existing periodic solutions of (6.4), for
λ = 0.1, σ = 5, ε = 0.05.

The last set of bifurcation diagrams (Figures 6.10 and 6.11) for σ = 0.5 is
qualitatively different from the previous cases, since in this case both the low- and
middle-amplitude branches of periodic solutions undergo Hopf bifuractions. Indeed
the Hopf bifurcations in this case bring a qualitatively new kind of loss of stability
as predicted by the stability boundaries of Figure 6.10. Thus, the lower boundary
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Fig. 6.12 Frequency response diagram (fundamental resonance plot) for A = 0.4, λ = 0.2 and
ε = 0.01; bold lines refer to unstable regions of periodic solutions, and thin lines to stable regions
(SN and Hopf bifurcations are also noted).

of Hopf bifurcations in Figure 6.10 corresponds to Hopf bifurcations of the mid-
dle branch of periodic solutions of the slow flow, whereas the upper boundary in
Figure 6.10 is related to bifurcations of the lower branch of periodic solutions. It
is essential to note that the both branches coalesce at the fold point (AŸ2.18 for
σ = 0.5).

Additional important information concerning the local bifurcations of the peri-
odic solutions of the slow flow (6.4) may be obtained by constructing frequency re-
sponse diagrams; these depict the amplitudeN20 = √

Z of the steady state periodic
solution as function of the detuning parameter σ , for fixed values of the amplitude
of external forcingA, damping λ, and NES mass ε. In Figure 6.12 we present a rep-
resentative frequency response diagram, with bifurcation points and stability types
of branches of solutions also marked in that diagram. Recalling the assumptions of
the analysis, the depicted frequency response provides an approximate fundamental
resonance plot of system (6.1). Although plots of this type do not convey much new
information compared to the previously considered bifurcation diagrams, they are
directly applicable to the problem of vibration isolation since they depict the ampli-
tudes of steady state responses in the frequency domain. We postpone discussion of
the issue of vibration isolation until Section 6.3. Regarding the frequency response
of Figure 6.12 we only mention at this point that there exists an upper stable branch
of steady state periodic solutions, corresponding to large-amplitude stable periodic
oscillations of the NES relative to the linear oscillator; this branch co-exists with a
stable low-amplitude branch of periodic responses corresponding to low-amplitude
relative oscillations. Additional examples of frequency response diagrams are pre-
sented in later sections.
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Fig. 6.13 Relative response y1(t) − y2(t) of system (6.1) for A = 0.225, λ = 0.2, ε = 0.05 and
σ = 0; initial conditions are y1(0) = 0.29, ẏ1(0) = 0.25, y2(0) = 0, and ẏ2(0) = −0.15.

Summarizing, the presented analysis indicates that there exist four types of bifur-
cations of equilibrium points of the slow flow (6.4); namely, SN bifurcations in the
domain of existence of three equilibrium points; Hopf bifurcations in the domain of
existence of a single equilibrium point; Hopf bifurcation of one equilibrium point in
the domain of existence of three equilibrium points; and Hopf bifurcations of two
equilibrium points in the domain of existence of three equilibrium points. Of course,
all these scenarios are different combinations of the two generic co-dimension 1 bi-
furcations, namely SN and Hopf bifurcations. We note that equilibrium points of
the slow flow (6.4) correspond to periodic solutions of the original dynamical sys-
tem (6.1), whereas periodic orbits generated (or eliminated) by Hopf bifurcations of
equilibrium points of the slow flow correspond to periodic or quasi-periodic oscilla-
tions on two-tori of the original system. A periodic or quasi-periodic oscillation on
a bifurcating two-torus corresponds to rational or irrational ratio, respectively, of the
frequency of the bifurcating periodic solution of the slow flow and the basic ‘fast’
frequency – taken as unity, see ansatz (6.3) – of the dynamics.
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Fig. 6.14 Relative response y1(t) − y2(t) of system (6.1) for A = 0.24, λ = 0.2, ε = 0.05 and
σ = 0;. initial conditions are y1(0) = 0.29, ẏ1(0) = 0.25, y2(0) = 0, and ẏ2(0) = −0.15.

6.1.2 Numerical Verification of the Analytical Results

As explained in detail in Section 2.4, the use of the CX-A approach for the analytical
treatment of essentially nonlinear systems assumes that the approximation (which
is formally justified only for weakly nonlinear systems), will remain correct in the
limit when the small parameter of the problem becomes of order unity. This as-
sumption requires additional verification. In order to achieve this goal, we perform
direct numerical simulations of the initial system (6.1) and verify independently the
predictions of the analysis. The response regimes for certain sets of parameters are
presented in Figures 6.13 and 6.14.

For the parameter values used for the numerical simulations of Figure 6.13, equa-
tion (6.8) reduces to the simple form 0.04Z+Z3 = 0.2242, which yields the single
real solution N20 = √

Z = 0.577. This value is in agreement with the amplitude
of the numerical solution depicted in Figure 6.13. Moreover, the conditions (6.17)
suggest that the combination of the parameters used for this particular simulation
corresponds to a stable periodic solution [i.e., to a stable fixed point of the slow flow
equations (6.4)], which again is in agreement with the findings of the numerical
simulation.

The parameters for the simulation depicted in Figure 6.14 were selected in order
to study the response in the zone where the analysis predicts that the periodic so-
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Fig. 6.15 Fast Fourier Transform of the response depicted in Figure 6.14.

lution is unstable. Indeed, the numerical solution is in the form of a quasi-periodic
oscillation, as evidenced by the slowly modulated fast oscillation of Figure 6.14.
For this particular simulation the corresponding point in parameter space is rather
close to the boundary of stability; therefore it is reasonable to suggest that the mod-
ulation frequency should be close to the characteristic frequency � at the point of
Hopf bifurcation. According to the second of relations (6.16), this value is predicted
as � = 0.109. In order to measure this frequency numerically, we perform Fast
Fourier Transform (FFT) of the response presented in Figure 6.14 and obtain the
frequency spectrum depicted in Figure 6.15. We deduce that, in addition to the main
peak corresponding to the response at the excitation frequency (i.e., the ‘fast’ oscil-
lation equal to unity), the FFT spectrum possesses a pair of secondary peaks which
are symmetric with respect to the main peak. The distance between each of the two
secondary peaks and the main peak corresponds to the modulation frequency. Direct
measurement yields the value 0.11, which is in near agreement with the theoretical
prediction.

We conclude that the analytic approach presented above yields reliable predic-
tions of the behavior of original forced system (6.1). Moreover, the approach is
rather sensitive, since the only difference between the plots of Figures 6.13 and 6.14
is an 8% difference in the forcing amplitude A. Still, this difference brings about
qualitatively different responses and the analytic approach succeeds to capture this
fact. So, the results of the CX-A technique are reliable and valid, at least in the
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regime of fundamental nonlinear resonances, and as long as the slow-fast partition
of the dynamics (6.3) (which was a basic assumption of the analysis) is justified.

Still, we should pay attention to the special sets of initial conditions used for pro-
ducing the responses of Figures 6.13 and 6.14. The reason is that the response under
consideration should be close enough to the fixed point of the slow flow, since the
analysis presented above is only local. It follows that if the initial conditions are not
specially tailored, the flow could be well attracted to alternative response regimes
which do not satisfy the assumptions of the analysis, and hence, are not predicted
by it. Indeed, it is a well known feature of (forced or unforced) nonlinear dynam-
ical systems that they may possess qualitatively different co-existing solutions; in
fact Guckenheimer and Holmes (1983) present examples where chaotic solutions
co-exist with arbitrarily many stable or unstable periodic solutions [see discussion
on Newhouse sinks and also refer to (Newhouse, 1974)]. It is true that in many har-
monically excited systems (especially weakly nonlinear ones) steady state responses
such as the ones discussed above (that is, either stable or Hopf-modulated) may be
the only types of steady state motions that can be possibly realized by these sys-
tems. For the essentially nonlinear system (6.1), however, this is not the case as we
proceed to discuss below.

6.2 Strongly Modulated Responses (SMRs)

6.2.1 General Formulation and Invariant Manifold Approach

The last claim made in the previous section is substantiated by performing numer-
ical simulations of the original system (6.1) for the same parameter values used to
generate the transient responses depicted in Figures 6.13 and 6.14, but now with
zero initial conditions. The results are presented in Figures 6.16 and 6.17, respec-
tively. In both plots we can see a qualitatively new type of response regime involving
a strongly modulated, nearly periodic oscillation. In the beginning of each cycle the
amplitudes of both responses v = y1+εy2 andw = y1−y2 grow slowly. Then, after
a certain amplitude threshold is reached, the amplitude of the motion of the center
of mass v abruptly decreases, whereas the relative response between the NES and
the linear oscillator,w, is excited with subsequent characteristic decay. This process
appears to be similar to transient TET realized in an impulsively forced oscillator
coupled to an NES, as discussed in Chapter 3; indeed, one form of TET in this type
of impulsively forced oscillators was realized through modulated fast oscillations of
the relative response between the NES and the linear oscillator. In this case, how-
ever, we deal with steady state (periodic) TET caused by periodic external forcing
applied to the linear oscillator.

Qualitatively, the regimes of the strongly modulated responses of Figures 6.16
and 6.17 appear to be similar. Still, quantitative differences regarding the envelopes
of the responses and the frequencies of the modulations can be discerned, despite the
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Fig. 6.16 Strongly modulated responses (SMRs) of system (6.1) for A = 0.225, λ = 0.2, ε =
0.05, σ = 0 and zero initial conditions.

minor differences between the system parameters of the two simulations. Moreover,
in the simulations used for computations of responses at Figs. 6.13 and 6.14 the
detuning parameter σ was chosen to be zero. From (6.7) it immediately follows that
the averaged flow has only one fixed point in both cases, and the responses presented
at 6.13 and 6.14 correspond to exactly these fixed points. The results depicted in
Figures 6.16 and 6.17 are very different indeed. This means that the system can
exhibit steady state response regimes (such as the presented strongly modulated
ones) which in principle can not be captured by local analysis of the fixed points of
the averaged flow.

In order to distinguish this type of steady state response from those derived by the
local analysis of the previous sections and related to the fixed (equilibrium) points
of the slow flow (6.4), we denote it as a Strongly Modulated Response (SMR). The
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Fig. 6.17 Strongly modulated responses of system (6.1) for A = 0.24, λ = 0.2, ε = 0.05, σ = 0
and zero initial conditions.

width of the amplitude modulation is equal to the response amplitude, and the an-
alytical treatment of such responses poses distinct challenges. Indeed, as discussed
above in order to analyze SMRs local analysis of the slow flow equations (6.4) is
insufficient, and, rather global analysis of the dynamics is required. In general, such
a challenging analytical problem is hardly solvable, since the slow flow (6.4) is es-
sentially nonlinear and evolves in four-dimensional phase space. Still, assuming that
the mass ε [which can also be regarded as a mass ratio in the normalized equations
(6.1)] is sufficiently small, it may be used as a small parameter for performing singu-
lar perturbation analysis. Then, the invariant manifold approach may be applied to
analyze SMRs, rather similarly to the procedure outlined in Section ??��Author,
Section 3.4.4 does not exist�� for the unforced case. It should be mentioned that
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in the local analysis of the previous sections the smallness of ε was not required and
not assumed.

We begin the analysis of SMRs by combining the two first-order equations of the
slow flow system (6.4) through simple manipulations, and reducing the slow flow to
the following single second-order complex ordinary differential equation:

d2ϕ2

dt2
+ d

dt

[
αϕ2 − j (1 + ε)

2
|ϕ2|2 ϕ2 + jε(1 − σ)

2(1 + ε) ϕ2

]

+ jε (1 − σ)
2(1 + ε)

[
αϕ2 − j (1 + ε)

2
|ϕ2|2 ϕ2 − εA

2

]
− jεβ (1 + εσ)

2(1 + ε) ϕ2 = εAβ

2
(6.20)

where

α = λ(1 + ε)2 + j (1 − ε2σ)

2(1 + ε) β = j (1 + εσ)
2(1 + ε)

In the sequence, we perform a multiple scales analysis of the response of (6.20) by
introducing the new independent time scales τk = εkt , k = 0, 1, . . . (where τ0 is
the leading-order time scale, and τ1, τ2, . . . are slow scales of increasing order), and
expressing the response and the time derivatives in (6.20) as follows:

ϕ2 = ϕ2(τ0, τ1, . . .)

d

dt
= ∂

∂τ0
+ ε ∂
∂τ1

+ · · · , d2

dt2
= ∂2

∂τ 2
0

+ 2ε
∂2

∂τ0∂τ1
+ · · · (6.21)

Substituting (6.21) into (6.20) and setting equal to zero the coefficients of powers
of ε, we derive the following hierarchy of problems at successive orders of approx-
imation:

O(ε0) : ∂
2ϕ2

∂τ 2
0

+ ∂

∂τ0

[
λϕ2

2
+ jϕ2

2
− j

2
|ϕ2|2 ϕ2

]
= 0 (6.22a)
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+ ∂
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ϕ2 − jA

4
= 0

• • • (6.22b)

Equation (6.22a) describes the leading-order approximation of the evolution of
the slow flow (averaged) dynamics. This equation can be trivially integrated,

∂

∂τ0
ϕ2 +

(
j

2
ϕ2 + λ

2
ϕ2 − j

2
|ϕ2|2 ϕ2

)
= C(τ1, τ2, . . .) (6.23)
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where C(τ1, τ2, . . .) is an arbitrary function of higher-order time scales. Higher-
order time scales are not considered in the current analysis, since as shown below the
dynamical phenomena in question are captured by the leading-order approximations
(6.22a,b); hence, for the sake of brevity only the dependences on the time scales τ0
and τ1 will be denoted explicitly in the following analysis. It follows that the fixed
(equilibrium) points of (6.23) with respect to the time scale τ0 are denoted by and
obey the following algebraic equation:

j

2
�(τ1)+ λ

2
�(τ1)− j

2
|�(τ1)|2�(τ1) = C(τ1) (6.24)

Equation (6.24) can be solved in closed form by expressing the fixed points in po-
lar form, i.e., �(τ1) = N(τ1) exp[jθ(τ1)], and substituting in (6.24) to derive the
following real equation for the amplitude of the fixed point:

λ2N4(τ1)+ [N2(τ1)− N4(τ1)]2 = 4|C(τ1)|2N2(τ1) (6.25a)

Introducing the new variable Z(τ1) = N2(τ1), (6.25a) is expressed in the form

λ2Z(τ1)+ Z(τ1)[1 − Z(τ1)]2 = 4|C(τ1)|2 (6.25b)

which is a cubic polynomial amenable to explicit solutions. Once Z(τ1) is com-
puted, the corresponding phase θ(τ1) of the fixed point is evaluated by the following
expression:

θ(τ1) = argC(τ1)− tan−1
[

1 − Z(τ1)
λ

]
(6.26)

The number of real and positive solutions of the cubic equation (6.25b) depends
on the values of the ‘parameters’ |C(τ1)| and λ. The homogeneous part of equation
(6.25b) can be either monotonous or it may possess a maximum and a minimum.
In the former case the variation of |C(τ1)| has no effect on the number of solutions,
and equation (6.25b) possesses a single positive solution. In the latter case, however,
the variation of |C(τ1)| will generate a saddle-node (SN) bifurcation of fixed points,
where a new stable-unstable pair of positive fixed points is generated. In order to
distinguish between these two cases we should check whether the derivative of the
homogeneous part of (6.25b) with respect of Z has any real roots:

∂

∂Z

[
λ2Z + Z [1 − Z]2

]
= 0 ⇒ Z1,2 = 2 ∓ √

1 − 3λ2

3
(6.27)

From this result it follows that for λ < 1/
√

3 (i.e., for relatively weak damping)
two roots of the homogeneous problem are generated through a SN bifurcation; at
the critical value λ = 1/

√
3 these roots coalesce, and are non-existent for λ >

1/
√

3. This is the typical structure of a cusp, with the value λ = 1/
√

3 representing
the critical damping value. Of course, the results of the present analysis at O(1)
are similar to those reported in Section 3.4.2.4 – the only difference being that the
external forcing terms appear at higher orders of approximation.
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Fig. 6.18 Projection of the slow invariant manifold of the system (SIM) for λ = 0.2; the unstable
branch is denoted by dashed line, and arrows denote hypothetic transitions (jumps) in the regime
of relaxation oscillations.

It is easy to show through equation (6.23) that if a single fixed point of (6.25b)
exists, it is stable (in the form of a node) with respect to the leading-order time
scale τ0. If there are three fixed points, two of them are stable (nodes) and one is
unstable (a saddle point). Therefore at the leading-order approximation governed
by the time scale τ0 the dynamics of the slow flow (6.4) will be attracted to ei-
ther one of these nodes. In fact, equation (6.24) defines a two-dimensional slow
invariant manifold (SIM) of the dynamics. In the case λ < 1/

√
3 the fold lines

L1,2 = {N(τ1) = √
Z1,2, θ(τ1) ∈ [0, 2π)} divide the stable and unstable branches

of the SIM. In Figure 6.18 we depict the projection of the two-dimensional SIM
on the plane (N,C); the fold lines correspond to the local maximum and minimum
points of the SIM.

It is well-known (Arnold et al., 1994; Guckenheimer et al., 2005; Guckenheimer
et al., 2006) that such a folding structure of the SIM may give rise to relaxation-
type oscillations, characterized by sudden transitions (jumps) of the response during
each cycle (the hypothetic sudden transitions between the two stable branches are
denoted by arrows at Figure 6.18). We conjecture that such relaxation oscillations
occur in the SMRs described above. Still, such motions may be possible only if the
dynamical flow can reach the fold lines L1,2, while following the two branches of
the SIM with respect to the slow time scale τ1.

In order to assess this possibility one should investigate the behavior of the flow
on the SIM given by �(τ1). To this end, we consider the O(ε) suproblem (6.22b)
derived by the multiple scales expansion. In particular, we are interested in the be-
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havior of the solution on the stable branches of the SIM in the limit at the fast time
scale τ0 tends to infinity, i.e., the limit �(τ1) = lim

τ0→+∞ ϕ2(τ0, τ1). Considering

equation (6.22b) in the limit τ0 → +∞, and taking into account the asymptotic
stability of points on the stable branches with respect to time scale τ0, we obtain the
following equation for motion on the SIM governed by the slow time scale τ1:

∂

∂τ1

[
λ�

2
+ i�

2
− j

2
|�|2�

]
+ (1 − σ)

4
|�|2�+

[
σ

4
+ jλ(1 − σ)

4

]
�− jA

4
= 0

(6.28)
Equation (6.28) can be written in compact form as follows:[

λ

2
− j

2
+ j |�|2

]
∂�

∂τ1
− j

2

∂�

∂τ1
�2 = G

G = −1 − σ
4

|�|2�−
[
σ

4
+ jλ(1 − σ)

4

]
�+ jA

4
(6.29)

Adding to (6.29) its complex conjugate and performing the necessary algebraic ma-
nipulations it is possible to extract the following closed form expression for the
evolution of the slow dynamics on the SIM with respect to the slow time scale τ1:

∂�

∂τ1
= 2

[(
λ− j + 2j |�|2)G+ j�2G∗]
λ2 + 1 − 4 |�|2 + 3 |�|4 (6.30)

We note that for the particular case of no applied external harmonic force,A = 0,
the above expression corresponds to TET in the corresponding impulsively forced or
unforced system studied by the method of invariant manifolds (up to an insignificant
frequency shift – see Section 3.4.2.4). This observation provides further evidence
of the relationship between SMRs in the harmonically forced system and TET in
the impulsively forced or unforced one. Returning now to relation (6.30) for the
harmonically forced system, it is possible to reduce it to the following form:

∂�

∂τ1
= −λ�+ j� [

(1 − 4σ) |�|2 + σ − λ2(1 − σ)− 3(1 − σ) |�|4]
2
(
λ2 + 1 − 4 |�|2 + 3 |�|4) (6.31)

Expressing this complex relation in terms of its modulus and phase through the polar
transformation �(τ1) = N(τ1) exp

[
jθ(τ1)

]
, we obtain the following dynamical

system on the cylinder (N, θ) ∈ (
R+ × S1

)
governing the slow evolution on the

SIM at time scale τ1:

∂N

∂τ1
= −λN

2
(
λ2 + 1 − 4N2 + 3N4

)
∂θ

∂τ1
= (1 − 4σ)N2 + σ − λ2(1 − σ)− 3(1 − σ)N4

2
(
λ2 + 1 − 4N2 + 3N4

) (6.32)
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Fig. 6.19 Phase portrait of the slow evolution of the SIM for the case of no external harmonic
excitation, A = 0.

The phase portrait of system (6.32) is presented at Figure 6.19. It is clear from the
first equation of (6.32) that the phase trajectories on the upper stable branch slowly
evolve directed towards the fold line L2, whereas the trajectories on the lower stable
branch are not able to reach the fold line L1. This means that although the dynamics
can make a sudden transition (jump) from the upper stable branch of the SIM to the
lower one, it cannot make a similar transition back. Actually, this ends up as a rather
trivial observation since in the absence of external harmonic forcing the dynamics
cannot reach a non-trivial steady state regime, as it is damped out by dissipation
towards the state of trivial (zero) equilibrium.

In order to allow for jumps from the lower stable branch of the SIM back to
the upper one (and, therefore, to provide the necessary condition for the occurrence
of relaxation oscillations) the slow flow in the vicinity of L1 should undergo bi-
furcation. That is, at some subset of L1 the orbits of the slow flow lines on the
lower branch of the SIM should become tangent to L1. Such points correspond to
fixed points of a desingularized slow flow (Guckenheimer et al., 2006), where the
numerator of equation (6.30) vanishes. In order to investigate these special points,
one should compute the fixed points of the slow flow equation (6.30) for arbitrary
amplitudes of the external harmonic function A. The appropriate condition reads

(λ− j + 2j |�|2)G+ j�2G∗ = 0 (6.33)

and possesses two sets of solutions (fixed points). The first set is trivial and is com-
puted by setting G = 0; this solution corresponds to fixed points of the initial equa-
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tion (6.20), i.e., to fixed points of the global flow that (quite naturally) lie on the
SIM.

The other set of solutions of (6.33) satisfies the following conditions:

3|�|4 − 4|�|2 + 1 + λ2 = 0

exp(2j argG) = −j�2

λ+ j (2|�|2 − 1)
(6.34)

The first equation in (6.34) coincides with the equation for the fold lines; therefore,
as expected, the solutions of this type describe the folded singularities of the slow
flow. Bifurcations of such singularities correspond to violations of the transversality
condition and, therefore, yield qualitative changes of the flow in the vicinity of the
fold line. Specifically, these bifurcations result in a switch of the directions of the
flow lines and therefore provide the necessary conditions for relaxation oscillations.
What is even more interesting is that equations (6.34) may be solved in closed form.
Indeed, introducing again the polar transformation �(τ1) = N(τ1) exp

[
jθ(τ1)

]
,

(6.34) yields the following solutions for the positions of the singularities on the fold
lines L1 and L2:

L1 : N1 = Z1/2
1 , θ =  1,2 ≡ γ01 ± cos−1

⎡
⎣ λN1

A

√(
1 −N2

1

)2 + λ2

⎤
⎦

L2 : N2 = Z1/2
2 , θ =  3,4 ≡ γ02 ± cos−1

⎡
⎣ λN2

A

√(
1 −N2

2

)2 + λ2

⎤
⎦

N1,2 = (4/3)± [(4/3)2 − 4(1 + λ2)/3]1/2

γ0k = sin−1

⎡
⎣ λ√

(1 − N2
k )

2 + λ2

⎤
⎦ , k = 1, 2 (6.35)

We conclude that for sufficiently weak external harmonic excitations, that is, for
amplitudes of the harmonic excitation below the first critical threshold,

A < A1 crit = λN1√
(1 −N2

1 )
2 + λ2

(6.36a)

no bifurcation close to the lower fold line L1 can occur. Then, the slow flow in the
vicinity of both fold lines of the SIM remains qualitatively similar to that depicted
in Figure 6.19, providing no possibility for the occurrence of relaxation oscillations
(and thus of SMRs) in the slow flow (6.4). As the forcing amplitude approaches the
value A → A1 crit from below, a SN bifurcation occurs at L1, as θ → γ01, and a
pair of singularities is formed; in the interval between these points, the flow in the
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Fig. 6.20 Phase portrait of the slow evolution of the SIM for the case when A1 crit < A < A2 crit
and σ = 0.5; only the stable branches of the SIM are depicted.

vicinity of L1 reverses direction. A similar SN bifurcation occurs in the neighbor-
hood of the higher fold line L2 as the amplitude of the external force reaches the
second (higher) critical threshold,

A→ A2 crit = λN2√
(1 −N2

2 )
2 + λ2

(6.36b)

again from below. The representative phase portrait describing the evolution of the
slow flow on the SIM for the amplitude of the external harmonic force in the range
A1 crit < A < A2 crit is presented in Figure 6.20. In Figure 6.21 we present the
corresponding phase portrait for the case A > A2 crit.

From the plots of Figures 6.20 and 6.21 we deduce that after the occurrence of
the SN bifurcations close to the fold lines L1 and L2, there exists a subset of orbits
on the SIM that carry the flow to L1, thus providing the possibility for a jump to the
upper stable branch of the SIM, and, hence, to relaxation oscillations. Indeed, the
flow can reach the fold L2 and then jump down again to L1, thus closing the loop
of the relaxation oscillation and giving rise to the SMRs of the slow flow depicted
in Figures 6.16 and 6.17.

It is interesting to note that the previously derived critical thresholds for the am-
plitude of the harmonic excitation, A1 crit and A2 crit, do not depend on the detuning
parameter σ . Still one cannot conclude that the SMRs are robust to changes in the
detuning parameter, since the condition A > A1 crit is necessary, but by no means
sufficient for the occurrence of SMRs in the slow flow (6.40). In other terms, if this
condition is valid then sudden transitions (jumps) between the stable branches of
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Fig. 6.21 Phase portrait of the slow evolution of the SIM for the case when A > A2 crit and
σ = 0.5; only the stable branches of the SIM are depicted.

the SIM may occur, but there is no guarantee that the series of these transitions will
accumulate to stable attractors of the slow dynamics in the form of SMRs. In order
to obtain the missing sufficient conditions for the occurrence of SMRs one should
investigate more delicate aspects of the slow flow dynamics (6.4). This is performed
in the next section.

6.2.2 Reduction to One-Dimensional Maps and Existence
Conditions for SMRs

Studying carefully the phase portrait depicted in Figure 6.20 we deduce that there
exists an interval of θ , namely,  1 < θ <  2, where all orbits on the SIM arrive
to the fold line L1 and then depart from it. In the regime of relaxation oscillations,
an orbit in the previously constructed phase cylinder (N, θ) ∈ (

R+ × S1
)

initially
jumps from a point of this interval on L1 to the upper branch of the SIM; then it
slowly evolves following an orbit of the slow flow towards the upper fold line L2,
before jumping back to the lower stable branch of the SIM; following an orbit of the
slow flow it moves towards the lower fold line L1 reaches it in one of the points of
the interval θ ∈ [ 1, 2]; following this the orbit jumps up to the upper branch of
the SIM and the cycle of the relaxation oscillation (SMR) continues indefinitely.

Therefore, it is natural to consider this relaxation regime in terms of a one-
dimensional Poincaré map P of the interval [ 1, 2] of the fold line L1 into itself:
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P : [ 1, 2]
P−→ [ 1, 2] , θ → P(θ)

In the regime of relaxation oscillations (SMRs) this map takes a point on the fold
line L1 of the cylinder (N, θ) ∈ (

R+ × S1
)

and maps it into L1 under the action of
the slow flow (6.30). Clearly, a stable SMR will correspond to an attractor of this
map (for example, a period-k fixed point), so the conditions for existence of this
attractor will provide the necessary and sufficient conditions for existence of the
corresponding SMR in the slow flow (6.4), and, hence, also in the original dynamical
system (6.1) for NES massε sufficiently small.

In order to construct the one-dimensional map P , we should consider separately
its ‘slow’ and ‘fast’ components during a cycle of the relaxation oscillation. As far
as the slow components of the map are concerned, these correspond to the parts of
the relaxation cycle spent on the lower and the upper stable branches of the SIM.
Hence, we may use equations (6.30) and directly connect the ‘exit’ and ‘landing’
points on the fold lines L1 and L2. Due to complexity of the associated expressions,
in the following developments the ‘slow’ components of the map P are evaluated
numerically.

As for the ‘fast components of the map, it is clear that the function ϕ2 should be
continuous at the points of transition between the ‘fast’ and the ‘slow’ components.
Therefore, to model the jumps which provide the ‘fast’ components of the map
we should define appropriately the complex invariant C(τ1) defined by equation
(6.24). If the value of C(τ1) is known at the point of start of the jump (the ‘exit’
point) between the two fold lines, it is possible to compute the amplitude N and
phase θ corresponding to the point of ‘landing’ of the jump unambiguously, and thus
to complete the definition of the map P . The procedure of numerical integration
should be performed twice, however, one for each of the two stable (upper and
lower) branches of the SIM; hence, two values for the invariant C(τ1) should be
computed for each of the two ‘fast’ components of the map in order to determine
the ‘landing’ points of the jumps in L1 and L2.

These two fast components correspond to the two jumps between fold lines dur-
ing each cycle of the relaxation oscillation. Fortunately, these fast elements of the
mapping cycle can be written down in closed form. For example, if one knows the
values of N and θ at the ‘exit’ point of the jump on the fold line L1, say (N1, θ01),
and denotes the ‘landing’ point on the upper stable branch of the SIM by (Nu, θu),
one may compute the value of Nu from the polynomial (6.25b) by exploiting the
invariance of C(τ1) on the fast component of the jump,

λ2Z1 + Z1 (1 − Z1)
2 = λ2Zu + Zu (1 − Zu)2 =

= 2

27

(
1 +

√
1 − 3λ2

)
+ 2λ2

9

(
3 −

√
1 − 3λ2

)
⇒

Zu = N2
u = 2

3

(
1 +

√
1 − 3λ2

)
(6.37)



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 195

where Z1 = N2
1 . Then, combining (6.24) and (6.37), one obtains the following

explicit expression for the phase variable at the ‘landing’ point of the jump:

θu = tan−1

[ (
N2
u − N2

1

)
λ

λ2 − (
1 −N2

1

) (
N2
u − 1

)
]

+ θ01

= θ01 + tan−1

[
9λ

√
1 − 3λ2

−1 + 15λ2 − √
1 − 3λ2

]
(6.38a)

Hence, the part of map which corresponds to the jump from the lower fold line L1
to the upper stable branch of the SIM, is very simple – the amplitude switches toNu
and the phase rotates by a constant angle.

Similarly, the jump from an ‘exit’ point (N2, θ02) on the upper fold line L2 to the
point (Nd, θd) on the lower stable branch of the SIM is described by the following
map:

N2 → Nd =
√

2

3

(
1 −

√
1 − 3λ2

)

θ02 → θd = tan−1

[ (
N2
d −N2

2

)
λ

λ2 − (
1 −N2

d

) (
N2

2 − 1
)
]

+ θ02

= θ02 − tan−1

[
9λ

√
1 − 3λ2

−1 + 15λ2 + √
1 − 3λ2

]
(6.38b)

It should be stressed that for each point of the interval [ 1, 2] only one com-
putation is required for a single cycle of the map. The outlined construction of the
one-dimensional Poincaré map P is somewhat similar to the procedure developed
in Guckenheimer et al. (2006) for analyzing chaotic attractors in regimes of re-
laxation oscillations occurring in low-dimensional phase spaces. Clearly, not every
orbit which starts from the lower fold lineL1 of the SIM will land within the interval
[ 1, 2], since it may be attracted to alternative attractors lying either on the upper
or lower stable branches of the SIM. Of course, only those points which are mapped
into this interval can carry sustained relaxation oscillations and yield SMRs.

Representative examples of return maps are illustrated in Figures 6.22 and
6.23. The map depicted in Figure 6.22 is defined for all points of the interval
θ ∈ [ 1, 2], since all of these points are mapped into the same interval under
the action of the map, which is clearly contracting. Therefore applying the contract-
ing map theorem one proves the existence of a stable attractor of the map in the
interval [ 1, 2], which corresponds to a sustained regime of relaxation oscilla-
tions and thus to an SMR of the slow flow (6.4). In this case, the attractor is the
stable period-one fixed point θe ≈ 0.51.

By increasing the detuning parameter value (with the values of the forcing am-
plitude and the damping parameters remaining unchanged) we notice qualitative
changes in the return map P (see Figure 6.23). As it becomes clear from the plot of
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Fig. 6.22 One-dimensional map P for A = 0.6, λ = 0.2 and σ = 1; the stable attractor of the
map is denoted by dashed line.

Fig. 6.23 One-dimensional map P for A = 0.6, λ = 0.2 and σ = 2.9.

Figure 6.23 all orbits of the map are inclined and not all points originating from the
interval [ 1, 2] on the lower fold line L1 land inside the corresponding interval
on L2. Indeed, there is a region of the interval on L1 which results in unsustainable
cycles of relaxation oscillations, since orbits in the phase cylinder originating in that
region are getting attracted by a stable attractor of the SIM before they can reachL2.
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Fig. 6.24 Sequence of maps in the region 1 < θ <  1 close to the upper critical detuning σ =
σR = 2.69; the positions of the stable and unstable period-one fixed points (SMRs) are marked by
bold dashed and solid lines, respectively.

In addition, it is clear that in this case the map possesses no period−k fixed points,
so that no SMRs can exist. Indeed, every orbit initiated in the interval [ 1, 2] on
the lower fold line L1 escapes this interval after a sufficiently large number of cycles
of relaxation oscillations and settles into one of the regimes of stable steady state
motions studied by the local analysis of Section 6.1.1. It follows that in this case
the system can exhibit transient relaxation oscillations but not sustained ones, so no
SMRs are possible.

From the discussion above we conclude that for higher values of the detuning pa-
rameter σ the stable period-one fixed point of the map corresponding to an SMR of
the slow flow disappears. By varying the detuning parameter and by carefully study-
ing the structure of the map, we may determine the value of σ for which the period-
one attractor of the map disappears, and thus investigate the dynamical mechanism
responsible for its appearance. Hence, we obtain an analytical tool for determining
the frequency region of existence of SMRs. For the system considered withA = 0.6
and λ = 0.2, the boundaries of the detuning parameter within which the SMR exists
are determined as σR = 2.69 > σ > σL = −2.0546. Considering the transforma-
tions relating the slow flow to the exact equations of motion (6.1), we conclude that
SMRs in system (6.1) exists in an O(ε) neighborhood of the exact resonance.

Our next goal is to investigate the mechanism that generates the limit cycles
related to SMRs when the detuning parameter passes into the range of existence
σ ∈ (σL, σR) of these motions. In Figure 6.24 we depict a sequence of maps close
to the upper critical value of the detuning parameter σ = σR = 2.69. At the criti-
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Fig. 6.25 Projection of the stable LCO corresponding to a SMR forA = 0.3, λ = 0.2 and σ = 0.5:
dashed lines refer to ‘fast’ jumps between the two stable branches of the SIM; solid lines refer to
‘slow’ evolutions on the stable branches of the SIM.

cal value σ = σR a SN bifurcation occurs, and for decreasing values of detuning a
stable-unstable pair of period-one fixed points is generated. Interpreting this result
in terms of the averaged problem (6.4) in four-dimensional phase space, this bifur-
cation generates a stable-unstable pair of limit cycle oscillations (LCOs); moving
one step further, these LCOs correspond to motions on stable and unstable two-tori,
i.e., SMRs, in the dynamics of the original system (6.1). We note that depending
on the rotation numbers (Guckenheimer and Holmes, 1983; Wiggins, 1990) of the
orbits on these two-tori, these can be either periodic (for rational rotation numbers)
or quasi-periodic (for irrational rotation numbers); in turn, these lead to periodic or
quasi-periodic SMRs in the original system (6.1). This global bifurcation is not re-
lated to the behavior of fixed points or of homoclinic orbits of the slow flow (6.4)
(the latter are absent in this generic case), and may not be addressed by local analy-
sis. Still, the presence of the small parameter ε (that characterizes the smallness of
the NES mass compared to the mass of the linear oscillator) allows us to reduce the
global flow to the one-dimensional nonlinear map P and thus to demonstrate this
global bifurcation of the slow flow in terms of a local bifurcation of the map.

The previous global analysis of the dynamics identified the mechanism of cre-
ation and annihilation of the stable and unstable periodic orbits (LCOs) of the slow
flow in the neighborhood of the upper boundary σ = σR of the frequency detuning
range of existence of SMRs. A projection of a representative stable LCO (SMR)
on the phase cylinder (N, θ) ∈ (

R+ × S1
)

is presented at Figure 6.25. This orbit
clearly depicts the slow evolution of the dynamics on the upper and lower stable
branches of the SIM (denoted by solid lines), and the fast transitions (jumps – de-
noted by dashed lines) when the orbit reaches the fold lines L1 and L2.
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Fig. 6.26 A stable period-two periodic orbit of the one-dimensional map P .

Once the dynamics is reduced to the one-dimensional map P , one expects that
the system will exhibit generic bifurcations that occur in general classes of this type
of dynamical systems (Guckenheimer and Holmes, 1983). Indeed, period-doubling
bifurcations of the map P are expected to occur at certain parameter values. For
example, for A = 1.0, λ = 0.05 and σ = 0 the map possesses a stable period-
two fixed point [or a period-two periodic orbit of the averaged slow flow (6.4)],
as depicted in Figure 6.27. No additional period doubling bifurcations (i.e. from
period-two to fixed points of higher order) were observed in the map, however, so
that period doublings in this map appear to be rather ubiquitous. In Figure 6.2.2
the zones where period-two fixed points exist are depicted in the (λ,A) plane for
σ = 0.

It should be mentioned that the analytical approach developed in this section is
valid only in the limit ε → 0, i.e., only for the case of lightweight NESs. The study
of SMRs in the slow flow for finite values of ε requires the computation of higher-
order expansions for equation (6.20) and the study of higher-order subproblems in
the hierarchy (6.22). Clearly, this is a rather cumbersome task. Moreover, the value
of such an endeavor is questionable anyway, since the obtained refinement in the
analytical results will be of the order of the error introduced by the averaging proce-
dure. Hence, in the following section we content ourselves to comparing the derived
analytical predictions with direct numerical simulations of the original system (6.1)
and of the averaged slow flow (6.4).
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Fig. 6.27 Zones of stable period-two fixed points of the map P (for σ = 0).

Fig. 6.28 Comparison between analytical prediction (thick line) and numerical simulation of (6.4)
(thin line) for ε = 0.01, σ = 0; initial condition is denoted by (•), and the ‘fast’ components of
the analytical map are denoted by dashed lines.

6.2.3 Numerical Simulations

Our next goal is to verify numerically the analytical prediction of the existence of
the SMR attractors described in the previous section. In Figures 6.28–6.30 the an-
alytical predictions obtained by employing the one-dimensional map reduction is
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Fig. 6.29 Comparison between analytical prediction (thick line) and numerical simulation of (6.4)
(thin line) for ε = 0.005, σ = 0; initial condition is denoted by (•), and the ‘fast’ components of
the analytical map are denoted by dashed lines.

Fig. 6.30 Comparison between analytical prediction (thick line) and numerical simulation of (6.4)
(thin line) for ε = 0.001, σ = 0; initial condition is denoted by (•), and the ‘fast’ components of
the analytical map are denoted by dashed lines.

compared to direct numerical solutions of the slow flow (6.4) for identical initial
conditions and varying small parameter ε. ‘Fast’ components of the analytical so-
lutions (based on the one-dimensional map) are computed from the invariant (6.24)
and, therefore, are not related to the corresponding numerical orbits (which spiral
around the slow manifold due to the pair of complex conjugate eigenvalues of the
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Fig. 6.31 SMR computed by direct numerical simulation of (6.1) (black line) compared to the
analytical prediction based on the one-dimensional map (grey line), for A = 0.6, λ = 0.2, σ = 1.0
and ε = 0.01.

corresponding Jacobian). So, only the ‘slow’ components of the analytical solutions
should be compared with the numerical simulations. It is clear from these plots that
the actual orbits of the slow flow (6.4) only slightly deviate from the analytically
predicted orbits; however, deviations between analytical predictions and numerical
simulations increase with increasing ε, as expected. Indeed, as discussed above for
moderate values of ε analytical results may not be used for quantitative predictions.

To get an estimate of the accuracy of the analytical solution based on the one-
dimensional map reduction, in Figure 6.31 we compare the analytical prediction
with direct numerical simulation of the original system (6.1) with initial conditions
constrained to be on the SIM and for identical parameters to the ones used for con-
structing the plot of Figure 6.22. The range of frequency detuning for existence
of the SMR attractor is computed by the analytical solution as −0.9 < σ < 1;
whereas the corresponding interval computed from direct numerical simulations of
system (6.1) for ε = 0.01 is given by −0.9 < σ < 0.9. It is essential to note that
we expect the accuracy of the analytical prediction to improve with decreasing ε, in
agreement with the asymptotic analysis of the previous section. From this result and
the comparison depicted in Figure 6.31 we conclude that the analytical predictions
are in agreement with the direct numerical simulations of the SMRs.

An additional use of the one-dimensional mapping technique discussed in the
previous section has to do with its capacity to predict peculiar transient behavior in
the response. Indeed, we showed analytically in the previous section that the slow
flow dynamics may exhibit a few cycles of relaxation oscillations before the dynam-
ics is eventually attracted to a stable (unmodulated) periodic response. In order to
verify this analytical prediction we consider a case where no stable SMR attractor
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Fig. 6.32 The analytical map diagram in the absence of a stable SMR.

exists in the slow flow (6.4); hence, we consider a system with parametersA = 0.2,
λ = 0.2 and σ = 0.35. By picking the initial value of phase angle as θ(0) = 0
on the lower fold line L1 and plotting the map, we obtain the response depicted in
Figure 6.32; in this case the number of cycles of the map is equal to two. In order to
check this analytical prediction, in Figure 6.33 we depict the corresponding direct
numerical simulation of the original system (6.1) with identical initial conditions.
From the transient response of Figure 6.33 it is clear that before the dynamics settles
into the stable periodic response, it exhibits two cycles of relaxation oscillations, ex-
actly as predicted by the analytical model. It should be mentioned, however, that in
order to get such coincidence, the parameter ε needed to be picked as small. The
latter requirement reflects the fact that the regime of transient relaxation oscillations
occurs in close proximity to the bifurcation of the stable–unstable pair of LCOs that
generates the regime of SMRs in the system; hence, the structure of the dynami-
cal flow structure of this particular system is expected to be sensitive to changes of
parameters.

The next direct numerical simulation is related to the analytical prediction of pe-
riod doubling bifurcation of SMRs (see the plot of Figure 6.2.2). To this end, we
performed simulations of system (6.1) for parameters in the analytically predicted
zone of period doubling bifurcations, e.g., A = 0.8 and λ = 0.053 (Figure 6.34),
as well as in the zone where a stable period-one solution of the analytical map is
predicted to exist very close to the point of the period doubling bifurcation, e.g.,
A = 0.7 and λ = 0.065 (Figure 6.35). For these simulations the remaining para-
meters of the problem are chosen as ε = 0.005 and σ = 0. The numerical results
are presented in two forms: (i) in terms of direct time series, and, (ii) in terms of

two-dimensional Poincaré maps !: �
!−→ �, (w, ẇ) → !(w, ẇ) on the two-



204 6 Targeted Energy Transfer in Systems with Periodic Excitations

Fig. 6.33 Transient response of system (6.1) with parameters and initial conditions identical to
those of the one-dimensional map of Figure 6.32), A = 0.3, λ = 0.2, σ = 1.1 and ε = 0.0005.

dimensional ‘cut section’ � = {(v,w, v̇, ẇ) ∈ R4, v = 0, v̇ ≥ 0} [here we employ
the transformed variables (6.2)]. It is interesting to note that the numerical simu-
lation of Figure 6.34 reveals clearly the period doubling bifurcation of the SMR.
As far as the computed Poincaré maps ! are concerned, they demonstrate that in
actuality both responses are chaotic-like at a time scale of O

(
1/ε2

)
. Of course, the

analytical treatment presented in the previous section can not be used to make any
statement regarding the dynamics of the system governed by this time scale [as it is
restricted to O(ε) terms].

It is instructive at this point to analyze the frequency contents of a typical SMR.
The analysis is performed with the help of Hilbert transform and Hilbert Vibration
Decomposition (Feldman, 2006), i.e., by EMD. The harmonic components of the
SMR for a case of low-amplitude harmonic excitation are presented in Figure 6.36.
As expected, during most of the SMR cycle the instantaneous frequency of the dom-
inant harmonic component of the response (i.e., of the dominant IMF) is identical
to the forcing frequency, whereas the instantaneous frequency of the secondary har-
monic component (the secondary IMF) is a three times multiple of that of the dom-
inant component; this is clearly due to the essential cubic stiffness nonlinearity of
system (6.1). Still, it should be mentioned that in the regions of fast transitions from
high to low frequencies, the frequency of the dominant harmonic component de-
creases in a rather essential manner and the 1:3 TRC with the secondary component
is also destroyed. This means that in these regions the dynamics escapes 1:1 fun-
damental TRC with the external force and is recaptured again into resonance after
dissipation of energy has occurred.

A similar phenomenon of breakdown of 1:1 fundamental resonance during ‘jump
down’ fast-scale frequency transitions is revealed in the strongly modulated quasi-
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Fig. 6.34 Poincaré map!:�
!−→ �, (w, ẇ)→ !(w, ẇ), and corresponding time series of (6.1)

in the analytically predicted zone of SMR period doubling.

Fig. 6.35 Poincaré map!:�
!−→ �, (w, ẇ)→ !(w, ẇ), and corresponding time series of (6.1)

for an SMR close to the point of period doubling bifurcation.

periodic response (SMR) corresponding to large-amplitude external harmonic ex-
citation (see Figure 6.37). In this case the frequency of the dominant harmonic
component overshoots above unity when the fast ‘jump down’ takes place. The
secondary component behaves in an even more complicated manner, as its instan-
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Fig. 6.36 Hilbert decomposition of the w(t) component of the SMR: instantaneous frequency
and amplitudes of the dominant and secondary harmonic components (IMFs) of the response for
A = 0.2, λ = 0.2 and ε = 0.05; dominant IMF — solid line, secondary IMF - - - dashed line.

taneous frequency varies essentially when the frequency of the first component is
almost constant; hence, no clear TRC occurs in this case. One may conjecture that
the secondary harmonic component passes through a number of resonances with the
dominant one, but the simulation can not clearly confirm this conjecture.

Based on the above theoretical consideration and analysis of the frequency con-
tent of SMRs, the relationship between SMRs in the periodically forced system
and TET in the impulsively forced one is revealed. Viewed in the context of TRC-
governed TET discussed in previous chapters, SMRs are governed by a similar un-
derlying mechanism, namely, repeated (periodic or quasi-periodic) series of TRCs
of the steady state dynamics during the ‘slow’ components of the SMRs, with sub-
sequent escapes during the ‘fast’ components of the SMRs, followed by recaptures.
The series of TRCs are related to increased TET from the linear oscillator (LO) to
the NES and dissipation of vibration energy by the NES damper.

It was shown in this section that for the case of small NES mass ε, both TET in
impulsively forced oscillators and SMRs in periodically forced ones, may be suc-
cessfully treated with the help of asymptotic approaches based on singular perturba-
tions and invariant manifold considerations. The only difference between these two
cases is that in the case of TET there is a single fast transition (jump) of the transient
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Fig. 6.37 Hilbert decomposition of the w(t) component of the SMR: instantaneous frequencies
and amplitudes of the dominant and secondary harmonic components (IMFs) of the response for
A = 1.4, λ = 0.2 and ε = 0.05; dominant IMF — solid line, secondary IMF - - - dashed line.

dynamics from the breakdown point of the SIM; whereas for SMRs such jumps oc-
cur periodically or quasi-periodically. In addition, there occur reverse jumps during
which fast frequency increases take place in the steady state dynamics. These reverse
jumps occur due to energy inputs provided by the exciting force, and are consistent
with the fact that during an SMR there occurs an energy balance between the input
energy provided by the external harmonic excitation and the energy dissipated by
the dampers of the NES and the LO. Thus, the relationship between transient TET
and steady state SMRs is clear, both from the mathematical and physical points of
view: the SMRs can be viewed, in essence, as periodic or quasi-periodic versions
of transient TET. Still, the fact that the periodic (or quasi-periodic) sequence of
TETs noted in the SMRs occurs under the action of constant-amplitude harmonic
excitations, is still somewhat puzzling. One may conjecture that an SMR represents
a non-trivial consequence of the interaction of external (fundamental) and subhar-
monic TRCs occurring in the essentially nonlinear system (6.1). In the following
section we examine the use of NESs as vibration absorbers of steady state motions
of harmonically forced oscillators.
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6.3 NESs as Strongly Nonlinear Absorbers for Vibration
Isolation

The most popular current solution in passive vibration isolation designs is the linear
vibration absorber or tuned mass damper (TMD), where an additional linear SDOF
oscillator is added to an existing linear or weakly nonlinear structure for the pur-
pose of attenuating vibration over a narrow frequency range centered at the natural
frequency of the absorber (Frahm, 1991; Ormondroyd and Den Hartog, 1928). The
effective bandwidth of the TMD is governed by the damping of the absorber, and
a trade-off exists between attenuation efficiency and bandwidth (Ormondroyd and
Den Hartog, 1928; Bykhovsky, 1980). However the use of a linear absorber poses
distinct problems when the excitation frequency is not fixed, and the frequency re-
sponse in the neighborhood of structural resonances outside the narrowband action
of the TMD can be adversely affected, to the extent that resonant peaks can be-
come very steep (Roberson, 1952). To achieve linear broadband vibration absorp-
tion, multi-absorber designs have been considered both theoretically (Carcaterra et
al., 2005, 2006; Koç et al., 2005; Carcaterra and Akay, 2007) and experimentally
(Akay et al., 2005). In addition, adaptive tuned mass dampers have also been con-
sidered towards this goal (Bonello et al., 2005; Brennan, 2006).

Alternative designs employed vibration absorbers with nonlinear stiffness ele-
ments; Carella et al. (2007a, 2007b), Virgin and Davies (2003) and Virgin et al.
(2007) considered buckled struts and absorbers with geometrically nonlinear stiff-
nesses and studied their vibration isolation capacities; their approaches, however,
differ from the approach considered in this work, as no targeted energy transfer was
considered. In a separate series of studies, nonlinear vibration absorbers with lin-
earized stiffness characteristics were studied (Shaw et al., 1989; Natsiavas, 1992,
1993a,b,c; Rice and McCraith, 1987), but the case of the strong (essential) stiffness
nonlinearity received less attention.

The methods and results presented in the previous sections of this chapter enable
one to investigate the variety of response regimes exhibited by the NES attached
to a primary SDOF linear oscillator under external harmonic excitation, and on the
condition of 1:1 fundamental resonance. Therefore, it is possible to employ the pre-
viously developed techniques and the derived results in order to assess the perfor-
mance of the NES as strongly nonlinear vibration absorber. Moreover, the followed
approach can be generalized to the more general class of discrete or continuous
primary linear systems with more degrees of freedom possessing SDOF or MDOF
essentially nonlinear attachments.

6.3.1 Co-existent Response Regimes

The treatment presented in the previous sections allowed us to figure out two main
types of the steady state regular response regimes of system (6.1); namely, time-
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periodic or weakly modulated steady state responses [corresponding to equilibrium
points or LCOs generated through SN or Hopf local bifurcations of the slow flow
(6.4)], and strongly modulated responses (SMRs) [due to relaxation-type oscillations
generated from global bifurcations in the slow flow (6.4)]. Moroever, for this essen-
tially nonlinear system one can expect ever more complicated irregular steady state
responses, involving high-order resonances or even chaotic orbits, although such
responses are typically realized for relatively large values of forcing amplitudes A.

In this section we will restrict our consideration only to cases where 1:1 funda-
mental resonances occur, i.e., when the primary system and the NES oscillate with
frequencies that are nearly identical to the forcing frequency. Consequently, the two
types of regular steady state responses mentioned above are the only possible re-
sponses for the system. In order to assess the efficiency of the NES as nonlinear
vibration absorber, one should in principle describe all possible responses realized
at the ranges of system parameters of interest, since by omitting any co-existing sta-
ble steady state regimes we may jeopardize the efficiency and robustness of the our
vibration isolation designs. Then, it is possible to decide whether in the worst case
scenario we get satisfactory conditions of vibration isolation, excluding the possi-
bility of transitions to other unfavorable response regimes for small changes of the
system parameters or initial conditions.

So, it is of considerable importance to be able to predict the co-existence of the
possible response regimes over the frequency and parameter ranges considered in
the vibration isolation design. Not less important task is a prediction of domains
of attraction for every response regime that can be realized in the forced system.
This problem is of special interest due to the multiplicity of possible steady state
responses. Even if some of these responses are not favorable and compatible to the
vibration isolation objective, and one cannot eliminate these regimes by appropriate
choice of parameters, it may be still possible to reduce their domains of attraction
in the space of initial conditions. It is clear that every practical system is expected
to work only in certain finite range of possible initial conditions and the designer
should be able to estimate this region. If one can design the system in a way that
these realistic initial conditions will never lead the dynamics to undesired response
regimes, then the problem of vibration isolation can still be solved despite theoreti-
cal possibility of problematic responses.

In this section, we present certain examples of co-existence of different time-
periodic or weakly modulated steady state responses and SMRs. For the sake of
convenience, we make use of the frequency response diagrams described in Sec-
tion 6.1, and for each diagram we indicate the zone of existence of SMRs as well.
Representative frequency response diagrams corresponding to different topologies
of branches of responses are depicted in Figures 6.38–6.40. These results should be
viewed from the point of view that increased values of the amplitude N correspond
to large relative oscillations between the LO and the NES, and, hence, are expected
to yield enhanced steady state dissipation of vibration energy by the damper of the
NES. It is reasonable then to conclude that large-amplitude branches of the fre-
quency response plots of Figures 6.38–6.40 correspond to strong steady state TET
from the LO to the NES, and yield to enhanced local dissipation of vibration energy
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Fig. 6.38 Numerical verification of the frequency response diagram for A = 0.4, λ = 0.2 and
ε = 0.01: (O) numerical integration; bold (thin) line indicates unstable (stable) periodic response.

by the NES; therefore, large-amplitude branches are favorable towards vibration iso-
lation. In addition, as will be discussed below, co-existing regimes of stable SMRs
can also provide favorable conditions for steady state TET. This should not be sur-
prising given that SMRs can be viewed as periodic or quasi-periodic versions of
TET realized in transiently forced oscillators (see our previous discussion in Sec-
tion 6.2).

These results suggest a satisfactory agreement between the analytically predicted
and numerically obtained periodic steady state response amplitudes. In order to ver-
ify numerically the co-existence of the various system regimes predicted in the pre-
vious section, we have picked the most interesting cases which reveal the existence
of three distinct regimes for the same set of parameters but for different initial con-
ditions. The selected cases relate to the frequency response diagrams presented in
Figures 6.38–6.40, and a representative result of three co-existent steady state re-
sponses is depicted in Figure 6.41.

6.3.2 Efficiency and Broadband Features of the Vibration Isolation

The first task that needs to be addressed in order to use the NES as a vibration ab-
sorber is its tuning, so we initiate our study of nonlinear vibration isolation from this
task. To this end, we reconsider the harmonically forced system (6.1) and expressed
it in the following slightly modified form:

ÿ1 + ελ(ẏ1 − ẏ2)+ y1 + εk (y1 − y2)
3 = εA cosωt
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Fig. 6.39 Numerical verification of the frequency response diagram for A = 1.0, λ = 0.05 and
ε = 0.01: (O) numerical integration; bold (thin) line indicates unstable (stable) periodic response.

Fig. 6.40 Numerical verification of the frequency response diagram for A = 1.5, λ = 0.05 and
ε = 0.01: (O) numerical integration; bold (thin) line indicates unstable (stable) periodic response.

εÿ2 + ελ(ẏ2 − ẏ1)+ εk (y2 − y1)
3 = 0 (6.39)

We note that only the primary LO possesses damping, whereas the NES is consid-
ered to be undamped. Since we consider the regime of fundamental resonance of
this system we suppose that the forcing frequency is close to unity, ω ≈ 1, and
introduce the parameter k of the NES which needs to be tuned for optimal vibra-
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Fig. 6.41 Co-existence of three response regimes corresponding to different initial conditions for
the system with parameters A = 0.4, λ = 0.2, σ = 1.5 and ε = 0.001.

tion isolation performance (as defined by the energy criteria defined below). For the
case of the classical linear vibration absorber (i.e., with linear coupling stiffness be-
tween the LO and the secondary system), the tuning of parameter k is performed by
equating the frequency of the absorber to the resonance frequency of the LO. In the
essentially nonlinear case considered herein, however, the tuning procedure is more
complicated.

Direct application of the analytical procedure outlined in previous sections en-
ables one to estimate the co-existing steady state responses of system (6.39) over the
frequency range of interest, and, therefore, to optimize the target function selected
as criterion for the vibration isolation. We select two such possible energy criteria.
First, the total energy of system (6.39) defined as

Etot = ẏ2
1

2
+ ε ẏ

2
2

2
+ y2

1

2
+ εk (y1 − y2)

4

4
(6.40a)

and, second, the kinetic energy of the primary LO to be isolated:

Ekin = ẏ2
1

2
(6.40b)

Moreover, since the above energy criteria are time dependent due to the time-varying
external forcing and damping terms, the corresponding averages of these quantities
are considered instead.
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Fig. 6.42 Averaged total system energy frequency response in the regime of 1:1 fundamental res-
onance.

A typical frequency response plot depicting the dependence of the average of the
total energy of the system Etot on frequency is depicted in Figure 6.42, forA = 0.3,
λ = 0.4 and ε = 0.1, and varying values of the tuning parameter k. From this plot
we conclude that the average total energy in the system can be efficiently reduced
by varying the parameter k, while keeping all other parameters fixed; moreover,
for relatively high values of k this reduction is made robust over a wide frequency
range. It should be mentioned that further increase of k above the values considered
in Figure 6.42, causes the appearance of a co-existing large-amplitude steady state
response regime (similar to one presented in Figure 6.41), and, following the rea-
soning of the previous section, this leads to deterioration of vibration isolation. In
addition, the non-monotonic dependence of the averaged total energy on frequency
is attributed to SMRs that exist precisely at the regimes of non-monotonicity. So,
the enhanced energy reduction and absorption for the system with high value of k is
related to this specific response regime.

At this stage it is important to emphasize that there is definitely the possibility
for additional co-existing stable steady state regimes at certain frequency detuning
ranges, σ > 0. However in the vicinity of the 1:1 fundamental resonance there is a
region where a single stable periodic attractor and a stable strongly quasi-periodic
(SMR) attractor co-exist. In this co-existence region the optimization carried out in
this section is valid. Additional co-existing steady state attractors are in the form
of periodic lower-amplitude regimes, which may improve even more the efficiency
of vibration isolation compared to the regime of SMRs. The previous discussion
dictates the establishment of a performance criterion according to which the vibra-
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tion isolation capacity of the optimally tuned nonlinear absorber (NES) considered
herein can be compared to that of the corresponding optimally tuned classical linear
vibration absorber (TMD) with identical parameters A, λ and ε. This will enable us
to judge the improvement achieved in the proposed vibration isolation design based
on the use of essential stiffness nonlinearities.

Before we proceed with a particular tuning, some classical results concerning the
tuning of the damped, forced linear absorber (Den Hartog, 1956) are reviewed at this
point. Here we consider only the main results that will assist us in our discussion on
tuning that follows. To this end, we write the system treated by Den Hartog (1956)
as follows:

Mÿ1 + c(ẏ1 − ẏ2)+ y1 + kLIN(y1 − y2) = P0 cos(ωt)

mÿ2 + c(ẏ2 − ẏ1)+ kLIN(y2 − y1) = 0

The main goal of the tuning process outlined by Den Hartog was to reduce the
displacement of the primary LO, based on the steady state action of the attached
damped linear absorber. The following normalized quantities are introduced: mass
ratio, µ = m/M; natural frequency of the absorber, ω2

a = kLIN/m; natural fre-
quency of the primary LO, �2

n = K/M; ratio of natural frequencies, f = ωa/�n;
and forced frequency ratio, g = ω/�n.

A frequency response plot depicting the steady state response |y1| of the pri-
mary LO for varying damping parameters is depicted in Figure 6.43. All plots pass
through the fixed points of intersection P and Q, which, therefore, are invariant to
variations of the damping parameter. By varying the ratio of natural frequencies f
these fixed points can be shifted up and down. Thus the tuning process followed
by Den Hartog was based on the requirement that P and Q lie at equal heights, and
then, the adjustment of the damping parameter to render the frequency response
curve to pass through these fixed points with horizontal (or near horizontal) tangent.
Equal-height fixed points P and Q correspond to Den Hartog (1956):

f = 1

1 + µ (6.41)

Then, the adjustment of the damping parameter was performed according to an an-
alytic expression developed by Den Hartog (1956) which is not reproduced here.

To translate these tuning results in terms of the system parameters of (6.37), we
setM = 1, c = ελ, P0 = εA andm = ε. Then, according to the previous results we
obtain the following expression for optimal tuning of the linear vibration absorber:

kLIN = ε

(1 + ε)2 (6.42)

It can be proved (Den Hartog, 1956) that due to the linearity of the problem, similar
tuning holds for the optimization of the total energy stored in the system.

The criterion for comparing the vibration isolation performances of the NES and
the tuned linear absorber is now formulated. Specifically, defining as optimization
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Fig. 6.43 Linear vibration absorber, frequency response plot of the primary LO for varying damp-
ing values; the points of intersection P,Q are denoted.

criterion for our vibration isolation study the minimization of the highest peak of
the averaged total system energy (labeled as critical energy peak – CEP) over the
frequency range of interest, the performance of the linear and nonlinear designs will
be compared by comparing the corresponding CEPs.

The rules according to which these two absorbers are to be compared are formu-
lated as follows: (i) the mass, damping, external forcing amplitude and frequency of
the primary LO are to remain fixed for a particular study; and (ii) the linear and non-
linear vibration absorbers will possess identical masses but their stiffness parameters
k and kLIN will be optimized (tuned) independently. The averaged total energy cri-
terion will be used for the comparison, since, as discussed in previous sections there
exists the possibility that the steady state responses of the nonlinear system will
be strongly amplitude-modulated (of the beating type); in that case the averaged
criterion can be applied for assessing the efficacy and effectiveness of the nonlin-
ear vibration isolation design over a period of the strong modulation (beating). Of
course, this doesn’t rule out the possibility that undesired isolated amplitude peaks
might occur within a cycle of the response, but the alternative criterion of reducing
the maximum absolute peak amplitude will not be considered herein.

A typical comparison study of the performances of the linear and nonlinear ab-
sorbers under the previously specified conditions is presented in Figure 6.44, for
A = 0.2, λ = 0.1 and ε = 0.1. Clearly, the optimally tuned nonlinear absorber is
more effective and its performance is more robust to frequency variations compared
the optimally-tuned linear absorber for the considered set of system parameters. Al-
though the linear absorber provides better isolation in the narrowband region close to
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Fig. 6.44 Averaged total system energy frequency responses for linear and nonlinear vibration
absorbers; the zone of existence of SMRs is indicated.

its tuning frequency, the NES provides consistent reduction of the averaged energy
peaks over the entire frequency range of interest, and, hence, better performance
over a wider frequency range compared to the linear absorber.

The frequency response plot at Figure 6.44 is somewhat unusual – the response
curve exhibits a number of discontinuities (range of non-monotonicity) in the zone
where the SMR regime exists, and it appears to be rather smooth outside this region.
This result has been obtained as a result of numerical simulations, and one may
conjecture that for different values of the frequency the dynamical flow in that zone
might be attracted to either one of multiple co-existing stable steady state regimes;
that is, either to a stationary (or weakly quasi-periodic) response, or, alternatively, to
an SMR. It follows that when designing the essentially nonlinear vibration absorber
for optimal vibration isolation, one should care about the regimes to which the flow
is attracted, since some of these might be rather undesirable. Therefore, a study
of the effect of the initial conditions on nonlinear vibration isolation is required.
From the persistence point of view, such an obstacle could undermine the entire
endeavor, since rather often the domains of attraction of different response regimes
are mixed, and, in addition, in some cases the boundaries of domains of attraction
might even be of fractal nature (Jackson, 1991). Still, as mentioned previously, if
one can demonstrate that at certain ranges of initial conditions the dynamics of
the system is not attracted to problematic attractors, then the design of the NES as
nonlinear absorber can still be deemed as satisfactory.

In order to illustrate this point, we performed Monte Carlo simulations of the
steady state dynamics for different values of randomly picked initial conditions. The
parameters used are identical to those of Figure 6.38, but with ε = 0.001. It should
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Fig. 6.45 Monte Carlo simulations of steady state attractors of the dynamics for randomly varying
initial conditions, A = 0.4, λ = 0.2, σ = 1.5, ε = 0.001 and y20 = 0; the SMR attractor is
denoted by (), the low-amplitude stationary attractor by (), and the high-amplitude (undesirable)
stationary attractor by (•).

Fig. 6.46 Monte Carlo simulations of steady state attractors of the dynamics for randomly varying
initial conditions, A = 0.4, λ = 0.2, σ = 2.0, ε = 0.001 and y20 = 0; the SMR attractor is
denoted by (), the low-amplitude stationary attractor by (), and the high-amplitude (undesirable)
stationary attractor by (•).

be mentioned that the shape of the frequency response plot does not depend on the
value of ε in the framework of the approximations used in the previous analysis. We
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Fig. 6.47 Monte Carlo simulations of steady state attractors of the dynamics for randomly varying
initial conditions, A = 0.4, λ = 0.2, σ = 0.5, ε = 0.05 and y20 = 0; the SMR attractor is denoted
by (), the low-amplitude stationary attractor by (), and the high-amplitude (undesirable) stationary
attractor by (•).

explore two different values of the detuning parameter, namely, σ = 1.5 (a regime
of co-existence of desirable SMRs with periodic or weakly modulated stationary
solutions) and σ = 2.0 (a regime where no SMRs exist). For both selected values
of the detuning parameter there exist two stationary responses, namely, a (desirable)
low-amplitude solution, and an (undesirable) high-amplitude one.

The results of the Monte Carlo simulations are presented at Figures 6.45 and
6.46. One can see that for σ = 1.5 no trajectory is attracted to the undesirable high-
amplitude stationary response which is unfavorable for vibration isolation; instead,
trajectories are attracted by, either the low-amplitude stationary steady state solution
or the SMR. Both of these stable solutions are favorable to vibration isolation, with
the SMR solution being preferable since, as discussed previously, it represents a ver-
sion of steady state TET. On the contrary, by increasing the detuning parameter to
σ = 2.0 we reach a regime where no SMRs exist, and, as a result, a subset of initial
conditions leads to attraction of the dynamics by the undesirable high-amplitude sta-
tionary stable response. From these simulations it appears that the regime of SMRs
represents a rather strong attractor, since it prevents the dynamical flow from being
attracted by the undesirable high-amplitude stationary response. This result, how-
ever, is only based on this specific series of Monte Carlo simulations and is not
based on any rigorous analytical proof.

Moreover, the above example may be regarded as of little practical significance,
since it corresponds to a very small (and hence impractical) value of the mass ratio
ε; indeed, for this value of the mass ratio the previously developed theoretical as-
ymptotic analysis is expected to yield satisfactory quantitative predictions. However,
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Fig. 6.48 Monte Carlo simulations of steady state attractors of the dynamics for randomly varying
initial conditions, A = 0.4, λ = 0.2, σ = 1.0, ε = 0.05 and y20 = 0; the SMR attractor is denoted
by (), the low-amplitude stationary attractor by (), and the high-amplitude (undesirable) stationary
attractor by (•).

qualitatively similar results can be obtained for cases of more practical significance,
which, however, are beyond the range of validity of our previous analytical approx-
imations. This is demonstrated in Figures 6.47–6.49, which correspond to increased
mass ratio ε = 0.05 and varying detuning parameter σ . In all three cases shown and
for all values of randomly chosen initial conditions considered, the absorber dynam-
ics are not attracted by an undesirable high-amplitude stationary response. Rather
its steady state response is either an SMR or a low-amplitude stationary solution,
which ensures robust vibration isolation for all initial conditions considered in the
Monte-Carlo simulation. Although a more detailed investigation may be required to
proceed into final and analytically rigorous conclusions, the presented results indi-
cate robustness of nonlinear vibration isolation by the considered NES design.

The nonlinear absorber has an additional feature which justifies its use: it pos-
sesses a self-tuning capacity to variations of the external frequency, and thus can
be applied for the case of linear primary systems with many degrees of freedom.
The reason behind this self-tuning capacity of the NES is its essential nonlinear-
ity which, in contrast to the linear vibration absorber, prevents the existence of a
preferential resonance frequency. This extends the capacity of the NES to engage
in resonance interaction with multiple modes of the linear primary system to which
it is attached (and, hence, to provide multi-modal passive vibration isolation). The
next section provides a demonstrative example of this feature of the NES.



220 6 Targeted Energy Transfer in Systems with Periodic Excitations

Fig. 6.49 Monte Carlo simulations of steady state attractors of the dynamics for randomly varying
initial conditions, A = 0.4, λ = 0.2, σ = 1.5, ε = 0.05 and y20 = 0; the SMR attractor is denoted
by (), the low-amplitude stationary attractor by (), and the high-amplitude (undesirable) stationary
attractor by (•).

6.3.3 Passive Self-tuning Capacity of the NES

To study the vibration isolation properties of the NES when applied to a MDOF
system, we consider a harmonically excited two-DOF system of linear coupled os-
cillators (the primary linear system) with a nonlinear energy sink (NES) attached
to it. The masses of the linear oscillators are assumed to be identical (and taken as
equal to unity without loss of generality). The system is described by the following
equations,

ÿ2 + k2y2 + k1(y2 − y1) = εF2 cosωt

ÿ1 + k2y1 + k1(y1 − y2)+ εkv(y1 − v)3 + ελ(ẏ1 − v̇) = εF1 cosωt

εv̈ + εkv(v − y1)
3 + ελ(v̇ − ẏ1) = 0 (6.43)

wherey1, y2 and v are the displacements of the linear oscillators and the NES, re-
spectively; ελ is the damping coefficient; and εFi , i = 1, 2 are the amplitudes of the
weak excitations applied to each of the linear oscillators. The system (6.43) may be
rescaled by introducing the following normalized variables and parameters:

t = √
k1τ, k̃2 = k2

k1
, λ̃ = λ√

k1
, F̃1 = F1

k1
, F̃2 = F2

k1
, k̃v = kv

k1
(6.44)

Substitution of (6.44) into (6.43) yields the following rescaled system:
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y ′′
2 + (k̃2 + 1)y2 − y1 = εF̃2 cosωτ

y ′′
1 + (k̃2 + 1)y1 − y2 = εF̃1 cosωτ − εk̃v(y1 − v)3 − ελ̃(y ′

1 − v′)

εv′′ + εk̃v(v − y1)
3 + ελ̃(v′ − y ′

1) = 0 (6.45)

where primes denote differentiation with respect to the normalized independent vari-
able τ . The two natural frequencies of the primary linear system are assumed to be
of the same order of magnitude, incommensurate and well separated [i.e., their dif-
ference is ofO(1)]. It follows that the normalized coupling stiffness k̃2 is selected in
a way to provide two distinct incommensurate natural frequencies for the primary
linear system; e.g., k̃2 = 1 yields the natural frequencies ω2 = √

3 and ω1 = 1.
Although the assignment of numerical values may seem rather restrictive, it will be-
come clear from the following development that the particular values of the natural
frequencies are of no significance for the analysis, as long, of course, as the previous
assumptions are enforced. Indeed, the only significant restriction is the absence of
beats in the linear primary system, that is, the requirement of well separated nat-
ural frequencies. For cases where the natural frequencies of the primary system are
closely spaced a separate asymptotic analysis must be performed.

At this point we transform the dynamical system (6.45) in terms of modal coor-
dinates of the primary system,

y1 = (x1 + x2) /
√

2

y2 = (x1 − x2) /
√

2 (6.46)

yielding the following transformed system of equations:

x ′′
2 + 3x2 = −εÃ2√

2
cosωτ − εk̃v√

2

[
(x1 + x2)√

2
− v

]3

− ελ̃√
2

[(
x ′

1 + x ′
2

)
√

2
− v′

]

x ′′
1 + x1 = εÃ1√

2
cosωτ − εk̃v√

2

[
(x1 + x2)√

2
− v

]3

− ελ̃√
2

[
(x ′

1 + x ′
2)√

2
− v′

]

εv′′ + εk̃v
[
v − (x1 + x2)√

2

]3

+ ελ̃
[
v′ − (x ′

1 + x ′
2)√

2

]
= 0 (6.47)

Note that the introduced modal transformation decouples the left-hand-sides of the
linear oscillators of the primary system but there is still O(ε) coupling between the
two linear modes through the nonlinear and damping terms on the right-hand-sides.
In (6.47), we have introduced the notations Ã1 = F̃1 + F̃2 and Ã2 = F̃1 − F̃2, which
represent the modal harmonic excitations of the two linear modes. The additional
rescalings,

x̃1 = x1√
2
; x̃2 = x2√

2
; ε̃ = ε

2
(6.48)

bring the system to the following simpler form:
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x̃ ′′
2 + 3x̃2 = −ε̃Ã2 cosωτ − ε̃k̃v (x̃1 + x̃2 − v)3 − ε̃λ̃(x̃ ′

1 + x̃ ′
2 − v′)

x̃ ′′
1 + x̃1 = ε̃Ã1 cosωτ − ε̃k̃v (x̃1 + x̃2 − v)3 − ε̃λ̃(x̃ ′

1 + x̃ ′
2 − v′)

ε̃v′′ + ε̃k̃v (v − x̃1 + x̃2)
3 + ε̃λ̃(v′ − x̃ ′

1 + x̃ ′
2) = 0 (6.49)

For the sake of notational convenience the tildes in the variables will be omitted
from now on in the analysis. From the rescaled dynamical system (6.49) we note
that due to its essential stiffness nonlinearity the NES is directly coupled to both
modes of the primary system, so it may engage in resonance interactions with both.

The steady state solutions of system (6.49) will be analyzed using the CX-A
method. Before we perform the direct calculation of the periodic steady state re-
sponses it is convenient to perform a final coordinate transformation that will bring
the rescaled dynamical system (6.49) into its final form. To this end, leaving the first
two equations of (6.49) unchanged we replace the third equation (governing the re-
sponse of the NES) by adding the first two equations of (6.49) and then subtracting
from the sum the third equation. Defining the new variable w according to,

w ≡ x1 + x2 − v (6.50)

system (6.49) is rewritten in the following final form:

x ′′
2 + 3x2 = −εA2 cosωτ − εkvw3 − ελw′

x ′′
1 + x1 = εA1 cosωτ − εkvw3 − ελw′ (6.51)

w′′ + 3x2 + x1 = ε (A1 − A2) cosωτ − (1 + 2ε)kvw3 − (1 + 2ε)λw′

which will be the basis of the following analysis.
We begin our treatment by considering harmonic excitations with frequencies

close to the first natural frequency of the primary system; hence, we consider direct
harmonic excitation of the lower linear mode only. We will refer to this resonance
as in-phase fundamental resonance. To this end, we introduce the weak frequency
detuning εσ defined as

ω = 1 + εσ (6.52)

which measures the closeness of the excitation frequency ω to the first natural fre-
quency. To apply the CX-A methodology we introduce the following new complex
variables,

x ′
1 + ix1 = ϕ1 exp[j (1 + εσ)τ ]
x ′

2 + ix2 = ϕ2 exp[j (1 + εσ)τ ]
w′ + iw = ϕw exp[j (1 + εσ)τ ] (6.53)

where ϕ1, ϕ2, ϕw are assumed to be slowly evolving complex modulations of a fast
oscillation at the frequency of the external excitation. By the slow-fast partition in
the ansatz (6.53) we seek steady state solutions possessing a single fast frequency
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equal to the first natural frequency of the primary system. Introducing (6.53) into
(6.51) and averaging over one period of the external excitation we obtain the fol-
lowing slow flow dynamical system, which governs the slow evolutions of the mod-
ulations ϕ1, ϕ2 and ϕw in the neighborhood of the first linear mode:

ϕ̇2 + j (εσ − 1)ϕ2 = −εA2

2
+ 3jεkv

8
|ϕw|2 ϕw − ελ

2
ϕw

ϕ̇1 + jεσϕ1 = εA1

2
+ 3jεkv

8
|ϕw|2 ϕw − ελ

2
ϕw

ϕ̇w + j
(

1

2
+ εσ

)
ϕw − 3j

2
ϕ2 − j

2
ϕ1

= ε (A1 − A2)

2
+ 3j (1 + 2ε)kv

8
|ϕw|2 ϕw − λ(1 + 2ε)

2
ϕw (6.54)

In order to analytically estimate the periodic responses of the system we consider
the fixed points of (6.54) by setting ϕ̇1 = ϕ̇2 = ϕ̇w = 0. This yields the following
system of nonlinear algebraic equations,

j (εσ − 1)ϕ20 = −εA2

2
+ 3εjkv

8
|ϕw0|2 ϕw0 − ελ

2
ϕw0

jεσϕ10 = εA1

2
+ 3εjkv

8
|ϕw0|2 ϕw0 − ελ

2
ϕw0

j

(
1

2
+ εσ

)
ϕw0 − 3j

2
ϕ20 − j

2
ϕ10

= ε(A1 − A2)

2
+ 3(1 + 2ε)jkv

8
|ϕw0|2 ϕw0 − (1 + 2ε)

λ

2
ϕw0 (6.55)

where subscript ‘0’ denotes the value of the corresponding modulation at the fixed
point. The solutions of (6.55) can be calculated by simple algebraic manipulations.
Indeed, we may reduce the computation to a single third-order inhomogeneous poly-
nomial in terms of the modulus of the complex amplitude ϕw0, by recognizing that
the system (6.55) can be manipulated to yield,

α2ᾱ2 |ϕw0|6 + (α2ᾱ1 + α1ᾱ2) |ϕw0|4 + α1ᾱ1 |ϕw0|2 = α3ᾱ3 (6.56)

where

α1 = j
(
εσ + 1

2

)
+ 3ελ

4(εσ − 1)
+ λ

4σ
+ λ(1 + 2ε)

2

α2 = −
[

9jεkv
16(εσ − 1)

+ 3jkv
16σ

+ 3jkv(1 + 2ε)

8

]

α3 = 3εA2

4(εσ − 1)
− A1

4σ
− ε(A1 − A2)

2
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Fig. 6.50 Steady state frequency response for in-phase fundamental resonance (for ω ≈ 1.0);
dashed lines refer to unstable periodic solutions and solid lines to stable ones.

and overbar denotes complex conjugate. The phase of ϕw0 and the remaining two
amplitudes are then computed through the relations,

ϕw0 = −α3

α1 + α2 |ϕw0|2

ϕ20 = jεA2

2(εσ − 1)
+ 3εkv

8(εσ − 1)
|ϕw0|2 ϕw0 + jελ

2(εσ − 1)
ϕw0

ϕ10 = −jA1

2σ
+ 3kv

8σ
|ϕw0|2 ϕw0 + jλ

2σ
ϕw0 (6.57)

In Figure 6.50 we depict the frequency response plot for this type of excita-
tion. SN and Hopf bifurcations can be analytically studied by performing a stability
analysis of the computed fixed points, in accordance to the procedure developed in
Section 6.1. Points of bifurcation are indicated in the plot of Figure 6.45. In similar-
ity to previous sections, large values of |ϕw0| indicate strong steady state TET from
the forced primary system to the NES, and, hence, enhanced vibration isolation.

Considering now the out-of-phase fundamental resonance of the system by as-
suming an excitation with frequency close to the second eigenfrequency of the pri-
mary system,

ω = √
3 + εσ (6.58)
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Fig. 6.51 Steady state frequency response plot for out-of-phase fundamental resonance (for ω ≈
1.732); dashed lines refer to unstable periodic solutions and solid lines to stable ones.

we follow a similar CX-A procedure to derive the approximate frequency response
plot of Figure 6.51. In similarity to the plot depicted in Figure 6.50, this frequency
response plot is based on the analysis of the slow flow dynamics.

It is rather reasonable to expect that SMRs will exist for system (6.49) as well.
As in a case of periodic or weakly modulated steady state regimes (generated by
Hopf bifurcations), analytical treatment of SMRs must be carried out separately for
the cases of in-phase and out-of-phase fundamental resonances. Such reduction is
possible in the case of sufficiently small NES mass ε. To this end, we reconsider the
original equations (6.49) in slightly modified form, for excitation frequencies close
to the first natural frequency of the linear primary system (that is, for the case of
in-phase fundamental resonance):

x ′′
2 + 3x2 = −εA2 cos [(1 + εσ)τ ] − εkv (x1 + εx2 − v)3 − ελ(x ′

1 + εx ′
2 − v′)

x ′′
1 + x1 = εA1 cos [(1 + εσ)τ ] − εkv (x1 + εx2 − v)3 − ελ(x ′

1 + εx ′
2 − v′)

εv′′ + kv(v − x1 − εx2)
3 + λ(v′ − x ′

1 − εx ′
2) = 0 (6.59)

In this case the ordering of terms with respect to the small parameter ε can
only be balanced if we assume that x1 ∼ O(1), v ∼ O(1) (under condition of
1:1 resonance) and x2 ∼ O(ε). If this is the case, then terms related to x2 in the
last two equations of (6.59) bring about corrections of at most O(ε2) and can be
neglected in lower-order approximations. Following this argument the three-DOF
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system (6.59) can be trivially reduced to a two-DOF system similar to (6.1) with
appropriate notational accommodation. Thus, the treatment of SMRs in this case
may be accomplished similarly to the process described in Section 6.2 and does not
need any further analytical consideration. We note, however, that this reduction can
only be made due to our assumption of well-separated linear modes of the primary
system. When primary systems with closely-spaced modes are considered then cou-
pling (beat phenomena) between linear modes occur and the above reduction to a
two-DOF can not be accomplished. In that case a global analysis of the slow flow
dynamics of the original, full three-DOF system (6.45) must be performed to study
the regimes of SMRs (this raises interesting questions concerning the form of the
necessary Poincaré map reduction that needs to be developed to study relaxation
oscillations – SMRs in the corresponding higher-dimensional slow flow, and the
corresponding bifurcations of that map).

The case of out-of-phase fundamental resonances of (6.59), i.e., of SMRs in the
vicinity of the second natural frequency can be treated similarly, and the associated
problem can be reduced to a two-DOF problem as well. It should be mentioned that
SMRs are expected to exist in an O(ε)-neighborhood of the exact resonance. As
mentioned above, since the two natural frequencies of the primary system of (6.59)
are well separated, no overlap of in-phase and out-of-phase SMRs is expected in
the system under consideration. The open question, of course, that merits further
investigation is the interaction of these two types of SMRs when the primary system
has closely spaced modes; however, this interesting question is not dealt with in this
work.

Motivated by the previously outlined tuning procedure for the case of SDOF lin-
ear primary system (see Section 6.3.2), the principal aim of the tuning procedure
for selecting the coupling stiffness kv and the coupling damper λ in the three-DOF
system (6.45), should be to allow excitement of in-phase or out-of-phase SMRs for
fixed NES mass. We will demonstrate this tuning procedure by means of a demon-
strative example. Specifically, we consider the following values for the amplitudes
of the excitation and the NES mass, A1 = 1, A2 = 3, and ε = 0.01. We need to
select the NES parameters (kv, λ) in such a way as to allow excitation of SMRs in
the neighborhood of each mode of the linear primary system. In order to determine
these values, in the neighborhood of each excited mode we vary the NES parame-
ters (kv, λ) with a small step, and for each pair we construct the corresponding one-
dimensional Poincaré maps that we introduced in Section 6.2 for studying relaxation
oscillations. Then, we obtain the frequency ranges of existence of in-phase and out-
of-phase SMRs (as the stable fixed points of the corresponding one-dimensional
maps) in the neighborhood of each excited mode. By ensuring that for the selected
pair (kv, λ) there exist both stable in-phase and out-of-phase SMRs in the frequency
ranges of interest (in the neighborhoods of the two linear modes) we satisfy the basic
requirement of the tuning procedure.

Suppose that the described procedure yields a pair of NES parameters kv =
1, λ = 0.2 that allows SMRs in the neighborhood of each of the modes of the
primary system. For this NES parameter pair we plot the corresponding in-phase
and out-of-phase fundamental frequency response diagrams as in Figure 6.52; these
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Fig. 6.52 Fundamental resonance plots: (a) in-phase, (b) out-of-phase; dashed lines refer to un-
stable periodic solutions and solid lines to stable ones; the domains of existence of SMRs are
indicated; in the shaded region undesirable conditions for vibration isolation develop.

diagrams possess branches of stable periodic oscillations that co-exist with regimes
of stable SMRs (computed as outlined above). Despite the excitation of SMRs in
the vicinity of each mode we note that an undesirable situation has developed in the
neighborhood of the left bound of the domain of existence of SMRs for the case of
in-phase fundamental resonances (see Figure 6.52a). Indeed, observing the diagram
of Figure 6.52b we can see that the lower-frequency Hopf bifurcation (point A)
occurs on the lower stable branch of periodic solutions slightly before the lower
(left) boundary of the domain of existence of SMRs. This bifurcation causes an
undesirable effect on the system response since the loss of stability of the lower
branch may be accompanied by the jump of the dynamics to the upper stable branch
which yields large-amplitude vibrations; clearly this is an unfavorable scenario for
vibration isolation. In order to avoid this effect our design should be to translate the
lower Hopf bifurcation of the lower branch into the domain of existence of SMRs, in
order to ensure the transition from the lower stable branch of periodic solutions into
the regime of SMRs with increasing frequency detuning, thus avoiding potential
undesirable jumps to the larger-amplitude stable branch of solutions. This can be
achieved easily by appropriate design of the system parameters, e.g., by increasing
the damping parameter from λ = 0.2 to λ = 0.4, as depicted in Figure 6.53 where
the corresponding frequency response plots of the redesigned system are depicted.
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Fig. 6.53 Transition of the Hopf bifurcation point on the lower stable branches of periodic solu-
tions of fundamental, (a) in-phase and (b) out-of-phase resonance plots by increasing the damping
λ; dashed lines refer to unstable periodic solutions and solid lines to stable ones; the domains of
existence of SMRs are indicated.

The frequency response diagrams presented in Figure 6.53 suggest that by in-
creasing the frequency detuning there is the possibility of transitions from the lower
stable branch of periodic solutions to the regime of SMRs for both the in-phase
and out-of-phase modes. The following direct numerical simulations carried out for
this system in the entire frequency range under study (including both modes) and
zero initial conditions, reveal that no undesirable transitions (jumps) to the upper
branches of periodic solutions are realized. It is essential to note that there still ex-
ists the possibility of transitions of the dynamics to the upper stable branches for
different (non-zero sets of initial conditions. These regimes may be excited, for ex-
ample, by relatively large initial displacements; e.g., this is the case when strong
non-harmonic or even non-periodic but repeated excitations – in the form of im-
pulses or trains of pulses – are applied, which are capable of inducing transitions
of the dynamics to the high-amplitude stable solution branches, and thus affect in-
adversely the vibration isolation design. Such excitations are not considered in this
work, however, and investigation of their effects on the steady state dynamics of
systems with attached NES is left as an open problem.

Summarizing the results of the example provided above, we have seen that it is
not enough to excite in-phase or out-of-phase SMRs for achieving satisfactory vi-
bration isolation performance; what is also important is to design the system so that
low-frequency Hopf bifurcation points on the lower stable branches of periodic so-
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Fig. 6.54 Numerical frequency responses: (a) max(y2
1 + y2

2 ); (b) max(y1); (c) max(y2); (d) mean
amplitude of y1(t); (e) mean amplitude of y2(t); superimposed to each plot is the corresponding
frequency response of the optimally tuned linear absorber (dotted lines).

lutions occur well inside the domain of existence of SMRs. Indeed, by shifting these
bifurcation points on the lower branches of periodic responses into the domain of
existence of SMRs, we ensure effective and robust vibration isolation by application
of the NES.

In order to study more systematically the vibration mitigation performance of
the NES, we construct numerical frequency response plots for zero initial condi-
tions over the entire frequency range of interest that include both natural frequen-
cies of the linear primary system. Referring to system (6.43), in the considered fre-
quency response plots we depict the variations of the following quantities for vary-
ing excitation frequency ω: (i) max(y2

1 + y2
2) (see Figure 6.54a); (ii) max(y1) and

max(y2) (see Figures 6.54b, c); and (iii) mean amplitudes of y1(t) and y2(t) (see
Figures 6.54d, e). For comparison, on the same plots we also depict the correspond-
ing frequency responses of the optimally tuned linear absorber; the linear absorber
was tuned numerically by minimizing the summation of the two resonant peaks of
the corresponding frequency response curve. For these simulations the parameters
of the problem were selected as A1 = 1, A2 = 3, kv = 1, λ = 0.4 and ε = 0.01.
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Fig. 6.55 Comparisons of linear and nonlinear designs in the (A1, A2) plane; dots indicate better
performance of the SMR-based nonlinear design.

We now perform a numerical parametric study of the amplitudes of the external
excitations for which SMRs in the nonlinear design provide better vibration isola-
tion performance than the optimally tuned absorber in the linear design. It should be
noted that both linear and nonlinear vibration absorbers are tuned according to the
same criteria discussed above (that is, minimal sum of resonant peaks of the max-
imal response deflection). In Figure 6.55 we depict schematically the zone on the
(A1, A2) plane for which the SMR-based nonlinear vibration isolation is preferable.

From the results presented in Figure 6.55 we note that better performance of
SMR-based nonlinear vibration isolation is realized for relatively high amplitudes of
external excitations. This result is not surprising since the analytical model predicts
that the upper branch of the SIM does not depend on the amplitude of excitation;
it follows that for some low excitation amplitudes SMRs may be already excited,
however, the system response will be rather high compared to the one realized when
a linear absorber is applied. In the case of high amplitude excitation, the response
of the system with linear absorber attached will overcome the SMRs. This is due to
the fact that SMRs are weakly affected by the increase of the excitation amplitudes;
this is contrary to the case when the linear absorber is attached.

In order to demonstrate the robustness of the nonlinear vibration isolation
achieved by excitation of either the lower branch of stable periodic responses or
the regime of SMRs, we have performed a series of direct numerical integra-
tions of the original dynamical system (6.47) for random sets of initial conditions.
Specifically, we randomly picked 300 triplets of initial displacements in the ranges
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−0.5 ≤ xi(0) ≤ 0.5, i = 1, 2 and −0.5 ≤ v(0) ≤ 0.5, and zero initial veloc-
ities, under conditions of in-phase or out-of-phase fundamental resonances. Two
frequency detuning values were selected for each type of fundamental resonance.
Referring to the previously discussed frequency response diagrams of the system
with NES attached [see Figures 6.50–6.53], the first value of frequency detuning
refers to the region of two co-existing stable periodic regimes, and is out of the
domain of existence of stable SMRs; while for the second detuning value there is
co-existence of the regime of stable SMRs and the upper branch of stable periodic
responses. Hence, the frequencies of external excitation are defined as follows: for
the in-phase fundamental resonances, ω = 1 + εσ , with σ = −0.8,−1.0; for the
out-of-phase fundamental resonances, ω = √

3 + εσ , with σ = −1.2,−1.5. The
system parameters are selected as A1 = 1, A2 = 3, ε = 0.01, λ = 0.4 and kv = 1.

The results of these simulations are depicted in Figure 6.56. The attractor reached
in each of the numerical simulations (corresponding to a triplet of initial conditions
chosen from the random set) is marked by a diamond when the attractor is a stable
SMR, or by a circle when the attractor is on the upper branch of stable periodic
solutions. It is clear from these results that for values of the frequency detuning
in the regime of co-existence of two branches of stable periodic motions, all sim-
ulations are attracted by the periodic solution on the lower branch. For values of
frequency detuning in the regime of co-existence of SMRs and stable periodic re-
sponses, all numerical simulations are attracted by a stable SMR. These results pro-
vide additional confirmation of the robustness of the steady state regimes related to
the lower stable branch of periodic solutions and the regime of stable SMRs. Both
these regimes are favorable to the objective of vibration isolation. It is essential to
note that the considered initial displacements possess much larger magnitudes than
the amplitudes of the external excitations.

The results presented in this chapter indicate that there are some major differ-
ences between commonly used designs based on linear vibration absorbers (TMDs)
and the essentially nonlinear absorber (NES) designs proposed herein. First, the
performance of the NES-based design depends on the amplitude of the external ex-
citation, i.e., it works properly only for specific ranges of forcing amplitudes. The
TMD, at least in theory, is free of this drawback as the dynamics is purely linear
and hence energy-independent; however, in practice too high amplitudes of the ex-
ternal forcing are also problematic in the linear design, as they yield prohibitively
large displacements of the damper which either leads to degeneration of the sys-
tem due to fatigue or drives the dynamics out of the linear regime. On the other
side, if the excitation is small enough, no protection is required in the first place.
From this viewpoint, the NES may be plausible despite its limitations concerning
the permissible range of external excitation amplitudes.

The nonlinear absorber has two main advantages compared to the TMD. The
first is based on the fact that, simply, it is more effective – it yields better vibration
isolation performance. However, with this comes the possible drawback that alter-
native undesirable response regimes might co-exist with the ones that are favorable
for vibration isolation. Still, as demonstrated in the previous study, proper design of
the NES will guarantee that for certain ranges of initial conditions these problem-
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Fig. 6.56 Attractors of the dynamics for random sets of the initial conditions: (a) in-phase fun-
damental resonance, σ = −1; (b) in-phase fundamental resonance, σ = −0.8; (c) out-of-phase
fundamental resonance, σ = −1.5, (d) out-of-phase fundamental resonance, σ = −1.2; dots de-
note the lower stable branch of periodic orbits, and diamonds denote the regime of stable SMRs.

atic responses are not excited at all. The regime of SMRs greatly facilitates robust
vibration absorption, since through its extended domain of attraction it is capable of
deferring the dynamical flow from the undesired dynamic attractors. Consequently,
the regime of SMRs is a rather desirable response regime for effective vibration miti-
gation. This conclusion is a bit unexpected in the sense that normally, quasi-periodic
responses are rather undesirable in engineering systems. Yet, this counter-intuitive
conclusion is perhaps in line with the overall theme of this work, which is the con-
sideration of essentially nonlinear designs in engineering practice. This contrasts
with the view that nonlinearities in engineering are counterproductive and hence
should be avoided at all cost.

The second major advantage of the proposed essentially nonlinear absorber is
its capability to work over broad frequency bands. While connected to a two-DOF
primary system, the NES demonstrates much better performance than a properly
tuned TMD. To achieve comparable broadband performance by means of linear
vibration absorbers, one should design them to possess more degrees of freedom.

These advantageous properties of the strongly nonlinear vibration absorbers were
revealed by means of theoretical analysis and numeric simulation; experimental ver-
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ifications on the subject are few and incomplete. Hence, there is the need for further
experimental study and validation of the proposed NES designs. Moreover, the study
of applying SDOF or MDOF NESs for vibration isolation of periodically forced
continuous elastic systems can be carried out by extending the methodologies and
optimization procedures developed in this chapter. In the context of applying such
designs to practical engineering problems, a systematic and rigorous study of the
issue of robustness of nonlinear vibration isolation in the presence of co-existing
unfavorable response regimes deserves further investigation.
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Chapter 7
NESs with Non-Smooth Stiffness Characteristics

In this chapter we consider NESs with non-smooth stiffness nonlinearities, such
as, clearances and vibro-impacts. Apart from their interesting nonlinear dynamics,
the additional motivation for studying this class of nonlinear attachments is their
capacity to absorb shock energy at fast time scales. The consequence of this capacity
for rapid passive energy absorption is that this type of NESs are good candidates
for applications where the targeted energy transfer (TET) from the directly forced
primary structure to the NES(s) must be accomplished at the very early stage of the
motion, that is, immediately after the application of the external shock where the
energy is at its highest level; examples are, structures under seismic excitation or
cars during collision.

We will provide a theoretical basis for assessing the capacity of NESs with non-
smooth nonlinearities for TET at fast time scales, and postpone until Chapter 10
the discussion of the application of NESs with vibro-impact nonlinearities to the
important problem of passive seismic mitigation of structures. For works on the me-
chanics of systems with non-smooth stiffness or damping nonlinearities we refer to
the monographs by Babitsky (1998), Persson (1998), Brogliato (1999), Wiercigroch
and de Kraker (2000), Babitsky and Krupenin (2001), Glocker (2001), Awrejcewicz
and Lamarque (2003) and references therein. In the first two sections we provide
numerical evidence of the capacity for shock isolation of NESs with non-smooth
stiffnesses. In the following sections we will be focusing on systems with NESs
possessing clearance or vibro-impact nonlinearities, in an effort to study certain as-
pects of the complex dynamics of these systems and related them to TET.

7.1 System with Multiple NESs Possessing Clearance
Nonlinearities

We initiate the study of TET in coupled mechanical oscillators with NESs possess-
ing non-smooth stiffness characteristics (referred to from now on as non-smooth
NESs – NS NESs) by studying the shock isolation properties of a system of two
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coupled non-conservative linear oscillators with NESs possessing clearance nonlin-
earities (Georgiades, 2006; Georgiades et al., 2005). Apart from the fact that such
non-smooth stiffness elements introduce strong nonlinearities to the system, they are
rather easy to implement in practical settings since they can be realized by means of
assemblies of linear stiffnesses. This renders the proposed designs practical in their
implementation, and convenient to study experimentally under realistic forcing con-
ditions (e.g., refer to the experimental work reported in Chapter 10).

7.1.1 Problem Description

The system considered in this section is depicted in Figure 7.1. The primary system
is composed of two weakly coupled, viscously damped linear oscillators (LOs –
referred to as LO 1 and 2), where the small parameter of the problem, 0 < ε 	 1,
scales the weak coupling. To each of the two LOs there is an attached NS NES
(labeled as NES 1 or 2 – see Figure 7.1) through a weak linear stiffness; each NES
possesses viscous damping and an internal restoring linear spring which acts in
parallel to a linear stiffness with clearance. We assume that an external shock F(t) is
applied to LO 1, and wish to examine the capacity of the two NS NESs to passively
and rapidly extract shock energy from (and thus isolate from shock) the primary
system. That is, we aim to study the capacity of the NS NESs to absorb shock energy
from the primary system at a sufficiently fast time scale and reduce the level of
vibration of the primary system at the initial stage of the motion where the energy is
at its highest level.

Note that this objective is more demanding than similar objectives for TET posed
in previous Chapters, where effectiveness of TET was judged primarily based on
asymptotic energy dissipation measures (EDMs), i.e., by studying the capacity of a
(‘smooth’) NES to absorb significant portions of the energy induced in a primary
system, without paying much attention on the time scale of TET (i.e., on how rapid
TET is). In addition, contrary to our studies of NESs with smooth stiffness charac-
teristics carried out in previous chapters, in the present study we do not make any
assumption regarding the smallness of the NES masses m1, . . . ,m4, allowing them
to be O(1) quantities.

Hence, we aim to show that appropriately designed NS NESs can rapidly absorb
significant fractions of the broadband shock energy of the primary system through
passive TET, and locally dissipate this energy without ‘spreading it back’ to the
primary system. If this type of TET can occur at a sufficiently fast time scale, then
this should result in drastic reduction of the level of vibration of the primary system
at the critical initial stage of the motion (that is, immediately after the shock has
been applied), and, hence, to effective passive shock isolation. As shown below, the
non-smooth stiffness characteristics of the NESs can, indeed, yield broadband TET
on a fast time scale.

Returning to the system of Figure 7.1, the non-smooth stiffnesses of the two NS
NESs are piecewise linear, and expressed as
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Fig. 7.1 Primary system with multiple NES with clearance nonlinearities.

G1(v1) =

⎧⎪⎨
⎪⎩
k12v1 + k11(v1 + e1), v1 ≤ −e1

k12v1, −e1 < v1 < e1

k12v1 + k11(v1 − e1), v1 ≥ e1

(7.1a)

and

G2(v2) =

⎧⎪⎨
⎪⎩
k22v2 + k21(v2 + e2), v2 ≤ −e2

k22v2, −e2 < v2 < e2

k22v2 + k21(v2 − e2), v2 ≥ e2

(7.1b)

where v1 = x2 − x1, v2 = x4 − x3, and e1, e2 denote the clearances at the upper and
lower NESs, respectively. We note that in the limits k11, k21 → ∞, the clearance
nonlinearities approach vibro-impact (VI) limits, so the NS NES design considered
herein can be extended to the VI case as well. As mentioned above, the considered
non-smooth stiffness nonlinearities represent strong forms of stiffness nonlineari-
ties. This can be easily inferred from the VI limit, where each vibro-impact repre-
sents an impulsive (pseudo) excitation of the system, and, as a result, excites modes
of the system over a broad frequency range. Therefore, we anticipate that the dy-
namic interactions in the system of Figure 7.1 will be broadband.

We introduce at this point the following coordinate transformations:

u1 = (x1 + x2)/2, v1 = x2 − x1, u2 = (x3 + x4)/2, v2 = x4 − x3 (7.2)

In physical terms, variables v1 and v2 are the relative displacements of the internal
massesm2 andm4 of the two NESs with respect to their frames, whereas, u1 and u2
are related to the motions of their centers of mass. Using these new coordinates the
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equations of motion of the system are expressed as follows:

ü1 + εα1(v1/2 + u1 − y1)
3 = 0

v̈1 + 2εα1(v1/2 + u1 − y1)
3 + 4G1(v1)+ 4λv̇1 = 0

ÿ1 + λẏ1 + ω2
1y1 + εα1(−v1/2 − u1 + y1)

3 + ε(y1 − y2) = F(t)
ÿ2 + λẏ2 + ω2

2y2 + εα2(−v2/2 − u2 + y2)
3 + ε(y2 − y1) = 0

ü2 + εα2(v2/2 + u2 − y2)
3 = 0

v̈2 + 2εα2(v2/2 + u2 − y2)
3 + 4G2(v2)+ 4λv̇2 = 0 (7.3)

with zero initial conditions. Unless otherwise noted, in the following exposition the
masses of the system are assigned the valuesM1 = M2 = 1 and m1 = m2 = m3 =
m4 = 1/2.

The system of equations (7.3) is solved numerically in Matlab� (Georgiades,
2006; Georgiades et al., 2005). The accuracy of the numerical computations is en-
sured by computing the overall instantaneous energy of the system at each step of
the computation, as well as the amount of energy dissipated up to that time instant
by the dampers of the system; it is checked that the summation of these two energy
measures is identical (within a small numerical round-off error) to the energy in-
put to the system provided by the external shock. A first quantitative assessment of
TET efficiency in the system is performed by defining appropriate energy dissipa-
tion measures (EDMs), i.e., by computing the percentage of shock energy dissipated
by each NES up to a specified time instant (as discussed in previous chapters). To
this end the following two EDMs are introduced,

ENES i (t) =
λ

∫ t

0
v̇2
i (ξ)dξ∫ T

0
F(τ)ẏ1(τ )dτ

× 100, i = 1, 2 (7.4)

where T is the duration of the external shock.
An additional quantitative measure to study the efficacy of utilizing the non-

smooth NESs for shock isolation is the computation of nonlinear shock spectra; in
this study these will be plots of the maximum level of vibration attained by the LO 2
for varying grounding stiffness ω2

1 (see Figure 7.1) and fixed shock and fixed system
parameters. The use of shock spectra is a standard technique for designing linear
shock isolation systems. Although in the nonlinear case the use of such spectra is
limited by their dependence on the magnitude of the excitation (or the energy of
the motion), nevertheless, as reported below they can provide useful information
for judging the effectiveness of the NESs when the relative duration of the shock
with regard to a characteristic time scale of the problem varies; such a characteristic
time scale can be chosen as being equal to either one of the characteristic periods of
the linear primary system, Ti = 2π/ωi , i = 1, 2. Moreover, one can compare the
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nonlinear spectra with reference linear spectra corresponding to systems of similar
designs but with no NESs attached in order to assess and compare the effect of TET
on shock isolation.

Finally, we note that since the system of Figure 7.1 possesses a symmetrical
design, it is capable of dual-mode shock isolation, i.e., of preventing transient dis-
turbances of either one of the LOs of the primary system from being transmitted
to the other. Clearly, the underlying dynamical mechanism governing this type of
shock isolation is passive nonlinear TET.

7.1.2 Numerical Results

In the following series of numerical simulations we consider finite half-sine external
excitations of the form:

F(t) =
{
A sin

(
2πt
T

)
, 0 ≤ t ≤ T

0, t > 0
(7.5)

In Figure 7.2 we depict the portion of shock energy dissipated by the dampers of
the two NESs for varying clearance e1 of NES 1. For this series of simulations the
characteristics of the force were set equal to A = 104 and T = 10−4, whereas the
other parameters of the system were assigned the following values:

ε = 0.27, λ = 0.1, ω2
1 = ω2

2 = 0.5, e2 = 0.05, k12 = k22 = 0,

k11 = 102, k21 = 10, α1 = α2 = 85

To obtain these results we integrated the equations of motion and computed
the transient EDMs (7.4). The plot of Figure 7.2 depicts the asymptotic limit
ENES,t�1 ≡ limt�1{ENES 1(t) + ENES 2(t)}, which represents the percentage of
shock energy that is eventually dissipated by the two NESs during the entire dura-
tion of the motion. From the plot of Figure 7.2 we conclude that the maximum value
of ENES,t�1 is approximately 75% and occurs for e1 ≈ 0.23. For clearances greater
that this optimal value the internal mass of NES 1 does not possess enough ampli-
tude to overcome the clearance, and the nonlinear effects in the dynamics of NES
1 are eliminated. Note that even above this optimal clearance the damper of NES
1 still dissipates about 42% of shock energy, but this amount is not affected by the
clearance e1 anymore. For e1 > 0.23, however, there are still nonlinear clearance
effects in the dynamics of NES 2, as this NES possesses sufficiently large relative
amplitude |v2| to overcome the clearance e2.

Referring to the plot of Figure 7.2, we note that in the range of small clearances
e − 1 there is an almost linear increase of ENES,t�1 as function of clearance. The
ineffectiveness of NES 1 for small clearances can be explained by noting that the
internal restoring stiffness k11 used in these particular simulations is rather strong;
it follows that at low clearances the motion x1 of the internal mass m2 of NES 1
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Fig. 7.2 Percentage of shock energy, ENES,t�1, eventually dissipated by the two NESs as a func-
tion of clearance e1, for A = 104 and T = 10−4; points A and B correspond to the plots of
Figures 7.4 and 7.5, respectively.

Fig. 7.3 Percentage of shock energy, ENES,t�1, eventually dissipated by the two NESs as a func-
tion of clearance e1, for A = 105 and T = 10−4.
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Fig. 7.4 Transient responses corresponding to point A of Figure 7.2: (a) instantaneous normalized
energy in the primary system; (b) transient responses of LO 1 and NES 1.

is heavily constrained by its restoring stiffness k11, yielding small relative displace-
ment v1. As a result, only a small fraction of the total external energy ends up being
dissipated by the internal damper of NES 1.

With increasing clearance, the displacement of the internal mass of NES 1 also
increases, which is reflected on the corresponding increase of ENES,t�1 in Fig-
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Fig. 7.4 Transient responses corresponding to point A of Figure 7.2: (c) transient responses of LO
2 and NES 2.

ure 7.2. With increasing clearance e1 one expects the percentage of shock energy
dissipated by NES 1 to reach a maximum before settling to a linear motion when
the clearance is large enough to eliminate the nonlinear effects in that NES. A sim-
ilar phenomenon was observed in the dynamics of a vibro-impacting beam (Azeez
and Vakakis, 2001) where proper orthogonal decomposition was used to quanta-
tively identify regions of maximum nonlinear vibro-impact interaction between the
beam and the rigid contstraints which caused the vibro-impacts.

The effect of increasing the shock amplitude on ENES,t�1 is investigated in the
plot of Figure 7.3, corresponding to force characteristics A = 105 and T = 10−4,
and all other parameters held fixed. We note that since the system under consid-
eration is nonlinear one expects that the dynamics will change qualitatively (and
obviously quantitatively) with increasing energy input. In this case the maximum
portion of energy dissipated by the two NESs again reaches levels up to nearly 75%
(yielding an optimal clearance of e1 ≈ 1.83). For sufficiently low clearances, again
there is a nearly linear increase of ENES,t�1 as function of e1; however, as the clear-
ance increases a saturation-like effect is noted regarding TET efficiency.

To study the time scale of TET in this system we study the diminishing of the
energy stored in the primary system in time. In Figures 7.4 and 7.5 we depict repre-
sentative plots of the instantaneous normalized energy (with respect to the shock
energy) of the primary linear system for simulations corresponding to points A
(e1 = 0.15) and B (e1 = 0.23) of the plot of Figure 7.2. For comparison pur-
poses the corresponding plots for systems with no NESs attached are also shown.
Note the significant reduction of the normalized energy when the NESs are attached
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Fig. 7.5 Transient responses corresponding to point B of Figure 7.2: (a) instantaneous normalized
energy in the primary system; (b) transient responses of LO 1 and NES 1.

(see Figures 7.4a and 7.5a); also note the significant reduction (nearly 40%) of the
corresponding maximum amplitude of y2(t) (see Figures 7.4c and 7.5c). Clearly,
the energy absorbed and dissipated by the NESs results in enhanced shock isolation
of the primary system.

A special note is appropriate at this point, with regard to the fast time scale of
energy dissipation in the system when NESs are attached. This yields considerable
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Fig. 7.5 Transient responses corresponding to point B of Figure 7.2: (c) transient responses of LO
2 and NES 2.

energy transfer from the primary system to the NESs right from the beginning of the
motion (i.e., during the energetically high regime of the dynamics). The capacity of
the NS NESs to rapidly absorb shock energy in the initial highly energetic regime is
critical to their role as shock isolators, and is evidenced by the drastic reduction of
the initial peaks in the transient responses of the LOs 1 and 2, occurring immediately
after the application of the external shock (see Figures 7.4b, c and 7.5b, c).

We now construct nonlinear shock spectra of the response of the system of Fig-
ure 7.1. For fixed external shock, these spectra depict the maximum amplitude
reached by the LO 2 of the primary system as function of the grounding stiffness
ω2

1. In essence, we investigate the maximum amplitude of y2(t) by varying the du-
ration T of the shock with respect to the period of free oscillation of the LO 1 of the
primary system. For comparison purposes we also compute the linear shock spectra
of the following two reference systems: (i) the linear primary system with no NESs
attached, and, (ii) the primary system with no NESs attached, but possessing masses
M1 = M2 = 2 (that is, when the mass of each of the removed NESs is integrated
into the corresponding mass of the LO to which it was originally attached). The
second reference system is considered in order to cancel any missing mass effects
from the comparisons of the shock spectra of the linear and nonlinear systems.

In Figure 7.6 we depict the nonlinear spectrum for the system with parameters

ε = 0.27, λ = 0.1, ω2
2 = 5.0, e2 = 0, e1 = 0.9, k12 = k22 = 0,

k11 = k21 = 5 × 102, α1 = α2 = 85
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Fig. 7.6 Nonlinear shock spectra of the system with NESs attached, and the two linear reference
systems, for A = 105 and T = 10−4.

and shock characteristics A = 5 × 105 and T = 10−4. Referring to the nonlinear
spectrum we note that by adding the NESs we are able to reduce the maximum of
y2(t) by as much as 80% (for ω2

1 ≈ 5); in addition, we are able to nearly eliminate
the resonance of the linear spectra in the neighborhood of ω2

1 = 5. These results
demonstrate the drastic effect of broadband TET from the primary system to the
NESs on the shock isolation of the primary system. However, since the system under
consideration is nonlinear the depicted nonlinear spectrum is energy dependent, and
as such, it will vary when the forcing level varies.

Similar conclusions can be drawn by examining the nonlinear spectrum of Fig-
ure 7.7 corresponding to e1 = 0.51, force characteristics A = 5 × 104 and
T = 10−4, and all other parameters held fixed. For this weaker shock excitation,
there is again significant reduction of the amplitude of the nonlinear system com-
pared to the two linear reference systems. Again, we note the near complete elimi-
nation of the linear resonance close to ω2

1 = 5 from the nonlinear spectrum.
Additional results reported in Georgiades (2006) demonstrate the insensitivity of

the EDM with respect to variations of the clearance stiffnesses k11 and k21, indi-
cating that the capacities for TET of the NESs do not change significantly in the
vibro-impact limit, i.e., for k11, k21 → ∞.

The results reported in this section provide numerical evidence of the capacity of
NS NESs for TET at a fast scale, and demonstrate the efficacy of using NS NESs in
shock isolation designs. The significance of using NS NESs lies in the fact that they
can rapidly absorb a major portion of the shock energy of the primary system, during
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Fig. 7.7 Nonlinear shock spectra of the system with NESs attached, and the two linear reference
systems, for A = 5 × 104 and T = 10−4.

the critical initial (highly energetic) stage of the dynamics, that is, immediately after
the external shock is applied. Moreover, the clearance nonlinearities utilized herein
are easily implementable in practical settings, since they are realized by means of
assemblies of linear stiffness elements. In the limits of large clearance stiffnesses
the nonlinearities approach VI limits. The numerical simulations performed in the
VI limits indicate that the capacities for TET of the NESs are not significantly al-
tered. Indeed, results similar to those reported in this section hold in the VI case
as well, provided, of course, that the vibro-impacts occur elastically, i.e., that they
do not introduce additional sources of dissipation in the system [for a discussion
of the effects of inelastic impacts on vibro-impact dynamics of elastic systems, the
reader is referred to Emaci et al. (1997)]. Hence, the afore-mentioned conclusions
are expected to hold also for the VI case.

Finally, we point out that the attached NS NESs affect the global dynamics of
the integrated system in a time-varying fashion. This is evidenced by the capacity
of the NS NESs to passively absorb shock energy from the primary system early
on, that is, right at the initiation of the motion when the energy is at its highest (and
damage due to shock is expected typically to occur). As the overall energy level
decreases due to damping dissipation, the nonlinear effects of the NS NESs on the
dynamics gradually decrease, and the system settles into linearized motion regimes.
It follows that the effects of the NS NESs on the system dynamics are expected to be
significant only in the highly energetic initial stages of the shock-induced motion,
i.e., at precisely the regime where fast and efficient energy dissipation should be
achieved in order to effectively isolate the primary system.
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7.2 Vibro-Impact (VI) NESs as Shock Absorbers

We now provide a second application of a non-smooth NES, by studying a SDOF
LO (the primary system) with an ungrounded vibro-impact (VI) NES. We aim to
study the use of the VI NES as shock absorber. Then, by considering different con-
figurations of primary LOs with VI attachments we will investigate the capacity of
this type of attachments to rapidly absorb and dissipate significant portions of shock
energy applied to the primary systems. In addition, we will perform parametric stud-
ies to determine the dependence of energy dissipation by the VI attachment on the
system parameters. To perform these tasks we will employ nonlinear shock spectra
similar to the ones considered in the previous section in order to demonstrate that
a properly designed VI attachment can significantly reduce the maximum level of
shock response of primary systems (over wide frequency ranges) through fast-time
broadband TET. This is in contrast to classical linear vibration absorbers, whose ac-
tions are restricted to be narrowband. As in the previous section we will show that
VI attachments can significantly reduce or even completely eliminate resonances
from the corresponding shock spectra, thus providing strong, robust and broadband
shock protection to the primary structures to which they are attached.

The regular and chaotic dynamics and bifurcations of vibro-impact (VI) oscilla-
tors have been studied extensively in the literature (Shaw and Rand, 1998; Babitsky,
1998; Brogliato, 1999; Kryzhevich and Pliss, 2005; Thota et al., 2006; Thota and
Dankowicz, 2006). In an additional series of papers (Masri and Caughey, 1966;
Masri and Ibrahim, 1973; Filippov, 1998; Pfeiffer and Glocker, 2000; Blazejczyk-
Okolewska, 2001; Leine and Nijmeijer, 2004; Peterka and Blazejczyk-Okolewska,
2005; Sun and Luo, 2006), VI dampers were considered for reducing the vibration
levels of structures under periodic or stochastic excitation. Shaw and Holmes (1982,
1983), Shaw (1985) and Shaw and Shaw (1989) applied methods from the geo-
metrical theory of nonlinear dynamics to analyze the dynamics of free and forced
dynamics of systems with piece-wise nonlinearities, including systems undergoing
vibro-impacts.

In additional recent works, Gorelyshev and Neishtadt (2006) discussed the ex-
tension of adiabatic perturbation theory to VI systems; Mikhlin et al. (1998), Leine
et al. (2000), Czolczynski and Kapitaniak (2004), Wen et al. (2004), Krezhevich
and Pliss (2005), Dupac and Marghitu (2006), Leine (2006), Lin et al. (2006), Halse
et al. (2007), Luo et al. (2007) studied periodic orbits, bifurcations and chaos in
discrete and continuous oscillators with clearance or vibro-impact nonlinearities;
Ivanov (1993, 2003, 2004) analyzed singularities of the dynamics of systems with
bilateral and unilateral constraints and discussed properties of the solutions of sys-
tems with Coulomb friction; Zhuravlev (1976, 1977) investigated vibro-impact os-
cillations using non-smooth coordinate transformations [for an additional applica-
tion of this method, see also Azeez et al. (1999)], and Pilipchuk (1985, 1988, 2001,
2002) extended this approach by considering non-smooth transformations of the de-
pendent (temporal) variable of the problem; in a recent work Thomsen and Fidlin
(2007) developed an analytical methodology for analyzing the dynamics of systems
undergoing near-elastic vibro-impacts, by extending the method of discontinuous
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transformations in conjunction with an extended averaging principle; Pinnington
(2003) analyzed energy exchange and dissipation due to collisions in a line of cou-
pled oscillators; (Valente et al., 2003) provided a geometrical analysis of the dy-
namics of a vibro-impacting two-DOF system; Salapaka et al. (2001) studied the
dynamics of a linear oscillator impacting with a vibrating platform; Quinn (2005) in-
vestigated the oscillations of two parametrically excited pendula undergoing vibro-
impacts; Li and Darby reported experimental work on the effect of an impact damper
on a MDOF system; Zhao and Dankowicz (2006) analyzed degenerate grazing dy-
namics of impact microactuators using analytical and numerical techniques; Lan-
cioni and Lenci (2007) studied the forced dynamics of a semi-infinite beam on uni-
lateral elastic springs, and Murphy and Morrison (2002) studied computationally
and experimentally instabilities and bifurcations of a vibro-impacting string; Hu and
Schiehlen (2003) discussed multi-scale simulation of impact responses with appli-
cations ranging from wave propagation to rigid body dynamics; Sampaio and Soize
(2007) formulated measures that quantify nonlinear effects for uncertain systems,
whereas Azeez and Vakakis (2001) approached the issue of quantification of non-
linear effects in the dynamics of vibro-impacting systems by means of the method
of proper orthogonal decomposition.

Vedenova and Manevitch (1981), Vedenova et al. (1985), Gendelman (2006)
and (Meimukhlin and Gendelman, 2007) examined modeling inelastic impacts with
smooth, essentially nonlinear stiffness functions of high degree; Nayeri et al. (2007)
investigated the action of multi-unit impact dampers in systems under stochastic
excitation, and Namachchivaya and Park (2005) developed an analytical approach
based on averaging for studying the dynamics of VI systems under stochastic exci-
tation; Wagg (2007) used energy balance analysis to examine multi-modal systems
undergoing vibro-impacts, and studied effective restitution coefficients; Shaw and
Pierre (2006) applied tuned impact dampers to rotating structural components and
assessed their performance; and Veprik and Babitsky (2001) investigated vibration
isolation of a SDOF linear oscillator with a dynamic vibration absorber with motion-
limiting constraints.

7.2.1 Passive TET to VI NESs

Following Karayannis et al. (2008), we consider the system depicted in Figure 7.8
consisting of a SDOF LO with mass m coupled to an attachment with vibro-impact
(VI) nonlinearity. Apart from the weak restoring stiffness k1, it is assumed that the
nonlinear attachment undergoes two-sided inelastic impacts when it reaches the left
and right limits of the clearance 2e. We assume that the LO is forced by a half-sine
shock F(t) of magnitudeA and duration T ,

F(t) =
{
A sin 2πt

T
, 0 ≤ t ≤ T

2

0, t ≥ T
2

(7.6)
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Fig. 7.8 SDOF LO with vibro-impact (VI) NES.

and that the system has zero initial conditions. The system possesses two viscous
dampers with characteristics c and c1, with additional passive energy dissipation
resulting from the inelastic collisions of the attachment mass µ. We model inelastic
impacts by introducing the coefficient of restitution rc, defined by the relation

rc = − ẋ
+
1 − ẋ+

2

ẋ−
1 − ẋ−

2

(7.7)

where the superscripts (±) refer to velocities before and after impacts, respectively.
Clearly, the coefficient of restitution assumes values in the range 0 < rc < 1, with
unity corresponding to perfectly elastic, and zero to purely plastic impacts. Although
the coefficient of restitution depends on the composition of the impacting bodies and
surfaces, and on the magnitudes of the velocities of the bodies during impact, in this
study it is assumed to remain constant during each individual numerical simulation.

For sufficiently large clearances no vibro-impacts occur, and the system becomes
linear (in effect we obtain a LO with a classical linear vibration absorber attached
to it). It follows that by increasing the clearance to sufficiently large values we will
be able to compare the dynamics of the linear and VI-systems, and, hence, assess
the effects of vibro-impacts on the transient dynamics and on shock isolation. We
wish to study passive TETs from the directly forced LO to the VI NES, leading to
passive shock isolation of the LO. We note that even though the VI system under
consideration is strongly nonlinear, in intervals between impacts it behaves in a
purely linear fashion. Hence, in time windows in between vibro-impacts the non-
dimensionalized equations of motion are expressed as the following linear set:

ẍ1 + ω2
nx1 + λẋ1 − λ1(ẋ2 − ẋ1)−�2(x2 − x1) = N(t)
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εẍ2 +�2(x2 − x1)+ λ1(ẋ2 − ẋ1) = 0 (7.8)

where ω2
n = k/m, �2 = k1/m, λ = c/m, λ1 = c1/m, ε = µ/m, N(t) = F(t)/m.

This linear system of equations is numerically integrated until the condition of im-
pact |x2 − x1| = e is realized. At that time instant the two conditions of continuity
of displacements and discontinuity of (jump in) velocities are imposed, according
to the following formulas:

ẋ+
1 = ẋ−

1 (1 − ε rc)+ εẋ−
2 (rc + 1)

1 + ε , ẋ+
2 = ẋ−

1 (1 + rc)+ ẋ−
2 (ε − rc)

1 + ε (7.9)

Then, the system (7.8) is numerically integrated subject to the new initial condi-
tions following the impact, until the impact condition is met again and the previous
procedure is repeated. It follows that a precise computation of the time instants of
vibro-impacts is crucial for the correct numerical integration of the transient dynam-
ics of the considered two-DOF system.

The transient VI dynamics is simulated utilizing a Matlab�code which computes
precisely the time instants where impacts occur. This class of VI dynamical prob-
lems is especially challenging from the analysis and computational point of view,
since the time instants where the vibro-impacts occur are determined by the solution
itself, so they cannot be determined a priori, i.e., before solving the problem. More-
over, the essential (strong) nonlinearity of the system is generated precisely at these
time instants (due to the impulsive excitations applied to the integrated system); in
addition, at exactly these time instants significant portions of energy are dissipated
due to inelastic collisions between the attachment mass and the mass of the linear
oscillator (due to the fact that rc < 1). It follows that in order to computationally
model this class of problems correctly one must pay special attention to the accurate
computation of the time instants of vibro-impacts, as well as the energy dissipated
during each impact. In the numerical code the accuracy of the transient computation
was evaluated by checking that at each time instant of the simulation the total initial
energy of the system (provided by the external shock) equaled the sum of instanta-
neous kinetic and potential energies of the system, as well as the energy dissipated
by the two viscous dampers and the inelastic vibro-impacts up to that time instant.

The efficiency of the VI NES to passively absorb and locally dissipate shock
energy from the LO is evaluated by computing the instantaneous energy dissipation
measure (EDM) and its asymptotic limit, i.e., of the percentage of shock energy that
is eventually dissipated by the NES damper and by the inelastic vibro-impacts:

EVI NES,t�1 = lim
t�1
EVI NES(t),

EVI NES(t) =

∫ t

0
c1[ẋ1(τ )− ẋ2(τ )]2dτ +

Pt∑
p=1


p

∫ T

0
f (τ)ẋ1(τ )dτ

× 100 (7.10)
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The EDM EVI NES(t) represents the percentage of shock energy dissipated up to
time instant t; 
p, p = 1, . . . , Pt , the amount of energy dissipated during the p-th
vibro-impact; and Pt the number of vibro-impacts that occur during the decaying
motion up to time instant t .

We perform a series of parametric studies for the following system parameters,
m = 1, ω2

n = 1, λ = λ1 = 0.1, A = 10, T = 0.1(2π/ωn), rc = 0.6; in the sim-
ulations we varied the mass ratio of the VI NES ε, the coupling frequency squared
�2, and the clearance e. In Figure 7.9 we depict contour plots of the asymptotic
EDM EVI NES,t�1 for fixed clearance and varying mass ratio and coupling fre-
quency squared; whereas in Figure 7.10 we present the corresponding contour plot
for the linear system with relatively large clearance (e ≈ 2.0) so that no vibro-
impacts occur during the entire decaying motion. Considering first the linear case
(see Figure 7.10), we note that the asymptotic EDM assumes high values (reaching
a maximum of 73.7%) on a narrow zone corresponding to linear resonance of the
attachment with the primary system. Away from this zone the EDM deteriorates
to less than 50%. This is expected, as the effectiveness of the linear attachment as
shock absorber is narrowband and, as a result, its performance deteriorates away
from the condition of linear resonance with the primary system. By contrast, the
performance of the VI attachment is broadband, so its effectiveness to passively ab-
sorb and dissipate shock energy is expected to extend over wider parameter ranges.

Regarding the performance of the VI NES (see Figure 7.9), we note the existence
of two regions in each of the EDM contour plots, corresponding to weak and stiff
coupling frequency �, respectively, compared to the grounding frequency ωn of
the primary system. In the region of weak coupling frequency, an increase of the
clearance up to the value of 1.25 results in an increase of the EDM and, hence,
enhancement of TET; above this clearance value, however, we note deterioration
of the EDM. In contrast, in the region of stiff coupling frequency, increasing the
clearance results in an increase of the EDM, and, hence, enhances the performance
of the VI NES as shock absorber. As expected, for relatively large values of the
clearance, the EDM contour plot of the VI system approaches the linear plot of
Figure 7.10, as fewer or no vibro-impacts occur during the decaying motion.

learly, the number and timings of vibro-impacts are expected to affect signifi-
cantly TET from the primary LO to the NES, and, hence, the effectivess of the VI
NES as shock absorber. To study in more detail the dependence of TET on the oc-
curring vibro-impacts, we examined the differences in the asymptotic EDM contour
plots between the VI and linear systems, and attempted to relate these differences
to the number of vibro-impacts occurring in the corresponding nonlinear responses.
In Figure 7.11 we depict representative results that address this issue; positive (neg-
ative) differences in the asymptotic EDM correspond to surplus (deficit) of energy
dissipated by the VI NES when compared to the linear vibration absorber.

From these plots we infer that the number of vibro-impacts plays an important
role in the enhancement of the asymptotic EDM in the VI case. By increasing the
clearance, the number of vibro-impacts diminishes (as expected), but this does not
necessarily imply that the effectiveness of the VI NES as shock isolator deteriorates.
For example, for clearance e = 0.25 (not shown in Figure 7.11) although the num-
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Fig. 7.9 Contour plots of the energy dissipation measure EVI NES,t�1 for varying �2 and mass
ration ε: (a) e = 0.25; (b) e = 1.00; (c) e = 1.25; (d) e = 1.50.
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Fig. 7.10 Contour plots of the energy dissipation measure EVI NES,t�1 for the linear system (no
vibro-impacts, e ≈ 2.0), for varying �2 and mass ratio ε.

ber of vibro-impacts is of the order of 6000, the performance of the VI NES is not
significantly enhanced compared to cases with larger clearances (see Figure 7.10);
on the other hand, for e = 1.50 there occur at most 3 vibro-impacts (and in most
of the contour plot of Figure 7.11b no vibro-impacts occur at all), yet the VI NES
shows as much as 18% better EDM efficiency compared to the linear absorber in
this case. This can be explained by noting that for small clearances and mass ra-
tios the relative displacements and velocities across the viscous damper c1 of the
VI NES are expected to be small, so that relatively small amounts of shock en-
ergy are dissipated by that damper (these results agree with the findings reported in
the previous section). In addition, if vibro-impacts start immediately after or even
during the application of the external shock, for small mass ratios the attachment
is prevented from attaining sufficient acceleration and velocity, and as a result, the
exchange of momentum between the LO and the NES and the amount of shock
energy dissipated due to vibro-impacts may be small even if a large total number
of vibro-impacts occurs. From the plots of Figure 7.11a we note that by increasing
the mass ratio, we can achieve enhanced EDM; moreover, the regions of intense
vibro-impacts coincide with the regions of enhanced nonlinear shock absorption ef-
ficiency. Of course, in regions where no vibro-impacts occur the performance of
the VI attachment converges to that of the linear absorber. It follows that efficient
shock absorption efficiency of the vibro-impact NES can be achieved even for small
number of occurring vibro-impacts.

These findings should be considered in conjunction with the fact that in the two
limits e → 0 and e ≈ 2 the two-DOF system of Figure 7.8 degenerates into two
different linear systems: either a SDOF linear oscillator with mass equal to (m+µ),
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Fig. 7.11 Difference of asymptotic EDM contour plots between the VI and linear systems and
corresponding number of vibro-impacts: (a) e = 0.50; positive (negative) values correspond to
surplus (deficit) of energy dissipated by the VI NES.

or a linear oscillator of mass m with an attached linear vibration absorber of mass
µ. For intermediate values of e and small values of�2, the response of the system is
strongly nonlinear, and there exist extensive regions in the parameter plane (ε,�2)
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Fig. 7.11 Difference of asymptotic EDM contour plots between the VI and linear systems and
corresponding number of vibro-impacts: (b) e = 1.00; positive (negative) values correspond to
surplus (deficit) of energy dissipated by the VI NES.

where the efficiency of the VI NES exceeds that of the linear absorber by as much as
29% (for a clearance e ≈ 1). In terms of the asymptotic EDM, for mass ratios in the
range 0.2 < ε < 0.5 the VI NES eventually absorbs and locally dissipates 60–80%
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Fig. 7.11 Difference of asymptotic EDM contour plots between the VI and linear systems and
corresponding number of vibro-impacts: (c) e = 1.50; positive (negative) values correspond to
surplus (deficit) of energy dissipated by the VI NES.

of the shock energy, even for a relatively small number of total vibro-impacts (from
2 to 6).

In Figure 7.12 we depict the asymptotic EDM EVI NES,t�1 as function of clear-
ance e for a VI NES with �2 = 0.005 and mass ratio ε = 0.3. For this small value
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Fig. 7.12 Asymptotic EDM EVI NES,t�1 as a function of clearance e for �2 = 0.005 and ε = 0.3.

of coupling frequency, there is a nearly linear variation of EVI NES,t�1 for small
clearances. However, for increasing clearance we note saturation in the plot of the
asymptotic EDM yielding to an optimal value of this measure. Further increase of
results in deterioration of the asymptotic EDM, until the linear regime is reached,
where no vibro-impacts occur and the EDM becomes independent of clearance [the
constant level of EDM in that regime is due to the percentage of shock energy dis-
sipated by the coupling viscous damper c1 (see Figure 7.8)].

In conclusion, superior shock absorption by the VI NES compared to the linear
absorber is attained for intermediate clearances (i.e., away from the two limiting lin-
ear systems corresponding to zero of large clearances), small coupling frequencies
�2, and large mass ratios ε. Moreover, high shock absorption efficiencies may be
attained for even small total number of vibro-impacts, provided that conditions for
sufficient momentum and energy exchanges between the primary system and the
NES during vibro-impacts are realized. In the next section we examine the shock
isolation properties of VI NES-based designs by constructing nonlinear shock spec-
tra and comparing these to reference linear spectra.

7.2.2 Shock Isolation

To study the capacity for shock isolation of the VI NES we consider the system of
Figure 7.13a consisting of a two-DOF linear primary system with an attached VI
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Fig. 7.13 Primary structure on foundation with VI NES attached: (a) system configuration;
(b) spectra depicting maximum normalized force transmitted to ground as a function of normalized
frequency ratio.

NES. As with the study of the previous section, the following exposition follows
closely (Karayannis et al., 2008). The massm represents the primary structure to be
isolated, resting on an elastic foundation of mass m3. An external half-sine shock
(7.6) is applied to the primary structure, and our aim is to assess the capacity for
shock isolation of a VI NES-based design. The computational study of this system
is performed for the following parameter values:

m = 1, m3/m = 5, ω2
3 = k3/m3, ω2

n = k/m = 5, λ = c/m = 0.1,
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Fig. 7.14 Transient response x3 of the foundation under resonance, ω3/ωn = 1.

λ1 = c1/m = 0.1, λ3 = c3/m3 = 0.1ω3, e = 0.6, A = 10, k1 = 0.005,

rc = 0.6, µ = 0.35, T = 0.2π

In Figure 7.13b we depict the nonlinear shock spectrum for the vibro-impacting
system. For comparison purposes, we present also two additional reference shock
spectra of the following two limiting linear systems: the system obtained in the
limit of large clearances when no vibro-impacts occur (i.e., when the system degen-
erates to a primary system attached to a linear vibration absorber); and the system
obtained in the limit of zero NES mass (that is, the primary system with no NES at-
tached). In each shock spectrum we depict the maximum value of normalized forced
transmitted to ground, F̂Trans = max{c3ẋ3 + m3ω

2
3x3}/(Jω3), as a function of the

non-dimensional frequency ratio (ω3/ωn). The parameter J in the denominator of
the normalized transmitted force F̂Trans represents the shock impulse defined by

J =
∫ T

0
F(t)dt (7.11)

From the results depicted in Figure 7.13b we infer that due to TET of shock en-
ergy from the primary structure to the VI NES there is significant reduction of the
normalized transmitted force; in the resonance region ω3 ≈ ωn, F̂Trans reaches lev-
els which are 40% less compared to the reference linear system with no attachment,
and 32% less compared to the reference system with linear absorber attached. More-
over, in the VI system complete elimination of the resonance in the shock spectrum
is realized, so effective shock isolation is provided over a broad frequency range.
Hence, in contrast to the narrowband action of the linear vibration absorber, the VI
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Fig. 7.15 Primary structure with sensitive component and VI NES: (a) system configuration;
(b) spectra of maximum normalized acceleration of the sensitive component as function of non-
dimensional frequency ratio.

NES provides effective broadband shock isolation. In Figure 7.14 we present the
response x3 of the foundation under resonance, ω3/ωn = 1, for the nonlinear and
reference linear configurations discussed previously. Note the significant suppres-
sion of the maximum response of the foundation in the case of VI NES, signified by
the rapid decay of the corresponding transient motion.

The second system considered in our shock isolation study is depicted in Fig-
ure 7.15a (Karayannis et al., 2008). We wish to study the transmission of shock-
induced vibrations from the directly forced primary structure to a sensitive compo-
nent (denoted by the mass m3) that is connected to the mass of the primary system
m. A vibro-impact NES is attached to the primary system, which itself is excited by
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Fig. 7.15 Primary structure with sensitive component and VI NES: (c) transient response x3 of the
sensitive component under linear resonance, ω3/ωn = 1.

the half-sine shock (7.6). This shock isolation study is performed for the following
parameter values:

m = 1, m3/m = 0.01, ω2
3 = k3/m3, ω2

n = k/m = 5, λ = c/m = 0.1,

λ1 = c1/m = 0.1, λ3 = c3/m3 = 0.1ω3, e = 0.6, A = 10, k1 = 0.005,

rc = 0.6, µ = 0.35, T = 0.2π

In Figure 7.15b we depict the nonlinear shock spectrum of this system, and compare
it to two reference spectra, corresponding to linear systems with, either no VI attach-
ment, or a linear vibration absorber attached instead of an VI NES. These spectra
are computed by depicting the maximum normalized acceleration of the sensitive
component,G = max{ẍ3/(u̇mω3)}, as a function of the non-dimensional frequency
ratio (ω3/ωn(. The velocity u̇m in the denominator of the normalized acceleration
G is computed by the following relation:

u̇m = J

m
, J =

∫ T

0
F(t)dt (7.12)

From these results we deduce that the VI attachment provides effective shock
isolation of the sensitive component over a broad range of frequency ratios, by sig-
nificantly reducing the maximum normalized accelerationG. Moreover, in the crit-
ical resonance region ω3 ≈ ωn the reduction in acceleration due to TET of shock
energy to the VI NES is significant compared to the reference linear systems; in
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fact, in the nonlinear spectrum the linear resonance close to ω3/ωn = 1 is almost
completely suppressed. In Figure 7.15c we depict the transient response x3 of the
sensitive component for the nonlinear and reference linear systems under resonance,
ω3/ωn = 1. We note the drastic reduction of the level vibration due to TET of shock
energy to the VI NES.

To study the robustness of the shock isolation performance of the VI NES we
performed a final series of numerical simulations, where for fixed impulsive exci-
tation (A = 10, T = 0.2π) and linear system parameters as defined above, we
varied the parameters of the VI NES and computed shock spectra similar to that
depicted in Figure 7.15b; we then compared these nonlinear spectra to the ones of
the corresponding linear systems with infinite clearance (i.e., primary systems with
linear absorbers attached) in order to judge the effect that vibro-impacts have on the
shock isolation. In each of these plots, the system parameters that are not varied are
assigned the numerical values defined above. The results are depicted in Figure 7.16.

In Figure 7.16a we depict the comparison between the nonlinear and linear spec-
tra for five values of VI NES mass, µ = 0.1, 0.2, 0.35, 0.4 and 0.5, keeping all other
NES parameters fixed. We note that the larger the VI NES mass is, the better the rel-
ative performance of the VI NES becomes with respect to the linear absorber design;
therefore, we conclude that the mass of the VI NES is an important parameter for
shock isolation (this was to be expected, since as mentioned previously, the mass of
the VI NES affects its momentum exchange with the linear oscillator during vibro-
impacts. In Figure 7.16b we examine the effect of varying the clearance e on shock
isolation, by considering nonlinear spectra for four different clearances, e = 0.1,
0.2, 0.4 and 0.6 and all other NES parameters being kept fixed. We note that for de-
creasing clearance the linear and nonlinear spectra converge, and that better relative
shock isolation performance of the VI NES is achieved for larger clearances.

In Figure 7.16c we examine the effect of varying the viscous damping coefficient
of the VI NES, by considering five different damping values, namely, λ1 = 0.01,
0.05, 0.2, 0.3 and 0.4. From these results we conclude that the variation of viscous
damping of the VI NES does not affect significantly its effectiveness. Similarly,
the variation of the coefficient of restitution of the vibro-impacts from the value
rc = 0.6 (this series of plots is not shown here) has a marginal effect on the per-
formance of the VI NES. Finally, in Figure 7.16d we depict the effect on the non-
linear shock spectra of the variation of the restoring linear stiffness k1 of the VI
NES. In that study we considered five different values of linear stiffness, namely,
k1 = 5 × 10−3, 1 × 10−2, 0.1, 0.5 and 1.0; by comparing the nonlinear shock spec-
tra with the corresponding linear ones, we note that there is robustness of shock
elimination within the examined range of stiffness values. By further increasing the
stiffness (k > 5.0), no vibro-impacts occur and the response of the system becomes
purely linear. The results presented in Figure 7.16 demonstrate robustness of the
shock isolation provided by the VI NES for changes of its parameters.

Summarizing, we studied alternative shock isolation designs of primary struc-
tures with attached VI NESs. We showed that VI NESs can be designed as effec-
tive shock isolators, providing significant reduction of maximum responses of the
primary systems over broad frequency ranges. Hence, appropriately designed VI
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Fig. 7.16 Parametric study of shock spectra of maximum normalized acceleration of the sensitive
component as function of ω3/ωn and (a) the VI NES mass µ; (b) the clearance e; for comparison,
the corresponding linear spectra of systems with infinite clearances (e.g., with linear vibration
absorbers attached) are also depicted.

NESs can act as broadband, passive shock isolators, which may significantly reduce
or even completely eliminate resonances from shock spectra. The results presented



264 7 NESs with Non-Smooth Stiffness Characteristics

Fig. 7.16 Parametric study of shock spectra of maximum normalized acceleration of the sensitive
component as function of ω3/ωn and (c) the VI NES viscous damping λ1; and (d) the restoring
stiffness k1; for comparison, the corresponding linear spectra of systems with infinite clearances
(e.g., with linear vibration absorbers attached) are also depicted.

indicate that, in designing VI NESs as shock isolators, important design parame-
ters that should be taken into account are the clearances, the coupling stiffnesses
and the NES masses. The parametric studies performed in this section indicate that
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depending on the application and the types of applied shocks, there is a range of
clearances for which effective shock energy absorption and dissipation occurs; out-
side this range, smaller or larger clearances result in deterioration of shock absorp-
tion, as the vibro-impacting systems approach linear limiting systems. Moreover,
better vibro-impact shock absorption is anticipated for weak coupling stiffness be-
tween the primary systems and the attached NESs, and relatively large values of
NES masses compared to the masses of the corresponding primary systems. These
results are in agreement with findings of Section 7.1.

7.3 SDOF Linear Oscillator with a VI NES

In Section 7.2 we provided numerical evidence of the potential of vibro-impact (VI)
attachments as passive shock absorbers. In this section we study in more detail the
unforced dynamics of a SDOF linear primary system with a VI attachment, in an
effort to explore the richness and complexity of the vibro-impact dynamics and re-
late it to TET. Our methodology will be similar to that followed in Sections 3.3 and
3.4 for the analogous system with ungrounded NES with smooth nonlinear stiffness
characteristics.

First, we will explore the rich structure of periodic orbits (and impulsive orbits –
IOs) of the VI dynamics in a frequency-energy plot (FEP) of the Hamiltonian sys-
tem undergoing purely elastic vibro-impacts; our aim will be to study if the FEP of
the Hamiltonian VI system possesses a structure of backbone curves, subharmonic
tongues and impulsive orbits, similar to the one of the system with ‘smooth’ NES.
Then, we will study damped transitions in the dynamics of the VI system undergo-
ing inelastic vibro-impacts, by superimposing the wavelet transform (WT) spectra
of transient damped responses to the Hamiltonian FEP; our effort will be to demon-
strate schematically that such representations contribute to the identification and
interpretation of complex resonance captures and multi-modal transitions occurring
in these damped transitions. Finally, we will proceed to make some preliminary
remarks and conjectures regarding the mechanisms for TET in the VI system.

Overall, our aim will be to demonstrate that vibro-impacts in oscillators with
even small clearances can introduce great complexity in the unforced dynamics of
the two-DOF system considered. Our exposition will follow the results of Nucera
et al. (2007) and Lee et al. (2008), which should be consulted for additional results
on this topic. Application of VI NESs to the problem of seismic mitigation was
studied by Nucera et al. (2007a, b), and the results of these works will be discussed
in Chapter 10.
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Fig. 7.17 SDOF LO with VI NES.

7.3.1 Periodic Orbits for Elastic Vibro-Impacts Represented on the
FEP

To study the underlying dynamical mechanisms and associated TRCs that generate
passive TET in systems with attached VI NESs, and in order to demonstrate the
complexity that a single VI NES (with even small clearance) can introduce to the
dynamics, we consider the simplest possible primary system – VI NES configura-
tion, namely a SDOF LO coupled to a VI NES (see Figure 7.17). As in the case of
the NES with smooth essential nonlinearities we will show that a clear interpreta-
tion of damped VI transitions governing TET in the shock-excited system may be
gained by depicting the WT spectra of these motions in a FEP of the underlying VI
Hamiltonian system (i.e., for the system with purely elastic impacts and no viscous
damping elements).

As in in the case of the NES with smooth nonlinearities we will demonstrate that
for sufficiently weak dissipation, damped VI transitions take place near branches of
periodic or quasi-periodic motions of the corresponding undamped system. Hence,
by studying the structure of periodic orbits of the Hamiltonian system, we should
be able to gain an understanding of the governing dynamics of the weakly damped
dynamics, and to be able to clearly identify complex multi-frequency transitions
and resonance captures producing strong energy exchanges and TET in the weakly
damped VI system.

We initiate our study by constructing the FEP of the Hamiltonian VI system with
no viscous damping dissipation and purely elastic vibro-impacts. We consider the
VI model introduced in Section 7.2.1. In time intervals between vibro-impacts the
equations of motion are purely linear and given by (with an alternative notation
being adopted for the system parameters compared to Section 7.2.1),

m1ẍ1 + k1x1 + c1ẋ1 + k2(x1 − x2) = 0

m2ẍ2 + k2(x2 − x1) = 0 (7.13)

or in non-dimensional form:
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x ′′
1 + x1 + λx ′

1 + σ(x1 − x2) = 0

εx ′′
2 + σ(x2 − x1) = 0 (7.14)

In the normalized equations (7.14) primes denote differentiation with respect to
the transformed temporal variable ξ = (k1/m1)

1/2t , and λ = c1/(k1m1)
1/2,

ε = m2/m1, σ = k2/k1 are dimensionless damping, mass and stiffness parameters,
respectively. Moreover, in (7.14) we consider normalized displacements defined by
the rescalings xi → xi/e, i = 1, 2, so in terms of these normalized displacements
vibro-impacts occur when |x1 − x2| = 1. As in Section 7.2 the mass m2 of the
NES is not necessarily small compared to the mass m1 of the LO, so the ratio ε is
assumed to be an O(1) quantity.

Assuming zero viscous damping, λ = 0, and considering purely elastic impacts
(corresponding to restitution coefficient ρ = 1), the VI system becomes Hamil-
tonian. The velocities of the LO and the NES after an impact (denoted by super-
scripts +) are computed in terms of the corresponding velocities before impact (de-
noted by superscripts −) as follows:

x ′+
1 = x ′−

1 (1 − ε)+ 2εx ′−
2

1 + ε , x ′+
2 = 2x ′−

1 + (ε − 1)x ′−
2

1 + ε (7.15)

In the numerical algorithm used for our computational study the linear equations
(7.14) are integrated as long as the no-impact condition |x1 − x2| < 1 is satis-
fied. When |x1 − x2| = 1 a (purely elastic) impact occurs and dicontinuities in
the velocities take place, whereas the displacements remain continuous through the
vibro-impact process; the velocities immediately after the impact are computed by
relations (7.15), and the numerical integration of the linear system (7.14) resumes
with the new initial conditions until the next vibro-impact occurs and the outlined
procure is iterated.

As discussed in Section 7.2.1 and Nucera et al. (2007), the precise computation
of the time instants of vibro-impacts is essential for the accuracy of the numerical
simulations. This accuracy was checked by recording the total energy of the VI
motion, ensuring its conservation throught the entire interval of the simulation. The
total (conserved) energy of the normalized Hamiltonian system H(x1, x

′
1, x2, x

′
2)

is computed in terms of the initial conditions of the normalized system (7.14) as
follows:

H(x1, x
′
1, x2, x

′
2) = εx ′2

2 (0)+ x ′2
1 (0)

2
+ σ [x2(0)− x1(0)]2 + x2

1 (0)

2
= h (7.16)

Assuming zero initial velocities, the critical threshold below which no vibro-impacts
can occur is computed as kcrit = σ/2. Throughout this section the normalized mass
and stiffness parameters are taken as ε = 0.1 and σ = 0.1, resepctivelly.

The periodic solutions of the Hamiltonian vibro-impacting system were com-
puted by employing the method of non-smooth transformations first introduced by
Pilipchuk (1985) and Pilipchuk et al. (1997), and applied in Section 3.3.1.1 for com-
puting the periodic orbits (NNMs) of the corresponding system with smooth essen-
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tial nonlinearity (i.e., with a ‘smooth’ NES). To this end, we introduce the following
coordinate transformations:

x1(ξ) = e(ξ/α)y1(τ (ξ/α)), x2(ξ) = e(ξ/α)y2(τ (ξ/α)) (7.17)

where α = T/4 represents the quarter period of the periodic motion, and the non-
smooth functions τ (·) and e(·) are defined according to expressions (3.9). Then, we
obtain the following NLBVP in terms of the variables y1, y2, y3 = y ′

1 and y4 = y ′
2,

in analogy to system (3.10) of Section 3.3.1.1:

y ′
1 = y3

y ′
2 = y4

y ′
3 = −α2y1 − σα2(y1 − y2)

y ′
4 = −(σα2/ε)(y2 − y2)

y1(±1) = 0, y2(±1) = 0 (7.18)

In system (7.18) primes denote differentiations with respect to the non-smooth
variable τ , and the periodic orbits are computed subject to zero initial velocities.
Vibro-impacts occur when |y1 − y2| = 1, where discontinuity conditions in the
velocities are imposed, in similarity to conditions (7.15). The solution of the NL-
BVP (7.18) computes the VI periodic orbit over half its period T = 4α (i.e., for
−1 ≤ τ ≤ 1 ⇒ −α ≤ ξ ≤ α); to extend this orbit over the entire period of the
oscillation we take into account the form of the non-smooth transformations (7.17)
(see also related discussion in Section 3.3.1.1). Moreover, taking into account the
transformations (7.17), the conserved energy of the VI periodic orbit is expressed as

h = 1

2α2 [εy ′2
2 (−1)+ y ′2

1 (−1)] (7.19)

The NLBVP (7.18) is solved by a shooting algrorithm in the bounded domain
−1 ≤ τ ≤ 1. However, unlike the shooting method employed for the case of
the NES with smooth nonlinearity (Lee et al., 2005), matching at τ = 0 of the
two solutions initiated from the left and right boundaries (τ = ±1) is not help-
ful in the present VI problem. This is due to the fact that symmetric VI periodic
orbits are expected to exhibit vibro-impacts at τ = 0, so matching solutions at
this point is meaningless. Therefore, for the VI problem the following matching
procedure is adopted (Lee et al., 2008): for fixed quarter period α the set of equa-
tions of the NLBVP is solved as an initial value problem with initial conditions
defined at the left boundary, yi(−1) = 0, y ′

i (−1) �= 0, i = 1, 2; then we perform
matching of the solution of the initial value problem at the right boundary through
the inequalities, |yi(+1)| < tol 	 1, i = 1, 2, where the tolerance is taken as
tol ∼ O(10−5)−O(10−6). This procedure ensures that the NLBVP (7.18) is ap-
proximately solved (that is, within the presecribed numerical tolerance).
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Fig. 7.18 Vibro-impact nonlinearity as limiting case of a family of smooth, essentially nonlinear
stiffnesses.

It is anticipated that the seemingly simple VI system of Figure 7.17 will possess
a very complicated structure of periodic orbits in the FEP. This expectation is justi-
fied when considering that vibro-impact nonlinearity represents a very strong (and
degenerate) form of nonlinearity. A way to view this is by considering the following
family of odd essentially nonlinear stiffnesses,

fn(u) = knu2n+1, n = 0, 1, 2, . . . (7.20)

where the coefficient kn depends on the exponent and is selected so that the normal-
ization condition fn(±1) = 1, n = 0, 1, 2, . . . is satisfied. Then, the vibro-impact
nonlinearity corresponding to purely elastic impacts is obtained as the (degenerate)
discontinuous limit f∞(u) = limn→∞ fn(u) (Vedenova et al., 1985; Manevitch et
al., 1989). Viewed in this contex, vibro-impact nonlinearity can be considered as the
‘strongest possible’ stiffness nonlinearity of the family (7.20). Following this reason-
ing, Pilipchuk (1985, 1988, 1996) developed an asymptotic methodology based on
non-smooth transformations and non-smooth generating functions, that is applicable
to strongly nonlinear regimes (Pilipchuk et al., 1997, 1998; Salenger and Vakakis,
1998). In fact, it is interesting to note that Pilipchuk’s technique is not applicable to
weakly nonlinear regimes, where conventional perturbation methods of the dynami-
cal systems theory based on harmonic generating functions are applicable! For more
information of this method we refer to the above-mentioned works by Pilipchuk and
to (Vakakis et al., 1996).

The anticipated high complexity of the structure VI periodic orbits dictates the
use of careful notation for their representation in the FEP (Lee et al., 2008). In prin-
ciple, the basic notation introduced in Section 3.3.1.1 for the FEP of the dynamics
of the Hamiltonian system with ‘smooth’ NES is followed, with an additional index
being introduced characterizing the pattern of the occurring vibro-impacts. To this
end, we employ the following notation for depicting the various types of VI periodic
orbits in the FEP.
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Symmetric VI periodic orbits are denoted as SmnE(O)pp±, and satisfy the con-
ditions xi(t) = ±xi(ξ + T/2), ∀t ∈ R, i = 1, 2, where T is the period of the
motion. Similarly to the case of ‘smooth’ NES, symmetric VI orbits correspond to
synchronous oscillations of the LO and the VI NES, and typically are represented by
curves in the configuration plane (x1, x2). Unsymmetric VI periodic orbits labeled as
Umnpq±, do not satisfy the conditions of the symmetric ones (for notational sim-
plicity, whenever p = q we will adopt the convention,Umnpp± ≡ Umn±). These
orbits correspond to asynchronous motions of the two oscillators and are repre-
sented by open or closed (Lissajous) curves in the configuration plane (x1, x2). The
integer index m denotes the number of half-waves in the VI NES response within a
half-period, whereas, the integer index denotes the corresponding number of half-
waves in the LO response; clearly, the ratio (m:n) indicates the order of nonlinear
resonance that occurs between the VI NES and the LO on the given VI periodic
orbit. The index E or O denotes the symmetry pattern of the vibro-impacts, and
has meaning only for symmetric VI orbits: E(O) denotes an even (odd) symmetry
of occurring vibro-impacts within a half-period; it follows that the notation E(O)
implies that a vibro-impact occurs (does not occur) at quarter-period ξ = α ≡ T/4.
The integer indices p and q denote the number of vibro-impacts that occur in the
first and second quarter-period, rescpectively, of a given VI periodic orbit; it follows
that for symmetric orbits it holds that p = q . Finally, the (+) sign corresponds to
in-phase VI periodic motions, where, for zero initial displacements the initial veloc-
ities of the LO and the NES possess identical signs at the beginning of both the first
and second half-periods of the periodic motion; otherwise, the VI periodic motion
is deemed to be out-of-phase and the (−) sign is used. Finally, the two in-phase and
out-of-phase linear modes of the system with zero clearance (e = 0) are denoted by
Lmm±, and are, in fact, equivalent to L11±.

The FEP of the Hamiltonian VI system for ε = 0.1, σ = 0.1 and e = 0.1
is depicted in Figure 7.19, with some representative VI periodic orbits presented
in Figure 7.20. The complexity of the bifurcations that generate the VI periodic
orbits can be inferred from the bifurcation diagrams of Figure 7.21 where the initial
velocities of the LO and the VI NES (for zero initial displacements) are depicted
as functions of the total energy h. This complexity was anticipated in view of the
degenerate vibro-impact nonlinearity of this system.

Note that the FEP in Figure 7.19 is obtained for system (7.14) with all displace-
ments being normalized with respect to the clearance e, so that vibro-impacts occur
whenever the absolute value of the relative displacement between the two particles
becomes equal to unity in magnitude. Considering the original system (7.13) with
clearance e, its Hamiltonian is expressed as, Ĥ = e2H where H is the normal-
ized Hamiltonian defined by (7.16). This implies that, for fixed system parameters,
ε = 0.1 and σ = 0.1, the Hamiltonian structure of the original (non-normalized)
system will be identical to that of Figure 7.19; it follows that for a larger (smaller)
clearance, the entire structure of VI periodic orbits will be preserved by just shifted
towards higher (lower) energy regimes. So, the introduced normalization allows us
to study all possible VI responses of the original system by considering a single
‘normalized’ FEP for fixed mass and coupling stiffness ratios. It is interesting to
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Fig. 7.19 FEp of periodic orbits of the Hamiltonian system with VI NES for ε = σ = 0.1; the
manifold of VI IOs is indicated by the dashed line (- - -), whereas the thresholds for vibro-impacts
for the in-phase and out-of-phase modes are denoted by bullets (•); unstable branches are denoted
by crosses, and energy regimes I–IV referred to in Section 7.3.2.2 are indicated.

note that this normalization does not hold for the system with smooth stiffness non-
linearity (i.e., the ‘smooth’ NES); this can be easily deduced when noting that the
introduced normalizations change the form of the system with smooth nonlineari-
ties. Indeed, as we recall from the discussion of Chapter 3, the topological structure
of the FEP of the system with ‘smooth’ NES (and the corresponding bifurcation
structure of the Hamiltonian periodic orbits) is affected by both the mass ratio and
the essentially stiffness nonlinearity of the NES.

We now make some comments and remarks regarding the ‘normalized’ FEP of
Figure 7.19. First, we note that the two dots indicate the critical energy thresh-
olds below which oscillations without vibro-impacts occur, and the dynamics of the
two-DOF system is purely linear. Clearly, only the in-phase and out-of-phase lin-
ear modes L11± exist below these energy thresholds. As we increase the energy
the motion above these energy thresholds vibro-impacts start occurring, giving rise
to two main branches of symmetric periodic VI NNMs: the branch of out-of-phase
symmetric VI NNMs SmmO11−, which bifurcates from the out-of-phase linear
mode L11−, after which this mode becomes unstable; and the branch of symmet-
ric in-phase VI NNMs S13O11+ which bifurcates out of the in-phase linear mode
L11+, after which this linear mode also becomes unstable. For convenience, from
hereon the shortened notations, SmmO11− ≡ S11− and S13O11+ ≡ S13+,
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Fig. 7.20 Solutions of the NLBVP (7.18) for ε = σ = 0.1: (a) symmetric VI periodic orbit on the
backbone S13O00+ ≡ S13+, α = 1.7, h = 0.58875; (b) symmetric VI periodic orbit S73O33−,
α = 1.6459, h = 7.3348; (c) unsymmetric VI periodic orbit U8353−, α = 4.9065, h = 1.9458.

will be adopted for these two main backbone branches, which will be referred to as
backbone (global) branches of the FEP. Both backbone branches exist over broad
frequency and energy ranges, and, except for the neighborhoods of the bifurcation
points with L11±, they correspond to oscillations that are mainly localized to the
VI NES. A basic bifurcation in the VI FEP is the saddle node (SN) bifurcation of
the two backbone branches S11− (at h ≈ 0.06), which signifies the elimination of
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Fig. 7.21 Bifurcation diagrams (incomplete) depicting the initial velocities as functions of the total
energy h for ε = σ = 0.1: (a) LO, (b) VI NES; unstable branches are marked by crosses.
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the unstable branch S11− that bifurcates out of L11−; the stable branch S11− that
is generated after this SN bifurcation maintains its stability for increasing energies.
As shown below, this SN bifurcation of the backbone branch S11− affects the ca-
pacity of the VI NES for TET. The additional in-phase backbone branch S13+ that
bifurcates out of the in-phase linear mode L11+ is stable until high energies where
zones of instability appear.

In Figure 7.20a we depict a typical stable VI orbit on the in-phase backbone
branch S13+. We note that in the corresponding FEP of the system with ‘smooth’
NES studied in Section 3.3 (see Figure 3.20), there exist two backbone branches
S11±. As indicated by the time series of Figure 7.20a, however, on the in-phase VI
backbone branch S13+ three sign changes for the LO velocity within half a period
are realized, compared to only one for the NES velocity (Lee et al., 2008); this high-
frequency component becomes more prominent at higher energies (in addition, as
shown in the next section, a 3:1 TRC occurs in the neighborhood of this branch
when weak damping is added to the system).

A different class of VI periodic solutions of the FEP lies on subharmonic tongues
(local branches); these are multi-frequency periodic motions, possessing frequen-
cies that are rational multiples of one of the linearized eigenfrequencies of the sys-
tem. In similarity to the FEP of the system with ‘smooth’ NES (see Figure 3.20),
each subharmonic tongue is defined over a finite energy range, and is composed of a
pair of branches of in- and out-of-phase subharmonic oscillations. Depending on the
behavior of these VI subharmonic tongues with varying energy, the FEP is portioned
into four main Regimes, which are labeled as Regimes I–IV in Figure 7.19.

In the highest energy Regime IV, out-of-phase VI subharmonic orbits (both sym-
metric and unsymmetric) bifurcate out of the backbone branch S11−. With increas-
ing energy they form subharmonic tongues of out-of-phase motions with almost
constant frequencies, until they reach the manifold of VI IOs (see discussion be-
low) after which they change to in-phase motions until they coalesce with the in-
phase backbone branch S13+ at specific energy levels; this signifies the end of these
tongues and the elimination of the corresponding subharmonic motions for higher
energy values. This is similar to what was observed in the FEP of the system with
‘smooth’ NES. Unlike, however, that case, the unsymmetric subharmonic tongues
do not fold on themselves to reach back the out-of-phase backbone branch S11−.

In Regime III of the FEP the bifurcation behavior of subharmonic tongues is sim-
ilar to Regime IV. The apparent difference is that the manifold of VI IOs undergoes
a discontinuous transition on branch S31O11−, caused by the two bifurcations of
that branch with the unsymmetric subharmonic branches U(15)578− and U8353−
in that region (see Detail I in Figure 7.19).

The subharmonic orbits in Regime II exhibit different bifurcation behavior than
in Regimes IV and III. In fact, there appear to be no subharmonic tongues bifurcat-
ing from S11−; instead, small subharmonic tongues appear to lie along the man-
ifold of VI IOs, and eventually merge with the in-phase backbone branch S13+
with decreasing energy. For example, the in-phase unsymmetric branch U21+ bi-
furcates from S13+ and turns into the out-of-phase unsymmetric branch U21−
after it crosses the manifold of VI IOs. In addition, for frequencies in between the
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two linearized frequencies ω1 and ω2 there exist multiple subhharmonic branches
bifurcating in a degenerate (higher co-dimensional) bifurcation from the in-phase
linear mode L11+ (see Detail II in the FEP of Figure 7.19). These subharmonic
branches coexist with the in-phase backbone branch S13+, which is unstable in
most of Regime II. Examples of this type of subharmonic branches are U2201+,
U5511+, U4421+, . . . in the FEP of Figure 7.19.

Finally, the lowest energy Regime I of the FEP is defined for energies below the
bifurcation point of the linear mode L11−. The manifold of VI IOs meets the stable
out-of-phase linear modeL11− at a bifurcation point that coincides with the critical
energy level hcrit = σ/2; we recall that for h < hcrit no vibro-impacts are possible
and the dynamics of the system is completely linear.

As in the case of the system with ‘smooth’ NES there exists a countable infin-
ity of subharmonic tongues, corresponding to symmetric or unsymmetric VI sub-
harmonic motions with different patterns of vibro-impacts during a cycle of the
oscillation. As in the case of smooth nonlinearity (see Figure 3.20), unsymmetric
VI periodic orbits are represented by closed (Lissajous) curves in the configuration
plane of the system. In Figures 7.20b, c we depict two representative symmetric and
unsymmetric VI orbits on two subharmonic branches of the FEP.

Finally, there exists a third class of VI motions in the FEP, which are denoted
as VI impulsive orbits (VI IOs). These are VI periodic solutions corresponding to
zero initial conditions of the system, except for the initial velocity of the LO. As dis-
cussed in Section 3.3 a VI IO represents, in essence, the response of the system being
initially at rest and forced by a single impulse applied to the LO at time t = 0+.
Apart from the clear similarity of a VI IO to the Green’s function defined for the cor-
responding linear system, the importance of studying this class of orbits stems from
their essential role regarding passive TET from the linear oscillator to the NES [see
Section 3.4.2 and Lee et al. (2005), Kerschen et al. (2005, 2006, 2008)]. Indeed, in
the case of the NES with smooth nonlinearities, IOs (which, under some conditions
are in the forms of nonlinear beats) play the role of bridging orbits occurring in the
initial phase of TET and ‘channeling’ a significant portion of the applied impulsive
energy from the linear primary system (in this case the LO) to the NES at a rela-
tively fast time scale; as discussed in Section 3.4.2 this represents the most efficient
scenario for passive TET (i.e., TET through nonlinear beats – see Sections 3.4.2.4
and 3.4.2.5). Although the aforementioned results refer to damped impulsive orbits,
the dynamics of the underlying Hamiltonian system determines, in essence, the dy-
namics of the damped system as well, provided that damping is sufficiently small.
It follows that the IOs of the VI Hamiltonian system govern, in essence, the initial
phase of TET from the LO to the NES. The numerical results show that VI periodic
and quasi-periodic IOs form a manifold in the FEP, containing a countable infinity
of periodic IOs, and an uncountable infinity of quasi-periodic IOs.

For the system under consideration the approximation of the manifold of VI IOs
was computed numerically, and in Figure 7.19 is superimposed to the FEP; in gen-
eral, the manifold resembles a smooth curve, with the exception of a number of
outliers, which are due to the adopted convention for the frequency index in the
FEP (Lee et al., 2008). On a VI subharmonic tongue, a VI IO is realized when-
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Fig. 7.22 Two representative VI IOs for ε = σ = 0.1 (left U5231−, right U4122−): 9a) un-
normalized responses x1(t) (LO) and x2(t) (VI NES); (b) relative responses x2(t) − x − 1(t);
(c) representation in the configuration plane (x1, x2).

ever the relative motion between that LO and the VI NES changes from in-phase
to out-of-phase. Representative VI IOs are depicted in Figure 7.22. In general, the
IOs become increasingly more localized to the VI NES as their energy decreases,
a result which is in agreement with previous results for NESs with smooth essen-
tial nonlinearities (Kerschen et al., 2008a). As energy increases, the VI IOs tend
towards the in-phase mode, i.e., their plot in the configuration plane (x2, x1) tends
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to a straight line of slope 0.084π [since the eigenvector for L11+ on the (x2, x1)

plane is equal to (3.702, 1)]. Moreover, we note there is no critical energy threshold
for the appearance of VI IOs since there are no low- energy VI motions (the system
is linear for low energy levels), and that the dominant frequency of a VI IO depends
on the clearance e (i.e., on the energy regime where the VI periodic orbits exist).

Due to the degenerate VI nonlinearity of this system, it is expected that higher-
co-dimensional bifurcations will occur in the dynamics. One case of indication
of such degenerate bifurcations in presented in the Detail II of the FEP of Fig-
ure 7.19, where multiple branches of symmetric and unsymmetric VI periodic or-
bits (branches S95E22−, U5421−, U4520−, S55O11−, U3201−, . . . ) are noted
to bifurcate from the in-phase linear mode L11+ at the point of generation of the
in-phase backbone branch S13+. In addition, VI periodic orbits below the branch
S73E33− appear to lie along the VI IO manifold, for example, tongues U21±,
S95E22−, U5421−, U4520−, S55O11−, U3401− and U44− in the FEP of Fig-
ure 7.19.

It is interesting to note that the complexity of the FEP is solely due to the clear-
ance e that gives rise to vibro-impacts. Indeed, in the limit of no clearance, e → 0,
the entire structure of VI orbits depicted in the FEP of Figure 7.19 collapses to two
horizontal lines corresponding to the linear modes L11±. We conclude that, due to
the degeneracy of the VI dynamics, even a small clearance can generate significant
complexity, including chaotic orbits, as discussed below.

The global dynamics of the Hamiltonian VI system (7.14–7.15) was studied by
constructing Poincaré maps resulting from the projection of the isoenergetic dy-
namics (i.e., of the dynamical flow corresponding to fixed value of h) on the two-
dimensional ‘cut section’,∑

= {(x1, x
′
1, x2, x

′
2) ∈ R4/H(x1, x

′
1, x2, x

′
2) = h, x1 = 0, ẋ1 > 0}

which is transverse to the flow except at points where ẋ1 = 0. Similar Poincaré map
constructions for vibro-impact dynamics were considered in Mikhlin et al. (1998),
and for the VI system under consideration are depicted in Figure 7.23. Below the
energy level h = hcrit = σ/2 = 0.05 no vibro-impacts occur (see Figure 7.23a),
and the only possible periodic solutions are the linear stable modes L11+.

At energy levels above this critical threshold (see Figures 7.23b–h), vibro-
impacts occur (at |x2−x1| = 1), and generate a countable infinity of subharmonic VI
orbits that replace the two linear modes L11±; this complex structure of orbits is a
direct consequence of the non-integrability of the Hamiltonian VI dynamics. When
vibro-impacts occur, the sections of the Poincaré maps corresponding to |x2| > 1
are cut-off from the Poincaré maps, and the last bounding points that are included
in the map are those for which the conditions {x1 = 0 and |x2| = 1} hold. For
increasing energies, the ‘stochastic seas’ (i.e., the regions of chaotic motions in the
Poincaré maps diminish, and the domains of regular motion expand.

An additional use of the Poincaré map is that it can help us identify or infer the
existence of global features of the dynamics, such as homoclinic and heteroclinic
loops. For example, at the energy level h = 0.06 (see Figure 7.23c) we identify
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Fig. 7.23 Poincaré maps of VI dynamics for σ = ε = 1 and varying energy.



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 279

Fig. 7.24 Damped transition for no viscous dissipation and weakly inelastic impacts: (a) WT spec-
trum of the relative response x2 − x1 superimposed to the FEP; (b) logarithm of instantaneous
energy versus time.

stable and unstable VI periodic orbitsU44− in the neighborhood of the linear mode
L11− and the unstable NNM S11− (see also the location of this branch in the
FEP of Figure 7.19). This infers the existence of a homoclinic loop that connects
the unstable periodic orbit S11−. The topologies of VI IOs on branches such as
U44− (which lie in the neighborhood of the SN bifurcation of S11−) are greatly
influenced by the family of homoclinic orbits of the unstable branch S11− and affect
significantly the efficiency of TET from the LO to the NES. This is similar to what
occurs for the case of smooth nonlinearity (see discussion in Section 3.4.2.5), where
it was found that close to this family of homoclinic orbits conditions for optimal
TET are realized. Indeed, as shown in the next section, excitation of stable VI IOs
in the neighborhood of the family of homoclinic orbits of S11− provides conditions
for optimal VI TET, since large-amplitude relative displacements between the LO
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Fig. 7.25 Damped transition for ρ = 0.7, λ = 0: (a) time series; (b) WT spectrum of the relative
response x2 − x1.

and the VI NES are realized in that region and the time scale of the resulting TET is
affected as well.

Apart from the compact representation of VI periodic motions, the FEP is a valu-
able tool for understanding the nonlinear resonant interactions (transient resonance
captures – TRCs) that govern energy exchanges and TET during damped transi-
tions in the weakly dissipative VI system. This is due to the fact that for sufficiently
weak dissipation (caused by inelastic vibro-impacts, viscous damping or both), the
damped VI dynamics is expected to be realized in neighborhoods of branches in the
FEP of the underlying VI Hamiltonian system. This is demonstrated in Figure 7.24
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Fig. 7.25 Damped transition for ρ = 0.7, λ = 0: (c) percentages of total energy dissipated by the
LO and the VI NES; (d) WT spectrum of the relative response x2 − x1 superimposed to the FEP.

where we depict the wavelet transform (WT) spectra of the damped response of the
system with ε = σ = 0.1, λ = 0 and ρ = 0.95 superimposed to the Hamiltonian
FEP [in this particular simulation the unnormalized responses of the system are de-
picted (Nucera et al., 2007)]. The motion is initiated on a subharmonic tongue, and
we may distinguish three distinct stages in the resulting damped VI transition. In
an initial stage, the motion remains in the neighborhood of the subharmonic tongue
were it is generated, yielding an initial persistent subharmonic TRC. As a result,
subharmonic VI TET takes place from the LO to the NES, and efficient energy dis-
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Fig. 7.26 Damped transition for ρ = 1.0, λ = 0.005λcrit: (a) time series; (b) WT spectrum of the
relative response x2 − x1.

sipation occurs, as evidenced by the energy dissipation plot of Figure 7.24b. In the
second stage of the damped motion the dynamics makes a transition to a different
lower energy subharmonic tongue, which signifies the occurrence of a different sub-
harmonic TRC (and subharmonic TET) in the damped dynamics. Escape from this
second TRC regimes leads to a transition of the dynamics to the manifold of VI IOs
during the third stage of the motion, before the dynamics becomes linear, and un-
dergoes a final transition to the linear mode L11+ (the final stage of the response).

It will be shown in the next section that the transition of the damped dynamics
along the manifold of VI IOs during the third stage of the motion is associated with a
complex series of multiple TRCs with subharmonic tongues existing in the vicinity
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Fig. 7.26 Damped transition for ρ = 1.0, λ = 0.005λcrit: (c) percentages of total energy dissipated
by the LO and the VI NES; (d) WT spectrum of the relative response x2 − x1 superimposed to the
FEP.

of this manifold. It follows, that by studying VI transitions in the FEP and relating
them to rates of energy dissipation by the VI NES, we should be able to identify the
most effective damped transitions from a TET point of view. In a more general con-
text, in the next section we will perform a systematic study of the dynamics of TET
in the two-DOF system of Figure 7.17 by assuming inelastic impacts and viscous
dissipation in the LO, and analyzing the resulting transient responses by numerical
WTs. Then, we will superimpose the resulting WT spectra to the FEP of Figure 7.19
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Fig. 7.27 Damped transition for ρ = 0.7, λ = 0.05λcrit: (a) time series; (b) WT spectrum of the
relative response x2 − x1.

(similarly to Figure 7.24), in an effort to interprete the damped transitions in terms
of the underlying Hamiltonian dynamics, and to identify the governing dynamical
mechanisms for VI TET.
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Fig. 7.27 Damped transition for ρ = 0.7, λ = 0.05λcrit: (c) percentages of total energy dissipated
by the LO and the VI NES; (d) WT spectrum of the relative response x2 − x1 superimposed to the
FEP.

7.3.2 Vibro-Impact Transitions in the Dissipative Case: VI TET

We now consider the weakly dissipative normalized system (7.14) with λ �= 0 and
inelastic impacts. Then, the relations (7.15) computing the normalized velocities of
the LO and the VI NES immediately after an impact in terms of the corresponding
velocities before impact, are replaced by the following expressions:
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x ′+
1 = (1 − ερ)x ′−

1 + ε(1 + ρ)x ′−
2

1 + ε , x ′+
2 = (1 + ρ)x ′−

1 + (ε − ρ)ẋ−
2

1 + ε (7.21)

where 0 < ρ ≤ 1 is the coefficient of restitution. Throught the numerical simula-
tions of this section, and unless otherwise noted, we assume that ε = 0.1, σ = 0.1,
e = 0.1, ρ = 0.7 and λ = 0.005λcrit, where λcrit = 2 is the value of critical viscous
damping for the LO (hence, weak viscous damping is assumed) (Lee et al., 2008).

Before we proceed to analyze damped transitions, we investigate the competion
between the two energy dissipation sources present in the system, namely, viscous
dissipation in the LO and inelastic impacts in the VI NES. For this purpose, the
damped motion was initiated on the stable VI IO lying on the subharmonic tongue
U8344−. In Figures 7.25–7.27 we depict the damped responses for the following
cases: (a) for no viscous dissipation in the LO and inelastic impacts (ρ = 0.7, λ = 0
– Figure 7.25); (b) for viscous dissipation λ = 0.005λcrit and purely elastic impacts
(ρ = 1.0, λ = 0.005λcrit – Figure 7.26); and (c) for a combination of viscous dis-
sipation and inelastic impacts (ρ = 0.7, λ = 0.005λcrit – Figure 7.27). Comparing
the WT spectra of Figures 7.25b, d and 7.26b, d, we note distinct patterns of en-
ergy exchange and dissipation in the damped transient dynamics. For purely elastic
impacts the response is linear and the WT spectra lie along the two linear modes
L11±; when inelastic impacts occur, there occurs a strongly nonlinear transition of
the VI dynamics along strongly nonlinear subharmonic tongues and the in-phase
backbone branch S13+, until, at the later stage of the response, the dynamics settles
into linearized motion along the modes L11±. A similar, albeit weaker, nonlinear
transition is noted for the case of combined inelastic impacts and viscous dissipation
(see Figures 7.27b, d), where the damped dynamics traces, primarily the backbone
branch S13+ (i.e., there occurs an immediate 1:1 TRC of the dynamics of the NES
and the in-phase mode L11+ right from the beginning of the motion), and, sec-
ondarily, higher frequency subharmonic tongues. We conclude that the addition of
weak viscous dissipation in the LO does not affect significantly the VI damped tran-
sitions.

We focus now in the study of the mechanisms that govern VI TET by fixing
ρ = 0.7 and λ = 0.005λcrit, in order to compare the dynamical mechanisms for
VI TET to the corresponding mechanisms for the case of ‘smooth’ NES discussed
in Chapter 3. As discussed in Section 3.4.2, in the smooth case the following three
mechanisms for TET were established: (a) fundamental TET, where the damped
in-phase NNM invariant manifold S11+ is excited; (b) subharmonic TET, where a
low-frequency subharmonic tongue is excited; and (c) TET through nonlinear beats,
where an IO close to the 1:1 resonance manifold of the dynamics is excited. Our
study of TET in the VI case will follow similar lines, by considering energy ex-
changes between the LO and the NES for alternative types of initial excitation of
the system. In particular, we will study VI TET when in-phase or out-of-phase pe-
riodic orbits lying on backbone and subharmonic tongues are excited, as well as,
when the damped motion is initiated by exciting VI IOs at various energy levels. In
what follows we examine each of these cases separately.
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Fig. 7.28 Damped transition initiated on S13+: (a) time series; (b) percentages of total instanta-
neous energy in the LO and the VI NES; Stages A–D of the damped transition are indicated.

7.3.2.1 Fundamental VI TET

In Figure 7.28 we present the damped response of the system for initial conditions
on the in-phase backbone branch S13+ and initial normalized energy h ≈ 10.0.
There are four distinct stages in the damped response, which are denoted as Stages
A–D in Figure 7.28. In the highly energetic initial Stage A there occurs a 1:1 TRC in
the dynamics, with the response possessing a strong harmonic at the frequency of the
in-phase linear mode and a weaker harmonic at 3ω1. This is evident by examining
the detailed plot depicted in Figures 7.29a, where it is clear that the relative transient
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Fig. 7.28 Damped transition initiated on S13+: (c) percentages of total energy dissipated by the
LO and the VI NES; (d) WT spectrum of the relative response x2 − x1; Stages A–D of the damped
transition are indicated.

response x2 −x1 in Stage A possesses a third harmonic component; moreover, in the
detailed plot of Figure 7.30a it is noted that the WT spectrum of the relative response
possesses two clear components, a main one at frequency ω1, and a secondary one
at 3ω1 on the subharmonic branch S31O11−. This leads to fundamental VI TET
from the LO to the VI NES, with almost 85% of the initial energy (nearly 45% by
the LO and 40% by the VI NES) being dissipated during this initial stage of the
motion. The nonlinear modal interactions that lead to fundamental VI TET will be
examined in more detail later by EMD, where the governing 1:1 TRC will be more
clearly identified.
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Fig. 7.28 Damped transition initiated on S13+: (e) WT spectrum of the relative response x2 − x1
superimposed to the FEP; Stages A–D of the damped transition are indicated.

Fig. 7.29 Damped transition initiated on S13+, time series of responses: (a) Stage A, (b) Stage B,
(c) Stage C.
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Fig. 7.30 Damped transition initiated on S13+, WT spectrum of the relative response x2 − x1
superimposed to the FEP: (a) Stage A, (b) Stage B.

Stage B (see Figures 7.29b and 7.30b) corresponds to a regime of pure 1:1 TRC
as the third harmonic component is nearly eliminated, and the LO and the VI NES
execute in-phase oscillations with frequencies approximately equal to ω1. It is clear
that the weakly damped dynamics follows approximately the in-phase backbone
branch S13+ until this branch becomes unstable (i.e., at the bifurcation point where
the subharmonic branches U11+ and U21± bifurcate out of this branch – see Fig-
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Fig. 7.30 Damped transition initiated on S13+, WT spectrum of the relative response x2 − x1
superimposed to the FEP: (c) Stage C.

ure 7.19). This provides further evidence of the connection between the weakly
damped dynamics and the dynamics of the underlying Hamiltonian system.

During Stage C of the damped motion there occurs a series of TRCs along sub-
harmonic tongues on the FEP, whereas in the low-energy Stage D vibro-impacts
cease to occur, the motion is purely linear, and energy dissipation is solely due to
viscous damping of the LO. As expected, the linear dynamics consist of a combi-
nation of the damped analogs of the linear in-phase and out-of-phase modes L11±,
with mode L11+ being more dominant in the response.

We conclude that in this numerical simulation there occurs fundamental VI TET
due to 1:1 TRC of the dynamics of the VI NES at frequency ω1. Recalling that ω1
is the natural frequency of the in-phase linear mode L11+, we conclude that dur-
ing fundamental VI TET the LO and the VI NES engage in in-phase 1:1 resonance
capture. This VI TET mechanism is analogous to fundamental TET discussed in the
case of smooth nonlinearity (see Section 3.4.2.1).

The next simulation examines the damped response of the system for initial con-
ditions on the out-of-phase backbone branch S11− at h ≈ 0.8 (see Figure 7.31).
There is insignificant TET from the LO to the NES in this case, since (as in the case
of smooth nonlinearity) the initial energy of the motion localizes predominantly to
the VI NES right from the beginning of the motion; then, localization to the VI
NES is maintained throughout, as the damped VI motion approximately traces the
backbone branch S11−. In fact, in this case vibro-impacts occur only during a short
initial stage of the motion (i.e., for ξ < 10 – see Figure 7.31a), where almost 90% of
total energy is dissipated. In the purely linear regime where no vibro-impacts occur
(for ξ > 10) the response is mainly composed of the damped analogue of the out-
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Fig. 7.31 Damped transition initiated on S11−: (a) time series; (b) percentages of total instanta-
neous energy in the LO and the VI Nes.

of-phase linear mode L11−, with a weaker participation of the in-phase damped
mode L11+. The participation of these closely spaced modes in the linear response
produces a beat phenomenon, which is evidenced by the strong energy exchange
noted in the plot of Figure 7.31b.

We conclude that there is immediate escape of the transient damped dynamics
from the initially excited out-of-phase backbone branch S11−, followed by settle-
ment of the response in alternative response regimes. This is a general conclusion
drawn from the performed numerical simulations (Lee et al., 2008), and holds for
motions that are initiated on all branches and tongues of the FEP other than the in-
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Fig. 7.31 Damped transition initiated on S11−: (c) percentage of total energy dissipated by the
LO and the VI NES; (d) WT spectrum of the relative response x2 − x1.

phase backbone branch (we recall that this was also the case for the case of smooth
nonlinearity, see Section 3.4).

7.3.2.2 VI TET through Excitation of VI IOs

Having established the mechanism of fundamental TET in the system with VI NES,
we now consider the possibility of alternative mechanisms for VI TET based on the
excitation of VI IOs. As shown in Section 3.4.2 excitation of IOs on certain energy
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Fig. 7.31 Damped transition initiated on S11−: (e) WT spectrum of the relative response x2 − x1
superimposed to the FEP.

ranges provides the mechanism for most efficient TET in the system with NES with
smooth nonlinearity.

In the following study we study efficiency of TET from the LO to the NES when
VI IOs are excited in the four previously defined Regimes I–IV of the FEP. We recall
from the case of NES with smooth nonlinearity that IOs play an important role as
far as TET is concerned; this holds especially for IOs lying in the neighborhood
of the family of homoclinic orbits of the unstable in-phase damped NNMs S11+,
close to the 1:1 resonance manifold of the damped dynamics (see discussion in
Section 3.4.2.5).

In Figure 7.32 we depict the damped response of the system when a VI IO in
Regime I is excited. Since the initial energy of the motion is relatively low, vibro-
impacts occur only during the short-duration initial stage of the dynamics, and af-
terwards the dynamics become completely linear, involving continuous energy ex-
changes between the two linear modes of the system (with no vibro-impacts) with
frequencies ω1 and ω2. Due to the closely spaced linear natural frequencies, a linear
beat develops and energy is predominantly dissipated by viscous dissipation in the
LO. In this case insignificant TET from the LO to the VI NES occurs.

The damped responses for initial excitation of the VI IO on the subharmonic
tongue S95E22− in Regime II of the FEP are depicted in Figure 7.33. In this case
the dynamics cannot exhibit a 1:1 TRC, since the in-phase backbone branch S13+
is unstable at the specific initial energy level considered in this simulation. As a re-
sult, the damped dynamics may be divided into four distinct stages, labeled A–D in
Figure 7.33. Stages A–C are strongly nonlinear, whereas, the low-energy Stage D
is linear with no vibro-impacts occurring in that late stage of the response. In Stage



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 295

Fig. 7.32 Damped transition initiated on a VI IO in regime I: (a) time series; (b) percentages of
total instantaneous energy in the LO and the VI NES.

A the damped dynamics follows approximately the tongue S95E22− (where the
motion is initiated) with decreasing energy. Nearly 50% of the total initial energy
is dissipated during this stage of the response, with 33% of total energy being dis-
sipated due to TET from the LO to the VI NES. The damped dynamics in Stages
B and C is complex, as it undergoes transitions along subharmonic tongues such
as U5421−, U4520−, S55O11− and U3201− lying close to the manifold of IO.
Finally, when sufficient energy is dissipated and no additional vibro-impacts can
occur the dynamics settles into the linear Stage D, where predominant contribution
of mode L11+ is realized.
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Fig. 7.32 Damped transition initiated on a VI IO in regime I: (c) percentages of total energy
dissipated by the LO and the VI NES; (d) WT spectrum of the relative response x2 − x1.

In Figure 7.34 the damped dynamics for excitation of the VI IO on the subhar-
monic tongue S32O11 in Regime III of the FEP is presented. For the selected ini-
tial energy level for this simulation 1:1 TRC is possible (since the backbone branch
S13+ is stable at the initial energy level considered), and five distinct stages of the
damped motion (labeled as A–E in Figure 7.34) are inferred. In Stage A the damped
motion follows the subharmonic tongue S31O11− which acts as bridging orbit for
the dynamics to make the transition for its initial state to 1:1 TRC (which is realized
in Stage B). In Stage B there occurs a 1:1 TRC as the stable in-phase backbone
branch S13+ is excited; as a result, fundamental TET from the LO to the VI NES is
realized, so that nearly 50% of the total initial energy is dissipated by the VI NES by
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Fig. 7.32 Damped transition initiated on a VI IO in regime I: (e) WT spectrum of the relative
response superimposed to the FEP.

the end of this stage of the motion. As energy decreases due to viscous dissipation
and inelastic impacts, the in-phase backbone branch S13+ becomes unstable and
the damped dynamics makes a transition to Stages C and D; these stages are similar
to those occuring in Regime II of the FEP, and the dynamics follows complex tran-
sitions along subhramonic tongues, similar to the ones depicted in Figure 7.33. At
the later, low-energy Stage E the dynamics is linear and dominated by mode L11+.
We conclude that by exciting VI IOs lying in Regime III of the FEP the ‘bridging
orbit’ scenario is realized (as in the case of the system with ‘smooth’ NES), leading
eventually to fundamental VI TET. This scenario yiels efficient TET from the LO to
the VI NES.

Finally, when IOs in the high-energy Regime IV of the FEP are excited (see
Figure 7.35) the damped transitions are similar to those realized in Regime III, with
TET efficiency at the end of fundamental VI TET reaching levels of nearly 55%.

In conclusion, we identify two mechanisms for VI TET, namely, fundamental VI
TET due to 1:1 TRC, and VI TET through excitation of a VI IO leading eventually
to fundamental VI TET. These are similar to the corresponding TET mechanisms
for the case of ‘smooth’ NES. No subharmonic VI TET (caused by TRC of the dy-
namics on an isolated VI subharmonic tongue) could be realized in the numerical
simulations of the dynamics of the VI system under consideration, as the VI dy-
namics seem to engage in series of TRCs involving multiple subharmonic tongues
(instead of an isolated one) lying close to the manifold of VI IOs. However, as
shown in the simulations of Figure 7.24, subharmonic VI TET is indeed possible in
the VI system of Figure 7.17. We conjecture, therefore, that, probably, subharmonic
VI TET is a mechanism for TET in systems with very weak viscous damping and
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Fig. 7.33 Damped transition initiated on a VI IO in regime II: (a) time series; (b) percentages of
total instantaneous energy in the LO and the VI NES.

weakly inelastic impacts. A final conclusion drawn from the prenious simulations is
that lack of fundamental TET in Regimes I and II of the FEP can be attributed to
the instability of the in-phase backbone branch S13+ in the corresponding energy
ranges. This is an additional indication of the strong relation that exists between the
Hamiltonian dynamics and the weakly damped transitions.

The specific nonlinear resonance interactions leading to TET in the VI system
can be further analyzed by post-processing the corresponding time series by Empir-
ical Mode Decomposition (EMD). We demonstrate this by analyzing in detail the
mechanism for fundamental VI TET and showing that it corresponds to a 1:1 TRC.
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Fig. 7.33 Damped transition initiated on a VI IO in regime II: (c) percentages of total energy
dissipated by the LO and the VI NES; (d) WT spectrum of the relative response x2 − x1.

To this end, we analyze the high-energy damped transition depicted in Figure 7.28
for motion initiated on the in-phase backbone branch . As shown in previous chap-
ters, decomposition of nonlinear damped transitions by EMD leads to multi-scale
nonlinear system identification of the governing dynamics, and provides the means
for identifying nonlinear resonance (modal) interactions between substructures, as
well as the time (of frequency) scales where these modal interactions occur.

In Figure 7.36 we depict the results of EMD analysis, from which we conclude
that the response of the VI NES possesses a single dominant IMF [the leading one –
denoted by c1(NES)], whereas, the LO response possesses two dominant IMFs [the
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Fig. 7.33 Damped transition initiated on a VI IO in regime II: (e) WT spectrum of the relative
response superimposed to the FEP.

first and second ones – denoted by c1(LO) and c2(LO)]. Denoting by the instan-
taneous phase of the dominant IMF c1(NES) computed by the numerical Hilbert
transform, and by φ21 and φ22 the corresponding phases of c1(LO) and c2(LO), and
computing the phase differences θ1 = φ11−φ21 and θ2 = φ11−φ22, TRCs occurring
between IMFs can be studied in detail. Indeed, as discussed in previous Chapters,
when a specific phase difference exhibits time- like (i.e., monotonic with time) be-
havior over a specified time interval, it may be regarded as a ‘fast’ angle, and, hence,
may be averaged out of the dynamics; this eliminates the possibility of resonance
interaction between the corresponding IMFs. On the contrary, non-time-like behav-
ior of a phase difference precludes the direct application of the averaging theorem
with respect to that angle, and the possibility for resonance interaction between the
corresponding IMFs.

In Figure 7.36d we note non-time-like behavior of the phase difference θ1 dur-
ing Stage A of the damped motion, which indicates that a 1:1 TRC between the
dominant IMF of the VI NES and the first dominant IMF of the LO is realized (de-
noted as RC1 in Figure 7.36d). Escape from this resonance capture is signified by
the time-like behavior of θ1 in Stage B, followed by an additional 1:1 TRC (RC3) in
the weakly nonlinear Stage C, and by the purely linear Stage D. This delayed low-
energy TRC signifies the excitation of the in-phase linear mode L11+ towards the
end of the damped transition. An additional 1:1 TRC (RC2) between the dominant
IMF of the VI NES and the second dominant IMF of the LO is revealed by the non-
time-like behavior of the phase difference θ2 in stage B of the decaying response.
As discussed previously, this corresponds to the regime of pure 1:1 TRC between
the VI NES and the LO, which leads to fundamental TET.
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Fig. 7.34 Damped transition initiated on a VI IO in regime III: (a) time series; (b) percentages of
total instantaneous energy in the LO and the VI NES.

It is interesting to note that the aforementioned partitioning of the phase evolution
plot of Figure 7.36d in terms of distinct stages, coincides with the corresponding
partitioning introduced previously in the plots of Figure 7.28 (see, especially the
energy exchange plot of Figure 7.28b). This demonstrates that the EMD technique
although applied (by construction) in an ad hoc manner, can still lead to physically
relevant results. Efforts towards a rigorous physical interpretation of EMD results
in terms of the slow flow dynamics of a system, and application of EMD in the
context of nonlinear, non-parametric system identification are undertaken currently
(Kerschen et al., 2008b).
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Fig. 7.34 Damped transition initiated on a VI IO in regime III: (c) percentages of total energy
dissipated by the LO and the VI NES; (d) WT spectrum of the relative response x2 − x1.

We end this section by mentioning that the presented VI TET results are by no
means optimized, that is, higher TET efficiencies may be achieved when alterantive
sets of initial conditions are considered. This leads us naturally to the discussion of
TET efficiency in the system with VI NES carried out in the next section.
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Fig. 7.34 Damped transition initiated on a VI IO in regime III: (e) WT spectrum of the relative
response superimposed to the FEP.

7.3.2.3 Efficiency of VI TET

We aim to study the efficiency of VI TET in the system of Figure 7.17 by introducing
certain definitions related to the capacity of the VI NES to passively absorb and
dissipate vibration energy from the LO, as well as the time required for this VI
dissipation to occur. Specifically, we denote by ξLI the normalized time instant when
the last vibro-impact in a given simulation occurs (that is, for ξ > ξLI the transient
response is purely linear); by ξ95% the time required for 95% of the initial energy of
the system to get dissipated by viscous dissipation and inelastic vibro-impacts; and
by EVI NES the percentage of initial energy that is eventually dissipated by the VI
NES due to inelastic vibro-impacts (i.e., during the entire duration of the damped
motion). In this context, the ratio EVI NES/ξLI represents the average measure of
the percentage of energy dissipated by the VI NES per unit time, whereas, the ratio
95/ξ95% the average percentage of energy dissipated per unit time until 95% of total
energy is dissipated. The ratioEVI NES/ξLI provides a measure of VI TET efficiency
per unit time as long as vibro-impacts occur (i.e., for ξ ≤ ξLI), and is used as a
means of judging the rate (time scale) of energy dissipation (efficiency) by the VI
NES only; on the contrary, the measure 95/ξ95% is used to study the overall rate
of energy dissipation in the system (including the combined the effects of inelastic
vibro- impacts and viscous damping dissipation).

Clearly, higher values of the energy measure EVI NES, and/or lower values of the
time measure ξ95%, result in more efficient VI TET in the system under consider-
ation. Moreover, if there are no other sources of dissipation, higher values of the
average rate EVI NES/ξLI indicate high VI TET efficiency in the nonlinear regime of
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Fig. 7.35 Damped transition initiated on a VI IO in regime IV: (a) time series; (b) percentages of
total instantaneous energy in the LO and the VI NES.

the damped response, i.e., in the regime where vibro-impacts are realized. However,
in the presence of additional viscous damping dissipation in the LO, the average rate
95/ξ95% provides a better indicator of the overall efficiency of TET to dissipate a
significant prortion of the total initial energy of the system throughout the damped
motion.

In Figure 7.37 we depict the measures ξLI, ξ95%, EVI NES and the average rates
EVI NES/ξLI, 95/ξ95% as functions of initial energy, for damped VI responses initi-
ated on VI IOs over a wide energy range of the FEP. The system parameters used
for these simulations are ρ = 0.7, λ = 0.005λcrit and ε = σ = 0.1. As expected,
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Fig. 7.35 Damped transition initiated on a VI IO in regime IV: (c) percentages of total energy
dissipated by the LO and the VI NES; (d) WT spectrum of the relative response x2 − x1.

with increasing energy more vibro-impacts occur, as indicated by the increase of the
normalized time measure ξLI with increasing energy in Figure 7.37a. Judging from
the dependence of the energy measure EVI NES on energy (see Figure 7.37a), we
conclude that most efficient VI TET is realized when VI IOs are excited in Regimes
III and IV of the FEP (the highest VI TET efficiency is above 65% for this series
of simulations). Moreover, VI TET in Regimes III and IV occurs at a relatively
fast time scale, as indicated by the relayively small values of the normalized time
measure ξ95% in the corresponding energy ranges (see Figure 7.37a).
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Fig. 7.35 Damped transition initiated on a VI IO in regime IV: (e) WT spectrum of the relative
response superimposed to the FEP.

Focusing now on the average rates depicted in Figure 7.37b, we deduce again
that the most efficient rates of the overall energy dissipation measure 95/ξ95%, are
realized in Regimes III and IV, although the highest rates of energy dissipated by
the VI NES during vibro-impacts, EVI NES/ξLI, are realized in the lower energy
Regimes I and II. We conclude that, although in these Regimes there occurs strong
TET from the LO to the VI NES as long as vibro-impacts last (i.e., there is more
efficient energy dissipation per vibro-impact), the overall duration of vibro-impacts
is small (due to the small level of overall energy), as reflected by the relatively small
values of the corresponding overall TET efficiency rates 95/ξ95%.

In an additional series of numerical simulations we computed the previous mea-
sures for simulations corresponding to excitations of VI IOs at varying energies and
restitution coefficients , and the fixed viscous damping coefficient λ = 0.005λcrit =
0.01. This study identified the regimes of efficient VI TET when both the energy of
the excited VI IO and the coefficient of restitution of vibro-impacts are varied. The
results are presented in Figures 7.38 and 7.39, from which we conclude that the most
efficient TET takes place when highly-energetic VI IOs are excited (in Regimes III
and IV of the FEP), and for smaller restitution coefficients, i.e., for highly inelastic
vibro-impacts. This last result is not as obvious as it might seem from a first read-
ing; indeed, although it is clear that the average rate EVI NES/ξLI is favored when
the restitution coefficient increases (as this results in increased dissipated energy
per vibro-impact), this does not necessarily imply that the overall TET efficiency
as measured by the average rate 95/ξ95% is also favored (for example, refer to the
average rates depicted in the plot of Figure 7.37b).
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Fig. 7.36 Results of EMD analysis of the damped transition of Figure 7.28: (a) IMFs of the VI
NES response (maximum amplitudes indicated); (b) IMFs of the LO response.

In conclusion, we showed that a SDOF primary LO with an attached VI NES
possesses very complicated dynamics. In the absence of energy dissipation, vibro-
impacts give rise to a variety of periodic (and quasi-periodic) motions, which when
represented in the FEP yield a quite complex topology of periodic and quasi-
periodic orbits. In the limit of zero clearance the entire complex VI FEP degenerates
to just two linear (in- and out-of-phase) modes. By superimposing WT spectra of
weakly damped responses to the Hamiltonian FEP we were able to study compli-
cated transitions, and deduce the different mechanisms for passive TET from the LO
to the VI NES. As in the case of smooth stiffness nonlinearity (the ‘smooth’ NES),
both fundamental and subharmonic TET can be realized by the VI NES. The most
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Fig. 7.36 Results of EMD analysis of the damped transition of Figure 7.28: (c) WT spectra of
the dominant IMFs; (d) evolutions of the phase differences θ1 and θ2 indicating the occurrence of
TRCs in the dynamics.

efficient mechanism for TET, however, is through the excitation of highly-energetic
VI IOs, in similarity to the case of smooth nonlinearity. In contrast to NESs with
smooth essential nonlinearities, however, VI NESs are capable of passively absorb-
ing and locally dissipating significant portions of the energy of the primary systems
to which they are attached, at sufficiently fast time scales; this renders them es-
pecially suitable for applications where rapid energy dissipation is rquired, such
as, passive seismic mitigation, where shock elimination in the early, highly ener-
getic regime of the structural response is a critical requirement. The application of
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Fig. 7.37 Study of efficiency of TET in the VI system for excitation of VI IOs: (a) measures
ξLI, ξ95% and EVI NES as functions of total energy; (b) average rates EVI NES/ξLI and 95/ξ95% as
functions of total energy.
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Fig. 7.38 Efficiency of TET in the VI system for excitation of VI IOs: left column, average rates
EVI NES, ξLI and ξ95% as functions of total energy and restitution coefficient for λ = 0.01; right
column, corresponding projections in the total energy-restitition coefficient plane.
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Fig. 7.39 Efficiency of TET in the VI system for excitation of VI IOs: left column, average rates
EVI NES/ξLI and 95/ξ95% as functions of total energy and restitution coefficient for λ = 0.01; right
column, corresponding projections in the total energy-restitition coefficient plane.

combinations of NESs with smooth and non-smooth stiffness characteristics to the
problem of seismic mitigation will be examined in detail in Chapter 10.
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Chapter 8
Experimental Verification of Targeted Energy
Transfer

Experimental verification of TET will be carried out in this chapter. Some prelimi-
nary experimental results concerning TET from a two-DOF linear primary system
to an attached ungrounded SDOF NES (of Configuration II – see Section 3.1) were
already presented in Section 3.5.1.3, where experimental verification of resonance
capture cascades (RCCs) was also performed. In this chapter we focus on some
basic experimental tests that confirm in a systematic way certain of the previous
theoretical predictions related to TET from linear primary systems to grounded or
ungrounded NESs (i.e., NES Configurations I and II – see Sections 2.6 and 3.1).
All experimental results were carried out in the Linear and Nonlinear Dynamics
and Vibrations Laboratory of the University of Illinois, Urbana–Champaign. Fur-
ther experimental studies of TET will be presented in Chapter9, in our study of
aeroelastic instability suppression of in-flow wings through the use of SDOF NESs
with essential cubic nonlinearities; and in Chapter 10, in our study of TET-based
passive seismic mitigation designs for seismically forced structures with essentially
nonlinear and/or vibro-impact NESs.

8.1 TET to Ungrounded SDOF NES (Configuration II)

The first experimental study of TET is carried out with the fixture depicted in Fig-
ure 2.27, consisting of a SDOF linear oscillator (LO) with an attached ungrounded
NES of Configuration II (according to the notation introduced in Section 3.1 – refer
to the NES configuration depicted in Figure 3.2). The experimental results of this
work are fully discussed in McFarland et al. (2005b), and here only a summary of
the main findings is provided.

Assuming that the LO is forced by an external excitation, the experimental fixture
is modeled by the following two-DOF system:

Mẍ + ελ1ẋ + ελ2(ẋ − v̇)+ kx + C(x − v)3 = p(t)

317
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Fig. 8.1 Experimental impulsive force.

εv̈ + ελ2(v̇ − ẋ)+ C(v − x)3 = 0 (8.1)

From Section 2.6 we recall that the essential cubic nonlinearity of the NES is re-
alized by means of wires with nearly no pretension that are connected to the LO
using clamps. In the described experiment, the wire span was adjusted to 12 in, and
further details about the construction of the essential nonlinearity can be found in
McFarland et al. (2005a, b).

A long-stroke shaker provided a controlled (and repeatable) short impulse to the
LO; a representative input (broadband) force is depicted in Figure 8.1. The response
of both oscillators was then measured using accelerometers. Estimates of the cor-
responding velocity and displacement time series were obtained by numerically
integrating the measured acceleration time series. The resulting signals were then
high-pass filtered to remove the spurious components introduced by the numerical
integration procedure.

8.1.1 System Identification

The first stage of the experimental study concerns the system identification of the
various parameters of the model. This is needed in order to perform comparisons
of the experimental results with theoretical predictions (using discrete models), and
thus identify the experimentally measured nonlinear dynamics. The goal of system
identification is to exploit input and output measurements performed on the structure
using vibration sensing devices in order to estimate all the parameters governing
the equations of motion. Prior to system identification, the LO and the NES were
weighed as M = 1.266 kg and ε = 0.140 kg, respectively, which implies a mass
ratio ε/M = 0.11.
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Table 8.1 Parameters of model (8.1) identified through experimental modal analysis, and the
restoring force surface method.

Parameter Estimated Value

M 1.266 kg
ε 0.140 kg
k 1143 N/m
ελ1 0.155 Ns/m
ελ2 0.4 Ns/m
C 1.85 × 106 N/m2.8

α 2.8

System identification was carried out in two separate steps. First, the LO was
disconnected from the NES, and modal analysis was performed on the disconnected
LO employing the stochastic subspace identification method (Van Overschee and
De Moor, 1996). This yielded natural frequency and the critical viscous damping
ratio estimates equaling 4.78 Hz and 0.2%, respectively. Because the mass of the
LO was known, the stiffness and the damping parameters were easily deduced from
this modal analysis, and their values are listed in Table 8.1.

In the second step of the system identification, the LO was clamped, and an im-
pulsive force was applied to the NES using an instrumented modal hammer. Both
the NES acceleration and applied force were measured, and the restoring force sur-
face method (Masri and Caughey, 1979) was employed to estimate the nonlinearity
C and the damping coefficient ελ2 from these measurements. In essence, Newton’s
second law is applied to estimate the nonlinear stiffness force by the following rela-
tion:

fNL(v, v̇, x, ẋ) = p − εv̈ (8.2)

where fNL(v, v̇, x, ẋ) is the restoring force and p the external force [for simplicity,
the temporal dependences are omitted from (8.2)]. Hence, the time history of the
restoring force can be estimated directly from the measurement of the acceleration
and the external force and from the knowledge of the mass ε. This is illustrated for
the 21 N force level in Figure 8.2a. The representation of the restoring force in terms
of the relative displacement (v-x) is depicted in Figure 8.2b, and demonstrates that
indeed the linear component of the nonlinear stiffness is negligible; in other words,
the experimental wire assembly behaved as an essential nonlinearity (as predicted).

The model,
fNL(v, v̇, x, ẋ) = ελ2(v̇ − ẋ)+ C(v − x)3 (8.3)

could then be fitted to the measured estimate of the restoring force, and least-squares
parameter estimation could be used to obtain the values of coefficients C and ελ2.
For greater flexibility, the functional form of the nonlinear stiffness was replaced by
the more general expression,

fNL(v, v̇, x, ẋ) = ελ2(v̇ − ẋ)+ C |v − x|α sign(v − x) (8.4)
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Fig. 8.2 Measured restoring force represented as a function of (a) time and (b) relative displace-
ment (v − x).

The three unknown parameters in (8.4), namely the nonlinear coefficient, the expo-
nent of the nonlinearity and the dashpot constant, were estimated by following the
same procedure as in Kerschen et al. (2001); i.e., one seeks the minimum of the
normalized mean-square error between the measured and predicted restoring forces
as a function of the exponent of the nonlinearity. The resulting parameters are listed
in Table 8.1. The best results were obtained using an exponent equal to 2.8, which
is not far from the theoretical value of 3.

8.1.2 Experimental Measurements

Two series of experimental tests were performed in both of which the LO was impul-
sively loaded. In the first series of tests, the damping in the NES was kept relatively
weak in order to highlight the different mechanisms for targeted energy transfer
(TET). Additional tests were performed to investigate whether TET could still be
realized when the viscous damping of the NES was increased.

8.1.2.1 Weak Damping Case

In the weak damping case, several force levels ranging from 21–55 N were con-
sidered, but for conciseness, only the results for the lowest and highest force levels
are displayed in Figures 8.3 and 8.4. At the 21 N forcing level, the acceleration
and displacement of the NES are higher than those of the LO, which indicates tar-
geted transfer of vibration energy to the NES. The percentage of instantaneous total
energy carried by the NES depicted in Figure 8.3c illustrates that strong energy
exchanges between the LO and the NES take place, and that this channeling of en-
ergy to the NES is not irreversible. Indeed, after 0.23 s, as much as 88% of the
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Fig. 8.3 Experimental results for low damping (21 N force level): (a) measured accelerations (solid
line: LO; dashed line: NES); (b) measured displacements (solid line: LO; dashed line: NES); (c)
percentage of instantaneous total energy in the NES, and (d) LO displacement (solid line: with
NES attached; dashed line: with only grounded dashpot).

total instantaneous energy is present in the NES, but this level drops down to 1.5%
immediately thereafter. Hence, in this case, energy rapidly flows back and forth be-
tween the two oscillators, which is characteristic of a nonlinear beat phenomenon.
Another indication that nonlinear beating occurs is that the envelope of the NES
response undergoes large modulations in this case.

At the 55 N forcing level, the nonlinear beat phenomenon still dominates the
early regime of the motion. A less vigorous but faster energy exchange is now ob-
served as 63% of the total energy is transferred to the NES after 0.12 s. These
quantities also hold for the intermediate force levels listed in Table 8.2. These ob-
servations are in close agreement with the numerical studies in Section 3.2; indeed,
in this case due to the excitation of IOs there is smaller transfer of energy from the
LO to the NES, but in a faster fashion as the force level increases.

The main qualitative difference from the case of the lowest force level is that
there exists now a second regime of motion. Indeed, after approximately t = 2.5 s,
the motion is captured in the domain of attraction of the 1:1 resonant manifold, as
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Fig. 8.4 Experimental results for low damping (55 N force level): (a) measured accelerations
(solid line: LO; dashed line: NES); (b) measured displacements (solid line: LO; dashed line: NES);
(c) percentage of instantaneous total energy in the NES, and (d) LO displacement (solid line: with
NES attached; dashed line: with only grounded dashpot).

Table 8.2 Nonlinear beating phenomenon: energy transferred from the LO to the NES, and corre-
sponding transfer time.

Excitation level (N) Energy transferrred Transfer time (s)
to the NES (%)

21 88 0.23
29 72 0.20
34 67 0.19
45 64 0.13
55 63 0.12

clearly evidenced in Figure 8.5c. This graph also demonstrates the irreversibility of
the energy transfer in this case, at least until escape from resonance capture occurs
around t = 6.2 s. Another manifestation of 1:1 resonance capture is that the en-
velopes of the displacement and acceleration time series decrease almost monoton-
ically during this regime, and no envelope modulation is observed. The system is
capable of sustaining the resonance capture during a significant interval of the mo-
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Fig. 8.5 Experimental results for high damping (31 N force level): (a) measured accelerations
(solid line: LO; dashed line: NES); (b) measured displacements (solid line: LO; dashed line: NES);
(c) percentage of instantaneous total energy in the NES; (d) energy dissipated in the NES (solid
line: measurements; dashed line: simulations), and (e) restoring coupling force.

tion (i.e., in the interval 2.5 < t < 6.2 s). Hence, experimental confirmation of TET
from the LO to the NES is established in this case.

A qualitative way to assess the efficiency of energy dissipation by the NES is
to compare the responses of the LO in the following two cases: (a) when the NES
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is attached to the LO (which corresponds to the presented results); and (b) when
the NES is disconnected and replaced by a dashpot installed between the LO and
ground. This later configuration corresponds to a SDOF LO with just added damp-
ing. Case (b) was not realized in the laboratory, but the system dynamics was studied
using numerical simulation. Figures 8.3d and 8.4d compare the corresponding dis-
placements of the LO for the aforementioned two different system configurations. It
can be observed that the NES performs much better than the grounded dashpot for
the 21 N forcing level, but this is less obvious for the 55 N forcing level. This might
mean that for weak damping (when the nonlinear beat phenomenon is capable of
transferring a significant portion of the total energy to the NES), nonlinear beating
might be a more useful mechanism for energy dissipation compared to resonance
capture leading to irreversible energy transfer.

8.1.2.2 Strong Damping Case

We now consider the experimental response of a system with strong damping. Sev-
eral force levels in the range 31–75 N are considered in this case, but only the results
for the 31 N level are presented herein. The damping constant λ2 in the coupling el-
ement was identified as 1.48 Ns/m, which means that the damping element that
couples the two oscillators (and is situated in parallel to the essential stiffness non-
linearity) can no longer be considered as being of order ε. The increase in damping
is also reflected in the measured restoring coupling force depicted in Figure 8.5e.

The experimental system response shown in Figures 8.5a, b is almost entirely
damped out after about 5 to 6 cycles of oscillation. The NES acceleration and dis-
placement are still higher than the corresponding responses of the LO, which means
that TET may also occur in the presence of stronger damping. The percentage of
instantaneous total energy in the NES in Figure 8.5c never reaches values close to
100% as in the previous case, but we conjecture that this is due to the faster decay
of the response due to strong damping; as soon as energy is transferred to the NES,
it is almost immediately dissipated by the dashpot, and irreversible TET takes place.
This is fully compatible with the theoretical results.

A quantitative measure of energy dissipation is available through the computation
of the energy dissipation measure (EDM), i.e., of the energy dissipated in the NES
normalized by the total input energy:

Ediss,NES,%(t) = 100
ελ2

∫ t

0
[v̇(τ )− ẋ(τ )]2dτ∫ t

0
p(τ)ẋ(τ )dτ

(8.5)

Experimental and simulated estimates of the EDM are depicted in Figure 8.5d. This
demonstrates that as much as 96% of the total input energy is dissipated by the
NES, which indicates high TET efficiency by the NES. Moreover, there is satis-
factory agreement between theoretical predictions and experimental measurements,
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Fig. 8.6 Superposition of the WT spectrum of the relative displacement across the nonlinearity and
the backbone of the frequency energy plot: (a) forcing amplitude 55 N, system with low damping;
(b) forcing amplitude 31 N, system with high damping.

validating the mathematical analysis and the corresponding models developed in
Chapter 3.

8.1.2.3 Post Processing Results and Additional Experiments

To study further the nonlinear mechanisms governing energy transfers in the exper-
imental system, we applied the numerical wavelet transform (WT) to selected time
series for systems with weak and strong damping. In Figure 8.6, we depict the Mor-
let WT spectra of the relative displacements v(t)−x(t) of the systems with (a) weak
damping and forcing amplitude 55 N (Figure 8.6a) and (b) strong damping and forc-
ing amplitude 31 N (Figure 8.6b). Superimposed to the WT spectra are the backbone
curves of the frequency energy plot (FEP) of the model (8.1), represented by solid
line. We recall that the shading of the WT spectra denotes the relative amplitude
of the dominant harmonic components of the corresponding damped motions, as
computed through the WT.

Based on the experimental WT spectra depicted in Figure 8.6 we deduce that the
dynamics of the system is indeed nonlinear. A strong indication of this fact is that the
predominant frequency component of the NES varies with energy; moreover, there
appear strong harmonic components during the initial nonlinear beating phenomena
in these responses. Once these harmonic components disappear, fundamental TET
due to 1:1 transient resonance capture is triggered, as the transient dynamics traces
approximately the in-phase backbone branch S11+. Hence, the experimental results
confirm the theoretical finding that the formation of initial nonlinear beats provides
the ‘bridging dynamics’ for triggering fundamental (or subharmonic) TET in the
two-DOF system (8.1).
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Another remark regarding the experimental results concerns the fact that, in the
weakly damped system (see Figure 8.6a) the predominant harmonic component of
the NES traces the backbone branch for most of the duration of the time series. This
is not so apparent in the heavily damped response of Figure 8.6b, and validates our
theoretical finding that the weakly damped, transient dynamics can be interpreted
and understood in terms of the topological structure of periodic orbits (NNMs) of
the underlying Hamiltonian system in the FEP.

Additional measurements were performed for a system with stiffer stiffness non-
linearity by shortening the span of the wire from 12 in to 10 in and increasing
the wire diameter from 0.010 in to 0.020 in; this yields a nonlinear coefficient of
C = 1.65 × 107 N/m3. Inspection of the accelerations and displacements shown
in Figures 8.7a, b reveals that the NES is no longer vibrating symmetrically with
respect to its equilibrium position, particularly in the time interval 1 < t < 3 s.
Interestingly enough, as can be judged from the results depicted in Figures 8.7c, d,
there is an almost pointwise agreement between the experimental accelerations and
those predicted by the theoretical model (8.1).

A better understanding of this particular regime of the motion can be gained from
a snapshot of the configuration space depicted in Figure 8.7e. Apparently, the tran-
sient dynamics is captured in the domain of attraction of a subharmonic tongue in
the FEP, with the corresponding motion not being symmetric with respect to the
origin of the configuration space. Indeed, it turns out that in this case the motion
takes the form of a closed loop (Lissajous curve), which might mean that an unsym-
metric U−branch is excited. However, due to the existence of a countable infinity
of tongues, and due to the presence of damping, it is difficult to identify with cer-
tainty the specific subharmonic tongue that is excited in this particular experimental
run. Nonetheless, this result provides further evidence of the complex dynamical
behavior that this two-DOF system with essential nonlinearity can possess, in full
agreement with the theoretical predictions of Chapter 3; moreover, it provides fur-
ther experimental evidence of the intricate relationship between the Hamiltonian
and weakly damped dynamics. Finally, Figure 8.7f illustrates that a nonlinear beat-
ing occurs during this particular regime, with the resulting energy exchanges being
not so vigorous, since less than 40% of vibration energy gets transferred at any given
time of the beating cycle from the LO to the NES.

8.2 TET to Grounded SDOF NES (Configuration I)

We now proceed to discuss a second series of experimental results regarding TET
from a linear primary system to a grounded NES of Configuration I according to the
notation introduced in Section 3.1 (with configuration depicted in Figure 3.1). Our
exposition follows closely (McFarland et al., 2005a).
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Fig. 8.7 Case of increased stiffness nonlinearity: (a) measured accelerations (solid line: LO;
dashed line: NES); (b) measured displacements (solid line: LO; dashed line: NES); comparison
between predicted (dashed line) and measured (solid line) accelerations: (c) LO; (d) NES; (e) mo-
tion in the configuration plane, and (f) percentage of instantaneous total energy contained in the
NES.



328 8 Experimental Verification of Targeted Energy Transfer

8.2.1 Experimental Fixture

The experimental fixture employed for this study is depicted in Figure 2.26. It con-
sists of two SDOF oscillators (the linear primary system and the NES) connected
by means of a linear coupling stiffness. The left oscillator (the linear subsystem)
is grounded by means of a linear spring, whereas the right one (the nonlinear en-
ergy sink – NES) is grounded by means of a nonlinear spring with essential cubic
nonlinearity. To dissipate the transferred energy, a grounded viscous damper exists
ingrounds the NES. Transient (shock) excitation of the linear primary system is pro-
vided by means of a rod that impacts elastically with the left mass. More details
regarding the experimental fixture and the realization of the essential cubic stiffness
nonlinearity by means of wires with no pretension can be found in Section 2.6.

The two-DOF system model of the experimental fixture is governed by the equa-
tions of motion

Mÿ +Ky + ελẏ + ε(y − v) = F(t)
mv̈ + εcv̇ + Cv3 − ε(y − v) = 0 (8.6)

for zero initial conditions. Weak coupling between the linear primary system and
the NES is assumed by requiring that ε 	 K . Assuming that F(t) is an impul-
sive (broadband) excitation of finite duration, we aim to show experimentally that
broadband energy initially imparted to the linear subsystem is passively transferred
to the NES in an irreversible (on the average) way, where this energy is confined
and dissipated without ‘spreading back’ to the linear primary system.

The eigenfrequency of the linear subsystem, and the viscous damping factors of
both subsystems, were estimated by performing experimental modal analysis tests
using an instrumented modal hammer manufactured by PCB Piezotronics, Inc. to
provide the necessary excitation. Data analysis was performed using the Diamond
modal analysis package developed at Los Alamos National Laboratory. The modal
parameters of the linear primary system were estimated to be

M = 0.834 kg, K = 993 N/m, ελ = 0.129 Ns/m

corresponding to the eigenfrequency ω0 = 35.63 rad/s, and the viscous damping
ratio ζ = 2.3 × 10−3; hence, the linear oscillator is lightly damped. The mass and
damping parameters of the NES, and the linear coupling stiffness connecting the
primary system and the NES, were estimated by performing experimental modal
analysis of the linear SDOF oscillator which results when the coupling stiffness is
grounded and the nonlinear spring is disconnected. The system parameters were
estimated as

m = 0.393 kg, ε = 114 N/m, εc = 0.454 Ns/m

The stiffness characteristic of the nonlinear spring of the NES was identified
by performing a series of static tests, wherein known displacements were imposed



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 329

Fig. 8.8 Identified stiffness characteristic of the essentially nonlinear spring of the NES: • experi-
mental measurement, — fitted cubic polynomial.

to the NES mass and the corresponding restoring forces created by the wire were
measured. A cubic polynomial was then fitted to the experimental measurements,
yielding the following nonlinear force-displacement relationship:

f (x) = 166x + 1.36 × 107x3 (8.7)

Hence, a small (undesirable) linear term is identified in the stiffness of the NES
which, however, is negligible for the characteristic displacements of interest in our
experiment. In Figure 8.8, the fitted model of the essential stiffness nonlinearity of
the NES is compared to experimental measurements.

Experimental data collected included the input (broadband) force, the accelera-
tion of each mass, and the force associated with the nonlinear stiffness. These signals
were digitized using two Tektronix 2630 spectrum analyzers. One of these ran at a
sampling rate which allowed it to store 8 s of time-history data, which was deemed
adequate to capture all of the significant TET phenomena realized in the experi-
mental fixture. The other analyzer acquired input force and the acceleration of the
linear subsystem at a much higher rate, allowing the reconstruction of these short
signals in adequate detail. The discrete signals thus acquired were first transferred to
Matlab� for post-processing, including correcting biases and synchronization of the
time data. All signals were shifted to start at time t = 0, and the processed time his-
tories were imported to Mathematica for all further manipulations, during which the
experimental signals were commonly interpolated by cubic spline approximations
for simplicity.
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Fig. 8.9 Strong experimental impulsive force for inducing nonlinear TET in the experimental fix-
ture.

8.2.2 Results and Discussion

Two series of experimental tests were performed. In the first series of tests, consist-
ing of eight trials (labeled ep1 through ep8), the input force was strong enough to
produce significant nonlinear effects, including TET. Four additional trials (labeled
NOEP1 through noep4) were performed with the input force reduced to where the
system response was practically linear and no TET occurred. The aforementioned
sets of experiments were dictated by the theoretical prediction (see Chapter 3), that
passive TET in the considered system of coupled oscillators can only be realized if
the imparted energy gets above a critical threshold. As shown below, the experimen-
tal results fully validate this theoretical prediction. In what follows, typical results
from each of the two trial sets are provided.

First, experimental results for the case EP2 (when TET is realized) will be pre-
sented, corresponding to the experimentally produced impulsive force depicted in
Figure 8.9. This force is applied to the linear primary system with the entire system
being initially at rest, and is approximately 6.25 ms in duration; this forcing level is
typical of the strong excitation required for inducing nonlinear passive TET in the
experimental fixture. To perform comparisons between measured results and theo-
retical predictions, we carried out an additional independent numerical simulation
of the transient response of system (8.6) subjected to the experimentally measured
force and zero initial conditions. In Figure 8.10 a comparison between the exper-
imental and theoretical acceleration time series of the two subsystems is depicted,
from which very good agreement is noted. Such agreement is typical of what was
observed in all experimental trials. Nonlinear TET is noted, especially at the early
stage of the dynamics (0 < t < 4 s) when the energy of the system is relatively high
and the nonlinear effects are more pronounced. Moreover, by studying the experi-
mental time series of Figure 8.10, one notes that during this early TET regime the
NES oscillates with a dominant ‘fast’ frequency that is approximately equal to the
eigenfrequency of the linear subsystem, i.e., a 1:1 TRC takes place.
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Fig. 8.10 Case when passive TET from the linear primary system to the NES occurs: experimental
— and numerical – – – acceleration time series of (a) the linear (directly excited) primary system,
and (b) the NES.

A quantitative measure of passive TET in the system is performed by computing
the energy dissipation measure (EDM),

ENES(t) = εc

Ei(T )

∫ t

0
v̇2(τ )dτ (8.8)

representing the instantaneous portion of the input energy Ei(t) dissipated by the
viscous damper of the NES, where T is the duration of the external impulse. The
input energy measure is computed from the following expression:

Ei(t) =
∫ t

0
F(τ)ẏ(τ )dτ 0 < t ≤ T (8.9)

Regarding the experimental estimation of the input energy measure (8.9), the accel-
eration record of the linear subsystem shown in Figure 8.10 was integrated starting
from zero initial velocity to obtain the velocity signal. Despite high-pass filtering



332 8 Experimental Verification of Targeted Energy Transfer

Fig. 8.11 Acceleration (a), and velocity (b), of the linear primary system during and immediately
after application of the external impulsive load; experimental data —, numerical data – – –.

of the experimental data, it was found that it was very difficult to obtain a stable
velocity signal in this way (see Figure 8.11); fortunately, this limitation is of less
importance in the total energy calculation (8.9), because of the short duration over
which the applied force acts. In general, however, noise in the data constitutes a
limitation when numerically integrating experimental acceleration signals. The NES
velocity necessary for computing the EDM (8.8) was obtained in the same way, but
while no obvious error was visible in the result, computing the energy dissipated in
the NES over several seconds proved to be less reliable than the total input energy
computation.

The energy input Ei(t) is plotted in Figure 8.12a; both experimental and sim-
ulated measurements are provided, with good agreement between them. In Fig-
ure 8.12b experimental and simulated estimates of the energy measure ENES(t)

(energy portion dissipated at the NES) are depicted, again with good agreement be-
tween them (indeed, there is a small error between the experimental and numerical
limiting values of these plots for t � 1; as noted below, this error varies signifi-
cantly among the various runs). From these results it is determined that, eventually,
88.5% of the total input energy is absorbed and dissipated by the NES; this estimate
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Fig. 8.12 Case when TET occurs: (a) instantaneous input energy and (b) energy dissipated at the
NES; experimental data —, numerical data – – –.

was obtained by considering the asymptotic limit of ENES(t) for t � 1. This ex-
perimental result demonstrates that the NES is an effective mechanism for passively
absorbing and dissipating a significant portion of impulsively generated vibration
energy of the structure to which it is attached.

To verify experimentally the theoretical prediction that nonlinear TET in the two-
DOF system under examination can not be realized for sufficiently low external
excitations, the case NOEP1 is now considered, corresponding to the small impul-
sive force depicted in Figure 8.13a. From the acceleration time series plots of Fig-
ures 8.13b, c it is concluded that in this case no significant energy transfer occurs
from the linear subsystem to the attached NES, a fact that is confirmed by the en-
ergy measures presented in Figure 8.14. Indeed, in this case the experimental and
simulated estimates of the total portion of the input energy eventually dissipated
at the NES are equal to 25.09% and 39.02%, respectively. These results confirm
experimentally the lack of TET in the system when excited by a weak impulsive
force.
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Fig. 8.13 Case when no TET occurs: (a) weak impulsive force, (b) acceleration of the directly
excited primary system, (c) acceleration of the NES; experimental —, numerical – – –.
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Fig. 8.14 Case when no TET occurs: (a) instantaneous input energy (N/m) and (b) energy dissi-
pated by the NES (N/m); experimental data —, numerical data – – –.

In Table 8.3 experimental and simulated estimates of the asymptotic EDM limit
are presented for all tests performed. In that Table, the two series of experimental
tests corresponding to relatively strong and weak impulsive excitations, respectively,
are clearly distinguished. In runs with relatively strong impulsive excitations consis-
tent TET from the primary system to the NES is noted; whereas for weak impulses
TET is consistently small. There are variations between theoretical and experimental
estimates but, more significantly, also between experimental estimates derived from
different experimental runs. Besides unpredictable experimental factors that are not
fully captured by the two-DOF theoretical model (8.6), the differences between ex-
perimental and theoretical estimates can be attributed, in part, to the transient and
strongly nonlinear nature of the experiments yielding the previously discussed dif-
ficulties in the accurate computation of the transient experimental velocities (espe-
cially those of the NES) from post-processing of measured acceleration time series.
The dependence of TET on the level of input energy, however, is clearly discerned
in the experimental results, confirming the dependence on energy of the transient,
strongly nonlinear dynamics governing TET. This dependence is clearly depicted in
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Table 8.3 Asymptotic limit of the EDM (8.8) [limt�1ENES(t)].

Test Measured Simulated

EP1 0.799 0.862
EP2 0.885 0.860
EP3 0.658 0.814
EP4 0.583 0.775
EP5 0.848 0.737
EP6 0.617 0.804
EP7 0.599 0.787
EP8 0.616 0.798
NOEP1 0.251 0.390
NOEP2 0.258 0.402
NOEP3 0.283 0.404
NOEP4 0.258 0.397

Fig. 8.15 Experimental estimate of the asymptotic limit of the EDM (8.8) as function of the level
of input energy.

the plot of Figure 8.15, where the limiting value of the EDM is plotted for vary-
ing energy input Ei(T ) (this plot corresponds to the experimental results listed in
Table 8.3). Moreover, the experimental results reveal that there exists an ‘optimal’
energy input for which the portion of energy dissipated by the NES is a maximum.
This result, which is of significance for the implementation of TET in practical de-
signs, is in full agreement with the theoretical findings of Chapter 3.

8.3 Experimental Demonstration of 1:1 TRCs Leading to TET

In this section we provide an experimental demonstration of 1:1 TRC leading to
TET in the two-DOF system with grounded NES (Configuration I) studied in Sec-
tion 8.2. We will perform this task (Kerschen et al., 2007) by showing that during
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TRC the primary linear oscillator (LO) and the NES are in a state of transient 1:1
resonance (the frequency of which varies with time), leading to nonlinear TET. In
addition, by applying numerical Hilbert transform and EMD to the measured tran-
sient time series we show that 1:1 TRC is associated with non-time-like behavior of
the (slowly varying) phase difference between the two oscillators. These results are
in agreement with the theoretical findings reported in Chapter 3.

8.3.1 Experimental Fixture

The two-DOF system considered for this study (Kerschen et al., 2007) possesses
a slightly different configuration than the one considered in Section 8.2. The
schematic of the experimental fixture is depicted in Figure 2.26b, and is similar
to the one employed in Section 8.2; its details are shown in Figure 8.16. The fix-
ture is composed of a linear oscillator – LO (designated as the primary system) that
is linearly coupled to a grounded NES. The corresponding mathematical model is
given by:

Mÿ +Ky + ελẏ + ε(y − v)+ ελ1(ẏ − v̇) = F(t)
mv̈ + εcv̇ + Cv3 − ε(y − v) − ελ1(ẏ − v̇) = 0 (8.10)

Both linear and nonlinear subsystems are realized in the form of cars made of alu-
minum angle stock oscillating on an air-track in order to eliminate as much as possi-
ble the effects of friction forces from the measured dynamics. Comparing this model
to the similar model (8.6), we note the addition of weak viscous damping ελ1 in the
coupling element; this was experimentally achieved by adding viscoelastic tape to
the coupling leaf spring (Figure 8.16c). As in the previous section, however, weak
coupling is assumed by requiring that ε 	 K .

In addition, Teflon coating was attached to the undersides of the cars to reduce
any friction that might occur while the cars were in motion. As a result, in (8.10)
the damping constants ελ and εc were much smaller than the damping coefficient
ελ1 of the coupling element. A long-stroke electrodynamic shaker provided a con-
trolled and repeatable short force pulse to the primary linear system (i.e., the left
car in Figure 8.16a), with a typical broadband input force being depicted in Fig-
ure 8.17. The response of both oscillators was measured using accelerometers, and
estimates of the corresponding velocities and displacements were obtained by nu-
merically integrating the measured acceleration time series. The resulting signals
were then high-pass filtered to remove spurious components introduced by noise in
the integration procedure.

System identification of the model (8.10) was performed following the proce-
dures and applying the techniques discussed in the two previous sections. A detailed
description of the system identification procedure can be found in Kerschen et al.
(2007). The nonlinear grounding force applied to the NES through the wire system
was identified employing the restoring force method (Masri and Caughey, 1979) as
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(a)

(b)

(c)

Fig. 8.16 Details of the experimental fixture: (a) linear primary system with attached NES, (b)
NES, (c) leaf spring.
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Fig. 8.17 Typical input force applied to the linear primary system by the long-stroke shaker.

Table 8.4 Parameters of model (8.10) identified through experimental modal analysis, and the
restoring force surface method.

Parameter Estimated Value

M 0.7348
m 0.4734
K 942
ε 151
ελ 0.09
εc 0.11
ελ1 0.4
C 1.83×107
Clin 11.3

fNES(v, v̇) = εcv̇ + Clinv + Cv3 (8.11)

where the coefficients and the other identified parameters of the model (8.10) are
listed in Table 8.4. The small linear stiffness component in (8.11) (caused by the
small pretension in the wires that realize the essential stiffness nonlinearity of the
NES) was small enough to not affect our study of TRCs in the system considered.

8.3.2 Experimental TRCs

Three excitation levels were considered in this specific set of experiments, corre-
sponding to force peak amplitudes of 7, 13 and 18 N, respectively. Figure 8.18
displays the responses (displacements) of the primary LO and the NES, from which
we note that the dynamics of the system at the 7 N level is qualitatively different
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Fig. 8.18 Experimentally measured displacements (left column: entire record; right column: close-
up): (a) 7 N peak force; (b) 13 N peak force; (c) 18 N peak force; LO response —, NES response
—.

than that at the other two levels. Indeed, at the 7 N level the response of the LO
possesses at least two significant frequency components, whereas the responses at
the 13 N and 18 N levels are in the form of a fast frequency modulated by a slowly
varying envelope. Hence, at the higher energy levels slow-fast decomposition of the
transient dynamics is noted.
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Fig. 8.19 WT spectra of the experimental responses of Figure 8.18 (left column: primary LO; right
column: NES): (a) 7 N peak force; (b) 13 N peak force; (c) 18 N peak force.

From these results it is evident that at the higher energy levels fundamental TET
takes place from the directly forced primary LO to the NES; moreover, in the fun-
damental TET regimes both oscillators perform in-phase oscillations with the same
apparent frequency, i.e., 1:1 TRCs occur. The transient nature of these resonance
captures in the TET regimes is not fully clarified by these plots but it is clearly de-
duced from the following post-processing study of the experimental measurements.
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Further evidence of 1:1 TRCs in the transient dynamics is provided in Fig-
ure 8.19, which depicts the instantaneous dominant frequencies (wavelet transform
spectra) of the experimentally measured displacements of Figure 8.18. As in our pre-
vious studies in this monograph, heavily shaded areas correspond to regions where
the amplitudes of the wavelet transform spectra are high, revealing the presence of
dominant harmonic components in the corresponding transient responses. In addi-
tion to verifying the occurrence of 1:1 TRCs in the fundamental TET dynamics,
these results indicate that during resonance captures the (common) dominant fre-
quency of the two oscillators shifts downward (due to the hardening characteristic
of the stiffness nonlinearity of the system) as the total energy decreases due to vis-
cous dissipation. Hence, at the beginning of the 1:1 TRCs, this frequency is close
to 5.7 Hz (i.e., the eigenfrequency of the LO), whereas at the end of the TRC this
decreases to as low as 3.3 Hz, respectively.

As discussed in previous chapters, 1:1 TRCs can be accurately studied by con-
sidering the evolution of the relative phase of the slow flow (modulation) dynamics
governing the high-energy responses. In particular, in the neighborhood of the 1:1
resonance manifold, non-time-like behavior of this phase is anticipated, which pre-
vents direct averaging of the equations of motion over this angle variable. Hence,
the slow evolution of the relative phase signifies the occurrence of the corresponding
resonance capture. To this end, the relative phase of the dynamics of the two oscil-
lators is computed directly from the experimental responses using either directly
the Hilbert transform (if the responses possess a single dominant-fast-frequency),
or empirical mode decomposition – EMD (see Section 2.5.2) followed by Hilbert
transform (for responses with multiple dominant frequencies).

In Figure 8.20 we depict the temporal evolution of the relative phase φyv =
φy −φv between the LO and the NES for the energetically high measurements (i.e.,
the experimental responses depicted in Figures 8.18b, c and 8.19b, c). In both cases
1:1 TRCs occur (leading to TET), and the transient responses of the LO and the
NES possess a single fast frequency component (Feldman, 1994). It follows that by
applying Hilbert transform to the time series of Figures 8.18b, c, these responses
can be decomposed in terms of slow and fast components as follows:

y(t) = Ay(t) cosϕy(t)

v(t) = Av(t) cosϕv(t) (8.12)

where Ay(t), Av(t) and φy, φv are slowly varying amplitudes and phases, respec-
tively. In 1:1 TRC regimes non-time-like behavior of the phase difference φyv is
observed in both cases, followed by escape from resonance capture as noted by
the corresponding time-like behavior of the phase difference. Clearly, we may not
apply Hilbert Transform directly to the transient responses of the low-energy case
(see Figures 8.18a and 8.19a), as these possess two dominant frequency components
(and no TET is realized).

To study resonance interactions in the energetically low responses (Figures 8.18a
and 8.19a) we first analyze them by means of EMD, thus decomposing them in terms
of their intrinsic mode functions (IMFs) cyi(t), cvp(t), i, p = 1, 2, . . . ; as discussed
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Fig. 8.20 Time series (left column) and trajectory in phase plane (right column) of the phase
difference φyv: (a) 13 N peak force; (b) 18 N peak force.

in Section 2.5.2 the IMFs are oscillatory modes embedded in the time series and can
be analyzed individually by the Hilbert transform. Then, the transient responses are
expressed as

y(t) =
∑
i

cyi(t) and v(t) =
∑
p

cyp(t) (8.13)

Figure 8.21 depicts the first two IMFs of the experimental displacement of the os-
cillators depicted in Figure 8.18a; additional higher-order IMFs were also computed
but were omitted from further consideration as they had negligible participation in
the transient responses. For the response of the primary LO (see Figure 8.21a) the
two IMFs have approximately similar contributions to the response, which indicates
that two terms must be taken into account in the series expression for y(t) in (8.13).
On the other hand, the second IMF of the NES displacement (see Figure 8.21b) can
be neglected when compared to the first IMF, so v(t) in (8.13) may be approximated
solely by its first IMF.

Decomposing these dominant IMFs in terms of their instantaneous amplitudes
and phases, the transient responses of Figure 8.18a are approximated as follows:
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Fig. 8.21 IMFs resulting from EMD of the experimental responses depicted in Figure 8.18a Ű-
7 N peak force (left column: 1st IMF; right column: 2nd IMF): (a) primary LO; (b) NES.

y(t) ≈ Ay1(t) cosφy1(t)+ Ay2(t) cosφy2(t)

v(t) ≈ Av1(t) cosφv1(t) (8.14)

where Ay1(t), Ay2(t), Av1(t) and φy1(t), φy2(t), φv1(t) are slowly-varying ampli-
tudes and phases of the dominant IMFs, respectively. Moreover, a careful exami-
nation of the IMFs depicted in Figure 8.21 reveals that the second IMF, cy2(t) of
the displacement of LO, and the first IMF cv1(t) of the NES displacement, possess
nearly identical fast frequencies over the time interval 1 < t < 5 s; this becomes
apparent when we examine the corresponding phase difference, φy2(t) − φv1(t)

depicted in Figure 8.22. These IMFs, therefore, are engaged in 1:1 TRC on the
mentioned time interval. Note that no such resonance capture occurs involving the
participation of the first IMF of the response of the LO, which explains why no TRC
can be discerned in the original time series corresponding to the low forcing level.

A study of the energy dissipation measure of the NES, i.e., of the percentage of
total energy dissipated by the damper of the NES in time, is presented in Figure 8.23.
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Fig. 8.22 Phase difference φy2(t) − φv1(t) between the 2nd IMF of the response of the primary
LO and the 1st IMF of the response of the NES – 7 N peak force: (a) time series, (b) trajectory in
the phase plane.

At the lowest energy level (Figure 8.23a – for which previous results indicated that
TRC is not realized), a single regime is realized during which strong nonlinear beat
phenomena exist and energy quickly flows back and forth between the LO and the
NES. After 0.35s, as much as 98.2% of the total energy is transferred from the im-
pulsively excited primary LO to the NES, but this number drops to 18% immediately
thereafter (during an energetically lower regime).

At the other two energy levels (Figures 8.23b, c), for which 1:1 TRCs are real-
ized, three Regimes, labeled I, II and III, exist during the motion. During Regime I, a
nonlinear beat phenomenon can also be observed during the first few cycles (though
this is weaker than the one realized at the lower energy level). Although this Regime
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Fig. 8.23 Energy exchange and dissipation in the system [left column: percentage of instantaneous
total energy in the NES; right column: EDM (8.15)]: (a) 7 N peak force; (b) 13 N peak force; (c)
18 N peak force.

could not be clearly observed in the responses of Figures 8.18 and 8.19 (except for
the presence of small harmonic components in Figures 8.18b and 8.18c), it plays a
very important role in the dynamics since it ‘drives’ the motion into the domain of
attraction of the 1:1 resonance manifold (and, thus to 1:1 TRC); this is performed
by the transfer of a certain amount of energy from the LO to the NES during the
nonlinear beats. The system is then capable of sustaining a 1:1 TRC during a sig-
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Fig. 8.24 Wavelet transform spectra of experimental displacements superimposed to the Hamil-
tonian frequency-energy plot of system (8.10) (left column: primary LO; right column: NES): (a)
7 N peak force; (b) 13 N peak force; (c) 18 N peak force.

nificant part of the motion, namely, during Regime II. At the beginning of Regime
III, the NES carries almost all the instantaneous energy of the system; then escape
from the regime of 1:1 TRC resonance capture occurs, and energy is released from
the NES back to the primary system, though at an energetically lower regime, after
most of the energy of the system has been dissipated by the dampers of the system.
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This is inferred from the EDM plots depicted in Figure 8.23. In this case the EDM
is computed as

ENES(t) = εc
∫ t

0 v̇
2(τ )dτ + ελ2

∫ t
0 [v̇(τ )− ẏ(τ )]2dτ

Ei(T )
(8.15)

where Ei(T ) is the total energy input to the system by the impulsive excitation.
In Figure 8.24, the backbone curve of the frequency-energy plot (FEP) of the

underlying Hamiltonian system (8.10), represented by a solid line, is superposed on
the wavelet transform spectra of the displacements. As mentioned in Chapter 3 this
plot can only be used for descriptive purposes as it superposes wavelet transform
spectra of damped responses to branches of undamped periodic orbits; however,
it is useful for depicting the relation between the damped and undamped dynamics.
We notice that for all three excitation levels, the predominant frequency components
follow the in-phase backbone branch S11+ for most of the duration of the motion.
This validates the similar theoretical findings in Chapter 3. Moreover, it is estab-
lished that the dynamics of system (8.10) is strongly nonlinear, as the predominant
frequency components undergo significant variations in frequency content with en-
ergy. In addition, we conclude that during a 1:1 TRC (i.e., at the 13 and 18 N peak
force levels), the displacements of both oscillators possess mainly a single (fast)
frequency component which closely tracks the lower part of the backbone branch
(see Figures 8.24b, c). At the 7 N peak force level, however, a strong nonlinear beat
phenomenon is observed, and there exist two (fast) frequency components in the
transient responses, one of which closely traces (approximately) the linearized out-
of-phase subbranch of S11−, while the other follows the lower backbone in-phase
branch S11+.

In general, satisfactory agreement was obtained between theoretical predictions
and experimental measurements throughout this study, in spite of the transient and
strongly nonlinear nature of the dynamics. For illustration of this fact, a comparison
between experimentally measured and predicted displacements resulting from direct
numerical integrations of the model (8.10) at the 13 N peak force level is presented
in Figure 8.25.

8.4 Steady State TET Under Harmonic Excitation

In our final experimental study we consider steady state TET in a two-DOF system
possessing a grounded NES (of Configuration I). This system was examined in de-
tail in Jiang et al. (2003) were systems with both weak and strong coupling were
considered. In Chapter 6 we studied different mechanisms for steady state TET in
periodically forced oscillators, namely, time-periodic TET, or TET in the form of
strongly modulated responses (SMRs). The experimental study in this section is
concerned with time-periodic TET, whereas for experimental verification of TET
through SMRs we refer to Gourdon et al. (2005).
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Fig. 8.25 Comparison between experimentally measured and predicted displacements (13 N peak
force level): (a) LO, (b) NES; prediction —, experiment —.

We find that, in contrast to the classical linear vibration absorber, the NES is
capable of absorbing steady state vibration energy from the linear oscillator over
a relatively broad frequency range. This results in localization of the steady state
vibration to the NES. Both forward and backward frequency sweeps are considered
and generation or elimination of localized steady state responses through sudden
transitions (jumps) are detected, leading to nonlinear hysteresis phenomena.



350 8 Experimental Verification of Targeted Energy Transfer

8.4.1 System Configuration and Theoretical Analysis

We consider a SDOF oscillator weakly coupled to a grounded NES (Configuration
I) with governing equations given by,

m1ÿ(t)+ c1ẏ(t)+ k1y(t)+ εk[y(t)− v(t)] = F sinωt

m2v̈(t)+ c2v̇(t)+ k2v
3
2(t)+ εk[v(t)− y(t)] = 0 (8.16)

where |ε| 	 1. In Jiang et al. (2003) the steady state responses of this system were
analyzed by applying the CX-A technique; these results are not reproduced here,
and we will summarize only the main results that are necessary for the experimental
study that follows.

To give an indication of the dynamics of system (8.16), in Figure 8.26 we de-
pict the steady state amplitudes of the responses of the system with parameters
m1 = 2.800 kg, m2 = 0.400 kg, k1 = 8005.300 N/m, k2 = 4000000 N/m3,
c1 = 219.663 N/m/s, c2 = 0.808 N/m/s, εk = 130 N/m, and F = 30 N. The steady
responses of the system were computed for constant forcing amplitude F and vary-
ing forcing frequency ω; due to the essential nonlinearity of the system there exist
frequency ranges were multiple coexisting stable steady state solutions are realized.
Referring to the plot of Figure 8.26 we note that linear resonance in branch 1 (at
ω ≈ k1/m1) is completely suppressed due to the heavy damping considered and,
instead, the steady state response is dominated by the localized part of branch 1, cor-
responding to motions confined to the NES. Indeed, we note that close to the point
of the jump from branch 1 to branch 3, the steady state amplitude of the nonlinear
attachment is nearly 4.3 times greater than that of the directly forced linear oscilla-
tor. Moreover, we note that the nonlinear attachment is capable of localizing steady
state energy over a relatively broad frequency range (20–38 rad/s); moreover, the
localization becomes increasingly more profound with increasing frequency. After
the jump to branch 3 the dynamics settles to a low-amplitude linearized steady state
vibration.

It is shown in Jiang et al. (2003) that these analytical results are in agreement
with direct numerical simulations of the governing nonlinear equations of motion.
As an indication of the agreement between analysis and numerical simulation, in
Figure 8.27 we depict transitions (jumps) between stable steady state branches when
the system is perturbed by impulses. To this end, a series of direct numerical sim-
ulations of the equations of motion (8.16) was performed as follows: (i) first, we
let the system reach a steady state motion at frequency ω; (ii) then, keeping the
harmonic force running we apply an impulse of constant magnitude to the linear
oscillator for a duration of half cycle of the harmonic response, T = π/ω. It was
found that the proper timing of this impulse depended upon which transition was to
be induced: a shift from branch 1 to branch 3 was readily initiated by an impulse
timed with the motion of the linear oscillator, while a jump from branch 3 to branch
1 was more easily produced by a pulse in-phase with the motion of the nonlinear
attachment. By appropriately selecting the magnitude of the impulse we were able
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Fig. 8.26 Steady state amplitudes of system (8.16) computed by the CX-A method: (a) linear
oscillator, and (b) nonlinear attachment.
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Fig. 8.27 Transitions between stable steady state branches induced by an impulse in system (8.16):
(a) transition from branch 1 to branch 3 at ω = 32rad/sec for an impulse of magnitude 85 N; (b)
transition from branch 3 to branch 1 at ω = 35rad/sec for an impulse of magnitude 135 N.
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Fig. 8.28 Minimum impulse magnitude required for inducing transitions between stable steady
state branches in system (8.16).

to induce transitions between branches 1 and 3, as shown in Figure 8.27. Moreover,
the numerical simulations indicated that there was a certain minimum pulse level
that was required for inducing the transitions between the stable branches, and once
that minimum was exceeded a transition between branches could always be realized.
We found that this minimum pulse level was frequency-dependent, and, in addition,
depended on the specific transition considered (that is, from branch 1 to 3 or vice
versa). The minimum impulse magnitudes required for initiating the two transitions
in the range of co-existing steady states of the heavily damped system are depicted
in Figure 8.28.

In the next section experimental work is performed to validate the theoretical pre-
dictions. The experimental system is composed of the armature of a shaker weakly
coupled to an attachment with essential stiffness nonlinearity. By performing a se-
ries of frequency sweeps we aim to verify the existence of the theoretically predicted
steady state TET phenomena.

8.4.2 Experimental Study

The experimental fixture is depicted in Figure 8.29a and its schematic representa-
tion is presented in Figure 8.29b. The linear oscillator was built around a long-stroke
electrodynamic shaker (Electro-Seis Model 400, APS Dynamics Inc.), with an ar-
mature mass of 2.8 kg. Because this mass was large compared to any components
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Fig. 8.29 The experimental fixture: (a) setup, (b) schematic representation.

that might have been directly attached to it in this experiment, the armature itself
was arranged to function as the mass m1 of the theoretical model (8.16). Modal
analysis of the shaker as an single degree-of-freedom (SDOF) linear system, using
a white noise signal as input, provided its inherent linear stiffness k1 = 649.89 N/m
with damping c1 = 11.57 Ns/m. The external harmonic force F sinωt of the theo-
retical model was provided by the electromagnetic force between the armature and
the frame of the shaker. The dual mode power amplifier driving the shaker (Model
144, APS Dynamics Inc.) was operated in current-feedback mode, with the result
that the current supplied to the shaker (and thus the force on the armature) was
nearly independent of frequency, and the structural dynamic response was mea-
sured for a specified amplitude of the voltage signal input to the amplifier. This
current was monitored on an oscilloscope and its waveform compared to that of the
sinusoidal driving voltage. Thus, the requirement that the applied force possesses
a fixed magnitude during the forward and backward experimental sine sweeps was
experimentally satisfied.

The shaker armature was attached to a weak coupling spring of stiffness εk =
130 N/m by means of a horizontal stinger which ran in a linear bearing (visible at the
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left edge of the photo in Figure 8.29a). The bearing aligned the stinger with an air
track on which rode the mass m2 of the nonlinear attachment (the NES). This cou-
pling spring was a vertical double cantilever of thin spring steel, capable of remain-
ing linear during the large relative displacements encountered in this experiment.
The base of this spring was attached to the NES mass; this was a 50 × 50 × 3 mm
aluminum angle stock supported in operation by air emitted through a series of small
holes in the upper surfaces of the air track, itself a box beam of length 77 cm sup-
ported rigidly at each end. The NES mass was connected to ground by a viscous
damper (an air dashpot with an adjustable orifice) and by an essentially nonlinear,
cubic-hardening spring. As mentioned in previous sections, the essential nonlinear-
ity was experimentally realized by the transverse deflection of a piece of piano wire
with no pretension; horizontal deflection of its midpoint produced axial stretching of
each half-span with the desired (geometric) nonlinearity following from the geom-
etry of the deformed shape. This essentially nonlinear spring was calibrated under
static loads for a range of spans and wire sizes. In the present study two diameters
of wire were used, namely, 0.79 mm and 1.04 mm with elastic modulus 200 GPa
and wire half span equal to 133.2 mm; these correspond, respectively, to the ‘thin-
wire’ and ‘thick-wire’ cases discussed below. The remaining system parameters of
the NES subsystem were identified by considering it as a linear SDOF structure
with the nonlinear spring removed and the stinger fixed to ground, and conducting
a hammer modal test on this configuration. Hence, the following system parameters
were identified for the experimental fixture [based on the notation of system (8.16)]:

m1 = 2.8 kg,m2 = 0.4 kg, k1 = 649.89 N/m,

k2 = 4 × 107 N/m3 (thin wire), k2 = 7.1 × 107 N/m3 (thick wire),

c1 = 11.570 Ns/m, c2 = 0.808 Ns/m, εk = 130 N/m, F = 5 N

With the linear oscillator and NES connected as shown in Figure 8.29, a har-
monic force was applied to the shaker armature. The responses of both masses, the
armature and the sink, were measured using miniature piezoelectric accelerome-
ters. In addition, the force between the two degrees of freedom (that is, the force
transmitted by the coupling spring εk), and the restoring force provided by the non-
linear spring were measured with piezoelectric load cells. All of these signals were
recorded using a Tektronix 2630 Spectrum Analyzer and exported to Matlab� for
post-processing. The experimental displacement values given herein were obtained
by integrating the measured acceleration records.

In Figures 8.30 and 8.31 we present the comparisons between the numerical sim-
ulations [derived by numerically integrating the model (8.16) with the aforemen-
tioned identified parameters] and the experimental frequency response plots for a
constant applied force level equal to F = 5 N. As mentioned previously two wire
thicknesses were used to realize the nonlinearity of the NES, yielding nonlinear
stiffness characteristics equal to 4 × 107 and 7.1 × 107 N/m3, respectively. Fig-
ure 8.30 displays the steady state dynamics of the thin wire case, while Figure 8.31
the steady state dynamics corresponding to the thick wire case. The experimental
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Fig. 8.30 Theoretical and experimental frequency responses for thin-wire stiffness nonlinearity.

Fig. 8.31 Theoretical and experimental frequency responses for thick-wire stiffness nonlinearity.
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results confirm the qualitative features of the nonlinear dynamics predicted by the
theoretical analysis. Steady state TET from the linear oscillator to the NES is ob-
served in the range 30–42 rad/s for the thin-wire and 37–41 rad/s for the thick-wire
configuration, leading to confinement of the steady state motion to the nonlinear
attachment. Moreover, in these frequency ranges the co-existence of the two types
of the steady state solutions predicted by theory is confirmed, as well as the two
sudden transitions (jumps) for increasing or decreasing excitation frequency and the
realization of the nonlinear hysteresis phenomenon. We note that just before the for-
ward jump (from high to low NES motion), the amplitude of the NES is nearly nine
times (for both thin and thick wires) that of the linear oscillator, which represents an
even better nonlinear motion confinement than that predicted by theory.

It is interesting to note that the experimental transition band is close to that
predicted from numerical simulations – the theoretical transition ranges were 32–
42 rad/s for the thin-wire configuration and 34–45 rad/s for the thick-wire one. The
thin-wire case presented a better match between the experimental data and the nu-
merical simulations, since the essential cubic stiffness was realized with more accu-
racy in that case; indeed, it is easier to clamp a thin wire rigidly, without introducing
any initial pretension(as the theoretical model requires). Moreover, the experimental
responses of the primary (shaker armature) match very well that of the numerical re-
sult. Note that we arrived at the conclusion that branch 1 and branch 3 are very close
to each other from both the experimental result and numerical result of the shaker
armature response, and both experimental and numerical results for the response of
the shaker armature have similar trends; that is, the response decreases gradually for
gradual increases of the forcing frequency.

However, we also note that there is fairly large disagreement in the magnitude
of the responses for the NES compared with the experimental measurements. This
discrepancy is attributed mainly to the uncertain characterization of the nonlinear
stiffness of the NES. We recall that in deriving the theoretical cubic approximation
for the essential stiffness nonlinearity of the NES we omitted higher-order nonlin-
earities of odd degree that might affect the response at relatively high resonance am-
plitudes (in fact, the experimental response for the low-amplitude branch matches
very well that of the numerical result). Moreover, the theoretical modeling of the
nonlinear stiffness was based on clamped boundary conditions of the piano wire,
which can be realized only approximately in an experimental setup; in fact, a certain
amount of slipping of the wire at the boundaries is unavoidable during the exper-
iment. This uncertainty in the boundary conditions might also affect the nonlinear
performance of the wire configuration. Nevertheless, there is satisfactory qualita-
tive agreement between theory and experiment, and, more importantly, the spatial
confinement property predicted by the numerical simulations is fully verified by the
experimental results.
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Chapter 9
Suppression of Aeroelastic Instabilities through
Passive Targeted Energy Transfer

The first practical application of TET concerns passive suppression of aeroelastic
instabilities in rigid in-flow wings. We show that the capacity of the essentially
nonlinear NES to passively absorb vibration energy from a primary structure in
a broadband fashion, paves the way for robust partial or complete suppression of
limit cycle oscillations (LCOs) developing in in-flow wings. Our systematic study
of this passive instability suppression commences with a simplified model, the van
der Pol oscillator, which can be considered as the prototypical system exhibiting an
LCO instability. Then we discuss the nonlinear dynamics causing instability in a
two-DOF model of an in-flow rigid wing, by means of a reduced-order technique
based on slow-fast decomposition of its dynamics. Quasi-steady flow is assumed
in the particular model used in this study. Then, we demonstrate that the addition
of a lightweight SDOF NES affects drastically the dynamics of the wing, result-
ing in new dynamical phenomena that, under certain conditions, lead to partial or
even complete LCO suppression. An extensive experimental program undertaken
with wind tunnel tests fully confirms the theoretical predictions and validates the
TET-based design. We conclude this section by performing bifurcation analysis of
the dynamics of the integrated wing-NES system; by demonstrating that the use of
alternative NES configurations, such as, MDOF NESs enhances the robustness of
LCO suppression; and by providing some preliminary results on the efficacy of the
NES to suppress instabilities in wings in unsteady flow.

9.1 Suppression of Limit-Cycle Oscillations in the van der Pol
Oscillator

The term ‘van der Pol oscillator’ originally referred to an electrical circuit con-
sisting of resistors, inductance coils, a capacitor, and a triode with two DC power
sources. When power is supplied, the current exhibits steady state periodic oscilla-
tions; namely, limit cycle oscillations (LCOs) (Nayfeh and Mook, 1995). The van
der Pol (VDP) oscillator can be derived via a coordinate transformation from a me-

359
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chanically analogous system, the Rayleigh oscillator, which possesses a damping
force of the form ε(u̇ − u̇3) where u is a displacement variable (analogous to the
current variable in the electric circuit) and ε is a parameter; in this case, the displace-
ment u exhibits LCOs. In nonlinear aeroelastic problems, similar types of equations
were employed in phenomenological descriptions of nonlinear motions of in-flow
bluff bodies possessing LCOs (Skop and Griffin, 1973; Griffin and Skop, 1973;
Dowell, 1981).

Regarding suppression of self-excited vibrations, some progress has been re-
ported in the literature. For example, under parametric or autoparametric excitation,
full vibration cancellation was observed for some system parameter ranges (Tondl
et al., 2000; Fatimah and Verhulst, 2003). Another paradigm (Ko et al., 1997; Fried-
mann et al., 1997) utilized adaptive control to suppress LCOs developing in a wing
due to aeroelastic effects. All these suppression strategies require an active control
input, that is, they need external energy for their realization. Note that, for the case
of LCO elimination through parametric excitation, the secondary subsystem is ef-
fective only at narrow frequency bands of the primary system.

On the other hand, in recent works it was reported that it is possible to apply
passive (i.e., requiring no external energy source) broadband vibration control to
eliminate self-excited oscillations, by means of grounded or ungrounded local non-
linear energy sinks (NESs) (Lee et al., 2004, 2005), inducing TET (Vakakis and
Gendelman, 2001; Vakakis et al., 2003; Kerschen et al., 2006a). For some para-
meter domains, one can obtain complete elimination of LCOs, and the robustness
of suppression turns out to depend on the bifurcation structure of the steady state
dynamics. The LCO suppression or elimination is realized through one-way, ir-
reversible transfer of energy from the primary system (the VDP oscillator) to the
nonlinear attachment (the NES). Ungrounded NESs are more practical, since they
can be applied to structural components such as aircraft wings far from the ground;
they also turn out to possess richer dynamics and be more effective as their masses
decrease, a feature which makes them very attractive from a practical design point
of view. For grounded NES configurations, the reverse holds; that is, they become
more effective as their masses increase [see Lee et al. (2005a) and the discussion in
Section 3.1].

In this study, we consider a mechanical VDP oscillator and regard it as the repre-
sentative aeroelastic system possessing LCOs above some critical parameter values.
We show that by adding an NES we can efficiently suppress or even completely
eliminate these LCOs. We also perform steady state bifurcation analyses of steady
state motions by means of numerical continuation utilizing both the MATCONT
Matlab�package, developed by Dhooge et al. (2003), and Kubíček’s method (1976),
in order to gain an understanding of the dynamical mechanisms that govern LCO
suppression. Moreover, we wish to relate the topology of bifurcations of the steady
state dynamics to the robustness of LCO suppression in this system. We end up this
application with some concluding remarks. The analysis follows closely (Lee et al.,
2006).
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Fig. 9.1 Phase portraits for the van der Pol oscillator (ε = 0.1).

9.1.1 VDP Oscillator and NES Configurations

We consider the VDP oscillator,

ẍ − εẋ(1 − x2)+ x = 0, ε > 0

For 0 < ε 	 1, the equilibrium point (0,0) is always an unstable spiral. There exists
a stable ω-limit set (or limit cycle) on which the solution can be approximated by
averaging in the form, x(t) = 2 cosωt + O(ε), where the frequency is given by
ω = 1 − ε2/16 +O(ε3) (Guckenheimer and Holmes, 1983). Figure 9.1 depicts the
LCO of the VDP oscillator in the phase plane when ε = 0.1, and shows that there
is small deviation between the original and averaged solutions [of O(ε)]. We wish
to study the suppression of the LCO of the VDP oscillator by adding a lightweight
NES to it. Throughout this study we will assume that ε is the small parameter of the
problems considered, and assign it the value ε = 0.01 	 1.

We will consider two alternative NES attachments, namely, grounded and un-
grounded NESs, as depicted in Figure 9.2. We designate the corresponding configu-
rations of VDP oscillators with grounded and ungrounded NESs as VDPNES1 and
VDPNES2, respectively. The grounded NES (labeled as NES1) is linearly coupled
to the VDP oscillator, whereas the ungrounded NES (NES2) is coupled to the VDP
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Fig. 9.2 System configuration with (a) grounded (VDPNES1) and (b) ungronded NES
(VDPNES2).

oscillator through essentially nonlinear stiffness in parallel to a viscous damping
element.

The equations of motion for configuration VDPNES1 (Figure 9.2a – Configura-
tion I in the notation of Section 3.1) are expressed as

ẍ − εẋ(1 − x2)+ x + εC (x − y) = 0

εmÿ + ελẏ + κy3 + εC (y − x) = 0 (9.1)

where x and y are the displacements of the VDP and NES masses, respectively; εm
is the ratio of the NES and VDP masses, ελ the damping coefficient, εC, the linear
coupling stiffness, and κ the nonlinear stiffness coefficient.

The equations of motion for configuration VDPNES2 (Figure 9.2b – Configura-
tion II in the notation of Section 3.1) are given by

ẍ − εẋ(1 − x2)+ x + ελ(ẋ − ẏ)+ κ(x − y)3 = 0

εmÿ + ελ(ẏ − ẋ)+ κ(y − x)3 = 0 (9.2)

where similar definitions for the parameters hold. The underlying Hamiltonian dy-
namics, as well as the transient damped dynamics of NESs connected to single
degree-of-freedom linear oscillators were studied in Vakakis and Gendelman (2001)
and Vakakis et al. (2003) for NES1, and in Kerschen et al. (2006a) and Lee et al.
(2005) for NES2. Moreover, the dynamics of these NES configurations have been
studied extensively in previous chapters of this monograph.
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First, we perform computational parametric studies of systems (9.1) and (9.2) to
identify parameter subsets where the LCO of the VDP oscillator can be suppressed
or even completely eliminated. For this purpose, we restrict the NES parameters to
the ranges, 0.01 ≤ εm ≤ 0.5, 0.01 ≤ κ ≤ 1.0, and 0.01 ≤ ελ ≤ 0.3 for NES1
and 0.01 ≤ ελ ≤ 0.1 for NES2. For configuration VDPNES1, two cases of linear
coupling stiffness are considered: εC = 1.0 (weaker) and εC = 10.0 (stronger).
We select initial conditions for the numerical simulations outside the LCO of the
uncoupled VDP oscillator [specifically, (x(0), y(0), ẋ(0), ẏ(0)) = (3.5, 0, 0, 0)],
and integrate the equations of motion (9.1a) and (9.1b) for sufficiently long time
to ensure that the initial transients die out. Then we compute the root-mean-square
(r.m.s.) amplitude of the corresponding steady state response. Since the LCO re-
sponse of the uncoupled VDP oscillator possesses an r.m.s. amplitude equal to

√
2,

steady state responses with r.m.s. amplitudes less than
√

2 imply suppression of the
LCO.

Figures 9.3 and 9.4 depict contour plots of VDP r.m.s. amplitudes on the mini-
mum parameter planes, and on the sections corresponding to mass ratio of 5% and
nonlinear stiffness of 0.2 for configurations VDPNES1 and VDPNES2, respectively.
In both cases, we observe that very small damping (e.g., 1%) causes complicated (or
non-uniform) steady state amplitudes of the VDP oscillator. For the grounded NES
configuration (Figure 9.3), the steady state amplitudes of the VDP oscillator vary
relatively uniformly on the parameter plane whether the linear coupling is weak or
strong. For example, on the plane corresponding to εm = 5% (κ = 0.2), the steady
state amplitudes become smaller as the damping increases; that is, they seem to be
independent of the nonlinear stiffness (the mass ratio). It is generally observed that
strong damping leads to better suppression results for the grounded NES. On the
other hand, we do not observe uniform behavior of steady state r.m.s. amplitudes
for the ungrounded NES (Figure 9.4). Instead, a larger mass ratio, stronger damp-
ing and sufficiently weaker nonlinear coupling tend to produce a larger degree of
suppression. A general conclusion drawn from these plots, however, is that the addi-
tion of light passive (but essentially nonlinear) NESs may completely eliminate the
LCOs of the VDP oscillator over relatively wide parameter ranges. More systematic
studies of the effects of the parameters will be provided later utilizing the method of
numerical continuation.

In Figure 9.5, we show that an NES with an even small mass ratio can passively
eliminate the LCO of the VDP oscillator. Evidently, the grounded NES1 appears to
be more effective in eliminating the LCO in a shorter period compared to the un-
grounded NES2; however, such isolated simulations cannot be used to draw general
conclusions regarding the relative effectiveness of the two NES configurations in
suppressing LCOs. Indeed, this relative performance ought to be evaluated by con-
sidering aspects such as robustness of LCO suppression over wide NES parameter
ranges, as well as issues of applicability of these NES configurations to practical
designs.



364 9 Suppression of Aeroelastic Instabilities through Passive Targeted Energy Transfer

Fig. 9.3 Contour plots of steady state r.m.s. amplitudes of (grounded) configuration VDPNES1
with respect to mass, damping, and nonlinear stiffness coefficient of the NES: (a) weaker linear
coupling (εC = 1.0); (b) stronger linear coupling (εC = 10.0).
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Fig. 9.4 Contour plots of steady state r.m.s. amplitudes of (ungrounded) configuration VDPNES2
with respect to mass, damping, and nonlinear stiffness coefficient of the NES.

9.1.2 Transient Dynamics

In this section, we construct slow flow dynamical models in order to analytically
study the transient and steady state motions of the VDP oscillator with attached
NES. This is achieved by applying the complexification-averaging technique (CX-
A) of Manevitch (2001). The analytical study of the transient dynamics will reveal
the dynamical mechanism responsible for LCO suppression, whereas the study of
the steady state dynamics will address issues of robustness of LCO suppression.

9.1.2.1 Slow Flow Model

Following the CX-A technique, we introduce at this point the new complex variables
ψ1 = ẏ + jy and ψ2 = ẋ + jx where j2 = −1, and substitute them into the
equations of motion (9.1a, b) through the relations

y = 1

2j
(ψ1 − ψ∗

1 ), ẏ = 1

2
(ψ1 + ψ∗

1 ), ÿ = ψ̇1 − j

2
(ψ1 + ψ∗

1 )

x = 1

2j
(ψ2 − ψ∗

2 ), ẋ = 1

2
(ψ2 + ψ∗

2 ), ẍ = ψ̇2 − j

2
(ψ2 + ψ∗

2 ) (9.3)
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Fig. 9.5 Transient responses depicting LCO elimination for initial conditions
(x(0), y(0), ẋ (0), ẏ(0)) = (3.5, 0, 0, 0): (a) configuration VDPNES1, εm = 5%, ελ = 15%,
κ = 0.2, εC = 1.0; (b) configuration VPDNES2, εm = 5%, ελ = 5%, κ = 0.2.
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where as usual, the asterisk denotes complex conjugate. Then, we express the com-
plex variables in polar form:

ψ1(t) = ϕ1(t)e
jt , ψ2(t) = ϕ2(t)e

jt (9.4)

where ϕi(t), i = 1, 2, represent the slowly-varying complex amplitudes, and ejt the
fast-varying components at the (linearized) natural frequency of the VDP oscillator.
By expressions (9.3) we partition the transient dynamics into slow and fast compo-
nents, that is, we make the assumption that the transient responses of systems (9.1)
and (9.2) are composed of fast oscillations that are modulated by slowly-varying
envelopes.

Averaging out all fast-frequency components with frequencies higher than unity,
we obtain a set of two complex-valued modulation equations that govern the slow
flow dynamics. For configuration VDPNES1, the slow flow dynamical model is ex-
pressed as

ϕ̇1 = −1

2

[
λ

m
+ j

(
1 − C

m

)]
ϕ1 − j C

2m
ϕ2 + j 3κ

8εm
ϕ1 |ϕ1|2

ϕ̇2 = −j εC
2
ϕ1 + 1

2
(ε + jεC) ϕ2 − ε 1

8
ϕ2 |ϕ2|2 (9.5)

whereas for VDPNES2 it reads

ϕ̇1 = 1

2

(
j + λ

m

)
ϕ1 + λ

2m
ϕ2 + j 3κ

8εm
(ϕ1 − ϕ2) |ϕ1 − ϕ2|2

ϕ̇2 = ελ

2
ϕ1 + ε

2
(1 − λ) ϕ2 − ε

8
ϕ2 |ϕ2|2 − j 3κ

8
(ϕ1 − ϕ2) |ϕ1 − ϕ2|2 (9.6)

These represent the averaged slow flows of the corresponding VDP-NES configura-
tions.

In Figures 9.6 and 9.7, we examine the validities of the averaged systems by
comparing the averaged responses to the (numerically) exact solutions. Validation
is demonstrated both in cases when the LCO survives the addition of the NES, and
also in cases when it is suppressed. Although the systems under consideration do
not necessarily possess weak nonlinear terms, we may recall from the classical av-
eraging theorem that an O(ε) approximation for stable dynamics of vector fields is
guaranteed up to a time scale of O(1/ε) (Sanders and Verhulst, 1985). From the
comparisons depicted in Figures 9.6 and 9.7 we verify that the averaged systems
(9.5) and (9.6) provide satisfactory approximations to the original dynamics. The
only small deviation can be found in the case when the LCO is sustained in configu-
ration VDPNES1 (Figure 9.6a). In this case the exact NES response possesses an ad-
ditional fast, high-frequency component, e3j t , which is filtered out in our averaging
process. For a more precise approximation we need to include this high-frequency
term, yielding a two-frequency averaged slow dynamical system (see, for example
the CX-A analysis carried out in Sections 3.3.2.2 and 3.3.2.3); however, this will not
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Fig. 9.6 Validity of the averaged slow dynamics model for configuration VPDNES1, (a) when
the LCO survives (εm = 5%, κ = 1.0, ελ = 1%, εC = 0.1), and (b) when the LCO is
eliminated (εm = 5%, κ = 1.0, ελ = 30%, εC = 1.0); initial conditions are given by
(x(0), y(0), ẋ (0), ẏ(0)) = (3.5, 0.1, 0, 0).
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be considered in this study. Instead, we will examine this high-frequency component
via numerical wavelet transformations later in this section.

Fig. 9.7 Validity of the averaged slow dynamics model for configuration VPDNES2, (a) when the
LCO survives (εm = 5%, κ = 1.0, ελ = 1%), and (b) when the LCO is eliminated (εm = 5%,
κ = 1.0, ελ = 10%); initial conditions are given by (x(0), y(0), ẋ (0), ẏ(0)) = (2.5, 0.01, 0, 0).
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Returning now to the complex modulation equations (9.5) and (9.6), we express
the slowly-varying complex amplitudes in polar form

ϕi(t) = αi(t)ejβi(t), αi , βi ∈ R, i = 1, 2 (9.7)

where αi(t) and βi(t) represent the slowly-varying amplitude and phase of each
degree of freedom, respectively. Substituting into the averaged systems (9.5) and
(9.6), and setting separately equal to zero the real and imaginary parts, we obtain two
sets of real modulation equations. For configuration VDPNES1, these are written as

α̇1 = − λ

2m
α1 − C

2m
α1 sin φ

α̇2 = ε

8
(4 − α2

2)α2 + εC

2
α1 sinφ

α1α2φ̇ = 1

2

(
C

m
− 1 − εC

)
α1α2 + 3κ

8εm
(εmα2

1 − α2
2) cosφ (9.8)

whereas, for VDPNES2, they are given by

α̇1 = − λ

2m
α1 + λ

2m
α2 cosφ − 3C

8εm
α2(α

2
1 + α2

2) sinφ + 3C

8εm
α1α

2
2 sin 2φ

α̇2 = ελ

2
α1 cosφ + ε

2
(1 − λ)α2 − ε

8
α3

2

+ 3C

8
α1(α

2
1 + α2

2) sinφ − 3C

8
α2

1α2 sin 2φ

α1α2φ̇ = −1

2
α1α2 + 3C

8εm
α1α2(α

2
1 + 2α2

2)−
3C

8
α1α2(2α

2
1 + α2

2)

− λ

2m
(εmα2

1 + α2
2) sin φ + 3C

8εm

[
εmα4

1 − α4
2 − 3(1 − εm)α2

1α
2
2

]
cosφ

− 3C

8εm
α1α2(εmα

2
1 − α2

2) cos 2φ (9.9)

In the relations above, α1 and α2 are the envelopes of the amplitude of the NES and
VDP oscillator, respectively, and φ ≡ β1 − β2, the phase difference between the
oscillations of the VDP oscillator and the NES.

The slow dynamical models (9.8) and (9.9) approximate the transient dynam-
ics of the two NES configurations considered, and can be used to study the LCO
suppression mechanism based on passive TET from the VDP oscillator to the NES.
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9.1.2.2 LCO Suppression Mechanism

The LCO suppression mechanism is now explored by directly studying the transient
dynamics. We consider two cases: (i) when the LCO either survives the action of
the NES or is not effectively suppressed, and (ii) when the LCO is completely elim-
inated through TET from the VDP oscillator to the NES. As a first step, the transient
responses of the system for initial conditions chosen outside or inside the LCO of the
uncoupled VDP oscillator are plotted, and their amplitude and frequency contents
are compared.

In addition, by studying the dynamics of the slow flows (9.8) or (9.9) with pre-
scribed initial conditions, we can examine the behavior of orbits in the slow flow
phase space (α1, α2, φ), and examine the possible existence of transient or per-
manent resonance captures (RCs) in the dynamics. If a resonance capture occurs,
the phase variable φ exhibits non-time-like (but rather oscillatory) behavior (as dis-
cussed in Section 9.3, and also in Bosley and Kevorkian, 1992), and the correspond-
ing trajectory in the (φ, φ̇) plane appears in the form of a spiral. Specifically, when
a 1:1 resonance capture occurs at a specific time instant t = t0, the slow phase dif-
ference φ becomes small, and the frequencies of the VDP oscillator and the NES
become ‘locked’ in an approximately 1:1 relationship up to times t− t0 = O(1). As
discussed in Section 2.3, we distinguish between two types of resonance capture.
Transient resonance capture (TRC) refers to the case when the resonance capture
persists for a certain period of time [i.e., on the time scale O(1/ε)], followed by
an escape from the resonance capture regime and subsequent time-like behavior of
the slow phase difference φ. By contrast, sustained resonance capture (SRC) occurs
when the resonance capture is permanent. We note that, since the slow flow models
(9.8) and (9.9) are based on the assumption of a single fast frequency (identical for
both the VDP oscillator and the NES), only 1:1 resonance captures can be modeled
by the outlined slow flow analysis (higher-order RCs can be studied by including
multiple fast frequency components in the derived slow flow models).

As shown in previous sections, another way for examining the transient dynamics
is through application of numerical wavelet transforms (WTs). Moreover, WT spec-
tra can be superimposed to appropriately defined frequency-energy plots (FEPs) to
provide a clear interpretation of the damped dynamics in terms of the underlying
Hamiltonian ones. As discussed previously, the purpose of superimposing the tran-
sient damped dynamics on FEPs is to show that for weak damping (negative for the
VDP oscillator and positive for the NES) the evolutions of the transient responses of
the damped systems in the frequency-energy plane follow closely branches of peri-
odic orbits of the underlying Hamiltonian systems. To this end we need to evaluate
the total instantaneous energy of both considered configurations, as outlined below.

The initial total energy for configuration VDPNES1 is given by

E(0) = 1

2
(ẋ(0)2 + εmẏ(0)2)+ 1

2
x(0)2 + εC

2
(x(0)− y(0))2 + κ

4
y(0)4 ≡ E0

(9.10)
whereas for VDPNES2 it is given by



372 9 Suppression of Aeroelastic Instabilities through Passive Targeted Energy Transfer

E(0) = 1

2
(ẋ(0)2 + εmẏ(0)2)+ 1

2
x(0)2 + κ

4
(x(0)− y(0))4 ≡ E0 (9.11)

For both NES configurations, we can numerically compute the energy generated or
dissipated by the nonlinear damper in the VDP oscillator as

EVDP
d (t) = ε

∫ t

0
ẋ(τ )2(x(τ )2 − 1)dτ (9.12)

The energy dissipated by the NES can be expressed, for VDPNES1, as

ENES
d (t) = ελ

∫ t

0
ẏ(τ )2dτ (9.13)

and for VDPNES2 as:

ENES
d (t) = ελ

∫ t

0
(ẋ(τ )− ẏ(τ ))2dτ (9.14)

Thus, we express the total energy in the following way:

Etotal(t) = E(0)− EVDP
d (t)− ENES

d (t) (9.15)

for both configurations.
We then consider the energy exchange between the VDP oscillator and the NES,

which is basically a competition between the nonlinear damping in the VDP oscil-
lator (which either dissipates energy or feeds energy to the system) and the positive
damping in the NES (which only dissipates energy). For this purpose, we define the
energy componentsEVDP(t) and ENES(t) for each subsystem as

EVDP(t) ≡ EVDP
0 − EVDP

d (t), ENES(t) ≡ ENES
0 − ENES

d (t) (9.16)

where EVDP
0 or ENES

0 represents the initial energy imposed by the initial conditions,
with the initial potential energy stored in the coupling stiffness shared equally by
both degrees of freedom.

Figure 9.8 depicts the transient dynamics of configuration VDPNES1 (with pa-
rameters εm = 5%, κ = 1.0, ελ = 1%, εC = 0.1) for initial conditions out-
side the LCO of the uncoupled VDP oscillator given by (x(0), y(0), ẋ(0), ẏ(0)) =
(3.5, 0.01, 0, 0). All results are exact, resulting from numerical integration of sys-
tem (9.1) with the exception of the plot of Figure 9.8b which depicts the dynamics
of the averaged system (9.8). The time series depicted in Figure 9.8a indicate that
the LCO of the VDP oscillator survives the presence of the NES. From the phase
portrait (φ, φ̇) depicted in Figure 9.8b, computed from the averaged system (9.8)
with identical initial conditions, we can predict that a 1:1 SRC occurs when the
LCO is retained. However, the WT analysis of the response (Figure 9.8c) indicates
that the steady state LCO dynamics is captured into a 3:1 SRC. In order to study
such subharmonic resonance captures, we would need to employ at least a two fast
frequency slow dynamics model, however, this will not be considered in this study.
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Fig. 9.8 Transient dynamics of configuration VDPNES1 when the LCO survices, case of 3:1 SRC
as total energy decreases: (a) time series; (b) motion on the plane (φ, φ̇) for the averaged system
(9.8); (c) instantaneous frequencies; (d) WT spectrum on the FEP; (e) energy exchange measures.
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Fig. 9.8 Transient dynamics of configuration VDPNES1 when the LCO survices, case of 3:1 SRC
as total energy decreases: (c) instantaneous frequencies; (d) WT spectrum on the FEP.
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Fig. 9.8 Transient dynamics of configuration VDPNES1 when the LCO survices, case of 3:1 SRC
as total energy decreases: (e) energy exchange measures.

The 3:1 SRC becomes clearer if we superimpose the WT spectrum of the tran-
sient response on the FEP of the underlying Hamiltonian system which is derived by
eliminating the damping terms from system (9.1); this is performed in Figure 9.8d
where the WT spectrum of the relative displacement x(t)−y(t) is plotted against the
total instantaneous energy of the system. The initial state of the system is away from
any periodic solutions of the underlying Hamiltonian system, but the response ap-
proaches the vicinity of and is finally captured in a 3:1 internal resonance manifold
as the total energy decreases to reach the steady state LCO. This proves conclusively
that the surviving LCO is the product of a 3:1 SRC.

We then compare the energy exchanges between the components of the system
in Figure 9.8e. Since the motion is initiated outside the LCO of the uncoupled VDP
oscillator, the total energy decreases until it reaches the steady state value corre-
sponding to the surviving LCO. The energy dissipation by the NES is monotonically
increasing with time. On the other hand, the nonlinear damper of the VDP oscilla-
tor initially dissipates energy up to time 20T , where T = 2π is the linear natural
period of the VDP oscillator; afterwards it feeds energy into the system, decreas-
ing monotonically. As a result, the energy fed by the VDP oscillator and the energy
dissipated by the NES reach a balance to produce the surviving LCO. This type of
sustained LCO is similar to vortex-induced resonant vibrations of a circular cylin-
der, where the fluid-structure interaction yielding LCOs of the cylinder immersed in
the fluid flow, exhibits synchronization and lock-in between the vortex and vibration
frequencies (Skop and Griffin, 1973; Griffin and Skop, 1973).
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Fig. 9.9 Transient dynamics of configuration VDPNES1 when the LCO survives, case of 3:1 SRC
as total energy increases: (a) time series; (b) WT spectrum on the FEP.
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Figure 9.9 depicts another possible case of the dynamics of VDPNES1 with the
LCO surviving the action of the NES, for motion initiated inside the LCO of the
uncoupled VDP oscillator; in this case, only the time series and FEP are considered,
for system parameters identical to the previous case. We note that the dynamics is
captured by the 3:1 resonance manifold as the total energy increases.

We now examine the transient dynamics of configuration VDPNES1 when the
LCO is completely eliminated by the action of the NES. The only difference in pa-
rameters from the ones used for the simulations of Figure 9.8 is the damping of
the NES, which in this case is taken equal to ελ = 0.1. In Figure 9.10 we depict
the exact transient dynamics of the system resulting from numerical integration of
system (9.1), except for Figure 9.10b where the averaged dynamics [system (9.8)]
is considered. The time series of Figure 9.10a indicates an initial 3:1 transient res-
onance capture (the NES possesses two frequency components equal to unity and
three), which becomes a 1:1 resonance capture at the late stage of LCO suppres-
sion. This behavior is clearer when one inspects the WT analysis results depicted
in Figure 9.10c. The slow flow model (9.8) predicts a 1:1 TRC as time increases
(see Figure 9.10b), and, as discussed previously, it is not capable of modeling the
initial 3:1 TRC. By studying the transient response superimposed on the FEP (Fig-
ure 9.10d) the TRCs and the associated transitions in the dynamics become clear.
Initially the dynamics is captured close to the 3:1 resonance manifold of the under-
lying Hamiltonian system, and the resulting TRC is sustained for a certain period of
time as the total energy decreases. As the energy reaches the value where the S31−
branch meets the S11− branch, the dynamics escapes from 3:1 TRC and engages
in 1:1 TRC. As energy decreases further and the LCO is completely eliminated, the
dynamics escapes from 1:1 resonance capture at the later stage of the motion.

Examining the corresponding energy exchanges of Figure 9.10e, we clearly iden-
tify the reasons for LCO elimination. Contrary to the case when the LCO survives
(Figure 9.8e), the energy dissipation by the NES counterbalances the energy supply
provided by the nonlinear (negative) damping of the VDP oscillator. It is interesting
to note that the NES passively adjusts the rate of energy dissipation so to precisely
counterbalance the energy input fed by the VDP oscillator. Moreover, in this case
the rates of energy dissipation or generation asymptotically reach steady state val-
ues, whereas the corresponding ones of Figure 9.8e are almost linearly increasing
or decreasing as the LCO is retained. Therefore, for LCO elimination it is necessary
that TET from the VDP oscillator to the NES should occur at a sufficiently fast time
scale and be strong enough to overcome the energy fed by the nonlinear damper of
the VDP oscillator.

Similar studies were performed for configuration VDPNES2 with a mass ra-
tio εm = 0.05 and coefficient of essentially-nonlinear coupling stiffness equal to
κ = 1.0. The damping values ελ = 1% and ελ = 10% were considered for the
cases when the LCO survives or is eliminated by the action of the NES. Initial con-
ditions were equal to (x(0), y(0), ẋ(0), ẏ(0)) = (3.5, 0.1, 0, 0) for motions initiated
outside the unperturbed LCO, and (1.0, 1.0, 0, 0) for those initiated inside the un-
perturbed LCO. Contrary to the configuration with grounded NES, in this case the
underlying Hamiltonian system possesses a very complicated structure of periodic
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Fig. 9.10 Transient dynamics of configuration VDPNES1 when the LCO is eliminated, case of
initial 3:1 TRC and subsequent 1:1 TRC as total energy decreases: (a) time series; (b) motion on
the plane (φ, φ̇) of the averaged system (9.8).
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Fig. 9.10 Transient dynamics of configuration VDPNES1 when the LCO is eliminated, case of
initial 3:1 TRC and subsequent 1:1 TRC as total energy decreases: (c) instantaneous frequencies;
(d) WT spectrum on the FEP.
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Fig. 9.10 Transient dynamics of configuration VDPNES1 when the LCO is eliminated, case of
initial 3:1 TRC and subsequent 1:1 TRC as total energy decreases: (e) energy exchange measures.

solution branches (as shown in the corresponding FEP), which suggests a higher
possibility for strong resonance interactions between the VDP oscillator and the
NES.

Mostly, similar conclusions as for VDPNES1 can be drawn, except for the fol-
lowing. Regardless of whether the motion is initiated outside or inside the unper-
turbed LCO, when the LCO survives, the resulting TRCs on the FEP of the relative
displacement x(t) − y(t) [describing the structure of periodic orbits of the Hamil-
tonian system resulting by eliminating damping terms from system (9.2)] are gen-
erally more complex – although the dominant frequency contents lock into a 1:1
frequency ratio; the complex, underlying Hamiltonian dynamics may be responsi-
ble for this. Also, the initial energy exchanges between the VDP oscillator and the
NES now occur on a fast scale (i.e., within a few linearized natural periods).

A general conclusion of the previous transient simulations is that, in order to
achieve complete elimination of the LCO, the NES must be designed to cause an
overall continuous reduction of the instantaneous total energy of the system; that is,
it must stimulate energy flow in the system towards a path from superharmonic to
subharmonic resonance captures on the FEP. This goal does not merely imply an in-
crease in damping (although this is definitely beneficial in certain cases), but rather,
a careful selection of the system parameters (such as mass ratio and coupling stiff-
ness) that influence the underlying Hamiltonian dynamics. In accordance to results
reported in previous Chapters, the topology of the branches of periodic solutions of
the underlying Hamiltonian influences to a great extent the TRCs and the sudden
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Fig. 9.11 Transient dynamics of configuration VDPNES2 when the LCO survives (εm = 5%,
κ = 1.0, ελ = 1%), for initial conditions (x(0), y(0), ẋ (0), ẏ(0)) = (3.5, 0.1, 0, 0): (a) time
series; (b) motion on the plane (φ, φ̇) of the averaged system (9.9).
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Fig. 9.11 Transient dynamics of configuration VDPNES2 when the LCO survives (εm = 5%, κ =
1.0, ελ = 1%), for initial conditions (x(0), y(0), ẋ (0), ẏ(0)) = (3.5, 0.1, 0, 0): (c) instantaneous
frequencies; (d) WT spectrum on the FEP.
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Fig. 9.11 Transient dynamics of configuration VDPNES2 when the LCO survives (εm = 5%,
κ = 1.0, ελ = 1%), for initial conditions (x(0), y(0), ẋ (0), ẏ(0)) = (3.5, 0.1, 0, 0): (e) energy
exchange measures.

transitions (jumps) in the transient damped dynamics. For example, reducing (in-
creasing) the mass ratio for configuration VDPNES2, shifts the entire FEP towards
lower (higher) energies. Hence, an optimization study is required to achieve robust
passive LCO suppression, a topic that is addressed in the next section.
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Fig. 9.12 Transient dynamics of configuration VDPNES2 when the LCO survives (εm = 5%,
κ = 1.0, ελ = 1%), for initial conditions (x(0), y(0), ẋ (0), ẏ(0)) = (1.0, 1.0, 0, 0): (a) time
series; (b) WT spectrum on the FEP.
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Fig. 9.13 Transient dynamics of configuration VDPNES2 when the LCO survives (εm = 5%,
κ = 1.0, ελ = 10%), for initial conditions (x(0), y(0), ẋ (0), ẏ(0)) = (3.5, 0.1, 0, 0): (a) time
series; (b) motion on the plane (φ, φ̇) of the averaged system (9.9).
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Fig. 9.13 Transient dynamics of configuration VDPNES2 when the LCO survives (εm = 5%, κ =
1.0, ελ = 10%), for initial conditions (x(0), y(0), ẋ (0), ẏ(0)) = (3.5, 0.1, 0, 0): (c) instantaneous
frequencies; (d) WT spectrum on the FEP.
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Fig. 9.13 Transient dynamics of configuration VDPNES2 when the LCO survives (εm = 5%,
κ = 1.0, ελ = 10%), for initial conditions (x(0), y(0), ẋ (0), ẏ(0)) = (3.5, 0.1, 0, 0): (e) energy
exchange measures.

9.1.3 Steady State Dynamics and Bifurcation Analysis

In this section, we will explore the steady state dynamics of the system by utilizing
the method of numerical continuation, and relate LCO suppression to the bifurca-
tion structure of the steady state solutions. The results will provide optimal design
parameters for the NES, guaranteeing robustness of LCO elimination.
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9.1.3.1 Study of Robustness of LCO Elimination

We now show numerically that LCO elimination due to the action of the NES is
the result of a Hopf bifurcation. The steady state solutions of the full equations
of motion (9.1) and (9.2) are computed through numerical continuation performed
using the package MATCONT in Matlab� (Dhooge et al., 2003).

We consider the configuration VDPNES1 first, with the linear coupling stiffness
εC regarded as a control parameter, and fixing the other NES parameters to the val-
ues κ = 1.0, ελ = 3%. We consider two mass ratios, namely, εm = 10% where
supercritical LCOs exist, and εm = 50% where only subcritical LCOs exist. We
remark that the Hopf bifurcation in the steady state dynamics proves to be subcrit-
ical, i.e., to involve a subcritical LCO near the bifurcation point. By subcritical we
denote that the LCO occurs below the critical parameter value.

In Figure 9.14 we present the bifurcation structure of steady state amplitudes of
configuration VDPNES1, governed by system (9.1). At the bifurcation plots, the
notation BPC denotes a branch point of cycles, a point LPC, a limit point cycle, and
a point NS, a Neimark–Sacker bifurcation (Golubitsky and Schaeffer, 1985). From
these results it is clear that the LCOs are eliminated through a Hopf bifurcation that
occurs at εC = 0.0415 for εm = 10%, and εC = 0.2579 for εm = 50%. We note
that all non-trivial curves in the bifurcation diagram represent periodic oscillations
of the system, that is, LCOs.

The first case (εm = 10%) is regarded as a case of ‘malign’ system nonlinearities
(as far as LCO suppression is concerned) because, although the trivial equilibrium
is stable after the bifurcation point, the solution may jump onto coexisting stable
LCOs if sufficiently strong perturbations are imposed; hence, the LCO suppression
cannot be characterized as robust in this case. On the other hand, the latter case
(εm = 50%) provides robust elimination of LCOs, since the stable trivial solution
that results after the Hopf bifurcation is a global attractor of the dynamics (this is
a case of ‘benign’ system nonlinearities). We also remark that, when the system
exhibits malign nonlinearities, it possesses a complicated bifurcation structure. For
example, considering the bifurcation diagram of Figure 9.14a, there exist LPC bi-
furcations (or equivalently, saddle-node bifurcations of equilibria), BPC bifurcations
(or pitchfork bifurcations of equilibria), and NS bifurcations (or Hopf bifurcation of
equilibrium positions) (Golubitsky and Schaeffer, 1985); it follows that the steady
state dynamics of the system can assume complex forms such as higher-dimensional
periodic or quasi-periodic orbits on two-tori generated at points of NS bifurcations.

Similar bifurcation studies were performed for the configuration VDPNES2 gov-
erned by system (9.2), with mass ratio εm as the control parameter. Similar results
were obtained, such as sub- and supercritical LCOs; however, the system with an
ungrounded NES does not possess a complex bifurcation structure even in the case
of malign system nonlinearities (there simply exist two LPC points in the bifurca-
tion diagram). Although the detailed results are not discussed at this point, we will
reexamine these behaviors utilizing the averaged system later in this section.

Finally, we remark that the existence of a Hopf bifurcation in the steady state
dynamics can be proven theoretically, employing the method of Lyapunov–Schmidt
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Fig. 9.14 Bifurcation diagrams of steady state amplitudes of configuration VDPNES1 (κ = 1.0,
ελ = 3%), stable (unstable) branches are marked by solid (dotted) lines: (a) case when supercrit-
ical LCOs exist (malign nonlinearity), εm = 10%; (b) case when subcritical LCOs exist (benign
nonlinearity), εm = 50%.

reduction (LSR) (Golubitsky and Schaeffer, 1985). By this methodology, singular-
ities are removed by projecting the complement of the null space of the linearized
system operator and the null space itself, onto the range and its complement space,
respectively. Then, the generalized implicit function theorem is invoked. Hence,
LSR can be directly applied to the full equations of motion (9.1) and (9.2); alterna-
tively, LSR can be applied to the slow flow models (9.8) and (9.9), to show that their
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equilibrium positions exhibit pitchfork bifurcations. More details are not included
in this study, but are left as future work.

9.1.3.2 Analytical Study

We now examine analytically the steady state dynamics of both configurations
VDPNES1 and VDPNES2, utilizing the slow flow dynamics models (9.8) and (9.9).
In so doing we demonstrate the capacity of these models to accurately capture the
steady state dynamics and their bifurcations of systems (9.1) and (9.2), respectively.
We will analyze each NES configuration separately.

Starting from Configuration VDPNES1, we express the slow flow model (9.8) in
the following compact form:

α̇1 = f1(α1, α2, φ)

α̇2 = f2(α1, α2, φ)

α1α2φ̇ = g(α1, α2, φ) (9.17)

Then, the steady state amplitudes α1, α2 and the phase difference φ are obtained by
solving the set of homogeneous nonlinear algebraic equations

f1(α1, α2, φ) = f2(α1, α2, φ) = g(α1, α2, φ) = 0

where trivial solutions are excluded. It turns out that in this case we can find the
analytical solutions in explicit form. Indeed, taking into account the analytical ex-
pression for f1, we can solve explicitly for amplitude α1

f1(α1, α2, φ) = 0 ⇒ α1 = −C
λ
α2 sinφ (9.18)

which, when plugged into the relation f2(α1, α2, φ) = 0 yields

α2
2 = 4

(
1 − C2

λ
sin2 φ

)
(9.19)

Since α2
2 > 0, the parenthesis on the right-hand side must be positive, so that

λ > C2 sin2 φ ⇒ sin2 φ <
λ

C2
≡ �crit, or | sinφ| < √

�crit (9.20)

and thus

φ ∈
(
−π,−π + sin−1

√
�crit

)
∪

(
− sin−1

√
�crit, sin−1

√
�crit

)
∪

(
π − sin−1

√
�crit, π

)
(9.21)
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In the expressions above φ is considered to be in the interval φ ∈ (−π, π). Note
that the trivial solution can exist only when the condition λ ≤ C2 sin2 φ is met.

Substituting (9.19) and (9.20) into the relation g(α1, α2, φ) = 0, we obtain,(
εmC2

λ2
sin2 φ − 1

)
cosφ

= 1

λ
(C −m− εmC) sinφ + 3

κC2

ελ3

(
1 − C2

λ
sin2 φ

)
sin3 φ (9.22)

where the phase variable φ is the only unknown in the above transcedental equation.
Squaring both sides of (9.23), and designating sin2 φ ≡ �, we obtain the following
fifth-order polynomial equation in terms of �:

5∑
n=0

an�
n = 0, 0 < � < �crit (9.23)

where the coefficients an, n = 1, . . . , 5, are explicitly given by:

a5 = 9κ2C8, a4 = −18λκ2C6, a0 = −3ε2λ8

a3 = λ2κ2C4{9κ2 + 6εκ(m− C + εmC)λ+ ε4m2λ2}
a2 = −ελ4C2{6κC(εm− 1)+ ε2m2C2 + 2m(3κ + ε2λ2)}
a1 = ε2λ6{2mC(εm− 1)+m2 + C2(ε2m2 + 1)+ λ2} (9.24)

Once we compute a solution � from (9.24), there correspond two phase differ-
ences given by:{

φ1,3 = sin−1
√
� and π − sin1

√
�, for 0 < φ < π

φ2,4 = − sin−1
√
� and − π + sin1

√
�, for −π < φ < 0

(9.25)

Then, by (9.19) and (9.20) we compute the corresponding steady state amplitudes
as follows:

α2 = ±2

√
1 − sin2 φk

�crit
(9.26)

α2 = ∓2
C

λ

√
1 − sin2 φk

�crit
sin φk (9.27)

where k = 1, . . . , 4. Note that the pairs of phases (φ1, φ3) and (φ2, φ4) yield iden-
tical amplitudes, being either out-of-phase or in-phase, respectively. After the non-
trivial equilibrium solutions are determined we can study their stability using the
eigenvalues of the corresponding Jacobian matrix of system (9.18) evaluated at each
solution. The stability of the trivial solution requires the expression of the slow flow
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model (9.5) in Cartesian coordinates [instead of equations (9.8) with variables in
polar form], followed by similar linearized stability analysis.

We examine the non-trivial steady state motions with respect to the coupling
stiffness and mass ratio by varying damping and nonlinear stiffness. Figures 9.15
and 9.16 show the steady state amplitudes of each oscillator with respect to the mass
ratio and the coupling stiffness by different (fixed) damping and nonlinear stiffness
values. Stability results are not included in these plots, but these will be discussed
when we apply the numerical continuation of equilibria, which turns out to be the
same as depicted in Figure 9.14. Regardless of other parameter values, the steady
state amplitudes approach asymptotic limits when the coupling stiffness approaches
zero, i.e., when the two oscillators become decoupled as their amplitudes reach the
limits |α1| → 0 and |α2| → 2 when C → 0.

Considering the effect of mass ratio on the steady state response, we remark that
subcritical LCOs (as benign nonlinearities) occur for higher mass ratios. This sug-
gests that the grounded NES is more effective in robustly eliminating the LCO at
higher mass ratios. Higher damping seems to limit the generation of supercritical
LCOs (corresponding to malign system nonlinearities), in which case the system
possesses only subcritical LCOs which are susceptible to robust LCO suppression.
Moreover, at higher damping values, the bifurcation points tend to occur at lower
coupling stiffness values (see Figure 9.15). Regarding the effects of the NES non-
linearity, the stronger nonlinearity seems to induce more complicated steady state
dynamics; that is, as the nonlinear stiffness grows stronger, supercritical LCOs de-
velop over broader parameter spaces, a result which does not favor robust LCO
suppression (see the plots depicted in Figure 9.16).

Finally, we apply Kubíček’s method (Kubíček, 1976), which provides an algo-
rithm for computing the dependence of the steady state equilibria of the averaged
system (9.8) on a system parameter (configuration VDPNES1). To this end, we write
the steady state conditions for the averaged system in the following compact form:

f(x;µ) = 0 (9.28)

where x = (x1, x2, x3)
T , f = (f1, f2, f3)

T , f3 ≡ g, x1 = α1, x2 = α2, x3 = φ

and µ = εC is the control parameter. That is, we aim to examine the parametric
dependence of the steady state solutions on the linear coupling stiffness εC. We
make this choice since we already know the asymptotic values of the solutions as
the coupling approaches zero, which can serve as initial conditions for the algorithm.

Let s denote the arc-length parameter of the solution curve. From (9.29) we de-
rive

df
ds

=
3∑
j=1

∂f
∂xj

dxj

ds
+ ∂f
∂µ

dµ

ds
= 0 (9.29)

with an additional equation:

3∑
j=1

(
dxj

ds

)2

+
(
dµ

ds

)2

= 1 (9.30)



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 393

Fig. 9.15 steady state amplitudes of configuration VDPNES1 for κ = 1.0, and (a) ελ = 1%;
(b) ελ = 3%; (c) ελ = 20%; Hopf bifurcations responsible for LCO elimination occur along
dashed lines.

which imposes the parametrizing condition of a unit tangential vector along the
solution curve. We denote x4 = µ for notational convenience, and rewrite (9.30) in
the following matrix form:
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Fig. 9.16 steady state amplitudes of configuration VDPNES1 for ελ = 1%, and (a) κ = 0.1;
(b) κ = 1.0; (c) κ = 2.0; Hopf bifurcations responsible for LCO elimination occur along dashed
lines.

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

· · · ∂f1
∂xk−1

∂f1
∂xk+1

· · · ∂f1
∂xn+1

∂f2
∂x1

· · · ∂f2
∂xn+1

...
...

...

∂fn
∂x1

· · · ∂fn
∂xk−1

∂fn
∂xk+1

· · · ∂fn
∂xn+1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′
1
...

x ′
k−1
x ′
k+1
...

x ′
n+1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= −x ′
k

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

df1
dxk
df2
dxk

...

dfn
dxk

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.31)
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where primes denote differentiation with respect to the arc length s of the solution
branch. The matrix on the left-hand side is regular for certain values of s and ksuch
that 1 ≤ k ≤ n+ 1, and n = 3 in this problem.

By the following relation (9.32) we express each of the unknown variables,
x ′

1, . . . , x
′
k−1, x

′
k+1, . . . , x

′
n+1 in terms of x ′

k:

x ′
i = βix ′

k, i = 1, . . . , k − 1, k + 1, . . . n+ 1 (9.32)

where the coefficients βi can be determined by applying Gaussian elimination, for
example. Using (9.31), we express the derivative squared x ′2

k in the following form:

x ′2
k =

⎡
⎣1 +

n+1∑
i=1,i �=k

β2
i

⎤
⎦

−1

(9.33)

where the sign of x ′
k is determined by the orientation of the arc-length s along the

solution branch. Then, the remaining derivatives x ′
i are determined by the relations

(9.33) for the following initial conditions:

xi = xi0 at s = 0, i = 1, . . . , k − 1, k + 1, . . . , n+ 1 (9.34)

The next step includes numerical integration of x ′
i . For more detailed control of

the solution, we can apply an iterative method such as the Newton’s method; hence,
for the variables x̄ = (x1, . . . , xk−1, xk+1, . . . , xn+1)

T we improve the calculated
profile through

x̄new − x̄old = −�kf (9.35)

where �k denotes the Jacobian matrix in (9.32). Note that the solvability condition
requires that the matrix �k is non-singular. Finally, the stability of each equilibrium
obtained above can be determined from the eigenvalues of the Jacobian matrix of
equation (9.8) evaluated at the equilibrium point.

Typical numerical bifurcation diagrams of the slow flow dynamics (9.8) are
shown in Figure 9.17 for supercritical LCOs, and Figure 9.18 for subcritical LCOs.
A comparison of the results with those obtained by considering the full equations
of motion was performed for the same parameter conditions, and the agreement is
satisfactory. By applying Kubíček’s method to the averaged system, we clearly ob-
serve the dependence and bifurcations of the steady state amplitudes as well as their
phase difference (either in-phase or out-of-phase) on the chosen parameter, in this
case the linear coupling stiffness.

We now consider Configuration VDPNES2. Since the slow flow equations (9.6)
and (9.9) are not solvable by hand, we directly apply Kubíček’s method to examine
the parameter dependence of the steady state solutions. In this case, the asymptotic
relations for the amplitudes, |α1| → 2 and |α2| → 2 are satisfied as εm→ 0, which
can be used as initial conditions for solving the differential equations (9.34) in this
case. In the following results we consider the parameter dependence of the steady
state solutions on the mass ratio, µ = εm.
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Fig. 9.17 Bifurcation diagram with respect to the linear coupling stiffness obtained by applying
Kubíček’s method to the averaged system (9.8) of VDPNES1 with the system parameters same as
for Figure 9.14a: (a) steady state amplitude of VDP oscillator; (b) steady state amplitude of NES;
(c) phase difference (in-phase solution); (d) phase difference (out-of-phase solution); instability is
marked by crosses.

The existence of supercritical LCOs is concluded from the bifurcation diagrams
of Figure 9.19, corresponding to κ = 2, ελ = 2%, and mass ratio in the range 0–
100%. Compared to Configuration VDPNES1, the stability behavior of the steady
state solutions is now simpler; that is, there exist only two LPC bifurcations at points
A and B, and one Hopf bifurcation at point C. Thus, jump phenomena are possible
at points A and B.

Figure 9.20 depicts schematically the types of steady state responses realized in
each of the three possible Regions of the bifurcation diagrams. Supercritical LCOs
exist in Region II, where the system possesses two stable and one unstable LCOs,
and one unstable trivial equilibrium; in this Region, robustness of LCO elimination
is questionable, as the steady state response of the system depends on whether its
initial conditions bring the dynamics into the domain of attraction of either one of
the co-existing stable LCO solutions. Similarly, in Region I, there exists only one
stable LCO (which can be regarded as ‘retained’ from the unperturbed VDP oscil-
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Fig. 9.18 Bifurcation diagram with respect to the linear coupling stiffness by applying Kubíček’s
method to the averaged system (9.8) of VDPNES1 with the system parameters same as in Fig-
ure 9.14b: (a) steady state amplitude of VDP oscillator; (b) steady state amplitude of NES; (c) phase
difference (in-phase solution); (d) phase difference (out-of-phase solution); instability is marked
by crosses.

lator), and an unstable trivial equilibrium point; hence, again robustness of LCO
elimination is hindered. Finally, there exists a single stable trivial equilibrium in
Region III, where complete and robust elimination of the LCO is indeed possible.
In order to show sensitive dependence on initial conditions in Region II, we per-
formed two different numerical simulations, depicted in Figure 9.21, for a system
with εm = 3%, κ = 2, ελ = 2%, and initial conditions on either side of branch 2.
These results clearly show why supercritical LCOs in this case are hindering robust
LCO elimination.

Finally, Figure 9.22 depicts the dependence of the steady state motions on two
system parameters. In contrast to Configuration VDPNES1 where higher mass ra-
tios favored robustness of LCO suppression, in this case the appearance of super- or
subcritical LCOs turns out to be independent of the mass ratio. Indeed, for fixed non-
linear coupling stiffness (see Figures 9.22a–c), larger damping values tend to reduce
the possibility of occurrence of supercritical LCOs, and, eventually for sufficiently
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(a)

(b)

Fig. 9.19 Bifurcation diagrams obtained by applying Kubíček’s method to the averaged system
(9.9) of VDPNES2, parameters κ = 2, ελ = 2%: (c) phase difference; (d) eigenvalue variation
with respect to mass ratio; only branch 2 is unstable.

large damping one may completely and robustly eliminate the LCOs even with rel-
atively small mass attachments, i.e., 3–5%. On the other hand, for fixed damping
(see Figures 9.22d–f), and sufficiently weak nonlinear coupling, one may again per-
form robust and complete elimination of LCOs. These results strongly support the
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(c)

(d)

Fig. 9.19 Bifurcation diagrams obtained by applying Kubíček’s method to the averaged system
(9.9) of VDPNES2, parameters κ = 2, ελ = 2%: (c) phase difference; (d) eigenvalue variation
with respect to mass ratio; only branch 2 is unstable.

argument that the ungrounded NES configuration is more suitable for practical ap-
plications compared to the grounded one.



400 9 Suppression of Aeroelastic Instabilities through Passive Targeted Energy Transfer

Fig. 9.20 Schematic of steady state responses in the three regions of Figure 9.19; solid (dashed)
lines indicate stable (unstable) LCOs or equilibrium positions.

9.1.4 Summary of Results

We studied suppression and even complete elimination of the LCO of the VDP
oscillator, utilizing grounded and ungrounded nonlinear energy sink (NES) configu-
rations. Computational parameter studies proved the efficacy of LCO elimination by
means of passive nonlinear TET from the VDP oscillator to appropriately designed
NESs.

The numerical study of the transient damped dynamics of the system showed that
the dynamical mechanism for LCO suppression is a series of 1:1 and 1:3 transient
resonance captures (TRCs), with the damped transient dynamics being captured
in neighborhoods of resonant manifolds of the underlying Hamiltonian systems.
It is through these TRCs that energy gets transferred from the VDP oscillator to
the NES, thus causing LCO suppression. By performing an additional bifurcation
analysis of the steady state responses through numerical continuation, we examined
the parameter dependence and bifurcations of the steady state solutions, and proved
that a Hopf bifurcation is the global dynamical mechanism for generation of the
LCOs in the NES configurations considered. The bifurcation analysis revealed that
it is possible to design grounded or ungrounded NESs that robustly and completely
eliminate the LCO instability of the system. This was possible when the system
parameters are chosen so that subcritical Hopf bifurcation occurs, thus assuring the
existence of a unique global trivial attractor of the dynamics in the parameter ranges
of interest.

The preliminary results reported in this section indicate that passive TET to ap-
propriately designed SDOF NESs can robustly suppress the LCO of the VDP os-
cillator. Motivated by these results, we will proceed to investigate LCO suppression
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Fig. 9.21 Two different stable LCOs (denoted by points P1 and P3 in Figure 9.19) of configuration
VDPNES2 with εm = 3%, κ = 2, ελ = 2%, and zero initial conditions, but for (a) x(0) = 2.0,
(b) x(0) = 0.1.
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Fig. 9.22 Bifurcations of steady state motions of configuration VDPNES2 with respect to two
parameters: (a–c) dependence on the mass ratio and damping for fixed nonlinear stiffness κ = 2;
(d–f) dependence on the mass ratio and nonlinear stiffness for fixed damping ελ = 10%; solid-dot
lines are stability boundaries indicating LPC bifurcations between which motions are unstable;
dashed lines imply parameter values where Hopf bifurcations occur.
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in more realistic in-flow rigid wing models with attached (SDOF or MDOF) NESs.
This study will be a first attempt towards applying TET to the important problem of
robust aeroelastic instability suppression in realistic wing (or wing-store) configu-
rations. A preliminary step towards addressing this task is to identify the dynamical
(triggering) mechanism that generates this instability, and this is performed in the
next section.

9.2 Triggering Mechanism for Aeroelastic Instability of an
In-Flow Wing

In this section we study the triggering mechanism generating limit cycle oscillations
(LCOs) due to aeroelastic instability in a two-dimensional, two-degree-of-freedom
(DOF) wing model with cubic stiffness nonlinearities in both structural modes (i.e.,
heave and pitch), under the assumptions of subsonic flight and quasi-steady aerody-
namics (Lee et al., 2005b). The fundamentals of flutter analysis for the underlying
linear model are well undertood [see, for example, Fung (1955) and Dowell et al.
(1995)], i.e., the aeroelastic instability due to Hopf bifurcation at the flutter speed
leading to diverging responses. However, when structural or damping nonlinearities
are added to the model, such divergence in the linearized model reaches bounded
limits, so that, eventually, the nonlinear system attains self-sustaining responses in
the form of LCOs (Nayfeh and Mook, 1995).

The development of divergent flutter, leading to immediate structural failure, is
rare, but sustained LCOs can cause structural damage, including fatigue. In addition,
the need to avoid flight conditions (speeds, attitudes, and aircraft configurations)
conducive to instability leads to onerous restrictions on operations and increased
pilot workload. The establishment of safe flight envelopes often requires extensive
and costly flight-test programs, which must be repeated for each change in aircraft
configuration (i.e., the introduction of a new type of external store). It follows that
dynamical analysis providing predictive capacity of aeroelastic instability in para-
meter space is needed.

LCOs are known to be a persistent problem in fighter aircraft such as the F-16 and
F/A-18 at high subsonic and transonic speeds (Bunton and Denegri, 2000). Denegri
(2000) observed limit cycle oscillations in flight tests of F-16 and F/A-18 aircraft
when certain wing-mounted stores were present, and Croft (2001) discussed limit
cycle oscillations in the elevators of several Airbus passenger airplanes. The inter-
action between wing and store of a parametric F-16 wing was studied numerically
by combining the finite element method and computational fluid mechanics (Cat-
tarius, 1999). Flight tests were performed to measure actual LCOs of these fighters
(Denegri, 2000). Lee and LeBlanc (1986) numerically examined the effects of cubic
nonlinear stiffness on the flutter behavior of a two-dimensional airfoil. They estab-
lished that when the system possessed softening stiffness, it exhibited the potential
of subcritical LCOs which occurred below the linear flutter speed, indicating de-
pendence on initial conditions; for a hardening spring, however, such dependence
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on initial conditions disappeared, and a single LCO was obtained for a single value
of the flow speed.

Lee and Desrochers (1987) considered different kinds of structural nonlinearities,
such as free play (i.e., dead-zone nonlinearity) for flutter analysis. The existence of
LCOs in prototypical aeroelastic wing sections with torsional nonlinearity including
asymmetry was studied using the describing function method, and it was shown that
the amplitude of a pitching LCO does not always increase with flow speed for certain
elastic axis positions (Singh and Brenner, 2003). Computational and experimental
studies of LCOs in nonlinear aeroelastic systems were also performed (O’Neil and
Strganac, 1998; Sheta et al., 2002). In particular, Sheta et al. (2002) employed a mul-
tidisciplinary analysis to compare numerical with experimental data, suggesting the
importance of modeling both the fluid and structural nonlinearities for accurate pre-
diction of the onset and the magnitudes of LCOs. Normal form theory was utilized
to investigate and unfold the subcritical/supercritical nature of the flutter Hopf bi-
furcation (Coller and Chamara, 2004); and a higher-order harmonic balance method
was considered to study the secondary Hopf bifurcation of aeroelastic responses
(Liu and Dowell, 2004). Gilliatt et al. (2003) studied the possibility of internal res-
onance in an aeroelastic system (a stall model) under nonlinear aerodynamic loads;
and Lind et al. (2001) utilized numerical wavelet transform to model structural non-
linearities from flight data, and used its results to predict the onset of LCOs.

Many studies have attempted to analyze flutter behavior and the resulting LCOs;
however, no works have focused on the modeling and physical understanding of
the LCO triggering mechanism itself. The classical and prevailing notion of flutter
from linear analysis is that ‘. . . lift inputs energy into heave and pitch lags by 90◦;
flutter is a combination of the pitch and heave modes with phase and amplitude
that extracts energy from the flow when either mode acting alone would be stable
. . . ’ (Fung, 1955). Thus, the main objective of the study undertaken in this section
is to understand the LCO triggering mechanism considering the simplest adequate
model; i.e., to perform a study of the dynamics of how the LCOs are triggered and
then developed in a wing model containing cubic nonlinear structural stiffness in
both heave and pitch modes.

We start by reviewing the results of linear flutter analysis which can be found
in references such as Dowell et al. (1995). Then, we formulate a theoretical frame-
work for analyzing the dynamics of aeroelastic instability, by first examining the
dominant frequency components in the transient responses via fast Fourier trans-
forms (FFTs), and characterizing the instantaneous variations of their harmonic
contents via wavelet transforms (WTs) as a reduced velocity varies. Next, we de-
velop a slow flow model based on system identification of the dynamics, which
will help us establish a multi-phase averaged system with three dominant fast fre-
quency components utilizing the complexification-averaging (CX-A) technique [see
Manevitch (2001), and also a similar analysis carried out in Sections 3.3 and 3.4].
Then, we present steady state bifurcation analysis utilizing the package MATCONT
in Matlab� (Dhooge et al., 2003).

Based on this strong theoretical framework, and after reviewing some useful de-
finitions and theories, we numerically study the LCO triggering mechanism using
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Fig. 9.23 Two-dimensional, two-DOF wing model.

the slow flow dynamics model, and demonstrate that it is composed of a series of
transient and sustained resonance captures (Vakakis and Gendelman, 2001 – see
also Section 2.4), through which energy transfers between the flow and aeroelastic
modes occur. Eventually, energy balance is reached, leading to steady state periodic
motions, or LCOs. Then, the partially-averaged systems derived at each stage consti-
tute reliable analytical models that are used to study resonance capture phenomena
that accompany frequency shifting (Zniber and Quinn, 2003) in the response due to
fluid-structure interaction with increasing input energy. Finally, this section ends by
presenting some concluding remarks.

9.2.1 The Two-DOF Aeroelastic Model

Consider an in-flow two-dimensional rigid wing model with two degrees of free-
dom, namely heave and pitch modes. Referring to the model presented in Fig-
ure 9.24, we denote by ac the aerodynamic center (usually assumed to be located
at a quarter-chord); by ea, the elastic axis; by cg, the center of gravity; by h and
α, the heave (positive downward) and pitch (positive clockwise) degrees of free-
dom, respectively; by c = 2b, the chord length; by e, the location of ac mea-
sured from the ea (positive forward of ea); by xcg, the location of the cg measured
from the ea (positive aft of the ea); by Kh and Kα , the linear bending and twist
stiffness coefficients, respectively; by c1 and c2, the nonlinear bending and twist
stiffness factors, respectively; by U , the (constant and uniform) flow speed around
the wing; by L and M , the lift and aerodynamic moments, respectively, acting at
the ac so that equivalent aerodynamic forces acting at the ea can be computed as
Lea = L,Mea = M + eL ≈ eL under the assumption of small angles.

Referring to Dowell et al. (1995), the equations of motion of the two-DOF
aeroelastic model can be expressed as follows:

mḧ+ Sαα̈ +Kh(h+ c1h
3)+ qSCL,a

(
α + ḣ

U

)
= 0
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Iαα̈ + Sαḧ+Kα(α + c2α
3)− qSeCL,a

(
α + ḣ

U

)
= 0 (9.36)

where m is the mass of the airfoil; Sα , the mass unbalance; Iα , the mass moment
of inertia with respect to ea; q , the dynamic pressure; CL,a = ∂CL/∂α|α=0 the lift
curve slope and CL the lift coefficient for the airfoil; and S, the almost invariable
platform area of the wing. The differentiation indicated by the over-dot is with re-
spect to time t . Quasi-steady aerodynamics is assumed so the expression for the lift
force is given by L = qS(∂CL/∂α)(α + ḣ/U).

Considering the fluid-structure interaction model that determines the fluid forces
in (9.36), we note that steady aerodynamic theory assumes that the angle of twist
of a wing is always equal to the angle of attack so that the relative velocity incident
to the wing is exactly the same as the freestream velocity U , and that there are no
time derivatives of h and α in the expression of the lift force. Quasi-steady aerody-
namic theory considers the fluid force on the structure to be determined solely by
the instantaneous relative velocity (i.e., by including terms associated with ḣ and α̇
in the expression of the lift), so that the fluid forces can be measured in wind-tunnel
test on stationary models held at various angles. The quasi-steady assumption is
valid only if the frequencies of the harmonic components of the fluid force, associ-
ated with vortex shedding or time-lag effects, are well above the frequencies of the
structural modes of the wing, and this requirement is often met at higher reduced
velocities (Blevins, 1990; Fung, 1955). Later in this chapter we will briefly consider
the extension of the in-flow wing model for unsteady aerodynamic theory.

In non-dimensional form the equations of motion are rewritten as

y ′′ + xαα′′ + µCL,α y ′ +�2y + ξyy3 + µCL,α 2α = 0,

r2
αα

′′ + xαy ′′ − µγCL,α y ′ + (r2
α − µγCL,α 2)α + ξαα3 = 0 (9.37)

where y = h/b is the non-dimensional heave motion; xα = Sα/(mb) = xcg/b,
the non-dimensional static unbalance; � = ωh/ωα , the ratio of uncoupled linear
natural frequencies ωh = √

Kh/m and ωα = √
Kα/Iα ; µ = ρ∞bS/(2m), the

density ratio; CL,α = ∂CL/∂α, the slope of the lift coefficient at zero angle of
attack;  = U/(bωα), the reduced speed of the flow; rα , the radius of gyration of
the cross section of the wing; γ = e/b, the non-dimensional distance of the ea from
the ac; and ξy and ξα , the respective coefficients for the nonlinear stiffness terms.
All dependent variables in (9.37), as well as their differentiations are with respect to
the non-dimensional time τ = ωαt .

First, we perform a linearized analysis of (9.37) by seeking responses in the form,
y = epτ ȳ, α = epτ ᾱ and considering only linear terms (i.e., setting c1 = c2 ≡ 0);
this yields the following linearized eigenvalue problem:[

p2 + µCL,α p +�2 xαp
2 + µCL,α 2

xαp
2 − µγCL,α p r2

αp
2 + r2

α − µγCL,α 2

](
ȳ

ᾱ

)
=

(
0
0

)
(9.38)

The linearized solvability condition for the complex frequency equation becomes



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 407

Fig. 9.24 Real and imaginary parts of the solutions of the eigenvalue problem (9.38) with respect
to the reduced velocity; solid and dashed lines correspond to eigenvalues computed by using quasi-
steady (QS) and steady (S) aerodynamics, respectively.

A4p
4 + A3p

3 + A2p
2 + A1p + A0 = 0 (9.39)

where

A4 = r2
α − x2

α, A3 = µCL,α (r2
α + γ xα)

A2 = r2
α(1 +�2)− µCL,α(xα + γ ) 2

A1 = µr2
αCL,α , A0 = �2(r2

α − µγCL,α 2) (9.40)

Using the following numerical values for the parameters as defined by Dowell et
al. (1995):

xα = 0.2, rα = 0.5, γ = 0.4, � = 0.5,

µ = (10π)−1, CL,α = 2π, ξy = ξα ≡ 1 (9.41)

we perform linearized flutter analysis to compute the reduced flutter speed =  F
at which divergent responses are predicted.

Figure 9.24 depicts the real and imaginary parts of the solution p = pR + jω,
pR,ω ∈ R, j = (−1)1/2 of (9.38). The real part pR determines the stability of the
trivial equilibrium; if pR > 0, the solution is unstable, which implies divergent re-
sponse of the wing. For comparison, we depict the results predicted from both steady
aerodynamics and quasi-steady aerodynamics. The model based of steady aerody-
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namics (S) predicts that the typical section model is neutrally stable for  <  SF
(that is, that all eigenvalues are purely imaginary); when  =  SF , the bending
(heave) and torsion (pitch) frequencies merge in a phenomenon called coalescence
or merging frequency flutter (Dowell et al., 1995). If  >  SF , the dynamics be-
comes unstable, and the responses diverge. On the other hand, the model based on
quasi-steady aerodynamics (QS) predicts flutter at a lower value of the reduced ve-
locity, (QS)F <  

(S)
F , where the real parts of the complex pair of eigenvalues change

sign from negative to positive (see Figure 9.24). We note that in the quasi-steady
case there exists a tendency for the frequencies to merge but complete merging does
not occur (Dowell et al., 1995).

For the above numerical parameter values, we obtain a flutter speed equal to
 
(QS)
F ≡  F = 0.87. Note that steady aerodynamics predicts a higher flutter speed

than quasi-steady theory (i.e.,  (S)F = 1.03), and also a higher coalescence fre-
quency at the flutter speed for the steady flow condition.

Now we include nonlinear stiffnesses in both degrees of freedom of the model.
Clearly, stability behavior of the trivial solution y = α ≡ 0 will follow the linear
analysis since the trivial solution is a hyperbolic equilibrium point, so we can invoke
the Hartman–Grobman Theorem and claim topological conjugacy between the lin-
ear and nonlinear local vector fields sufficiently close to the hyperbolic equilibrium
(Guckenheimer and Holmes, 1983). Also, due to the hardening nature of the nonlin-
earities of the system, which are expected to limit the amplitudes of the responses,
the nonlinear system may possess LCOs at supercritical speeds (i.e., for  >  F ).

In Figure 9.25 we depict typical responses at subcritical and supercritical speeds
of the linearized and nonlinear systems, respectively. We see that the linearized sys-
tem predicts divergent responses, which, clearly, are not realistic, whereas, in actu-
ality the nonlinearities restrict the growth of the diverging wing responses so that
LCOs are developed instead. It follows that the development of LCOs is a direct
product of aeroelastic instability in the system.

9.2.2 Slow Flow Dynamics

We now construct a slow flow model of the dynamics of system (9.37), based on
slow-fast partition of the dynamics, and valid for response regimes both before and
after flutter instability has occurred. For the construction of the model we separate
the important (slow flow) from the secondary or unessential (fast flow) dynamics
and utilize ideas from the CX-A methodology discussed in previous chapters.

9.2.2.1 Dominant (Fast) Frequencies in the Responses

To establish an accurate slow flow dynamical model capturing reliably and robustly
the full nonlinear response of system (9.37), we need to consider the dominant fre-
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Fig. 9.25 Time responses at (a) subcritical ( = 0.5) and (b) supercritical ( =
0.95) reduced velocities in the linear and nonlinear models; initial conditions are given by
(y(0), α(0), y′(0), α′(0)) = (0.01, 0, 0, 0).
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quency components of the dynamics in the different stages of the motion. These will
be regarded as the ‘fast’ frequencies in the dynamics, in terms of which (‘slow’)
modulation equations will be developed. This procedure will establish also the di-
mensionality of the slow flow of the transient nonlinear dynamics.

First, we examine the dominant frequency components in the transient responses
for varying reduced velocity  . Figure 9.26 depicts power (FFT) spectra of the
responses of the heave and pitch modes normalized with respect to their respective
maxima at each value of the reduced velocity. For subcritical reduced speeds (i.e.,
 <  F ), there are only two dominant frequency components, ωheave and ωpitch,
related to the two linearized natural frequencies for the heave and pitch (in terms of
the non-dimensional frequencies defined previously the two dominant components
are � and unity, respectively).

When the reduced velocity exceeds the flutter speed (i.e., >  F ), there appear
two dominant frequency components, ωpitch and 3ωpitch, for the heave mode, and
one dominant frequency component, ωpitch, for the pitch mode. This clearly shows
that both below and above the flutter speed, the aeroelastic response of the wing con-
tains at most three dominant frequency components, related to the two linear natural
frequencies of the linear flutter model. That is, the lowest component corresponds
to the heave mode ωheave ≈ � = 0.5, the middle one to the pitch mode, ωpitch ≈ 1,
and the highest one to approximately three times that of the pitch mode, 3ωpitch ≈ 3.
In the following exposition we will refer to these three dominant frequencies by LF,
MF, and HF (low, middle, and high frequency), respectively.

The FFT analysis provides an averaged (static) view of the frequency content of
the transient nonlinear signals. Since the phenomena studied in this work are essen-
tially nonlinear and transient, we resort instead to frequency decompositions based
on numerical wavelet transforms (WTs), which provide information on the temporal
evolutions of the dominant harmonic components of the subcritical or supercritical
transient responses of the wing. This will enable us to clearly establish and study
dynamical transitions occurring between different regimes of the transient motions.
We perform WT analysis for two specific reduced velocities, namely,  = 0.5 and
 = 0.95, corresponding to subcritical and supercritical wing responses, respec-
tively, and depicted in Figures 9.27 and 9.28. However, the results presented herein
can be similarly extended to other subcritical or supercritical reduced speeds.

Considering the plots of the WT spectra depicted in Figures 9.27 and 9.28, we
note that when the flow speed is less than the flutter speed (in a subcritical regime
– see Figure 9.27) the linearized natural frequency of the heave mode appears as
the main frequency component in heave response, and that of the pitch mode as the
minor. On the other hand, the pitching response possesses both heave and pitch har-
monics with the pitch harmonic being the dominant one. Apparently, there exists a
frequency relation of ωpitch ≈ 2ωheave as we may expect from the relation satisfied
by the two linearized natural frequencies, i.e., a 1:2 internal resonance occurs in
the transient dynamics of the wing when a flow speed is less than the flutter speed.
In addition, we can deduce the existence of a non-negligible frequency component
at the linearized heave natural frequency (� = 0.5) in the pitch mode, so that the
lowest likewise frequency components both in heave and pitch modes appear to
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Fig. 9.26 Normalized power spectrum with respect to the reduced velocity; (a) heave mode,
(b) pitch mode; heave ωheave and pitch ωpitch denote frequency components close to the linear
natural frequencies of heave and pitch, respectively (ωheave ≈ � = 0.5 and ωpitch ≈ 1); initial
conditions are (y(0), α(0), y′(0), α′(0)) = (0.01, 0, 0, 0).



412 9 Suppression of Aeroelastic Instabilities through Passive Targeted Energy Transfer

Fig. 9.27 WT spectra of transient responses at a subcritical speed ( = 0.5); (a) heave mode,
(b) pitch mode; initial conditions are given by (y(0), α(0), y′ (0), α′(0)) = (0.01, 0, 0, 0).
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Fig. 9.28 WT spectra of transient responses at a supercritical speed ( = 0.95); (a) heave mode,
(b) pitch mode; initial conditions are given by (y(0), α(0), y′ (0), α′(0)) = (0.01, 0, 0, 0).
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interact with each other up to τ ≈ 80. Later we will show numerically that this tran-
sient dynamics is also captured in a 1:1 resonance manifold (Quinn, 1997a; Vakakis
and Gendelman, 2001), so that a 1:1 TRC occurs in the dynamics as well. Clearly,
below the critical flutter velocity the energy extracted from the flow is being chan-
neled and then exchanged between the nonlinear modes through resonance captures
(as discussed below).

In the supercritical regime, however, a qualitative change in the dynamics occurs,
since a sudden transition (jump) between frequency components takes place (see
Figure 9.28). To understand this transition we will need to partition the dynamics
into three separate phases: (i) an initial transient period, where likewise frequency
components are likely to match each other leading to 1:1 TRC; (ii) a transition or
escape from TRC into new frequency or resonance relations, where the basic heave
harmonic gradually triggers the pitch mode at its dominant harmonic and then dies
out, whereas at the same time a higher frequency component develops nearly at
three times the linearized frequency of the pitch mode (i.e., a 3:1 superharmonic
component); and finally, (iii) the generation of an LCO as a steady state response
develops, where the resulting dominant harmonics are a 3:1 superharmonic com-
ponent in heave mode, and a component at the pitch linearized frequency in pitch
mode, resulting in a 3:1 sustained resonance capture (SRC). We will explore each
one of these phases of the dynamics in detail, since they constitute the triggering
mechanism for LCOs in the in-flow rigid wing.

9.2.2.2 Multi-Phase Averaging

Before proceeding to analyzing the different regimes of the previously outlined LCO
triggering mechanism, it will be necessary to develop a slow flow model of the dy-
namics through multi-phase averaging, taking into account the previous WT-based
frequency analysis. To this end, we reconsider the equations of motion (9.37), and
through a linear coordinate transformation express them in the following inertially
decoupled form:

y ′′ + ζ1y ′ + k11y + k12α + n11y
3 + n12α

3 = 0

α′′ + ζ2y ′ + k21y + k22α + n21y
3 + n22α

3 = 0 (9.42)

where the coefficients are defined as follows:

ζ1 ≡ µCL,α (r2
α + γ xα)/D, ζ2 ≡ −µCL,α (γ + xα)/D

k11 ≡ r2
α�

2/D, k12 ≡ {µCL,α 2(r2
α + γ xα)− r2

αxα}/D
k21 ≡ −xα�2/D, k22 ≡ {r2

α − µCL,α 2(γ + xα)}/D
n11 ≡ r2

αξy/D, n12 ≡ −xαξα/D, n21 ≡ −xαξy/D, n22 ≡ ξα/D (9.43)
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and it holds that D = r2
α − x2

α > 0 for any mass distribution of the rigid wing. Note
that only the coefficients ζ1, ζ2, k12, k22 are functions of the reduced velocity  .
Moreover, the condition k12 ≡ 0 that results from the previous linearized eigenvalue
analysis provides the following analytical (linearized) approximation for the flutter
speed:

 F ≡
√

r2
αxα

µCL,α(r2
α + γ xα) (9.44)

It follows that k12 < 0 implies that <  F , so that no flutter occurs.
Motivated by our previous numerical analysis and the fact that there exist at most

three dominant (fast) frequency components in the subcritical and supercritical in-
flow wing responses, we decompose the heave and pitch transient responses in terms
of the following three dominant frequency components:

y (τ) = y1 (τ )+ y2 (τ )+ y3 (τ )

α (τ ) = α1 (τ )+ α2 (τ )+ α3 (τ ) (9.45)

The subscripts 1, 2, and 3 denote terms possessing three distinct dominant (fast)
frequencies, proportional to ej�τ , ejτ , and e3jτ , respectively. This representation is
similar to our previous theoretical analyses of transient responses possessing multi-
ple fast frequency components (for example, see Sections 3.3 and 3.4).

Now, following the CX-A methodology (Manevitch, 2001) we introduce the fol-
lowing new complex variables:

ψ1 = y ′
1 + j�y1, ψ3 = y ′

2 + jy2, ψ5 = y ′
3 + 3jy3

ψ2 = α′
1 + j�α1, ψ4 = α′

2 + jα2, ψ6 = α′
3 + 3jα3 (9.46)

where j2 = −1. Then, we may express the original real variables in (9.37) in terms
of the new complex ones as follows:

y = 1

2j�
(ψ1 − ψ∗

1 )+
1

2j
(ψ3 − ψ∗

3 )+
1

6j
(ψ5 − ψ∗

5 )

α = 1

2j�
(ψ2 − ψ∗

2 )+
1

2j
(ψ4 − ψ∗

4 )+
1

6j
(ψ6 − ψ∗

6 )

y ′ = 1

2
(ψ1 + ψ∗

1 + ψ3 + ψ∗
3 + ψ5 + ψ∗

5 )

α′ = 1

2
(ψ2 + ψ∗

2 + ψ4 + ψ∗
4 + ψ6 + ψ∗

6 )

y ′′ = ψ ′
1 + ψ ′

3 + ψ ′
5 − j�

2
(ψ1 + ψ∗

1 )−
j

2
(ψ3 + ψ∗

3 )−
3j

2
(ψ5 + ψ∗

5 )

α′′ = ψ ′
2 + ψ ′

4 + ψ ′
6 − j�

2
(ψ2 + ψ∗

2 )−
j

2
(ψ4 + ψ∗

4 )−
3j

2
(ψ6 + ψ∗

6 ) (9.47)
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At this point we introduce a slow-fast partition of the dynamics, by partitioning
the complex responses into slow and fast parts,

ψ1 (τ ) = ϕ1 (τ ) e
j�τ , ψ3 (τ ) = ϕ3 (τ ) e

jτ , ψ5 (τ ) = ϕ5 (τ ) e
3jτ

ψ2 (τ ) = ϕ2 (τ ) e
j�τ , ψ4 (τ ) = ϕ4 (τ ) e

jτ , ψ6 (τ ) = ϕ6 (τ ) e
3jτ (9.48)

where ϕk(τ ), k = 1, 2, . . . , 6 represent slowly-varying, complex-valued amplitude
modulations. In expressing the variables according to (9.48) we assume that the
transient responses are composed of ‘fast’ oscillations [represented by the complex
exponentials in (9.48)] modulated by ‘slow’ envelopes [represented by the com-
plex amplitudes ϕk(τ )]. These partitions are fully compatible with the results of
numerical simulations. It should be clear that the (slow) temporal evolutions of the
modulations ϕk(τ ) govern the important (essential) dynamics of system (9.37) in
an appropriately defined slow flow phase space. Interestingly enough, the dimen-
sionality of the slow flow phase space – in this case this space is 12-dimensional –
exceeds the dimensionality of the phase space of the original system (9.37) – which
is four-dimensional; this is due to the fact that the dimensionality of the slow flow
phase space depends on the number of dominant harmonics that govern the transient
dynamics – in this case three.

Substituting (9.47) and (9.48) into (9.37) and applying multi-phase averaging
(Lochak and Meunier, 1988) over the frequency components ej�τ , ejτ , and e3jτ

we obtain six complex-valued, ordinary differential equations governing the slow
evolutions of the modulations, in the compact form

ϕ′ + F(ϕ; ) = 0, F, ϕ ∈ C6,  ∈ R (9.49)

where the reduced velocity is regarded an the independent parameter of the prob-
lem. The detailed form of the slow flow (9.49) is given below:

ϕ′
1 + 1

2

[
ζ1 + j

(
�− k11

�

)]
ϕ1 − jk12

2�
ϕ2 − 3j

8�3 (n11ϕ1|ϕ1|2 + n12ϕ2|ϕ2|2)

− 3j

4�
(n11ϕ1|ϕ3|2 + n12ϕ2|ϕ4|2)− j

12�
(n11ϕ1|ϕ5|2 + n12ϕ2|ϕ6|2) = 0

ϕ′
2 + 1

2

(
ζ2 − j k21

�

)
ϕ1 + j

2

(
�− k22

�

)
ϕ2 − 3j

8�3
(n21ϕ1|ϕ1|2 + n22ϕ2|ϕ2|2)

− 3j

4�
(n21ϕ1|ϕ3|2 + n22ϕ2|ϕ4|2)− j

12
(n21ϕ1|ϕ5|2 + n22ϕ2|ϕ6|2) = 0

ϕ′
3 + 1

2
[ζ1 + j (1 − k11)]ϕ3 − jk12

2
ϕ4 − 3j

4�2 (n11ϕ3|ϕ1|2 + n12ϕ4|ϕ2|2)

− 3j

8
(n11ϕ3|ϕ3|2 + n12ϕ4|ϕ4|2)− j

12
(n11ϕ3|ϕ5|2 + n12ϕ4|ϕ6|2)

+ j

8
(n11ϕ

∗2
3 ϕ5 + n12ϕ

∗2
4 ϕ6) = 0
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ϕ′
4 + 1

2
(ζ2 − jk21)ϕ3 + j

2
(1 − k22)ϕ4 − 3j

4�2 (n21ϕ3|ϕ1|2 + n22ϕ4|ϕ2|2)

− 3j

8
(n21ϕ3|ϕ3|2 + n22ϕ4|ϕ4|2)− j

12
(n21ϕ3|ϕ5|2 + n22ϕ4|ϕ6|2)

+ j

8
(n21ϕ

∗2
3 ϕ5 + n22ϕ

∗2
4 ϕ6) = 0

ϕ′
5 + 1

2

[
ζ1 + j

(
3 − k11

3

)]
ϕ5 − jk12

6
ϕ6 − j

4�2 (n11ϕ5|ϕ1|2 + n12ϕ6|ϕ2|2)

− j

4
(n11ϕ5|ϕ3|2 + n12ϕ6|ϕ4|2)− j

72
(n11ϕ5|ϕ5|2 + n12ϕ6|ϕ6|2)

+ j

8
(n11ϕ

3
3 + n12ϕ

3
4) = 0

ϕ′
6 + 1

2

(
ζ2 − j k21

3

)
ϕ5 + j

2

(
3 − k22

3

)
ϕ6 − j

4�2
(n21ϕ5|ϕ1|2 + n22ϕ6|ϕ2|2)

− j

4
(n21ϕ5|ϕ3|2 + n22ϕ6|ϕ4|2)− j

72
(n21ϕ5|ϕ5|2 + n22ϕ6|ϕ6|2)

+ j

8
(n21ϕ

3
3 + n22ϕ

3
4) = 0 (9.50)

The plots presented in Figures 9.29 and 9.30 demonstrate the validity of the av-
eraged system with ‘optimally’ determined initial conditions (see below) compared
to the (numerically) exact solutions for both subcritical and supercritical reduced
velocities. Our careful numerical study (not fully shown herein) indicates that the
three-harmonic slow flow model (9.49) approximates well the original dynamics at
the entire range of reduced speeds, i.e., the averaged system is valid for accurately
modeling the nonlinear dynamics over the entire subsonic fluid-structure interaction
regime.

We note that each of the dominant harmonic components in the model (9.45) can
be recovered from the averaged system (9.49), according to the following expres-
sions:

y1(τ ) = 1

�
Im[ϕ1(τ )e

j�τ ], α1(τ ) = 1

�
Im[ϕ2(τ )e

j�τ ]

y2(τ ) = Im[ϕ3(τ )e
jτ ], α2(τ ) = Im[ϕ4(τ )e

jτ ]

y3(τ ) = 1

3
Im[ϕ5(τ )e

3jτ ], α3(τ ) = 1

3
Im[ϕ6(τ )e

3jτ ] (9.51)

so we may reconstruct the heave and pitch responses directly from the decomposi-
tions (9.45).

An interesting point now discussed concerns the choice of initial conditions of
the averaged set of equations (9.50). Because we need twelve initial conditions for
the averaged system, and we possess only four available initial conditions for the full



418 9 Suppression of Aeroelastic Instabilities through Passive Targeted Energy Transfer

Fig. 9.29 Validation of the averaged system (9.50) for a subcritical reduced velocity ( = 0.5),
with initial conditions (y(0), α(0), y′(0), α′(0)) = 10−3, 10−3, 0, 0).

system (9.37), the problem of determining the appropriate initial conditions of the
slow flow model becomes indeterminate. This problem also arose in Section 3.4.2.2,
where the analytical study of subharmonic TET in a two-DOF system was carried
out.
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Fig. 9.30 Validation of the averaged system (9.50) for a supercritical reduced velocity ( = 0.95),
with initial conditions (y(0), α(0), y′(0), α′(0)) = 10−3, 10−3, 0, 0).

Returning to the problem of determining the initial conditions of the slow flow
(9.50), we may express the initial conditions directly from the decomposition (9.45),

y (0) = y1 (0)+ y2 (0)+ y3 (0) , α (0) = α1 (0)+ α2 (0)+ α3 (0)

y ′ (0) = y ′
1 (0)+ y ′

2 (0)+ y ′
3 (0) , α′ (0) = α′

1 (0)+ α′
2 (0)+ α′

3 (0) (9.52)
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which leads to the expressions

ϕ1 (0) = y ′
1 (0)+ j�y1 (0) , ϕ2 (0) = α′

1 (0)+ j�α1 (0)

ϕ3 (0) = y ′
2 (0)+ jy2 (0) , ϕ4 (0) = α′

2 (0)+ jα2 (0)

ϕ5 (0) = y ′
3 (0)+ 3jy3 (0) , ϕ6 (0) = α′

3 (0)+ 3jα3 (0) (9.53)

under the restrictions:

Imϕ3 (0) = y (0)−
[

1

�
Imϕ1 (0)+ 1

3
Imϕ5 (0)

]

Imϕ4 (0) = α (0)−
[

1

�
Imϕ2 (0)+ 1

3
Imϕ6 (0)

]

Re ϕ3 (0) = y ′ (0)− [Re ϕ1 (0)+ Re ϕ5 (0)]
Re ϕ4 (0) = α′ (0)− [Re ϕ2 (0)+ Re ϕ6 (0)] (9.54)

The determination of the initial conditions for the averaged system (9.50) is thus
converted to the optimization problem of computing the minimum of the normalized
mean square error,

E
[‖x − xa‖2] /E[‖x − E[x]‖2]

in the time interval 0 < τ < τ̂ for some τ̂ , where the quantity to be minimized
is regarded as function of the six sought initial conditions {ϕ1(0), . . . , ϕ6(0)}; E[·]
denotes the mean value, and ‖ · ‖ the norm based on the standard inner product;
moreover, x(τ) ≡ (y(τ ), α(τ ))T and xa(τ ) ≡ (ya(τ ), αa(τ ))

T are the response
vectors of the exact and averaged systems, respectively. Note that the solution of
this optimization problem may not be unique, since it depends on the topological
properties and singularities of the solution manifold in the corresponding space (for
example, the solution manifold may have several local minima so that the ‘optimal’
solution can be computed as any one of them).

We may avoid this lack of uniqueness by expressing the solutions of the opti-
mization problem in Taylor series

ϕi(τ ) =
N∑
j=0

ϕij τ
j +O(τN+1) (9.55)

where ϕij ∈ C, i = 1, . . . , 6 as τ → 0 (hence, we assume that |τ̂ | 	 1), and match-
ing the series with the exact solutions at a specified matching time instant to deter-
mine uniquely each of the Taylor coefficients. Then we can construct the normal
equation and find the so-called Moore-Penrose least squares solution which should
be unique in terms of the Fredholm Alternative Theorem (i.e., see Keener, 2000).
However, this kind of matching – in spite of uniqueness – may not provide good
long-term results, particularly for higher-order approximations or multi-phase aver-
aging. For example, Keener (1977) studied the validity of the two-timing method
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(method of multiple scales, or, equivalently, first-order averaging method) for limit
cycles for large times; he showed that the approximate solution, which is pointwise
valid only for times of order O(1/ε), is orbitally valid for large times in the sense
that the approximate solution (although not necessarily pointwise valid for all times)
approaches a valid approximation of a stable limit cycle.

Therefore, in this work we consider approximate solutions in the sense of orbital
validity by way of the ‘optimal’ initial conditions, instead of pointwise accuracy
which is guaranteed only up to a small time scale and may provide inaccurate results
in the long run.

Considering the analysis of the slow flow (9.49–9.50), two different formula-
tions for analyzing the slow flow dynamics can be followed, by expressing the
complex quantities in Cartesian or polar coordinates. Let us first consider the slow
flow equations in Cartesian coordinates. Expressing ϕk(τ ) = z2k−1(τ ) + j z2k(τ ),
k = 1, . . . , 6, where zi ∈ R, ∀i into (9.50), we obtain twelve (real-valued) slow
flow modulation equations:

Z′ = G(Z; ), Z = (z1, . . . , z2) ∈ R12,  ∈ R (Cartesian coordinates)
(9.56)

Alternatively, expressing the complex quantities in polar-form, we express
ϕk (τ ) = ak (τ ) e

jβk(τ ), ak ∈ R+, βk ∈ S1, k = 1, . . . , 6, which when substi-
tuted into (9.50), and upon separation of real and imaginary parts, leads again to a
set of 12 slow flow equations in the form:

a′
k = f̃k(a, β; ) and akβ

′
k = g̃k(a, β; ) (9.57)

The exact form of these equations is given below:

a′
1 + ζ1

2
a1 − a2

2�
sin (β1 − β2)

(
k12 + 3n12

4�2 a
2
2 + 3n12

2
a2

4 + n12

6
a2

6

)
= 0

a′
2 + ζ2

2
a1 cos (β1 − β2)

+ a1

2�
sin (β1 − β2)

(
k21 + 3n21

4�2
a2

1 + 3n21

2
a2

3 + n21

6
a2

5

)
= 0

a′
3 + ζ1

2
a3 − a4

2
sin (β3 − β4)

(
k12 + 3n12

2�2 a
2
2 + 3n12

4
a2

4 + n12

6
a2

6

)

+ n11

8
a2

3a5 sin (3β3 − β5)+ n12

8
a2

4a6 sin (β3 + 2β4 − β6) = 0

a′
4 + ζ2

2
a3 cos (β3 − β4)+ a3

2
sin (β3 − β4)

(
k21 + 3n21

2�2 a
2
1 + 3n21

4
a2

3 + n21

6
a2

5

)

+ n22

8
a2

4a6 sin (3β4 − β6)+ n21

8
a2

3a5 sin (2β3 + β4 − β5) = 0
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a′
5 + ζ1

2
a5 − a6

6
sin (β5 − β6)

(
k12 + 3n12

2�2 a
2
2 + 3n12

2
a2

4 + n12

12
a2

6

)

− n11

8
a3

3 sin (3β3 − β5)− n12

8
a3

4 sin (3β4 − β5) = 0

a′
6 + ζ2

2
a5 cos (β5 − β6)+ a5

6
sin (β5 − β6)

(
k21 + 3n21

2�2
a2

1 + 3n21

2
a2

3 + n21

12
a2

5

)

− n22

8
a3

4 sin (3β4 − β6)− n21

8
a3

3 sin (3β3 − β6) = 0

a1β
′
1 + a1

2�

(
�2 − k11 − 3n11

4�2
a2

1 − 3n11

2
a2

3 − n11

6
a2

5

)

− a2

2�
cos (β1 − β2)

(
k12 + 3n12

4�2 a
2
2 + 3n12

2
a2

4 + n12

6
a2

6

)
= 0

a2β
′
2 + a2

2�

(
�2 − k22 − 3n22

4�2 a
2
2 − 3n22

2
a2

4 − n22

6
a2

6

)
+ ζ1

2
a1 sin (β1 − β2)

− a1

2�
cos (β1 − β2)

(
k21 + 3n21

4�2
a2

1 + 3n21

2
a2

3 + n21

6
a2

5

)
= 0

a3β
′
3 + a3

2

(
1 − k11 − 3n11

2�2 a
2
1 − 3n11

4
a2

3 − n11

6
a2

5

)

− a4

2
cos (β3 − β4)

(
k12 + 3n12

2�2 a
2
2 + 3n12

4
a2

4 + n12

6
a2

6

)

+, n11

8
a2

3a5 cos (3β3 − β5)+ n12

8
a2

4a6 cos (β3 + 2β4 − β6) = 0

a4β
′
4 + a4

2

(
1 − k22 − 3n22

2�2
a2

2 − 3n22

4
a2

4 − n22

6
a2

6

)
+ ζ2

2
a3 sin (β3 − β4)

− a3

2
cos (β3 − β4)

(
k21 + 3n21

2�2
a2

1 + 3n21

4
a2

3 + n21

6
a2

5

)

+ n22

8
a2

4a6 cos (3β4 − β6)+ n21

8
a2

3a5 cos (2β3 + β4 − β5) = 0

a5β
′
5 + a5

6

(
9 − k11 − 3n11

2�2 a
2
1 − 3n11

2
a2

3 − n11

12
a2

5

)

− a6

6
cos (β5 − β6)

(
k12 + 3n12

2�2 a
2
2 + 3n12

2
a2

4 + n12

12
a2

6

)

+ n11

8
a3

3 cos (3β3 − β5)+ n12

8
a3

4 cos (3β4 − β5) = 0

a6β
′
6 + a6

6

(
9 − k22 − 3n22

2�2 a
2
2 − 3n22

2
a2

4 − n22

12
a2

6

)
+ ζ2

2
a5 sin (β5 − β6)
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− a5

6
cos (β5 − β6)

(
k21 + 3n21

2�2 a
2
1 + 3n21

2
a2

3 + n21

12
a2

5

)

+ n22

8
a3

4 cos (3β4 − β6)+ n21

8
a3

3 cos (3β3 − β6) = 0 (9.58)

By combining these equations we derive the following alternative autonomous
set of slow flow modulation equations:

a′
k = fk(a, φ; ), , aiapφ

′
ip = gn(a, φ; ) (polar coordinates) (9.59)

where k = 1, . . . , 6, φip ≡ βi − βp and (n; i, p) = (1; 1, 2), (2; 3, 5), (3; 3, 6), (4;
4, 5), (5; 4, 6). There are only five independent phase relations in (9.60) represent-
ing five phase differences between components of the solution with the following
physical meanings: φ12 represents the interaction between LF heave and LF pitch;
φ35 represents the interaction between MF heave and HF heave; φ36 represents the
interaction between MF heave and HF pitch; φ45 represents the interaction between
MF pitch and HF heave; and φ46 represents the interaction between MF pitch and
HF pitch. It can be shown that all other possible phase differences arising in (9.60)
can be expressed in terms of these five independent phase variables; for example,
the phase interaction between MF heave and MF pitch can be expressed as

φ34 = 1

3
(φ35 − φ45) or

1

3
(φ36 − φ46) .

Although the modulation sets (9.57) and (9.58) are equivalent, in the following
analysis we will be using the modulation equations in the polar form, equations
(9.58) or in autonomous form, equations (9.60), since they provide direct informa-
tion for the amplitudes of the components of the solution, as well as, for the phases
representing the nonlinear interactions between these components. A well recog-
nized mathematical deficiency, however, of the equations in polar form relates to
the mathematical singularity of the polar transformation at the origin, which renders
the set (9.58) invalid for analyzing the dynamics when some of the components have
zero (or nearly zero) amplitudes. In that case the modulation equations in Cartesian
form, (9.57), should be used instead.

9.2.2.3 Bifurcation Analysis of Steady State Dynamics

Before we employ the slow flow model to study the LCO triggering mechanism, we
perform a steady state bifurcation analysis of the dynamics utilizing MATCONT
in Matlab� (Dhooge et al., 2003), in conjunction with the algorithm introduced in
Kubíček (1976) utilizing parameterization with respect to the arc length of equilib-
rium loci (see Section 9.1.3).

To this end, we consider the original equations of motion (9.42), and express
them in the following first-order form:
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x ′ = X(x; ) where x = (y, α, y ′, α′)T ,  ∈ R (9.60)

Direct application of MATCONT on these first-order differential equations pro-
vides bifurcation diagrams that yield information on the global dynamics of the full
system at steady state, as depicted in Figure 9.39. As we discussed in Section 9.2.1,
the (stable) trivial equilibrium x = 0 undergoes a Hopf bifurcation at the flutter
speed F = 0.87, and changes its stability with simultaneous generation of a stable
LCO. When the reduced velocity reaches the divergence flutter speed  D = 1.767,
two unstable non-trivial equilibrium points are computed. The solution curve for
heave appears to be almost vertical at  D , while that for pitch this does not hold.
The physical interpretation is that, for reduced velocities higher than the divergence
flutter speed, almost every heave position can be an equilibrium position whereas
the pitch mode attains a specific equilibrium position. We note that, if we zoom out
the vertical axis in Figure 9.31a to the same order as in Figure 9.31b, then the heave
equilibrium curve also looks like a parabola; but this understanding may not be
physically meaningful. In any case, these nontrivial equilibrium points are unstable
so that they are not physically realizable. The divergence due to flutter represents
a ‘static’ instability from a dynamics point of view (Blevins, 1990) and the corre-
sponding reduced speed can be computed from static balance as

 D ≡
√
r2
α/(γµCL,α) (9.61)

Since the above results provide only global information regarding to where and
what type of bifurcations occur, and how large the LCO amplitudes are, they will not
help us understand the nonlinear modal interactions that generate the fluid-structure
instabilities that eventually act as LCO triggering mechanisms. To address this is-
sue it is necessary to perform bifurcation analysis of the averaged system (9.57) for
the trivial equilibrium via MATCONT, and for (9.60) for the nontrivial LCOs uti-
lizing Kubíček’s method (1976). The reason for using two different approaches is
dictated by the possible singularities built in (9.60) when one of the amplitudes be-
comes zero; then, the set degenerates to a set of differential-algebraic equations and
becomes unsolvable using MATCONT since this package only solves differential
equations of the standard form x ′ = X(x; σ) where x ∈ Rn, σ ∈ Rk .

Figure 9.32 depicts the numerical continuation results for steady state amplitudes
and phase differences for the multi-phase averaged system (9.60). We note that after
the speed exceeds the critical value of flutter the HF heave and MF pitch components
are dominant at steady state, a result that is consistent with numerical simulations.
These steady state results will be revisited in a later section where analytical study
of the LCO triggering mechanism is carried out.

Because our wing model assumes small oscillations, |α| < 10◦ ≈ 0.1745 rad,
the numerical solutions at higher supercritical speeds may deviate from physical
observations. In addition, we may not observe the secondary Hopf bifurcation by
our slow flow analysis, since at least five dominant harmonics are required for its
computation (Liu and Dowell, 2004). Moreover, only supercritical LCOs will be
obtained due to the specific parameter choices used in our numerical study.
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Fig. 9.31 Bifurcation analysis of the steady state dynamics of system (9.42): ‘H’ and ‘BP’ stand for
Hopf bifurcation point and branching point, respectively; stable (unstable) motion is represented
by a solid (dashed) line.

We now examine the possible existence of other equilibrium solutions of the
slow flow equations (9.60). In fact, there exist many other non-trivial but degenerate
equilibrium solutions; Figure 9.33 presents one of these computed by numerical
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Fig. 9.32 Steady state LCO amplitudes and phase differences from the averaged system (9.60);
(a) heave amplitudes, (b) pitch amplitudes.
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Fig. 9.32 Steady state LCO amplitudes and phase differences from the averaged system (9.60);
(c, d) phase differences.
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continuation of equilibrium positions, corresponding to near-trivial values for all
amplitudes except for the LF pitch a2.

The LF pitch amplitude a2 in Figure 9.33a is estimated as, a2 = �a4 = 0.5a4
where a4 is the MF pitch amplitude in Figure 9.32b. Although this relation can be
obtained analytically as shown below, we may intuitively guess it by examining the
expression of the amplitudes in (9.51) and noting that at a specific reduced speed
all amplitudes except LF or MF pitch are almost trivial, and that the contribution of
the heave mode to the total energy at steady state is rather negligible. Then, α ≈ a4
when only MF pitch is dominant, and if only LF pitch is dominant, then we may
approximately compute α ≈ a2/� = a4 by (9.51).

Figures 9.34 and 9.35 depict heave and pitch responses corresponding to the
steady state motions for = 0.95 in the plots of Figures 9.32 and 9.33, respectively.
Both cases correspond to identical initial conditions, (y(0), α(0), y ′(0), α′(0)) =
(10−3, 10−3, 0, 0). However, the corresponding initial conditions used for integrat-
ing the slow flow equations (9.60) are different. For example, the initial conditions
used for performing the numerical simulations depicted in Figure 9.34 are selected
to be ‘optimal’ in the sense discussed in Section 9.2.2.2 (where the overdeterminacy
of the problem of selecting the initial conditions of the slow flow was discussed), in
order to accurately approximate the exact solutions which will be used later in the
study of LCO triggering mechanism; whereas, the initial conditions utilized for the
numerical simulations of Figure 9.35 are slightly different. Since numerical studies
can be made only for stable motions, it turns out that the prediction depicted in Fig-
ure 9.35 is not meaningful in our study of the LCO triggering mechanism because
it is based on a degenerate equilibrium of the slow flow modulation equations, and
does not provide any information on the HF heave component which is observable
in actuality.

It turns out that the degenerate equilibrium solutions presented in Figure 9.33
can be derived analytically from a subsystem of the slow flow model (9.60), namely,
from the multi-phase averaged system with two dominant frequencies correspond-
ing to LF and MF components; this subsystem will be called the two-frequency av-
eraged system hereafter. For this subsystem, we neglect HF terms y3(τ ) and α3(τ )

in (9.45), or, equivalently, the corresponding complex variables ψ5 and ψ6, so the
resulting complex-valued slow flow equations (9.49) contain only the complex mod-
ulations ϕ1, . . . , ϕ4 ∈ C4. Then, we obtain the following reduced two-frequency
averaged system in polar form:
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Fig. 9.33 Additional steady state LCO solution, amplitudes and phase differences predicted by the
averaged system (9.60); (a) amplitudes, (b) phase differences (mod 2π was applied for the plot of
φ36).
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Fig. 9.34 Total and component responses for steady state solutions corresponding to amplitudes
and phases depicted in Figure 9.32 for  = 0.95; (a) heave mode response and (b) pitch mode
response.
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Fig. 9.35 Total and component responses corresponding to steady state solutions of the averaged
system depicted in Figure 9.33 for  = 0.95; (a) heave, (b) pitch.
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Fig. 9.35 Total and component responses corresponding to steady state solutions of the averaged
system depicted in Figure 9.33 for  = 0.95; (c, d) phase differences.
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Fig. 9.36 Analytical steady state pitch amplitudes and their stability when (φ12, φ34) =
(π/2, π/2), computed from the two-frequency averaged system (9.63).
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(9.62)

In this case there appear only two phase expressions, related to phase interactions
between the LF heave and LF pitch modes, φ12 = β1 − β2, and also between MF
heave and MF pitch modes, φ34 = β3 − β4.

For steady state solutions, we set a′
1 = · · · = a′

4 = φ′
12 = φ′

34 = 0 in (9.63), and
obtain a set of six algebraic equations, from which the equilibrium solutions can be
computed. First we consider the case where (φ12, φ34) = (mπ, nπ) and m,n ∈ Z,
and substitute sinφ12 = sin φ34 ≡ 0, cosφ12 = cosφ34 ≡ ±1 into (9.63) to obtain
a1 = a3 = 0, i.e., only trivial solutions for the heave mode. Then we obtain the
following two relations satisfied by the corresponding non-trivial amplitudes:

a2
2

(
k12 + 3n12

4�2 a
2
2 + 3n12

4
a2

4

)
= 0 (9.63)
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a2
4

(
k12 + 3n12

2�2 a
2
2 + 3n12

4
a2

4

)
= 0 (9.64)

The solutions of (9.66) and (9.67) yield the following four cases:

(i) a2 = a4 ≡ 0: trivial solutions
(ii) a4 ≡ 0buta2 �= 0: non-trivial LF pitch mode,

a2 = 2�
√−k12/(3n12) if k12/n12 < 0

(iii) a2 ≡ 0buta4 �= 0: non-trivial MF pitch mode,

a4 = 2
√−k12/(3n12) if k12/n12 < 0 (or  >  F )

(iv) a2 �= 0anda4 �= 0: non-trivial LF and MF pitch modes,

a2 = 2

3
�
√−k12/n12, a4 = 2

3

√−k12/n12 if k12/n12 < 0 (9.65)

Similarly, for the following combinations of phase differences, (φ12, φ34) =
(mπ, (2n + 1)π/2), ((2m + 1)π/2, nπ), ((2m + 1)π/2, (2n + 1)π/2), where
m,n ∈ N , we can also compute the same equilibrium solutions as in (9.67). Fur-
thermore, we can evaluate their stability analytically (Lee et al., 2005b). Figure 9.37
depicts one specific set of steady state amplitudes corresponding to (φ12, φ34) =
(π/2, π/2); these steady state solutions for the two-frequency averaged system can
be regarded as a degenerate subset of the three-frequency averaged system (9.49).

Using the slow flow models developed in this section we are in the position to
study the dynamical mechanism that ‘triggers’ aeroelastic instabilities (LCOs) in
the two-DOF in-flow wing (9.37) or (9.42). We will prove that these instabilities
are caused by series of transient and sustained resonance captures which ultimately
direct energy from the flow to the pitch mode. The identification of the LCO trig-
gering mechanism will be key to the passive LCO mitigation designs and strategies
developed in later sections.

9.2.3 LCO Triggering Mechanism

In this section, we show numerically and analytically that series resonance captures
are responsible for the triggering and development of LCOs in the in-flow rigid
wing. We start by presenting some motivating numerical results.

9.2.3.1 Numerical Results

Considering the slow flow equations (9.49) with ‘optimal’ initial conditions (see
Section 9.2.2.2), we examine first the dynamics of the system at subcritical reduced
speeds. Figure 9.37a depicts the heave and pitch responses at a subcritical reduced
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Fig. 9.37 Response of the slow flow (9.49) at a subcritical speed ( = 0.5): (a) normalized heave
and pitch responses; (b) energy variations with respect to time; initial conditions correspond to
(y(0), α(0), y′(0), α′(0)) = (10−3, 10−3, 0, 0).
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Fig. 9.37 Response of the slow flow (9.49) at a subcritical speed ( = 0.5): (c) phase dif-
ferences in time; (d) phase differences in their phase planes; initial conditions correspond to
(y(0), α(0), y′(0), α′(0)) = (10−3, 10−3, 0, 0).
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Fig. 9.37 Response of the slow flow (9.49) at a subcritical speed ( = 0.5): (e, f) phase inter-
actions between different frequency components in time and phase plane; initial conditions corre-
spond to (y(0), α(0), y′(0), α′(0)) = (10−3, 10−3, 0, 0).
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Fig. 9.37 Response of the slow flow (9.49) at a subcritical speed ( = 0.5): (g) instantaneous
frequencies; initial conditions correspond to (y(0), α(0), y′ (0), α′(0)) = (10−3, 10−3, 0, 0).

speed ( = 0.5), normalized by their respective maximum amplitudes in order to
compare their frequency contents. The existence of a 1:2 internal resonance between
the heave and pitch modes (i.e., ωpitch ≈ 2ωheave) was already mentioned in Sec-
tion 9.2.2.1 from the wavelet transform analysis (Figure 9.27). In addition, the pos-
sible occurrence of 1:1 TRCs was also suggested. One may deduce the occurrence
of these two types of resonance interactions directly from the plot of Figure 9.37a.
Indeed, considering the dominant frequencies in each response up to τ ≈ 100, we
approximately compute the frequency ratio of heave to pitch modes as 1:2; more-
over, at later times the frequency ratio of these two modal responses becomes 1:1,
and the modal responses become out-of-phase as shown in the zoomed plot.

The existence of a 1:1 TRC in the transient responses can be verified by the phase
analysis depicted in Figures 9.37c–f. We note the lack of phase interactions involv-
ing the HF components, which underlines the fact that no such resonance interac-
tions involving these components occur at subcritical speeds (this is in accordance
to the WT results of Figure 9.27 which indicate that there are no HF components in
the modal responses). Note the wandering behavior of the phase difference φ56 in
Figure 9.37c, and the time-like behaviors of the phase interactions of the MF compo-
nents with HF components in Figures 9.37e–f. If we examine the phase interaction
φ12 between the LF heave and LF pitch components, and the phase interaction φ34
between the MF heave and MF pitch components, we clearly establish their non-
time-like behaviors (see Figure 9.37c); this is also revealed in the form of spirals
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in the appropriate phase planes (see Figure 9.37d). We conclude that these phase
differences cannot be regarded as ‘fast’ angles so they may not be averaged out of
the dynamics, which indicates that the corresponding components are involved in
internal resonance or resonance capture. The fact that the LF heave and LF pitch
components are involved in 1:1 TRC (instead of 1:1 internal resonance) is indicated
by the clear escape from the resonance capture regime, as evidenced from the plot
of the phase difference φ12 at τ ≈ 150.

The utilization of these phase interactions as evidence for internal resonances
or resonance captures is confirmed by the instantaneous frequencies depicted in
Figure 9.37g, computed by the following relations [recall the decompositions (9.45–
9.48) together with the polar coordinate transformations ϕk(τ ) = ak(τ )ejβk(τ )],

ωh1 (τ ) = � = β ′
1(τ ), ωh2 (τ ) = 1 + β ′

3(τ ), ωh3 (τ ) = 3 + β ′
5(τ )

ωα1 (τ ) = � = β ′
2(τ ), ωα2 (τ ) = 1 + β ′

4(τ ), ωα3 (τ ) = 3 + β ′
6(τ ) (9.66)

where βk = tan−1(Imϕk/Re ϕk), k = 1, . . . , 6, and their derivatives are regarded
as slow frequency corrections to the fast dominant values (Zniber and Quinn, 2003).

For the 1:2 internal resonance between the heave and pitch modes, the fre-
quency ωα2 (τ ) is compared to 2ωh1(τ ). Then, we check that the frequency relation,
ωα2 − 2ωh1 ≈ 0, persists in the entire time interval, which clearly implies the occur-
rence of 1:2 internal resonance throughout the transient response. We remark that
this internal resonance is possible only because of our choice of the specific ratio
between natural frequencies, i.e., � = 0.5. On the other hand, comparing ωh1 (τ )
and ωα1 (τ ), and ωh2 (τ ) and ωα2 (τ ), we clearly verify that 1:1 TRC and escape from
resonance capture between likewise LF components occur in the response. Then, it
is natural to expect the occurrence of energy exchanges between the heave and pitch
modes, similar to those occurring between modes in internal resonance in systems
with dissipation [see Figure 9.37b, (Greenlee and Snow, 1975)].

Next, we apply similar arguments to explore the triggering mechanism that gives
rise to LCOs at supercritical flow speeds. Basically, the LCO triggering mechanism
is composed of three main stages as discussed in the wavelet transform (WT) analy-
sis of Section 9.2.2.1. This classification is established by studying the correspond-
ing energy exchanges between the heave and pitch modes (see Figure 9.38b), the
phase interactions between dominant frequency components of these modes (see
Figure 9.38c-f), and the corresponding instantaneous modal frequencies (see Fig-
ure 9.38g). We refer to these three stages as Stages I, II, and III, with main cor-
responding features, 1:1 TRC, escape from 1:1 TRC, and finally 3:1 SRC, respec-
tively. Each of these regimes occurring for a supercritical reduced speed  = 0.95
is considered in detail below.

Starting from Stage I, initial transients (up to τ ≈ 20) involve a 1:2 internal
resonance (see Figure 9.38g) which may initially cause strong energy exchanges
between the heave and pitch modes (as shown in Figure 9.38b). Then, a 1:1 TRC is
realized in the dynamics. Indeed, comparing the time responses of Figure 9.38a, we
find that the amplitudes of both modes (and thus their respective energies) increase
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Fig. 9.38 Response of the slow flow (9.48) at a supercritical speed ( = 0.95): (a) normal-
ized heave and pitch responses; initial conditions correspond to (y(0), α(0), y′(0), α′(0)) =
(10−3, 10−3, 0, 0).
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Fig. 9.38 Response of the slow flow (9.48) at a supercritical speed ( = 0.95): (b) energy
variations with respect to time; (c) phase differences in time; initial conditions correspond to
(y(0), α(0), y′(0), α′(0)) = (10−3, 10−3, 0, 0).
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Fig. 9.38 Response of the slow flow (9.48) at a supercritical speed ( = 0.95): (d) phase differ-
ences in their phase planes; (e) phase interactions between different frequency components in time
and phase plane; initial conditions correspond to (y(0), α(0), y′(0), α′(0)) = (10−3, 10−3, 0, 0).
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Fig. 9.38 Response of the slow flow (9.48) at a supercritical speed ( = 0.95): (f) phase in-
teractions between different frequency components in time and phase plane; (g) instantaneous
frequencies; initial conditions correspond to (y(0), α(0), y′ (0), α′(0)) = (10−3, 10−3, 0, 0).
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during this initial 1:1 TRC, until the energy of the heave mode reaches its maximum
at the end of the Stage I.

In Chapter 3 we found that in-phase 1:1 TRC is the underlying mechanism for
fundamental TET from a SDOF LO to an essentially nonlinear SDOF attachment
(the NES). In analogy, in the case of the in-flow rigid wing, the pitch mode can be
regarded as the primary system, and the heave mode as the NES to which vibration
energy is irreversibly transferred during Stage I. Our aeroelastic model possesses a
positive damping component in the heave mode and a negative damping component
in the pitch mode. Thus, unlike the usual nonlinear TET phenomenon, energies in
both heave and pitch modes increase during 1:1 TRCs as energy from the flow
feeds directly to both modes. Besides, energy dissipation by the heave mode (as
for the NES) plays no significant role in the competition between the two damping
mechanisms. This also explains the viewpoint that the initial excitation of the heave
mode acts or triggers initiation and development of the pitch mode.

It is remarkable that the nonlinear beating phenomenon which is caused by 1:2
internal resonance between heave and pitch was reported in Section 3.4.2 as the
most efficient mechanism to transfer or initiate TET (corresponding to TET through
nonlinear beats – see Section 3.4.2.3). Hence, it seems that energy exchange between
heave and pitch during Stage I occurs in the most efficient way from a TET point
of view. That is why the initial short occurrence of 1:2 internal resonance makes
possible maximum energy transfer. The occurrence of 1:1 TRCs are verified by the
non-time-like behaviors of the phase differences between likewise frequency com-
ponents (see Figure 9.38c), and by spirals formed in the corresponding projections
of the phase space (see Figure 9.38d). In particular, the instantaneous frequencies
shown in Figure 9.38g indicate the occurrence of 1:1 TRCs, since the frequencies
of likewise frequency components lie, on average, very close to each other, follow-
ing straight lines, whereas in later times some of the components show frequency
shifting (Zniber and Quinn, 2003) with increasing energy.

We now consider Stage II of the transient dynamics. Once the heave mode
reaches its maximum amplitude, escapes from 1:1 TRCs occur. Superimposed time
responses show the corresponding transitions in the dynamics (refer to Zoom A
in Figure 9.38a); the in-phase 1:1 TRCs of Stage I turn to 3:1 TRCs gradually as
the heave amplitude decreases and pitch amplitude increases. Thus the energy ex-
changes between the two modes (see Figure 9.38b) follow the typical behavior of
escape from resonance capture (Kerschen et al., 2005, 2006a); in particular, time-
like behaviors of likewise phase differences (with φ56 being the most prominent
– see Figure 9.38c), and escapes from spirals in projected phase planes (see Fig-
ure 9.38d) confirm escape from the in-phase 1:1 TRCs of Stage I. In the meanwhile,
the phase differences between MF heave and HF heave and between MF pitch and
HF heave do not exhibit time-like behaviors anymore, which are precursors for the
occurrence of 3:1 SRCs (Figure 9.38e). These observations are confirmed also in
terms of the plots of instantaneous frequencies depicted in Figure 9.38g.

Finally, we discuss Stage III, during which the LCO fully develops and the steady
state aeroelastic instability is reached. As a result of the escapes from TRCs in Stage
II, the steady state dynamics finally settles into a series of 3:1 SRCs. Examining the
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zoomed-in plots of the responses depicted in Figure 9.38a, we can establish the
frequency relation between the two modes as nearly 3:1, and the occurrence of in-
phase modal oscillations. The energy exchanges between heave and pitch modes
become balanced, on average, with most energy being imparted to the pitch mode
(see Figure 9.38b). The occurrence of SRCs can be verified in a way similar to
Stages I and II, i.e., by the occurrence of non-time-like phase behaviors and of spi-
rals in the corresponding phase planes, or, more directly, in terms of plots of instan-
taneous frequencies. In particular, comparing the instantaneous frequencies 3ωα2 (τ )
and ωh3 (τ ) in this stage, we can find a good alignment between them on average,
i.e., 3ωα2 − ωh3 ≈ 0 (see Figure 9.38g).

An interesting note concerns the fact that the HF heave (or the steady state res-
onance frequency component) undergoes upward frequency shift so that 3:1 SRC
to MF pitch is made possible, as energy is continuously fed from the flow into the
system. It is also remarkable that the likewise phase differences in Figures 9.38c, d
in this stage imply the existence of 1:1 SRCs.

9.2.3.2 Analytical Proof of the LCO Triggering Mechanism

In the previous section we analyzed numerical simulations to study the LCO trig-
gering mechanism. The numerical findings can be confirmed analytically employing
partial averaging, which is a local analysis. Specifically, we will perform averaging
only for non-resonant (fast) phase angles possessing time-like behavior in order
to remove the unessential dynamics and derive a reduced-order slow flow model
(Zniber and Quinn, 2003).

In an effort to confirm that an internal resonance and a series of resonance cap-
tures are responsible for the LCO triggering mechanism, we study the resonance
captures that occur in the slow flow at each stage of the response. Then, the order
of approximation and its validity on the corresponding time scales can be verified
when escapes from resonance captures occur. For example, in order to prove the
existence of SRCs in Stage III of the LCO triggering mechanism, the existence of
steady state equilibrium points of the slow flow model will serve as the necessary
(but not sufficient) condition (Quinn, 1997; Zniber and Quinn, 2003).

Since the averaged system possesses sensitive dependence on initial conditions
(due to the fact that the problem of assigning initial conditions to the slow flow is
indeterminate – see discussion in Section 9.2.2.2), ‘optimal’ initial conditions for the
slow flow modulation equations in polar form (9.60) will be utilized in the following
analysis. As a result, we may deduce different phase behaviors and different steady
states (see Figures 9.39c,d) than the ones in the corresponding plots of Figure 9.38
which were computed using the ‘optimal’ initial conditions for the complex-valued
modulation equations (9.49).

Figures 9.39a, b depict envelopes of the responses of the heave and pitch com-
ponents, respectively. We may expect that the dominant contribution to the initial
triggering of LCOs comes from the MF heave component, so that it develops the
likewise counterpart, MF pitch in Stage I. Then, from Stage II until the dynamics



446 9 Suppression of Aeroelastic Instabilities through Passive Targeted Energy Transfer

Fig. 9.39 Amplitude and phase responses computed with the averaged slow flow (9.60) for a super-
critical reduced velocity ( = 0.95); initial conditions correspond to (y(0), α(0), y′(0), α′(0)) =
(10−3, 10−3, 0, 0).
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Fig. 9.39 Continued.
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Fig. 9.39 Continued.
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Fig. 9.39 Continued.
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reaches its steady state, MF pitch together with MF heave act as the driving mech-
anism to further raise the amplitude of the HF heave response. This intuition is
visualized in the phase responses.

The initial triggering of the LCO corresponds to non-time-like behaviors of the
likewise phase differences (and thus by the existence of 1:1 TRCs) in Stage I (see
Figure 9.39c). On the other hand, time-like responses of the other phase differences
imply that no other effective triggering mechanisms exist during this initial stage.
In Stage II, however, escape from 1:1 TRCs of likewise HF components occurs
while the other likewise frequency components remain still ‘locked’ in the regime
of 1:1 TRCs. Non-time-like behaviors of the phase interactions between MF heave
and HF heave (corresponding to the phase difference φ35) and between MF pitch
and HF heave (phase difference φ45) support the previous argument. At steady state
when the fully developed LCO is realized during Stage III, only the phase difference
between LF heave and LF pitch indicates capture of these components into 1:1 SRC,
while the other phase differences escape from 1:1 TRCs. Indeed only the phase
interaction between MF pitch and HF heave exhibits non-time-like behavior, which
coincides with the numerical simulations of the previous sections [where the original
dynamical system (9.37) or (9.42) was used, before averaging is applied].

In Figures 9.39f, h the instantaneous frequency of each harmonic component is
plotted by means of relations (9.69); however, this time the slowly varying frequency
corrections β ′

k , k = 1, . . . , 6 are directly computed from the slow flow equations
(9.60). Frequency locking between the LF components persists almost during the
entire time interval, and, in addition, the steady state resonance frequencies show
upward frequency shift along with increasing energy input from the flow. The fre-
quencies of the MF components are kept locked in 1:1 resonance capture, on aver-
age, and become unlocked only after Stage II, whereas those of the HF components
are unlocked just at the end of Stage I. In particular, the frequency shift in HF heave
engages into another locking at three times the frequency of the MF pitch, as we
already observed in the previous section.

Examining the slow dynamics in each stage separately, in Stage I we per-
form partial averaging over all time-like phase variables except the phases ψI =
(φ12, φ34, φ56), and construct the following reduced-order model describing 1:1
TRCs between surviving components in the form:

a′ = fI (a;ψI), ψ ′
I = gI (a;ψI) (9.67)

where a ∈ R6 and ψI ∈ T 3 = S1 × S1 × S1. It is sufficient to show that there
occur escapes from 1:1 TRCs after some time interval of frequency locking. When
solving the reduced-order model (9.70), we use ‘optimal’ initial conditions which
are the same to those used for the slow flow equations (9.60). This leads to the phase
interactions depicted in Figures 9.40a, b where τA and τB refer to the approximate
time instants when the dynamics is captured into, and escape from resonance cap-
ture, respectively. Hence, we analytically verify that there exist 1:1 TRCs during
Stage I. When transition to escape occurs at time instant τB , the partially-averaged
system (9.70) loses validity since the assumptions upon which it is derived are no
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Fig. 9.40 Analytical study of 1:1 TRCs at Stage I for  = 0.95: (a) phase interactions; (b) fre-
quency shiftings; initial conditions correspond to (y(0), α(0), y′(0), α′(0)) = (10−3, 10−3, 0, 0).

longer valid. This becomes clear when one compares the exact and averaged HF
heave responses in Figure 9.40d.
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Fig. 9.40 Analytical study of 1:1 TRCs at Stage I for  = 0.95: (c) heave amplitude components;
(d) pitch amplitude components; initial conditions correspond to (y(0), α(0), y′(0), α′(0)) =
(10−3, 10−3, 0, 0).
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For Stage II we perform a similar analysis as in Stage I. Taking into account
the resonance interactions between heave and pitch components in this stage of
the dynamics, we define the non-time-like variables of the problem as ψII =
(φ12, φ34, φ35, φ45, φ345) ∈ T 5 and construct a slow flow model in the form:

a′ = fII (a;ψII ), ψ ′
II = gII (a;ψII ) (9.68)

We note that in this case there exist only three phases as independent variables.
As for the initial conditions for (9.71), we use the state of the dynamics at instant
τB when the system enters Stage II, starting from the ‘optimal’ initial conditions for
(9.60). From the results depicted in Figure 9.41 it is evident that the dynamics is set-
tling down into a steady state motion at time instant τC . In particular, the (resonant)
frequencies of the HF components shift upward to their original values close to a
value equal to three, so that the system can sustain 3:1 resonance captures. Note that
the high-frequency modulations disappear through the previous partial averaging.

Finally, in Stage III we derive a slow flow model with non-time-like phase vari-
ables ψIII = (φ12, φ45, φ346), yielding:

a′ = fIII (a;ψIII ), ψ ′
III = gIII (a;ψIII ) (9.69)

When solving this reduced-order model, we perform a similar analysis with Stage
II, and find that there exist equilibrium points in the slow flow, which is proof of ex-
istence of SRCs. Recall that in this case the time derivatives of the phase variables,
β ′
k , k = 1, . . . , 6 in (9.27) act as effective detuning frequency components. There-

fore, instead of finding equilibrium conditions for detuning parameters as in Zniber
and Quinn (2003), we focus on finding such conditions that β ′

i ≈ β ′
i+1, i = 1, 3, 5

for 1:1 resonance captures, and 3β ′
4 ≈ β ′

5 for 3:1 resonance captures. In this way, we
may define the intervals where frequency lockings occur as evidence for resonance
captures.

In Figure 9.42 we depict the steady state response of the slow flow (9.72) that
prove the occurrence of 3:1 SRCs, or equivalently the development of the LCO in-
stability. Since it is not feasible to explicitly compute the equilibrium points of the
slow flow (9.72), we may instead verify implicitly their existence, for example, by
examining the plots of Figures 9.42a–d we regard to convergence of the slow dy-
namics at steady state values as proof of existence of the corresponding equilibrium
points. Besides, we have already computed some of these steady state solutions by
way of numerical continuation in Section 9.2.2.3. Hence, we may conclude that in
Stage III 3:1 resonance captures are sustained permanently in time, i.e., that 3:1
SRCs are realized in the dynamics.

9.2.4 Concluding Remarks

We investigated the LCO triggering mechanisms in a two-DOF in-flow rigid wing
model in subsonic flow by employing quasi-steady aerodynamics. Reviewing fun-
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Fig. 9.41 Analytical study of the transient dynamics at Stage II for  = 0.95: (a) phase interac-
tions; (b) frequency shiftings.
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Fig. 9.41 Analytical study of the transient dynamics at Stage II for = 0.95: (c) heave amplitude
components; (d) pitch amplitude components.
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Fig. 9.42 Analytical study of 3:1 SRCs at Stage III for  = 0.95: (a) phase interactions; (b) fre-
quency shiftings; initial conditions correspond to (y(0), α(0), y′(0), α′(0)) = (10−3, 10−3, 0, 0).
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Fig. 9.42 Analytical study of 3:1 SRCs at Stage III for = 0.95: (c) heave amplitude components;
(d) pitch amplitude components; initial conditions correspond to (y(0), α(0), y′(0), α′(0)) =
(10−3, 10−3, 0, 0).
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damental aspects of linear flutter theory, we established a slow flow system based
on multi-phase averaging which exhibits good agreement with the original dynam-
ics. Through the method of numerical continuation we analyzed the steady state
dynamics of the slow flow. The slow flow system showed sensitive dependence on
initial conditions due to the resulting complexity of the dynamics in phase space
and the indeterminacy of the problem of computing initial conditions from the exact
system. Hence, the initial conditions for the slow flow were determined through an
optimization process.

It is interesting to note that even at subcritical speeds 1:1 transient resonance
captures occur between heave and pitch harmonic components, which are respon-
sible for strong energy exchanges between aeroelastic modes. We also found that
the LCO triggering mechanism is composed of a series of dynamical phenomena,
starting with a 1:1 transient resonance capture, followed by escape from resonance
capture, and then a final 3:1 sustained resonance capture between the heave and pitch
modes. After exploring the triggering mechanism numerically at each of the afore-
mentioned stages of the dynamics, we proved our claims analytically by means of
partial averaging and by studying the resulting slow flow models.

The identification of the dynamical mechanism generating LCOs in system
(9.37) or (9.42) provides the necessary framework for developing strategies and
techniques for their passive suppression. Indeed, based on a purely phenomenolog-
ical view of the problem of LCO formation, one might arrive to the conclusion that
the problem of LCO suppression can be formulated as a problem of suppressing
a steady state oscillation. Instead, as shown in this section, the problem of LCO
triggering and development is a problem involving series of transient and sustained
resonance captures between heave and pitch harmonic components, i.e., it is a prob-
lem of transient modal interactions. The premise adopted in this work, therefore, is
that by eliminating the triggering mechanism for LCOs, one would be to eliminate
the aeroelastic instability at the early stage of its development, before it reaches
steady state. Hence, the problem of LCO suppression is converted to the problem of
suppressing the transient triggering mechanism, i.e., to a problem formulated in the
transient domain.

Definitely, dealing with a strongly nonlinear problem in the transient (instead of
steady state) domain is a challenging undertaking, yet the TET-based designs based
on transient directed energy transfers developed in this work offer a solution with
the potential to address the present problem. This is due to the fact that, as shown in
previous chapters, essentially nonlinear attachments of the type considered in this
work are capable of passively absorbing and locally dissipating broadband vibration
energy from primary structures in a one way irreversible fashion; this renders such
attachments suitable candidates for suppressing aeroleastic instabilities of the in-
flow rigid wing. This issue is addressed in the following sections.
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9.3 Suppressing Aeroelastic Instability of an In-Flow Wing Using
a SDOF NES

The triggering mechanism of limit cycle oscillation (LCO) of a wing due to aeroelas-
tic instability was studied in the previous section, where it was shown that a cas-
cade of resonance captures constitutes the LCO triggering mechanism in the form
of (i) initial attraction into 1:1 TRC, (ii) escape from this capture and finally, and
(iii) entrapment of the dynamics in 3:1 SRC leading to full development of the
LCO. Alternatively, an initial excitation by the flow of the heave mode acts as the
triggering mechanism for the eventual activation of the pitch mode through transient
nonlinear modal interactions involving the aforementioned resonance captures and
escapes; the eventual excitation of the pitch mode signifies the appearance of an
LCO of the in-flow wing in flow.

In general, efforts have been made to control LCOs by means of active control
schemes (Ko et al., 1997; Friedman et al., 1997) or by inducing autoparametric reso-
nances (Fatimah and Verhulst, 2003; Tondl et al., 2000). In this section we study the
efficacy of passively suppressing aeroelastic instabilities (LCOs) in the two-DOF
in-flow rigid wing model (9.37) or (9.42) by attaching a SDOF NES. In the process
we will provide an application of TET to an engineering problem of practical signif-
icance. First, we perform computational parametric studies that clearly demonstrate
(at least) three fundamental mechanisms of LCO suppression by means of TET from
the in-flow wing to the NES. Then, we further investigate the numerically detected
LCO suppression mechanisms by performing numerically time-frequency analysis
by means of WTs and EMD, and applying the CX-A technique performing multi-
phase averaging.

By computing appropriately defined measures of energy dissipated by the NES,
we explore the energetic transactions associated with each LCO suppression mech-
anism in terms of transient modal interactions. Furthermore, we prove that LCO
suppression is due to TRCs between heave and pitch harmonic components and the
NES, during which strong TET from the wing to the NES take place. Then, we ad-
dress the issue of robustness of LCO suppression by performing bifurcation analy-
sis in order to detect stable co-existing stable attractors in the steady state dynamics
which can have either a beneficial or an inadverse effect regarding LCO suppression.
In the process we describe how the three LCO suppression mechanisms are related
to the bifurcation picture of the steady state dynamics. The following exposition
follows the work reported in Lee et al. (2007a).

9.3.1 Preliminary Numerical Study

We examine the two-DOF rigid in-flow wing model of Figure 9.23 with an attached
SDOF NES (see Figure 9.43). Assuming small motions and using the principle of
virtual work (Dowell et al., 1995), we derive the equations of motion of the wing-
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NES assembly as follows:

mḧ+ Sαα̈ +Kh(h+ c1h
3)+ qSCL,α(α + ḣ/U)

+ cs(ḣ− dα̇ − ż)+ ks(h− dα − z)3 = 0

Iαα̈ + Sαḧ+Kα(α + c2α
3)− qeSCL,α(α + ḣ/U)

+ dcs(dα̇ + ż − ḣ)+ dks(dα + z− h)3 = 0

msz̈+ cs(ż+ dα̇ − ḣ)+ ks(z+ dα − h)3 = 0 (9.70)

or in non-dimensional form

y ′′ + xαα′′ +�2y + ξyy3 + µCL,α (y ′ + α)
+ ελ(y ′ − δα′ − v′)+ C(y − δα − v)3 = 0

r2
αα

′′ + xαy ′′ + r2
αα + ξαα3 − γµCL,α (y ′ + α)

+ δελ(δα′ + v′ − y ′)+ δC(δα + v − y)3 = 0

εv′′ + ελ(v′ + δα′ − y ′)+ C(v + δα − y)3 = 0 (9.71)

where the notation of the previous section applies for (9.73), and the normalized
parameters in (9.74) are defined as follows:

y = h/b, v = z/b, C = b2ks/mω
2
a, δ = d/b, γ = e/b, ra =

√
Ia/(mb2),

xa = xcg/b, τ = ωat, ε = ms/m, λ = cs/msωa, ξy = c1b
2�2,

ξa = c2r
2
a , � = ωh/ωa, ωh = √

Kh/m, ωa = √
Ka/Ia

The quantities ωh and ωa are the linearized frequencies of the heave and pitch
modes, respectively, primes denote differentiation with respect to the normalized
time τ , µ = ρ∞bS/2m is the density ratio and  = U/(bωa) the reduced fluid
velocity. Note that through the offset d (or δ) from the elastic axis, the NES (with
corresponding response z or v) interacts with both the heave (response h or y) and
pitch (angle α) modes.

We now perform computational parametric studies of the dynamics of system
(9.75) to identify parameter subsets where LCOs of the wing can be suppressed or
even completely eliminated. Initial conditions close to the trivial equilibrium po-
sition are considered; i.e., we set all initial conditions equal to zero except for the
initial velocity y ′(0) = 0.01. Regarding the wing parameters, we take these to be
identical to the ones utilized in Section 9.2 where the LCO triggering mechanism
was studied,

xα = 0.2, rα = 0.5, y = 0.4, � = 0.5,

µ = (10π)−1, CL,α = 2π, ξy = ξα = 1 (9.72)
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Fig. 9.43 Two-DOF rigid wing model with an attached SDOF NES.

which gives a flutter speed equal to  F = 0.87 (see Figure 9.24).
There are four control parameters for the NES, namely, the mass ratio of the NES

and the wing, ε; the normalized damping coefficient, λ; the normalized coefficient
of the essentially-nonlinear stiffness, C; and the normalized offset attachment, δ. In
the numerical study, we will consider parameter variations in the ranges, 0.01 ≤
ε ≤ 0.1 (i.e., for practical reasons we consider as small as possible mass ratios),
0.1 ≤ λ ≤ 1, 1 ≤ C ≤ 20, and −1 ≤ δ ≤ 1.

Our methodology for performing the computational parametric study is as fol-
lows. Using the aforementioned initial conditions and parameter sets, we integrate
the equations of motion (9.75) for sufficiently long time to assure that initial tran-
sients die out. Then we compute the root-mean-square (r.m.s.) amplitude of the re-
sulting steady state response. Comparing the steady state pitch (or heave) amplitudes
in r.m.s. with and without NES attached, we may infer partial or complete LCO sup-
pression. Partial LCO suppression can be inferred by computing the amplitude ratio
(in the pitch mode) for systems with and without NES attached, which should be
less than unity. Complete LCO suppression is inferred when this amplitude ratio
tends to zero as the steady state of the system is approached. More specifically, we
introduce the following definition for the amplitude ratio in the pitch mode,


α = Steady state pitch amplitude (rms) with NES

Steady state pitch amplitude (rms) without NES
× 100% (9.73)

and a similar expression for the heave mode
y .
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(a)  = 0.9, ε = 0.01

(b)  = 0.9, ε = 0.02

Fig. 9.44 Steady state amplitude ratio in the pitch mode, 
α for various mass ratios and reduced
speeds; the areas enclosed by the thick curves indicate parameter domains where 
α < 60%; the
r.m.s. steady state pitch amplitude for the system with no NES is 0.11 rad for = 0.9, and 0.17 rad
for  = 0.95; initial conditions are all zero except for y′(0) = 0.01.

Figure 9.44 depicts the steady state amplitude ratio in the pitch mode 
a for
mass ratios equal to ε = 0.01 and 0.02, and reduced speeds = 0.9 and 0.95. Here
we only consider the reduction in the amplitude of the pitch mode because this is
the dominant mode during the aeroelastic instability (actually, the overall amplitude
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(c)  = 0.95, ε = 0.01

(d)  = 0.95, ε = 0.02

Fig. 9.44 Continued
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Fig. 9.45 The first LCO suppression mechanism for  = 0.9, δ = 90%, ε = 1%, λ = 0.1, and
C = 10; zero initial conditions are used except for y′(0) = 0.01.

of the NES is similar to that of the pitch mode). From these numerical computations
we conclude that LCO suppression is more probable when the NES is attached far
from the elastic axis of the wing; a possible reason for this is that, for relatively
large offsets, the NES interacts efficiently with both heave and pitch modes, which
permits nonlinear energy exchanges between both modes and the NES.

Moreover, it appears that by attaching the NES aft of the elastic axis (i.e., for
δ < 0) more effective LCO suppression is realized. This can be inferred heuristically
by examining the system (9.74); indeed energy dissipation by the NES due to the
damping term ελ(y ′ − δα′ − v′) is maximized if the NES interacts with both heave
and pitch modes under condition of 1:1 resonance capture, and δ is negative. This
will be revisited in a later section where bifurcation analysis of the steady state
dynamics will be performed.

In addition, we note that if the aim is to achieve good suppression results for
increased flow speeds, we might need to consider higher mass ratios of the NES;
for example, most of the regions where instability is suppressed by about 40% for
ε = 0.01 and = 0.9 (the area enclosed by thick curves in Figure 9.44a) disappear
when the same mass ratio is used but the reduced speed is increased to  = 0.95
(see Figure 9.44c). Finally, we remark that this computational parametric study pro-
vides simple comparison of r.m.s. steady state amplitude reduction (more precisely,
of average power reduction) under a specific set of initial conditions. Hence, the
results depicted in Figure 9.44 can be only indicative of the capacity of NES for
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Fig. 9.46 The second LCO suppression mechanism for  = 0.9, δ = 90%, ε = 1%, λ = 0.2, and
C = 20; zero initial conditions are used except for y′(0) = 0.01.

LCO suppression, and in order to draw conclusions of a more general nature a more
detailed study should be performed addressing the issue of possible co-existing at-
tractors of the steady state dynamics; this is performed in a later section.

From this preliminary computational parametric study, we deduce the existence
of three dynamical mechanisms for LCO suppression, as depicted in Figures 9.45–
9.47; moreover, Figure 9.48 presents the case where the NES fails to suppress the
aeroelastic instability. By studying these preliminary numerical results, some gen-
eral conclusions can be drawn regarding the nonlinear dynamics of LCO suppres-
sion by the NES. In the first suppression mechanism (Figure 9.45) the action of the
NES yields repeated burst-outs and eliminations of aeroelastic instabilities, even-
tually leading to complete LCO suppression; the second mechanism (Figure 9.46)
results again in partial LCO suppression, but with no instability burst-outs; whereas,
the third mechanism (Figure 9.47) results in complete LCO suppression.

Apart from the phenomenological differences in the action of the NES in the
three mentioned LCO suppression mechanisms, there appear to be some common
features in the dynamics. First, the nonlinear dynamics of the NES-wing interaction
involves broadband energy exchanges in the transient (as opposed to steady state)
domain; second, it appears that the essential stiffness nonlinearity of the NES ini-
tially prevents the aeroelastic instability from growing above a certain amplitude; at
a later phase of the response, conditions for resonance capture between the aeroelas-
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Fig. 9.47 The third LCO suppression mechanism for  = 0.9, δ = 90%, ε = 1%, λ = 0.4, and
C = 40; zero initial conditions are used except for y′(0) = 0.01.

tic modes of the wing and the NES are fulfilled and passive targeted energy transfers
(TETs) from the wing to the NES take place leading to further LCO suppression.

Below we discuss separately the aforementioned three LCO suppression mech-
anisms, by post-processing the corresponding numerical time series, focusing only
in the main dynamical features, and leaving the discussion of further details to a
following section.

9.3.1.1 The First LCO Suppression Mechanism

This mechanism is characterized by a recurrent series of suppressed burst-outs of
the heave and pitch modes of the wing, leading eventually to complete suppression
of the aeroelastic instabilities. In the initial phase of transient burst-outs, a series of
developing instabilities of predominantly the heave mode is effectively suppressed
by proper transient ‘activation’ of the NES, which passively tunes itself1 to the fast
frequency of the developing aeroelastic instability; as a result, the NES engages

1 Because an NES possesses no preferential resonance frequency (due to its essential stiffness
nonlinearity), the NES can resonantly interact with any mode of the primary system to which it is
attached. By locally dissipating the absorbed energy by means of its viscous damper, it can exhibit
an escape from one resonance capture to another, engaging in resonance capture cascades (see
Section 3.5 and Kerschen et al., 2006a).
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Fig. 9.48 Case of no LCO suppression for  = 0.9, δ = 90%, ε = 2%, λ = 0.4, and C = 40;
zero initial conditions are used except for y′(0) = 0.01.

in 1:1 TRC with the heave mode, passively absorbing broadband energy from the
wing, thus eliminating the burst-out. In the latter phase of the dynamics, the energy
fed by the flow does not appear to directly excite the heave and pitch modes of the
wing, but, instead, it seems to get transferred directly to the NES until the wing is
entirely at rest and complete LCO suppression is achieved.

At the initial stage of the recurrent burst-outs, at time instants when the pitching
LCO is nearly eliminated, most of the energy induced by the flow to the wing is
absorbed directly by the NES with only a small amount of energy being transferred
to the heave mode, so that both the NES and the heave mode reach their maximum
amplitude modulations. This is followed by suppression of the burst-out, and this
process is repeated until at a later stage of the dynamics complete suppression of
the aeroelastic instability is reached. It will be shown in a later section that the
beating-like (quasi-periodic) modal interactions observed during the recurrent burst-
outs turn out to be associated with Neimark–Sacker bifurcations (Kuznetsov, 1995)
of a periodic solution of system (9.74), and to be critical for determining domains
of robust LCO suppression.
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9.3.1.2 The Second LCO Suppression Mechanism

This mechanism is characterized by intermediate or partial suppression of LCOs.
The initial action of the NES is the same as in the first suppression mechanism.
Targeted energy transfer to the NES then follows under conditions of 1:1 TRC, fol-
lowed by conditions of 1:1 SRC where both heave and pitch modes attain constant
(but non-zero) steady state amplitudes. We note that the heave mode response can
grow larger than in the corresponding system with no NES attached (exhibiting an
LCO), at the expense of suppressing the pitch mode. We also note that, in contrast
to the first suppression mechanism, the action of the NES is non-recurring in this
case, as the NES acts only during the early phase of the motion stabilizing the wing
and suppressing the developing LCO.

9.3.1.3 The Third LCO Suppression Mechanism

This mechanism is the most effective for suppressing the aeroelastic instabilities,
as it results in complete and permanent elimination of LCOs. The dynamics of the
wing-NES interaction resembles the second suppression mechanism (at least in a
phenomenological way), leading, however, to asymptotic suppression of the LCO
and possessing radically different underlying dynamics (as discussed later). Again,
transient TET from the aeroelastic modes of the wing to the NES is caused by non-
linear modal interactions during 1:1 TRCs. Both heave and pitch modes, as well
as the NES exhibit exponentially decaying responses resulting in attraction of the
dynamics to a trivial attractor. In general, for increasing reduced speeds larger NES
masses are required for the realization of this suppression mechanism and complete
elimination of LCOs.

9.3.1.4 Case of No LCO Suppression

The action of the NES is not always beneficial to the objective of LCO suppression.
Indeed, for certain combinations of system parameters, initial conditions and re-
duced flow speeds the transient dynamics of system (9.74) may be attracted to non-
trivial attractors that enhance the aeroelastic instability. This underlines the need for
a robustness study of the proposed NES designs.

It follows that the NES might have an inadverse effect on the dynamics when
it does not act as an efficient energy absorber of the oscillating wing undergoing
aeroelastic excitation. In some cases, as the representative result of Figure 9.48
shows, the steady state amplitudes of LCOs may grow even larger compared to
the corresponding system with no NES attached. Depending on the particulars of
the cases examined (system parameters, initial conditions, flow speeds) the steady
state dynamics of system (9.74) may result in superharmonic frequency relations
between aeroelastic modes. Then, similarly to the behavior observed in the LCO
triggering mechanism in the in-flow wing with no NES attached (see Section 9.2),
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the dynamics might undergo a transition from 1:1 to 3:1 locking of frequency ratios
between the heave and pitch modes; this implies the possibility of occurrence of an
initial 1:1 TRC followed by a transition to a 3:1 SRC between the heave and pitch
modes of the wing, and the generation of aeroelastic instability.

This observation suggests that in order to effectively suppress the aeroelastic
instabilities, the NES must interact with both heave and pitch modes in a way as
to prevent direct energy transfer from the flow to the wing modes through subhar-
monic and superharmonic resonance captures (similar conclusions were drawn in
Section 9.1 where LCO suppression in the van der Pol oscillator was studied).

9.3.2 Study of LCO Suppression Mechanisms

In this section, we investigate numerically and analytically the three LCO suppres-
sion mechanisms mentioned previously. First, we numerically post-process the tran-
sient responses of the wing-NES system (9.74) in order to determine the dominant
harmonic components and the underlying nonlinear resonant interactions that give
rise to TET and result in aeroelastic instability suppression. The post-processing
techniques that are employed include numerical wavelet transforms (WTs) and em-
pirical mode decompositions (EMDs) combined with Hilbert transforms (see Sec-
tion 2.5). Based on these numerical post-processing results, in the following sec-
tion we analytically study the corresponding nonlinear modal interactions by per-
forming fast-slow partitions of the transient dynamics employing complexification
and multi-frequency averaging; the resulting reduced-order slow flow model fully
capture the wing-NES nonlinear interactions, and provide a full understanding and
modeling of the three instability suppression mechanisms. Through this systematic
plan of study we aim to formulate a new paradigm for passive TET-based LCO
mitigation.

9.3.2.1 Numerical Study

We first explore the nonlinear dynamics and energetic interactions governing each
suppression mechanism by numerically computing the instantaneous energy ex-
changes between the aeroelastic modes and the attached NES of the self-excited
system (9.74). To this end, we need to define certain energy measures.

The instantaneous total energy of the wing-NES system can be expressed as a
sum of the instantaneous kinetic and potential energies of the wing and the NES as
follows:

ETotal(τ ) =
[

1

2
y ′(τ )2 + 1

2
r2
αα

′(τ )2 + xαy ′(τ )α′(τ )+ 1

2
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+
[

1

4
C (y(τ)− δα(τ)− v(τ ))4

]
(9.74)

The energy dissipated by the viscous damper of the NES is computed by the follow-
ing expression:

ENES
d (τ ) = ελ

∫ τ

0

[
v′(s)+ δα′(s)− y ′(s)

]2
ds (9.75)

whereas the energy input to the system is the sum of the initial energy provided by
the initial conditions and the non-conservative work performed by the flow

E
Input
d (τ ) = ETotal(0)+Wy

nc(τ )+Wα
nc(τ ) (9.76)

where

W
y
nc(τ ) = µCL,α 

∫ τ

0

[
y ′(s)+ α(s)]y ′(s)ds

Wα
nc(τ ) = −γµCL,α 

∫ τ

0

[
y ′(s)+ α(s)]α′(s)ds (9.77)

As a result, at any time instant the following instantaneous energy balance should
hold:

ETotal(τ ) = EInput(τ )− ENES
d (τ ) (9.78)

Figure 9.49 depicts the instantaneous energy exchanges between the two
aeroelastic modes (pitch and heave) and the NES (upper parts), and the relation
between the energy input fed from the flow to the system in time and the corre-
sponding energy dissipation by the NES (lower part), for each of the three LCO
suppression mechanisms. For comparison, the case where the LCO survives the ac-
tion of the NES (case of no suppression) is also provided. Note that the depicted
partition of total energy into each wing mode assumes that the contribution to the
potential energy of the essentially nonlinear coupling is assigned entirely to the NES
part.

The instantaneous energy exchanges depicted in Figure 9.49 demonstrate the
transient and broadband nature of the nonlinear modal interaction between the in-
flow wing and the NES. A study of these plots indicates that the first suppression
mechanism exhibits the most vivid transient energy interactions, especially between
the pitch mode and the NES (see Figure 9.49a). The form of these modal interactions
is quite similar to the corresponding energy exchanges studied in Section 3.4, where
the targeted energy transfer (TET) mechanisms were investigated for a two-DOF
system with essential stiffness nonlinearity (specifically, TET initiated by nonlinear
beat phenomena-resonance captures will be discussed later).

In a later section, we will interpret this nonlinear beating behavior in terms of
the study of steady state bifurcations, whereby it will be shown that the first LCO
suppression mechanism is due to a Neimark–Sacker bifurcation of a stable LCO
(which is analogous to a Hopf bifurcation in a codimension-one bifurcation prob-
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Fig. 9.49 Instantaneous energy exchanges (upper), and comparison of input energy to the system
fed from flow in time and corresponding energy dissipation by the NES (lower), for the three LCO
suppression mechanisms (a–c) and the case of no suppression (d); the simulations correspond to
those depicted in Figures 9.45-Ű9.48.
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Fig. 9.49 Continued.
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lem; see Guckenheimer and Holmes, 1983), yielding quasi-periodic solutions by
adding an additional dominant harmonic component in the steady state response.
Hence, variation of the total energy shows repeated burst-outs followed by suppres-
sions; eventually, the energy input from the flow to the wing EInput continuously
increases nearly at the same rate with the energy dissipated by the NES, ENES

d . At
the time instant where a complete balance between EInput and ENES

d occurs, the to-
tal energy balance becomes zero; however, small disturbances from that totally bal-
anced energetic state lead to recurring excitations of aeroelastic instabilities, and, as
a result, the alternating series of suppressions and instability burst-outs is continu-
ously repeated. Note that, although the aeroelastic instabilities cannot be completely
removed by this suppression mechanism, their corresponding amplitudes are greatly
reduced compared to those developed when the NES is absent (see Figure 9.45).

The second suppression mechanism involves initial strong modal interactions so
that a balance between energy input and dissipation of energy by the NES is quickly
reached at the initial early stage of the motion (see Figure 9.49b). This vigorous
initial energy exchange behavior resembles the mechanism of fundamental TET
mechanism (due to in-phase 1:1 resonance capture) discussed in Section 3.4.2.1.
Again, in this case small disturbances can lead to the reappearance of instabilities
but with much smaller amplitudes (see Figure 9.46). The (increasing) rates of energy
input and energy dissipation by the NES become identical when an energy balance
is reached, i.e., when the averaged trends in the energy input and NES energy dis-
sipation follow parallel but non-coinciding paths; the nearly constant steady state
difference between these energy rates makes possible the survival of aeroelastic in-
stability in this case, in the form of reduced-amplitude LCOs.

In a later section we will establish that this partial LCO suppression mechanism
is related to the generation of stable LCOs that bifurcate from a stable trivial equi-
librium in a supercritical Hopf bifurcation; however, the Hopf bifurcation point,
i.e., the flutter speed, occurs above that of the corresponding system with no NES
attached. Moreover, we will show that the robustness of the second suppression
mechanism depends on the global bifurcation structure of the steady state dynamics
of system (9.74), and that this mechanism can be destroyed under sufficiently large
disturbances to yield LCOs with amplitudes greater than those realized in the wing
with no NES attached.

As for the third LCO suppression mechanism (see Figure 9.49c), most of the total
energy of the motion apparently remains confined in the pitch mode so that the erro-
neous conclusion might be drawn that the NES does not perform efficiently in this
case. However, comparing the energy input fed by the flow to the energy dissipated
by the NES, we conclude that ENES

d increases in a manner that energy balancing
can occur only asymptotically for increasing time, thus preventing reappearance of
LCOs in the long term. In this case we can obtain complete elimination of LCOs
in a robust way, depending on the global bifurcation structure of the steady state
dynamics, as discussed later.

Figure 9.49d depicts the energy exchanges for a case where the LCO survives the
action of the NES. Initially, there occur vigorous modal energy exchanges, but these
involve predominantly interactions between the heave and pitch modes, with only
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secondary involvement of the NES. This means that the action of the NES is not as
effective as in the previous three cases; as a result, the NES fails to prevent energy
interactions between the heave and pitch modes. Moreover, the energy dissipation
by the NES is not sufficiently strong to balance the energy input fed from the flow,
which ‘feeds’ directly into the modes of the wing inducing aeroelastic instability.
As a result, the LCOs are not only retained in this case, but their amplitudes become
even larger than those realized in the wing with no NES attached (see Figure 9.48).
Note that at steady state the NES continuously dissipates energy at a constant rate,
which is nearly equal to the average rate of increase of the energy input from the
flow. This behavior is similar to the second suppression mechanism except for the
magnitude of the uniform differences between the two averaged dissipation rates.

We now examine the time-frequency behavior of the transient responses by uti-
lizing the numerical wavelet transform (WT). In Figure 9.50 we present the WT
spectra corresponding to the transient responses of Figures 9.45–9.48, i.e., the three
instability suppression mechanisms and the additional case of no suppression. Com-
paring the evolutions of the dominant instantaneous frequencies of the heave and
pitch mode responses and of the NES response, provides an additional (direct) way
to verify the occurrence of resonance captures in the transient dynamics.

First, we focus in cases where partial or complete instability suppression is
realized, corresponding to Figures 9.45–9.47. The WT spectra depicted in Fig-
ures 9.50a–c indicate that primarily there occur 1:1 TRCs between the NES and
the heave mode; in addition, there occur 1:1 TRCs followed by transitions to sub-
harmonic resonance captures between the NES and the pitch mode. Moreover, there
exists a common strong harmonic component in these plots at a frequency near the
natural frequency of the pitch modeω ≈ 1. Indirectly, the WT spectra suggest that in
the study of all three suppression mechanisms one may utilize a reduced-order aver-
aged model possessing two fast frequencies, since at most two dominant frequency
components appear in the transient responses governing the resonance interactions
between modes; that is, in all cases considered, the responses are dominated by two
frequency components with frequencies ωh ≈ � = 0.5 and ωα ≈ 1 (i.e., the lin-
earized eigenfrequencies of the heave and pitch modes, respectively). We will make
use of this important finding in the next section, in our analytical study of the LCO
suppression mechanisms.

Focusing now on Figures 9.48 and 9.50d where no LCO suppression takes place,
we make the additional remark that when the LCO survives the action of the NES,
the interaction between the heave and pitch modes completely resembles the behav-
ior of the LCO triggering mechanism studied in Section 9.2. That is, there occurs
a transition from an initial 1:1 TRC to a 3:1 SRC. Moreover, in this case, the NES
possesses a higher superharmonic component, so that its dynamic interaction with
the pitch mode also involves a transition from a 1:1 TRC to 3:1 SRC. It follows that
in this case the resonance interactions between the various modes of the wing-NES
assembly are qualitatively different than those taking place in the three cases where
LCO suppression is realized.

Combining the results of Figures 9.49 and 9.50, we may construct the frequency-
energy plot (FEP) of the transient dynamics of system (9.74), which, as shown in
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Fig. 9.50 Wavelet transform spectra of transient responses: (a–c) the three suppression mecha-
nisms depicted in Figures 9.45-Ű9.47, respectively; (d) the case of no suppression depicted in
Figure 9.48.
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Fig. 9.50 Continued.
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previous chapters, can be a useful tool for identifying the essential nonlinear modal
interactions and presenting the damped transitions that occur in the dynamics (in-
cluding 1:1 TRCs, subharmonic and superharmonic TRCs, and escapes from these
regimes). In Section 3.3 the FEP for a Hamiltonian system composed of a SDOF lin-
ear oscillator with an essentially nonlinear lightweight attachment was computed,
and it was shown that such a simple system possesses very complicated dynam-
ics, including a countable infinity of subharmonic tongues. For the corresponding
weakly damped system the Hamiltonian FEP was also utilized in conjunction with
WT spectra of damped transient responses to study alternative mechanisms for TET
(see Section 3.4). Similar use of the FEP was made in other chapters of this mono-
graph for MDOF linear oscillators with SDOF or MDOF essentially nonlinear at-
tachments, as well as for the case of a self-excited system, namely, the van der Pol
oscillator with an attached NES (see Section 9.1).

However, unlike the above-mentioned cases, the definition of an FEP describing
the topological structure of the periodic or quasi-periodic orbits of the underlying
Hamiltonian system becomes difficult in the current problem (9.74). This is mainly
due to the aeroelastic terms that provide non-conservative work to the system and
change the intrinsic eigenfrequencies (and the total energy of the system) of the
system when the flow speed varies. Hence, we propose an alternative way of con-
structing the FEP for aeroelastic systems based on the bifurcation structures of their
steady state LCO solutions, obtained either numerically (utilizing a numerical con-
tinuation technique) or analytically (employing multi-phase averaging or harmonic
balance).

We demonstrate the construction of the FEP for system (9.74) by considering the
steady state LCOs for parameters δ = 90%, ε = 1%, λ = 0.1, and C = 10.0 (cor-
responding to transient responses shown in Figure 9.45). In Figure 9.51a we depict
the bifurcation diagrams of system (9.74) with respect to the reduced velocity  .
The stable LCOs generated at  =  H become unstable at =  NS, yielding new
periodic components that amount to quasi-periodic motions realized on two-tori in
phase space. The resulting branch of quasi-periodic motions is closely associated
with the first LCO suppression mechanism (see Figure 9.45). In addition, the peri-
ods of the LCOs, TLCO, are computed when performing the numerical continuation
of the branches of LCOs (these are depicted as functions of  in the upper plot of
Figure 9.51b); it follows that the corresponding frequencies of these LCOs can be
computed as ωLCO = 2π/TLCO, and are depicted as functions of in the lower plot
of Figure 9.51b. It is noted that this numerical method may not provide information
regarding the existence of multiple frequencies in the computed responses, if any,
since it only provides the dominant frequency of the LCO. On the other hand, we
already practiced computing the total energy of the system; in Figure 9.51c we de-
pict the mean value of the total energy of the system as function of reduced speed
 . We note that the instantaneous total energy of the system is expected to oscil-
late about this mean value due to nonlinear modal interactions (resonance captures
– see Figure 9.49). Finally, combining the lower plot of Figure 9.51b with the plot
of Figure 9.51c we compute the FEP shown in Figure 9.51d. By construction, the
FEP is parameterized by the reduced speed , and represents the averaged dominant
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Fig. 9.51 Construction of the frequency-energy plot (FEP) of LCOs of system (9.74) for δ = 0.9,
ε = 0.01, λ = 0.1, and C = 10: (a) bifurcation diagrams of LCO amplitudes with respect to
 ; (b) LCO periods and frequencies as functions of  ; H, NS, and LPC denote Hopf, Neimark–
Sacker, and Limit Point Cycle bifurcations, respectively; solid line indicates stability, dashed line
instability, and dash-dotted quasi-periodic solutions.
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Fig. 9.51 Construction of the frequency-energy plot (FEP) of LCOs of system (9.74) for δ = 0.9,
ε = 0.01, λ = 0.1, and C = 10: (c) total energies of the system when LCOs occur as functions
of  ; (d) FEP for LCO solutions; H, NS, and LPC denote Hopf, Neimark–Sacker, and Limit Point
Cycle bifurcations, respectively; solid line indicates stability, dashed line instability, and dash-
dotted quasi-periodic solutions.
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frequencies of LCOs as functions of the corresponding total energies of the system
(9.74).

We are now in a position to examine the three LCO suppression mechanisms
by means of representations of the dynamics on appropriately defined FEPs, as de-
picted in the plots of Figure 9.52. To this end, the instantaneous frequencies of the
modal responses were computed by applying numerical Hilbert transforms to the
transient responses corresponding to the three LCO suppression mechanisms repre-
sented in Figures 9.45–9.47. In addition we apply numerical wavelet transform to
the transient responses for the case when the LCO survives the action of the NES, as
depicted in Figure 9.48. The traces of the instantaneous frequencies are then plotted
against the corresponding instantaneous total energies of the system, with time being
the parametrizing variable. Finally, these traces are superimposed to the FEP corre-
sponding to the system parameters of the specific case considered. In computing the
instantaneous frequencies, we applied the Savitzky–Golay polynomial smoothing
filter in order to remove high-frequency noise caused by numerical differentiation
of the phase variable.

A general conclusion is that nonlinear modal interactions between the heave and
pitch modes are realized mainly through 1:1 resonance captures whether or not LCO
suppression is realized. The first LCO suppression mechanism (depicted in Fig-
ure 9.52a and corresponding to the numerical simulation depicted in Figure 9.45) is
characterized by repeated loops of the instantaneous frequencies with time, corre-
sponding to the recurrent burst-outs and suppressions of aeroelastic instability; these
loops consist of transitions from 1:1 to subharmonic TRCs (suppression stage), and
then reversals back to 1:1 TRCs (burst-out stage). Reflecting the intrinsic LCO so-
lutions depicted in the FEP, we find the following interesting behavior influencing
the first suppression mechanism: Once the dynamics exceeds the Neimark–Sacker
(NS) bifurcation point  NS = 0.89 (note that the instantaneous frequency plot of
Figure 9.52a corresponds to the flow speed  = 0.9 >  NS) the only choice for
the dynamics is to follow the unstable LCO branches which might yield either peri-
odic or quasi-periodic steady state motions, as the heave and pitch modes are in 1:1
TRC (see Figure 9.51d). Hence, the dynamics can only be captured into loops that
lead to transitions into subharmonic resonances. These repetitions (bursting outs and
consequent suppressions) characterize the first suppression mechanism.

In the second LCO suppression mechanism depicted in Figure 9.52b intermedi-
ate (partial) suppression of the LCO occurs, and the dynamics on the FEP forms a
single loop involving a single transition from 1:1 to subharmonic resonance capture,
with a final reversal back to 1:1 SRC when the steady state dynamics is reached. The
plots of Figure 9.52b correspond to the transient responses and system parameters
of the plots of Figure 9.46, again for flow speed  = 0.9 >  NS. On the con-
trary, complete LCO elimination (the third suppression mechanism – Figure 9.47)
involves 1:1 TRCs before the dynamics escapes from resonance, at which point the
NES has completely exhausted the energy input fed by the flow to the wing (see
Figure 9.52c).

Finally, we note a transition from 1:1 to superharmonic resonance capture be-
tween the NES and the aeroelastic modes when the LCOs survive the action of the
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Fig. 9.52 Instantaneous frequencies superimposed to FEPs of LCOs of the corresponding systems:
(a, b) LCO suppression mechanisms corresponding to Figures 9.45–9.47 (thin solid lines); H, NS,
and LPC denote Hopf, Neimark–Sacker, and Limit Point Cycle bifurcations, respectively, of the
FEPs of LCOs; bold solid line indicates stable LCOs, dashed line unstable LCOs, and dash-dotted
line quasi-periodic solutions.
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Fig. 9.52 Instantaneous frequencies superimposed to FEPs of LCOs of the corresponding systems:
(c) LCO suppression mechanisms corresponding to Figures 9.45–9.47 (thin solid lines); (d) no
suppression corresponding to Figure 9.48 (WT spectra); H, NS, and LPC denote Hopf, Neimark–
Sacker, and Limit Point Cycle bifurcations, respectively, of the FEPs of LCOs; bold solid line
indicates stable LCOs, dashed line unstable LCOs, and dash-dotted line quasi-periodic solutions.
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NES (Figure 9.52d – the plot corresponds to the time responses and system para-
meters depicted in Figure 9.47). Comparing the plots of Figures 9.52c and 9.52d
(corresponding to the same system parameters but different NES mass ratios), we
conclude that whether or not the LCOs are suppressed depends on the state of the
dynamics of the system when 1:1 resonance capture occurs. That is, in Figure 9.52c
where complete LCO suppression occurs, the dynamics is captured into the domain
of attraction of the stable LCO branch at a lower energy regime; whereas, in Fig-
ure 9.52d where LCO suppression fails, the dynamics is entrapped in the domain
of attraction of the stable LCO branch formed at a higher energy regime and in-
volving superharmonic SRCs between the NES and the aeroelastic modes that yield
large-amplitude LCOs.

In conclusion, we studied frequency-energy representations of the transient dy-
namics of system (9.74) superimposed on appropriately defined FEPs of LCOs. The
first LCO suppression mechanism exhibits escapes near the NS bifurcation point
that drives the dynamics into regimes of quasi-periodic responses; the second sup-
pression mechanism drives the dynamics to a stable steady state (LCO) correspond-
ing to the reduced velocity (and energy) of the system (i.e.,  = 0.9 ≤  NS =
0.905 in Figure 9.52b). Moreover, the same system parameter values (i.e., the same
underlying FEP of LCOs) can yield drastically different LCO suppression results,
depending on the specific energy values (or reduced flow speeds) where the resonant
interaction phenomena between the flow and the wing modes occur; this last obser-
vation raises the issue of robustness of LCO suppression which will be addressed in
a later section. These concluding remarks underline the importance of designing the
initial entrapment of the wing – NES dynamics into the proper resonance manifolds
in order to achieve efficient and robust LCO suppression.

To numerically prove that the basic underlying dynamical mechanism for TET-
based aeroelastic instability suppression is a series of resonance captures of the
wing – NES dynamics, we analyze the dynamics by empirical mode decomposition
(EMD). By computing the IMFs of the transient responses we express the heave,
pitch, and NES responses as,

y(t) =
N1∑
i=1

ci(τ ), α(t) =
N2∑
i=1

ci(τ ), v(t) =
N3∑
i=1

ci(τ ) (9.79)

where the i-th (complex) IMF, ci(τ ), for each response is Hilbert-transformed and
expressed in polar form as, ci(τ ) = ai(τ )e

jθi(τ ). The amplitude ai(τ ) and phase
θi(τ ) can be computed from the analytic signal, zi(τ ) = ci(τ )+j HT [ci(τ )], where
HT [ci(τ )] denotes the Hilbert transform of ci(τ ):

ai(τ ) =
√
ci(τ )2 + HT [ci(τ )]2 (9.80)

θi(τ ) = tan−1 HT [ci(τ )]
ci(τ )

(9.81)
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If follows that the instantaneous frequency of the i-th IMF can be computed by the
expression:

ωi(τ ) = dθi(τ )

dτ
(9.82)

To demonstrate the application of EMD in the problem of identification of the
nonlinear modal interactions in the in-flow wing-NES dynamics, we will consider
only the first LCO suppression mechanism studied in Figures 9.45, 9.49a, 9.50a and
9.52a. We wish to numerically prove that this mechanism is governed by a recur-
rent series of resonance captures, escapes and transitions to recaptures. In the next
section, these numerical results will be compared to, and verified with analytical
models. The other two LCO suppression mechanisms can be analyzed by applying
a similar methodology so they will not be considered herein.

Figure 9.53 depicts the IMFs of the heave, pitch and NES transient responses
shown in Figure 9.45. The value on the upper right part of each plot represents the
maximum amplitude of the corresponding IMF, so we conclude that the leading-
order IMF of each of the analyzed responses is the dominant oscillatory component
in that specific time series. The plots of Figure 9.54a depict a comparison of the
three leading-order (dominant) IMFs of each response with the corresponding exact
time series from Figure 9.45. We observe satisfactory match between them, except
for an initial period where the end effects of the EMD process pollute the data,
and for some lower-frequency intervals where higher-order IMFs may possess en-
hanced contributions in the responses. This confirms that the leading-order IMFs in
Figure 9.53 are dominant and capture the essential dynamics of the transient inter-
actions.

Let θi , i = 1, 2, 3, [computed by relation (??)��Author, no eq. (9.81) in origi-
nal manuscript, what should correct eq. number be?��] be the phases of the three
aforementioned dominant IMFs of the heave and pitch modes, and the NES, respec-
tively. Then, θ12 ≡ θ1 − θ2 denotes the corresponding phase difference between the
heave and pitch modes; θ13 ≡ θ1 −θ3, the phase difference between the heave mode
and the NES; and θ23 ≡ θ2 − θ3, the phase difference between the pitch mode and
the NES. Figure 9.54b depicts the temporal evolutions of the instantaneous phase
differences, θ12, θ13, θ23. If a phase difference exhibits monotonically increasing
or decreasing temporal behavior, it is considered to be time-like; otherwise, it is
regarded as non-time-like phase difference. For example, a constant or oscillatory
phase difference with zero mean is considered to be non-time-like.

Following the averaging arguments discussed in Section 2.4, if a phase differ-
ence is time-like, it can be considered to be a ‘fast’ phase of the dynamics, and, as a
result, it may be removed from the dynamics (as non-essential) by simply averaging
it out of the problem; in other words, this phase difference will negligibly influence
the slow flow dynamics of the system after averaging and its contribution will not be
considered as essential in the corresponding time window of the dynamics. On the
other hand, if a phase difference is non-time-like, it may not be averaged out of the
dynamics (as it cannot be regarded as ‘fast’ phase), and is expected to influence the
slow (essential) dynamics of the system in the specific time interval of the analysis.
In the latter case there occurs resonance capture and TET, as the dynamics is cap-
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Fig. 9.53 Intrinsic mode functions (IMFs) of the transient responses depicted in Figure 9.45 (first
LCO suppression mechanism) computed by EMD: (a) heave mode; (b) pitch mode; the value
shown on the upper right of each IMF plot indicates the maximum amplitude of that IMF.
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Fig. 9.53 Intrinsic mode functions (IMFs) of the transient responses depicted in Figure 9.45 (first
LCO suppression mechanism) computed by EMD: (c) NES; the value shown on the upper right of
each IMF plot indicates the maximum amplitude of that IMF.

tured transiently in the corresponding resonance manifold (Arnold, 1988) defined
by an integral relation between the instantaneous frequencies of the corresponding
IMFs.

From Figures 9.54b, c, we note that there exist three time intervals where non-
time-like behavior of certain phase differences occurs, namely, for τ ∈ [20, 60], τ ∈
[110, 400] and τ ∈ [490, 700]. In these time intervals 1:1 TRCs occur (as evidenced
by the instantaneous frequency plots, θ ′

i , i = 1, 2, 3, of Figure 9.54d), appearing as
spirals in the corresponding phase portraits of Figure 9.54c. We note that not only do
1:1 TRCs occur between the heave mode and the NES, and between the pitch mode
and the NES, but also between the heave and pitch modes, exactly as in the case
of the LCO triggering mechanism (see Section 9.2). In between these recurring 1:1
TRCs the dynamics engage in subharmonic TRCs, which correspond to the loops
in the FEPs depicted in Figure 9.52a. These results confirm the conclusions drawn
earlier regarding the dynamics governing the first LCO suppression mechanism.
Moreover, this analysis can be extended to the other two suppression mechanisms
discussed previously.
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Fig. 9.54 EMD analysis of the transient responses of Figure 9.45 (first LCO) suppression mech-
anism: (a) dominant IMFs compared to the exact responses; (b) phase differences between the
dominant IMFs of the NES and aeroelastic mode responses.
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Fig. 9.54 EMD analysis of the transient responses of Figure 9.45 (first LCO) suppression mech-
anism: (c) phase differences between the dominant IMFs of the NES and aeroelastic mode re-
sponses; (d) corresponding instantaneous frequencies of the dominant IMFs.
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9.3.2.2 Analytical Study

In the previous section, we found numerically that LCO suppression in the wing
under consideration is due to a series of 1:1 or subharmonic resonance captures
between the pitch and heave modes and the attached NES. In this section, we ana-
lytically prove this result by constructing and analyzing slow flow analytical models
using the CX-A technique (see Section 2.4). We will focus only in the first LCO
suppression mechanism, as the analysis can be extended similarly to study the other
two suppression mechanisms.

Based on the WT spectra depicted in Figure 9.50a, we conclude that there exist
two dominant (‘fast’) frequencies in the dynamics at normalized frequencies equal
to unity and � = 0.5, corresponding to the two normalized linearized eigenfre-
quencies ωh and ωa of the pitch and heave modes, respectively. For notational con-
venience we designate these components as LF (lower-frequency) and MF (middle-
frequency) components, respectively, since this is consistent to the notation intro-
duced in previous sections. There are some additional superharmonic frequency
components (realized in between the recurrent 1:1 TRCs), but these will be ne-
glected from the model as non-dominant.

Accordingly, following the multi-frequency CX-A methodology we will express
the heave, pitch and NES transient responses as follows:

y(τ) = y1(τ )+ y2(τ )

a(τ ) = a1(τ )+ a2(τ )

v(τ ) = v1(τ )+ v2(τ ) (9.83)

where the notation of the previous sections was employed, and the components with
subscripts 1 and 2 correspond to slowly varying modulations of the fast frequency
components ej�τ and ejτ , respectively. In essence, these representations are slow-
fast, multi-frequency decompositions of the transient responses, with the fast fre-
quencies determined by the dominant harmonic components identified by the WT
spectra of Figure 9.50a (in this case two fast frequencies).

Introducing the new complex variables,

ψ1 = y ′
1 + j�y1 ≡ ϕ1e

j�τ , ψ3 = y ′
2 + jy2 ≡ ϕ3e

jτ

ψ2 = α′
1 + j�α1 ≡ ϕ2e

j�τ , ψ4 = α′
2 + jα2 ≡ ϕ4e

jτ

ψ5 = v′
1 + j�v1 ≡ ϕ5e

j�τ , ψ6 = v′
2 + jv2 ≡ ϕ6e

jτ (9.84)

expressing the normalized equations of motion (9.74) in terms of the complex vari-
ables, and applying two-frequency averaging over the two fast components ej�τ

and ejτ , we obtain a set of six complex-valued modulation equations governing the
slow flow dynamics,

ϕ′ = F(ϕ) (9.85)
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where ϕ ∈ C6 and the complex-valued vector F(ϕ) is quite involved and is not
explicitly reproduced here.

Introducing the polar form decompositions of the slow modulations, ϕi(τ ) =
ai(τ ) e

jbi(τ ), ai(τ ), , bi(τ ) ∈ R, i = 1, . . . , 6, we express (9.85) as a set of 12
(real-valued) autonomous modulation equations governing the slow evolutions of
the amplitudes and phases,

a′ = f (a, φ), φ′ = g(a, φ) (9.86)

where a ∈ R+6 and φ ∈ S6. The slowly-varying amplitudes a1 and a3 (a2 and a4;
a5 and a6) are LF and MF slowly varying amplitudes, respectively, of the heave
(pitch; NES) mode. The phase angle vector φ in (9.86) possesses the components,
φ12 ≡ b1−b2 (phase difference between LF heave and LF pitch), φ34 ≡ b3−b4 (MF
heave – MF pitch), φ15 ≡ b1 − b5 (LF heave – LF NES), φ25 ≡ b2 − b5 (LF pitch
– LF NES), φ36 ≡ b3 − b6 (MF heave – MF NES) and φ46 ≡ b4 − b6 (MF pitch
– MF NES). We note that all independent phase interactions occur between same
frequency components (LF-LF or MF-MF), and that all other phase interactions can
be expressed in terms of the aforementioned six independent phase differences.

Comparisons of the transient responses predicted by the slow flow (9.85–9.86)
and the exact responses resulting by direct numerical simulations of system (9.74)
are depicted in Figure 9.55a, and demonstrate the validity of the slow flow model.
Except for very low-frequency variations in the NES response, the slow flow model
shows good overall match with the exact transient dynamics. The discrepancies may
be improved if we employ additional fast frequency components in the ansatz (9.83–
9.84). That is, recalling that the dominant instantaneous normalized frequency in
Figure 9.54d is approximately equal to ω ≈0.85 in the regimes of 1:1 TRCs, we con-
jecture that single-frequency averaging with respect to that ‘fast’ frequency might
be sufficient to capture the important (slow flow) dynamics of the system; nonethe-
less, special care must be taken when applying single-frequency averaging as the
fast frequencies are expected to vary with respect to the flow speed. In fact, some
efforts have been made recently to establish sufficiently reasonable slow flow mod-
els by utilizing EMD and WTs, showing that multi-frequency averaging is basically
equivalent to applying EMD (Kerschen et al., 2006b).

From the evolutions of the amplitude components in Figure 9.55b, we verify that
the MF components are the dominant ones in the first LCO suppression mechanism;
this result is consistent with the WT results depicted in Figure 9.50a. Moreover, sim-
ilar resonance captures followed by escapes to the ones depicted in Figures 9.55c,
d were observed in the numerical EMD results presented in Figures 9.54b–d. An
additional interesting remark regarding the first LCO suppression mechanism is that
the resonance captures between the heave and pitch modes (characterized by the
phase angles φ12 and φ34) occur ahead of those between the heave mode and the
NES (phase angles φ15 and φ36), or those between the pitch mode and the NES
(phase angles φ25 and φ46). This implies that in the first LCO suppression mecha-
nism there occur nonlinear modal energy exchanges between the heave and pitch
modes (i.e., the triggering mechanism for the LCO is activated – see Section 9.2)
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Fig. 9.55 CX-A analysis of the first LCO suppression mechanism shown in Figure 9.45: (a) com-
parison of analytical and numerical responses; (b–d) instantaneous amplitudes and phase interac-
tions of the slow flow model (9.86).
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Fig. 9.55 Continued
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before TET from the aeroelastic modes to the NES (with the ensuing instability sup-
pression) occurs; this early occurrence of RCs between the heave and pitch modes
‘activating’ the LCO triggering mechanism makes the repetition of suppressions and
burst-outs in the first suppression mechanism possible. Moreover, this suggests that
for more efficient (and robust) suppression of LCOs, the NES should interact with
the aeroelastic modes before energy transfers between these modes are realized,
thus preventing the activation of the triggering mechanism for LCO instability.

The results of Figure 9.56 depicting the phase interactions of the transient re-
sponses of Figure 9.47 corresponding to the third LCO suppression mechanism (re-
sulting in complete LCO elimination) support this argument. Note that in this case
the energy transfer from the pitch mode to the NES occurs almost simultaneously
with the triggering of the pitch from the heave mode, leading to complete elimina-
tion of the aeroelastic instability.

9.3.3 Robustness of LCO Suppression

We now investigate the robustness, i.e., the dependence on initial conditions and
changes on flow speeds, of the identified aeroelastic instability suppression mech-
anisms. We will perform this study by means of steady state bifurcation analysis
of the dynamics of system (9.74) utilizing the method of numerical continuation of
equilibrium and periodic solutions. This bifurcation analysis will examine the pos-
sibility of co-existence of stable attractors in the dynamics and will determine the
parameter ranges where the dynamics of the system is attracted to steady state so-
lutions that are favorable to the LCO suppression objective. In the process we will
explore the effect of offset distance δ on LCO suppression, and confirm the numeri-
cal finding that negative offsets generally appear to cause more robust and effective
LCO suppression results. From here on, by ‘positive’ or ‘negative’ attachment, we
will mean that the NES is connected to the wing ahead or aft of the elastic axis,
respectively (that is, closer to the nose or tail of the in-flow wing). The global bifur-
cation structure of the dynamics will eventually reveal how the previously discussed
three LCO suppression mechanisms are related to bifurcations of steady state so-
lutions. This study will provide hints for NES designs that result in efficient and
robust aeroelastic suppression.

The results depicted in Figure 9.57 indicate that in some cases strong distur-
bances may eliminate LCO suppression, that is, LCO suppression may be achieved
at certain energy levels but not at others. Indeed, as shown in Figure 9.57 by increas-
ing the non-zero initial condition y ′(0) by a factor of ten compared to the value used
for demonstrating the first LCO suppression mechanism in Figure 9.45, we may
completely eliminate this LCO suppression mechanism yielding larger-amplitude
LCO compared to the system with no NES attached. Hence, the issue of robust-
ness of LCO suppression is raised with respect to the effects of changes in initial
conditions or the flow speed with the other system parameters remaining fixed.
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Fig. 9.56 EMD analysis of the third suppression mechanism shown in Figure 9.47: (a) phase inter-
actions θij ≡ θi − θj computed by the Hilbert transform of the dominant IMFs; (b) instantaneous
frequencies θ ′

i .
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Fig. 9.57 Breakdown of the first suppression mechanism to form a largeramplitude LCO compared
to the system with no NES attached; system parameters and initial conditions are identical to those
used for the plots of Figure 9.45, except for y′(0) = 0.1.

In Figure 9.58 the reduction in the steady state r.m.s. pitch amplitude
α [defined
by relation (9.76)] with respect to the set of initial conditions {y(0) = 0, α(0) =
0, y ′(0) ∈ [0, 0.1], α′(0) ∈ [0, 0.1]} and various values of the system parameters
is computed. For these computations we performed direct numerical simulations of
the normalized equations of motion (9.74). Generally, it appears that the reduction
of the steady state pitch amplitude due to the action of the NES does not depend in
an essential way on the initial pitching velocity. Moreover, for a fixed flow speed
increasing the mass ratio and damping broadens the domain of initial conditions
where complete elimination or significant reduction of the amplitudes of LCOs oc-
curs. On the contrary, for fixed mass ratio and damping increasing the flow speed
can eliminate or significantly reduce the domain where LCO suppression occurs.
It will turn out in the later part of this section that robustness of LCO suppression
with respect to the initial conditions is highly dependent on the global bifurcation
structure of the steady state dynamics of the system.

Robustness of LCO suppression with respect to variations of the flow speed also
depends on the global features of the steady state dynamics. Figure 9.59 depicts bi-
furcation diagrams of peak-to-peak steady state amplitudes of system (9.74) against
the reduced flow speed  , when the flow speed increases slowly with acceleration
rate  ′(τ ) = 10−5. For fixed mass ratio, damping and nonlinear coupling stiffness,
the effects of positive or negative offsets δ are compared in Figures 9.59a, b. For a
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Fig. 9.58 The steady state r.m.s. pitch amplitude ratio 
α , with respect to the set of initial condi-
tions {y(0) = 0, α(0) = 0, y′(0) ∈ [0, 0.1], α′(0) ∈ [0, 0.1]}, δ = 0.9 and: (a)  = 0.9, ε = 0.01,
λ = 0.2, and C = 30; (b)  = 0.9, ε = 0.02, λ = 0.4, and C = 10.
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Fig. 9.58 The steady state r.m.s. pitch amplitude ratio 
α , with respect to the set of initial con-
ditions {y(0) = 0, α(0) = 0, y′(0) ∈ [0, 0.1], α′(0) ∈ [0, 0.1]}, δ = 0.9 and: (c)  = 0.95,
ε = 0.01, λ = 0.2, and C = 30; (d)  = 0.95, ε = 0.02, λ = 0.4, and C = 10.
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Fig. 9.59 Bifurcation diagrams depicting peak-to-peak steady state amplitudes with respect to the
reduced speed  , for a slowly accelerating flow, d /dτ = 10−5 and ε = 0.02, λ = 0.4, C = 10:
(a) δ = 0.9 and (b) δ = −0.9.
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specific value of reduced flow speed , a single point in a bifurcation plot implies ei-
ther a stable trivial equilibrium or a stable LCO; and multiple points in a bifurcation
plot imply a quasi-periodic orbit or an unstable LCO. Basically, this methodology
is analogous to a frequency-sweeping method when performing modal testing of a
structure. We note that although system (9.74) is derived under the assumption of
fixed reduced flow speed  , the bifurcation results for slowly varying  are still
expected to approximate the true dynamics of the system for | ′| 	 1.

In general, increasing the flow speed  delays the occurrence of the Hopf bifur-
cation that generates the aeroelastic instability (the stable LCOs), for both ‘positive’
and ‘negative’ attachments. An increase of  causes a sudden transition of the dy-
namics to a stable LCO, which implies that there exists a LPC (limit point cycle)
bifurcation at the point of transition; the LPC bifurcation is analogous to the saddle-
node bifurcation of equilibrium points. We note that for a ‘negative’ attachment
(δ = −90%, Figure 9.59b) quasi-periodicity occurs before the transition. Later, we
will verify that this quasi-periodicity is generated through a NS (Neimark–Sacker)
bifurcation of a periodic solution which is analogous to the Hopf bifurcation of
an equilibrium point. For a ‘positive’ NES attachment (δ = 90%, Figure 9.59a),
the LCOs after the transition from the stable equilibrium possess larger amplitudes
compared to the system with no NES attached.

Decreasing the reduced flow speed reveals the clear difference in the steady
state dynamics for systems with ‘positive’ and ‘negative’ attachments. In both cases
there exist branches of unstable periodic solutions connecting the upper and lower
branches of steady state solutions; in addition, jumps to stable equilibrium posi-
tions occur, implying that there exist ‘inverse’ LPC bifurcations. Whereas the ‘neg-
ative’ attachment induces a transition of the steady state dynamics close to the Hopf
bifurcation point (but above the critical flutter speed  F of the system with no
NES attached), the ‘positive’ attachment induces a similar transition at a flow speed
even less than the flutter speed  F . In the latter case the NES clearly introduces
additional instability to the system, since small disturbances may generate large-
amplitude LCOs at flow speeds in ranges of  where only stable trivial equilibrium
points exist in the system with no NES attached.

To perform a further study of robustness of LCO suppression by means of the
bifurcation structure of the steady state dynamics of system (9.74) we employ a
numerical continuation method based on MATCONT (Dhooge et al., 2003). Fig-
ure 9.60 presents bifurcation diagrams depicting the steady state pitch amplitude
|α| against damping λ and offset δ, for fixed mass ratios ε = 0.01, 0.02, and fixed
reduced flow speed  = 0.9 and nonlinear coefficient C = 10. The contour plots
for
α extracted from Figure 9.44 are incorporated into the bifurcation diagrams to
help the visualization of the steady state amplitudes. We note that by the definition
of the normalized offset, only the range −1 ≤ δ ≤ 1 is permissible, although in
order to provide a complete picture of the steady state dynamics we allowed values
of δ outside this range.

Figure 9.60a depicts the bifurcation structure of steady state dynamics for the
smaller mass ratio ε = 0.01; the corresponding bifurcation diagrams for two spe-
cific damping values are depicted in Figure 9.61a (these may be regarded as two-
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dimensional ‘slices’ for fixed damping of the three-dimensional bifurcation diagram
of Figure 9.60a). Note that, due to the required computational complexity of the bi-
furcation study, the stable large-amplitude LCOs (which are comparable to the cor-
responding LCOs of the system with no NES attached) are not displayed in these
plots. The Hopf bifurcation curves are realized at offsets with absolute values greater
than unity, which suggests that we cannot achieve complete elimination of aeroelas-
tic instabilities (the third LCO suppression mechanism) within the ranges of system
parameters considered in these diagrams. Moreover, the presence of stable large-
amplitude LCOs implies that it is not possible to achieve robust suppression of LCOs
in this case. However, the first and second LCO suppression mechanisms can be re-
alized in the ‘permissible’ range −1 ≤ δ ≤ 1, although a disturbance can eliminate
LCO suppression and give rise to the stable large-amplitude LCOs and aeroelastic
instability. Moreover, weaker damping tends to induce more complicated dynamics
(see, for example, the lower plot of Figure 9.61a).

The steady state bifurcation structure for the larger mass ratio ε = 0.02 is pre-
sented in Figure 9.60b and two ‘slices’ corresponding to fixed damping values are
depicted in Figure 9.61b. As in the case of smaller mass ratio, larger damping values
tend to eliminate complicated dynamic behavior. Using these bifurcation diagrams
we are in the position to explain the three LCO suppression mechanisms; we will
discuss this only for the case of ‘positive’ attachment, since similar arguments hold
for ‘negative’ attachments.

Studying the bifurcation diagrams of Figures 9.60b and 9.61b we conclude that
for the larger mass ratio and for a certain range of damping the third LCO suppres-
sion mechanism (complete elimination of LCOs) can be realized for offsets greater
in magnitude than the offsets corresponding to the Hopf bifurcation points but less
than unity; moreover, in this case the complete suppression of the LCO is robust,
since the bifurcation diagrams in this case provide information on the global dy-
namics of system (9.74) (that is, in contrast to the plots of Figures 9.60a and 9.61a
they include also the large-amplitude LCOs), so there are no other stable attractors
to ‘compete’ with the ones depicted in the bifurcation diagrams. For example, the
third LCO mechanism is realized in the intervals �1 and �2 in the upper plot of
Figure 9.61b for the system with ε = 0.02.

At offset values where the only attractors of the steady state dynamics are quasi-
periodic LCOs the second LCO suppression mechanism is realized, which is also
robust in this case; this holds, for example in the offset intervals �1 and �2 in the
lower plot of Figure 9.61b. Noting that the NS bifurcation implies the generation
of a new periodic solution (LCO), one can draw the conclusion that quasi-periodic
behavior is the norm in the first suppression mechanism, interrupted, however, by
instances of periodic motions when the frequency of the new periodic solution is
in rational relation to the frequency of the pre-existing periodic orbit. Decreasing
damping tends to increase the interval where the first LCO suppression mechanism
is realized. For sufficiently large values of damping, one cannot observe the occur-
rence of the first suppression mechanism due to the strong dissipation effects in the
steady state dynamics. Clearly, at offset intervals where stable LCOs exist, either the
second LCO mechanism is realized (for low-amplitude LCOs), or no suppression is
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Fig. 9.60 Steady state bifurcation diagrams with respect to δ and λ for  = 0.9 and C = 10:
(a) ε = 0.01 and (b) ε = 0.02; solid lines indicate stable trivial equilibrium points or LCOs, dotted
lines unstable trivial equilibrium points; dashed lines, unstable LCOs; and dash-dotted lines quasi-
periodic LCOs; squares indicate Hopf bifurcations, triangles for LPCs, circles for NS (Neimark–
Sacker) bifurcations, and diamonds neutral-saddle bifurcations.
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Fig. 9.61 Two-dimensional ‘slices’ of the three-dimensional bifurcation diagrams of Figure 9.60
for fixed damping values λ: (a) ε = 0.01 and (b) ε = 0.02; the branches of stable large-amplitude
LCOs comparable to the LCOs of the system with no NES attached are not depicted; thin dashed
lines depict the permissible range of the offset, −1 ≤ δ1.
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possible at all (when the amplitudes of LCOs are comparable to the LCOs of the
system with no NES attached).

The first LCO suppression mechanism examined in Figure 9.45 is re-examined
in Figure 9.62 for the negative offset distance δ = −0.9. One evident result is that
more energy transfer from the aeroelastic modes to the NES occurs in this case.
Moreover, it appears that a ‘negative’ nonlinear attachment extracts more energy
from the heave mode, and the duration of the nonlinear resonant interactions be-
tween modes lasts longer than in the case of ‘positive’ attachment.

In a previous section we briefly raised the issue of maximizing the energy dis-
sipation by the NES, which is proportional to (y ′ − δα′ − v′)2. Examining the re-
sponses under condition of 1:1 resonance captures, we can approximate each re-
sponse roughly as, y ′(τ ) ≈ Y sinωτ , α′(τ ) ≈ A sinωτ and v′(τ ) ≈ V cosωτ ,
where the amplitudes Y,A and V are assumed to be positive and ω is the frequency
where resonance captures occur. Then, we derive the approximation, y ′−δα′−v′ ≈
(Y − δA) sinωτ − V cosωτ = X sin(ωτ − θ), where X2 = (Y − δA)2 + V 2 and
θ = tan−1[V/(Y −δA)]. Clearly, in order to maximize the quantity (y ′ −δα′ −v′)2,
the value of X should be maximum, and negative values of the offset δ provide
larger values for X. Although this may not be a mathematically rigorous argument,
it helps to get a rough understanding of why negative offsets lead to better and more
robust instability suppression compared to positive ones.

Finally, we provide an alternative view of the bifurcation structure of the steady
state dynamics of system (9.74) by plotting the steady state pitch amplitude as func-
tion of the offset δ and the reduced flow speed  ; this is performed in Figure 9.63.
Since the qualitative features of the steady state dynamics are similar in the two
plots corresponding to positive and negative offsets, we focus only in the case of
‘positive’ attachment (δ > 0). We note that for zero offset the bifurcation behavior
is that of the system with no NES attached, as the NES is incapable of affecting
the dynamics of the wing. For large reduced flow speeds branch point cycle (BPC)
bifurcations of large-amplitude periodic solutions (LCOs) occur (denoted by aster-
isks in the bifurcation diagrams of Figures 9.63 and 9.64); a BPC bifurcation of a
periodic solution is similar to a pitchfork or transcritical bifurcation of an equilib-
rium point, and leads to exchanges of stability and generation of new branches of
large-amplitude LCOs.

For positive offset values δ > 0 the occurrence of the Hopf bifurcation is delayed
for an increase of the flow speed; moreover, the intervals where quasi-periodic re-
sponses occur (and the first LCO suppression mechanism is realized) widen, as do
the intervals between the two LPC bifurcation points. In this case, the BPC bifurca-
tion point converges to the lower-amplitude LPC bifurcation point, and the Hopf bi-
furcation curves are almost symmetric with respect to the plane δ = 0. Typical two-
dimensional ‘slices’ of the three-dimensional bifurcation structure of Figure 9.63 are
depicted in Figure 9.64; these results reaffirm the quantitative differences between
the dynamics of steady state systems with ‘positive’ and ‘negative’ attachments,
discussed in our previous bifurcation study. ‘Positive’ attachments generally lead to
LCOs of larger amplitudes compared to those of the system with no NES attached,
whereas ‘negative’ attachments yield smaller-amplitude LCOs. In terms of the three
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Fig. 9.62 The first LCO suppression mechanism realized in the system with identical parame-
ters to that corresponding to the responses of Figure 9.45, except for the negative offset distance
δ = −0.9: (a) transient responses, (b) instantaneous energy exchanges between the NES and the
aeroelastic modes.
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LCO suppression mechanisms, we observe the transition from the third to the first
LCO suppression mechanism when the flow speed increases. Further increase of the
flow speed above the bifurcation point LPC1 produces a sudden transition of the dy-
namics to LCOs with larger amplitudes, and yields increased aeroelastic instability
in the system.

Based on our previous discussion we conclude that an in-flow wing-NES system
with a bifurcation structure of steady state dynamics similar to that depicted in Fig-
ure 9.64b is a configuration suitable for practical applications. Indeed, considering
this bifurcation diagram we note that LCOs can be completely and robustly sup-
pressed for reduced flow speeds below the speed H corresponding to the Hopf bi-
furcation (i.e., a robust third LCO suppression mechanism is realized). For reduced
speeds in the range H <  <  NS1 robust partial LCO suppression is achieved, as
a low-amplitude LCO survives the action of the NES (robust second LCO suppres-
sion mechanism). For NS1 <  <  LPC1 there is co-existence of the first and sec-
ond LCO suppression mechanisms, but, of course, neither of these is robust. Which
of the two LCO suppression mechanism is eventually realized depends on the initial
state of the problem, as the dynamics may be attracted either by the quasi-periodic
LCO (non-robust first suppression mechanism) or by the low-amplitude stable LCO
(non-robust second suppression mechanism), both of which co-exist in the intervals
 NS2 <  <  LPC1 and  LPC2 <  <  BPC. Of course, for  >  BPC the case
of no LCO suppression becomes possible, and for  >  LPC1 LCO suppression
is unfeasible as the steady state dynamics is attracted by the large-amplitude LCOs
generated after the BPC bifurcation.

9.3.4 Concluding Remarks

In this section we investigated passive suppression of aeroelastic instabilities in a
two-DOF in-flow rigid wing system by means of passive, broadband, nonlinear tar-
geted energy transfers. The physical mechanism for inducing these transfers was a
lightweight, essentially nonlinear SDOF oscillator attachment which acted as non-
linear energy sink. Through numerical parametric studies we found that there exist
three suppression mechanisms for suppressing aeroelastic instabilities in this sys-
tem.

We investigated these mechanisms both numerically and analytically, and proved
that the underlying dynamics were series of resonance captures, i.e., of transient res-
onances either between the NES and the heave and/or pitch aeroelastic modes, or
between the wing modes themselves. We explored these LCO suppression mecha-
nisms in terms of steady state bifurcation analysis, which also addressed the issue
of the robustness of suppression, i.e., of the dependence of LCO suppression on the
initial conditions and the parameters of the problem. We found that NESs attached
at negative offsets can provide robust aeroelastic instability suppression within rel-
atively wide ranges of system parameters; on the contrary, NESs at positive offsets
do not provide robust suppression, as explained by the associated series of bifur-
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Fig. 9.63 Bifurcation diagrams of steady state dynamics for varying reduced flow speed  and
offset δ, and ε = 0.02, λ = 0.4, and C = 10: (a) case of positive offset (δ > 0), and (b) case of
negative offset (δ < 0); the notation of Figure 9.60 applies, and the asterisk denotes a branch point
cycle (BPC) bifurcation.
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Fig. 9.64 Two-dimensional ‘slices’ of the three-dimensional bifurcation diagrams of Figure 9.63
for fixed offsets δ: (a) δ = 0.75 and (b) δ = −0.75.
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cations of steady state dynamics that occur in this case. It follows that lightweight
NESs with negative offsets can form the basis of practical, economical, robust and
realistic designs for LCO suppression in the in-flow wing under consideration.

In the following section we provide experimental verification of these theoret-
ical findings by presenting results of a series of wind tunnel tests of a practical
in-flow wing with an attached SDOF NES. In a later section we discuss the issue
of extending robustness of TET-based passive LCO suppression, by investigating
the dynamics of wings with more complicated NES configurations, namely MDOF
NESs. We show that such configurations improve the robustness of LCO suppres-
sion compared to the results presented in this section.

9.4 Experimental Validation of TET-Based, Passive LCO
Suppression

In this section we examine experimental validation of LCO suppression using the
SDOF NES design discussed previously. The exposition follows the work by Lee
et al. (2007b) where more details of the experimental methodology and results can
be found. The potentially unstable aeroelastic structure considered herein is a rigid
airfoil in a low-speed wind tunnel located at Texas A&M University. This wing was
mounted on separately adjustable springs restraining its motion in heave (plunge)
and pitch. The apparatus has been used by Strganac and co-workers in several ex-
periments on passive and active aeroelastic control (Block and Strganac, 1998; Ko
et al., 1999; Platanitis and Strganac, 2004), in the course of which it has been very
thoroughly studied, modeled and dynamically characterized.

In the absence of any corrective measures, this wing has a critical speed of ap-
proximately 9.5 m/s. When the flow speed in the wind tunnel exceeds this value,
LCOs can readily be induced by a small initial displacement in the heave degree
of freedom. A SDOF NES with the configuration examined in the previous section
(Configuration II – Section 3.1) was designed to be coupled to the heave mode of the
airfoil, with the goal of increasing the critical speed of the combined system above
that of the wing without NES attached. The assessment of the LCO suppression ca-
pacity of the NES is studied by comparing measured responses of the wing and the
integrated wing-NES system configurations to predictions from analysis and simu-
lation in an effort to both quantify the performance improvement due to the action
of the NES, and verify our theoretical analysis of the underlying dynamics.

9.4.1 Experimental Apparatus and Procedures

The hardware used in the tests reported below is broadly divisible into (i) the wind
tunnel, the model wing, and its supporting structure; (ii) the nonlinear energy sink
and its support; and (iii) the equipment used to measure the response of both sub-
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structures (Lee et al., 2007b). The nonlinear aeroelastic test apparatus (NATA) at
Texas A&M University was developed to experimentally test linear and nonlinear
aeroelastic behavior. The device consists of a rigid NACA 0015 wing section capa-
ble of movement with two degrees-of-freedom, pitch, and heave, as shown schemat-
ically in Figure 9.65a. Stiffness nonlinearity can be introduced to either degree of
freedom. The device is mounted in a 0.61 × 0.91 m low-speed wind tunnel capable
of speeds up to 45 m/s.

Each degree of freedom of the NATA wing is supported by its own set of springs.
Heave motion, which mimics out-of-plane bending of the wing, is provided by
mounting the wing on a carriage which can slide from side to side on shafts mounted
under the wind tunnel. The motion of the carriage is restricted by springs stretching
from the rigid frame of the wind tunnel to a rotating cam. The carriage is attached
to the same cam such that its movement is resisted by the springs, as shown in Fig-
ure 9.65b. The wing section stands vertically in the wind tunnel, spanning the entire
tunnel from top to bottom, as shown in Figure 9.65c. The wing is attached to a shaft
that exits through the tunnel floor and mounts via rotational bearings to the plunge
carriage beneath the tunnel. These bearings allow the wing to pitch (rotate), simu-
lating torsion of the wing. Each of the pitch springs has one ends rigidly fixed to the
plunge carriage, whereas its other end wraps around a cam on the pitch shaft.

Hence, the set of equations of motion of the NATA may be expressed as follows:

M ẍ + C ẋ +K x = Fc + Fa (9.87)

where (t) = [h(t), α(t)]T , with h(t) and α(t) being the responses of the heave and
pitch modes, respectively; Fc the (2 1) vector of Coulomb friction forces, and a =
[−L,M]T the 2 1 vector of aerodynamic forces and moments (see Figure 9.65a).
Moreover, in equation (9.87)M, C and K denote the (2 2) mass, viscous damping
and stiffness matrices of the system, respectively. These matrices are expressed in
terms of the physical parameters of the NATA (Lee et al., 2007b) which are listed in
Table 9.1. We only note here that the only nonlinear structural element in NATA is
the torsional stiffness in pitch, which is a nonlinear function of the response α(t) as
depicted in Figure 9.66 and listed in Table 9.1.

Experiments using the NATA are conducted at very low speeds and very low re-
duced frequencies. The wing section spans the entire wind tunnel, so the flow can
be considered as being approximately two-dimensional. For this tame flow environ-
ment, lift and drag can be modeled with quasi-steady aerodynamics. This type of
aerodynamic model has provided very good agreement with NATA experimental
results in the past. However, an element that has not been considered in the the-
oretical analysis of Section 9.3 is dry friction. Friction has a significant effect on
the dynamic behavior of the NATA system, so both viscous damping and Coulomb
friction are expected to appear in equations (9.87).

For the first proof-of-concept experiments with an NES in an aerodynamic appli-
cation, the design goals were similar to what would be desired of flight hardware,
tempered by the realities of the laboratory environment and the scale of the test
program. It was desired to design a lightweight, passive, self-contained, essentially
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Fig. 9.65 Experimental apparatus: (a) schematic of wing with heave and pitch degrees-of-freedom;
(b) schematic of the nonlinear aeroelastic test apparatus (NATA); (c) picture of the NATA, air flow
is from left to right, the plunge carriage and pitch cam are visible beneath the tunnel.
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Fig. 9.66 Measured and modeled torsional stiffness in pitch.

Table 9.1 NATA parameter values.

Parameter Value

Wing mass, mw 1.645 kg
Pitch cam mass, mc 0.714 kg
Total plunging mass, mT 12.1 kg
Total pitching inertia, Iα 0.04561 +mwr2

cg kg m2

Wing mass offset, rcg −b(1 + 0.18) m
Wing section semichord, b 0.1064 m
Non-dimensional elastic axis location, a −0.4 m
Pitch cam mass offset, rc 0.127 m
Viscous plunge damping coefficient, ch 5.0747 kg/s
Viscous pitch damping coefficient, cα 0.015 kg m2/s
Plunge spring stiffness, kh 2537.2 N/m
Pitch spring stiffness, kα(α) 8.6031 − 27.67α + 867.15α2

+ 376.64α3 − 7294.6α4 Nm/rad
Wing section span, s 0.6 m

nonlinear SDOF attachment of Configuration II (see Section 2.6 – Figure 2.27, and
Section 3.1 – Figure 3.2) that would significantly improve the dynamic response
of the NATA under typical operating conditions. In the present context, the char-
acterization ‘lightweight’ should be construed as a requirement that the NES mass
should be small with respect to the total translational mass of the NATA. When the
structure supporting the wing section was taken into account, it was found that the
NATA mass equaled approximately mI ≈ 12 kg. To make the best use of available
hardware, it was convenient to fix the mass of the NES at ms ≈ 1.2 kg, correspond-
ing to a mass ratio, in heave, of ms/mI ≈ 0.1. Because of the manner in which
the wing is supported in the NATA, it was possible to regard the NES as interacting



512 9 Suppression of Aeroelastic Instabilities through Passive Targeted Energy Transfer

directly with only the heave degree of freedom of the wing (i.e., it was assumed that
the NES was effectively mounted at the elastic axis of the NATA wing). Indeed, the
analysis of Section 9.3 suggests that, in general, it would in be preferable to attach
the NES away from the wing’s elastic axis, but to achieve this with the NATA would
require much more extensive structural modifications so it was not attempted in the
experimental work reported herein.

With the mass fixed, preliminary design of the NES was reduced to the spec-
ification of the linear viscous damping coefficient cs and the coefficient ks of the
essentially nonlinear stiffness that couples the NES mass ms to the NATA plunge
displacement h(t). The ranges of values of these two parameters that could be read-
ily produced with an existing NES had been established in earlier experiments on
other (non-aerodynamic) NES applications (some of which are discussed in other
sections of this work), and data were available relating nonlinear stiffness and cou-
pling efficiency at low structural frequencies. On this basis, preliminary values for
the NES stiffness and damping were selected, and then refined through a series of
numerical simulations carried out in Matlab� .

With the addition of the SDOF NES the equations of motion of the integrated
wing-NES system are given by[
M 0
0 ms

]{
ẍ

v̈

}
+

[
C 0
0 cs

]{
ẋ

v̇

}
+

[
K 0
0 ks

]{
x

v

}
=

{
F c
0

}
+

{
F a
0

}
+

{
F s
−fs

}
(9.88)

where the previously introduced notation holds, v(t) denotes the absolute response
of the NES, and F s = [−fs 0t]T the force exerted on the NATA by the NES. This
force was experimentally identified as follows:

fs = cs(v̇ − ḣ)+ ks |v − h|γ sgn (v − h) (9.89)

where the exponent of the essential stiffness nonlinearity was identified as, γ =
2.8 ≈ 3, and is typical of the values experimentally identified for the (theoretically
purely cubic) coupling stiffness.

The results of simulations indicated that good NES performance could be
achieved over a range of damping values. As shown in Chapter 3, the viscous damp-
ing coefficient cs is not expected to significantly affect the rate and efficiency of
TET in the integrated system, and this was confirmed by the fact that the simula-
tions were relatively insensitive to this parameter; so a value of cs = 0.40 Ns/m was
chosen, which was typical of damping levels identified in previous experiments. Ad-
ditional simulations indicated that values of ks in the range [1×106, 2×106]N/m2.8

led to effective TET, with larger values in this range to be preferred for practi-
cal reasons, such as smaller relative displacements during testing. Hence, the value
ks = 1.6 ×106 N/m2.8 was selected for the preliminary NES design. The aforemen-
tioned parameter values for the NES can be considered as nominal NES parameters,
since actual values were identified and adjusted accordingly during the experimental
testing.
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Fig. 9.67 NATA-NES configuration: (a) the NES at rest on the air track, with the connecting rod
to the NATA visible at the top (wing heave and NES motion are parallel to the track); (b) the NES
and air track structure mounted to the windtunnel frame of the NATA (wing heave and NES motion
are orthogonal to the picture).
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The NES used for the experiments described here consisted of a small ‘car’ made
of aluminum angle stock. The car was supported on an air track to reduce sliding
friction in the NES system, and was connected to the NATA through the essentially
nonlinear spring in parallel to a viscous damper. The nonlinear spring was created
by securing a pair of thin wires perpendicular to the relative movement of the NATA
and the NES (i.e., to the heave motion of the NATA) as shown in Figure 9.67a.
The wires were mounted with no initial tension and hence their spring force had no
linear component (see Section 2.6). This arrangement of wires ensured that when
the NATA moved with respect to the NES, tension was created in the wires, ide-
ally providing a nearly pure cubic restoring force between the two subsystems. The
entire NES assembly was attached to the NATA plunge carriage through a rod. Fig-
ure 9.67b shows the NES installed on the NATA in line with the plunge carriage.

Considering the data acquisition system, the pitch and plunge motions of the
aeroelastic system were measured with optical angular encoders attached to the
cams of the NATA, whereas the NES response was monitored using an accelerome-
ter, and then integrated numerically to obtain velocity and displacement time series
as needed. The force developed between the NES and NATA was sensed by a piezo-
electric force transducer, and this signal was used only during some of the system
identification procedures [for example, for identifying the nonlinear force (9.89)].
Freestream velocity inside the wind tunnel was determined using a Pitot probe and
an electronic pressure transducer. All of these signals were sent to a data acquisition
board for recording and post-processing.

9.4.2 Results and Discussion

The first step in performing experiments with the integrated NATA-NES system
was to set the wind tunnel to the desired freestream velocity. Next, the initial condi-
tions were imposed by manually displacing the NATA plunge carriage (and thus the
NES) and waiting until equilibrium was established. The system was then released
and the responses measured. In all the experiments conducted with the NATA with
NES attached, the dynamic behavior of the system was initiated by such a static
heave displacement. As a consequence of the kinematics of the NATA, these initial
conditions produced no aerodynamic moment on the wing, and when the NES was
attached its initial displacement was equal to that of the plunge carriage, h0.

Considering the wing without NES attached, when the flow speed in the wind
tunnel exceeded the NATA’s flutter speed, approximately 9.5 m/s, an LCO could
be reliably induced by releasing the wing from an initial heave displacement h0,
with all other initial conditions (pitch angle and pitch and heave rates) being zero.
Because of the presence of Coulomb friction in the system, very small values of h0
(up to a few millimeters) could not trigger the wing’s LCO, but for all larger values
of h0 the development of the LCO was very consistent.

The various combinations of flow speed, initial plunge displacement, and NES
characteristics tested are summarized as follows: freestream speed U = 9–13 m/s;
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initial heave displacement h(0) = h0 = 1.27 × 10−2 and 1.91 × 10−2 m; NES
mass ms = 1.2 and 1.5 kg; NES nonlinear stiffness coefficient ks = 1.6 × 106 and
2.0 × 106 N/m2.8; NES damping cs = 0.015 and 0.040 Ns/m (where the leading
values represent baseline values). The mass of the NES was determined by means
of a laboratory static balance test, while the stiffness of the essentially nonlinear
coupling spring and the associated viscous damping coefficient were identified using
the restoring force surface method (Masri and Caughey, 1979). The damping force
produced by the motion of the NES car on the air track was by comparison very
small, and so has been neglected throughout this work. The ratios of the two NES
mass values, (1.2 and 1.5 kg) to the translational mass of the NATA were equal
to 10 and 12.5%, respectively. Although these may represent unrealistically large
values for flight hardware, they were deemed not to be unreasonable for purposes
of validating the theoretical results of Section 9.3 (see also Lee et al., 2007a). The
results presented there indicate that TET from the wing to the NES will not be
degraded as the NES mass is made smaller.

Time histories of the heave and pitch responses of the various wing-NES con-
figurations at several flow speeds are shown in insets within Figures 9.68–9.70.
In each case, the corresponding response of the NATA with no NES attached is
shown for reference and comparison. On these are superimposed responses with
the NES attached, which experimentally verify the three LCO suppression mecha-
nisms discussed in Section 9.3, namely: (i) recurring LCO burst out and suppres-
sion; (ii) intermediate (partial) LCO suppression; and (iii) complete LCO elimina-
tion. The steady state amplitudes of the LCOs, if they survive TET to the NES,
are plotted in these Figures as discrete points for each flow speed at which tests
were conducted (namely, 9, 10, 11, 12, and 13 m/s). When the amplitude of a ‘sur-
viving’ LCO exhibited amplitude modulation (i.e., for the first LCO suppression
mechanism), a pair of points has been plotted to indicate the range of the response
envelope.

It is clear from these results that, with no NES attached, the NATA does not
exhibit aeroelastic instability at a flow speed of 9 m/s. At this speed, the heave
and pitch responses following an initial heave displacement of either h(0) = 1.27 ×
10−2 m or 1.91×10−2 m (with all other initial conditions zero) decay to the original
trivial equilibrium position. When the flow speed is increased to U ≥ 10 m/s or
higher, the response of NATA exhibits a highly consistent LCO, with amplitude and
frequency depending on the flow speed U . These findings are consistent with the
estimate of U = 9.5 m/s for the flutter speed of the NATA reported in previous
works. The precise flutter speed is of limited interest here, as it is sufficient to show
that robust LCOs exist for U ≥ 10 m/s in the wing with no NES attached.

Concerning the LCO triggering mechanism (see Section 9.2) in the NATA, we
noted that there occurred a nonlinear interaction between the two aeroelastic modes
(heave and pitch) through a 1:1 resonance capture. Although the experimental dy-
namics did not involve a stage of superharmonic resonance capture for the particular
parameters (i.e., frequency ratio) of the NATA as configured for these tests, it did
display a phase-locked frequency shift with time (and thus with increased energy
fed into the system from the freestream).
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Fig. 9.68 Experimental responses (gray – without NES; black – with NES) obtained for the lighter
NES mass (ms = 1.2 kg) and weaker nonlinear coupling stiffness (ks = 1.6 × 106 N/m2.8):
(a) initial heave h(0) = 1.27 × 10−2 m; (b) h(0) = 1.91 × 10−2 m; steady state amplitudes are
indicated by squares (�) for NATA without NES, triangles (
) for NATA and NES with lower
damping (cs = 0.015 Ns/m), and circles (◦) for NATA and NES with higher damping (cs =
0.04 Ns/m); minimum and maximum values of modulated amplitudes are indicated by bars (‡);
M1, M2, and M3 indicate the type suppression mechanism at work.
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Fig. 9.69 Experimental responses (gray – without NES; black – with NES) obtained for the lighter
NES mass (ms = 1.2 kg) and stronger nonlinear coupling stiffness (ks = 2.0 × 106 N/m2.8):
(a) initial heave h(0) = 1.27 × 10−2 m; (b) h(0) = 1.91 × 10−2 m; steady state amplitudes are
indicated by squares (�) for NATA without NES, triangles (
) for NATA and NES with lower
damping (cs = 0.015 Ns/m), and circles (◦) for NATA and NES with higher damping (cs =
0.04 Ns/m); minimum and maximum values of modulated amplitudes are indicated by bars (‡);
M1, M2, and M3 indicate the type suppression mechanism at work.
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Fig. 9.70 Experimental responses (gray – without NES; black – with NES) obtained for the heavier
NES mass (ms = 1.5 kg) and weaker nonlinear coupling stiffness (ks = 1.6 × 106 N/m2.8):
(a) initial heave h(0) = 1.27 × 10−2 m; (b) h(0) = 1.91 × 10−2 m; steady state amplitudes are
indicated by squares (�) for NATA without NES, triangles (
) for NATA and NES with lower
damping (cs = 0.015 Ns/m), and circles (◦) for NATA and NES with higher damping (cs =
0.04 Ns/m); minimum and maximum values of modulated amplitudes are indicated by bars (‡);
M1, M2, and M3 indicate the type suppression mechanism at work.
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The dashed lines in Figure 9.68 connect points representing the LCO ampli-
tudes computed for the NATA with of an attached NES with parameters equal to the
baseline values mentioned previously. This configuration corresponds to the smaller
mass, weaker coupling nonlinear stiffness, and smaller damping coefficient of the
values tested for the NES. From the results depicted in that figure, we note sig-
nificant improvement in flutter speed, from 9 to 11 m/s, irrespective of the initial
heave displacement considered. Beyond the flutter speed there is a transition from
complete LCO suppression (third suppression mechanism) to partial suppression
(i.e., ‘surviving’ LCOs with amplitudes less than those in the NATA with no NES
attached – second suppression mechanism). We also note that while the LCO ampli-
tude decays almost exponentially when U = 10 m/s, the decay becomes slower and
the dynamics more complicated as the limit U = 11 m/s of the third suppression
mechanism is approached, although complete LCO suppression is still achieved in
the process.

The effects of varying the initial conditions or NES parameters on the response
of the integrated system NATA-NES system (depicted in the results of Figures 9.68–
9.70) are generally in agreement with theoretical predictions, namely, that increas-
ing the NES mass and decreasing its damping or nonlinear stiffness tend to simplify
the bifurcation behavior of the steady state dynamics, and thus, enhance the ro-
bustness of LCO suppression. However, it is difficult to formulate definitive rules
describing these influences because of the high dimensionality of the phase space
of the system, and the possible presence of subcritical LCOs, as discussed in Sec-
tion 9.3 (see also Lee et al., 2007a). Still, based on the results depicted in Fig-
ures 9.68–9.70 we arrive at the following conclusions: Stronger nonlinear coupling
stiffness ks reduces the dependence of LCO suppression on the amplitude of the
initial displacement; weaker nonlinear coupling stiffness can result in higher flut-
ter speeds (i.e., it extends the range of validity of the third suppression mechanism,
yielding complete LCO suppression at higher flow speeds); heavier NES damping
usually produces better LCO suppression results, although this may come at the
expense of increased sensitivity to initial conditions; and finally, larger NES mass
improves its TET performance for the smaller initial heave displacement, but yields
more complex dynamics (and generally inferior NES performance) for the larger
initial condition. This later remark is consistent with our earlier theoretical finding
that ungrounded NESs of the type considered in this application (i.e., Configuration
II – see Sections 2.6 and 3.1) display better TET performance for small mass ratios,
and suggests that the mass of the NES used in this study was rather large compared
to the actual optimum value. Of course, because of the complexity of the bifurcation
structure of the steady state dynamics introduced by the NES the afore-mentioned
conclusions may not apply under different operating conditions or different NES
parameters than those tested in this work.

Apart from the experimental affirmation of enhancement of flutter speed in the
wing with NES attached, a major result of the experimental work is the verifica-
tion of the three LCO suppression mechanisms that were theoretically predicted in
Section 9.3. Figure 9.71 depicts the experimentally realized first LCO suppression
mechanism for U = 11 m/s, the NES with heavier mass, weaker nonlinear cou-
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Fig. 9.71 Experimentally realized first LCO suppression mechanism, for flow speed U = 11 m/s,
NES with heavier mass, weaker nonlinear coupling, heavier damping, and h(0) = 1.91 × 10−2 m:
(a) transient responses, and (b) wavelet transform spectra; these results correspond to data points
in Figure 9.70b.
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Fig. 9.72 Normalized energy exchanges between the aeroelastic modes and the NES during the
first LCO suppression mechanism depicted in Figure 9.71.

pling stiffness and heavier damping, and the larger heave initial condition (these re-
sults correspond to the data points in Figure 9.70b). In agreement with theory, both
aeroelastic modes and the NES response exhibit nonlinear beating, that is, a recur-
ring bursting out of aeroelastic instability followed by suppression. The frequencies
of the aeroelastic modes indicate the occurrence of an initial 1:1 transient resonance
capture (TRC) around 2 Hz, and later a sustained resonance capture (SRC) at about
3 Hz. The ratio between the NES frequency and that of the heave mode, and the
corresponding ratio between the NES and the pitch mode, are nearly 1:2, which
suggests that this suppression mechanism consists primarily of recurring transient
subharmonic resonance captures between the NES and the aeroelastic modes, while
the two aeroelastic modes remain continuously locked in 1:1 SRC.

The results depicted in Figure 9.72 indicate that strong energy exchanges be-
tween the aeroelastic modes and the NES take place in this case. The instantaneous
energies shown in that plot were normalized by the total instantaneous energy of
the system. Initially, the triggering mechanism for aeroelastic instability is that dis-
cussed in Section 9.2 (see also Lee et al., 2005b), that is, energy from the flow is
fed directly into the heave mode, which then excites the pitch mode. After the initial
development of instability the NES interacts transiently with the heave mode on the
onset of the pitch response (0 < t < 7 s) thus preventing full development of the
LCO. Almost half of the total instantaneous energy of the system is transferred to
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the NES within 2 s. Noting that subharmonic resonance capture is generally less ef-
ficient than 1:1 resonance capture as far as targeted energy transfer is concerned (see
discussion in Sections 3.4.2.1–3.4.2.3), we conjecture that in the responses consid-
ered in Figure 9.72 the 1:2 subharmonic resonance captures between the NES and
the aeroelastic modes were not sufficient to eliminate the 1:1 internal resonance be-
tween these modes (i.e., the triggering of the LCO) and thus prevent the recurrent
bursting out of aeroelastic instability.

Figure 9.73 depicts the experimentally realized second LCO suppression mech-
anism, leading to partial LCO suppression; these simulations correspond to flow
velocity U = 13 m/s, the NES with lighter mass, weaker nonlinear coupling stiff-
ness and heavier damping, and the smaller initial heave displacement (these results
correspond to the data points in Figure 9.68a). After the decay of the initial tran-
sients this system exhibits a steady state LCO of reduced amplitude compared to
the NATA with no NES attached. Again, there exists strong nonlinear interaction
between the heave and pitch modes through 1:1 resonance capture, and the dynam-
ics of the dynamics of the NES undergoes 1:2 subharmonic resonance capture with
both aeroelastic modes.

The experimentally realized third LCO suppression mechanism corresponding
to complete elimination of the LCO, is shown in Figure 9.74 for a flow speed of
U = 10 m/s, the NES with smaller mass, stronger nonlinear coupling and higher
damping, and the smaller initial heave displacement. This response is character-
ized by rapid and complete elimination of the aeroelastic instability. From the WT
spectrum depicted in Figure 9.74b, it can be seen that while the aeroelastic modes
are again in 1:1 TRC and the NES interacts with these modes in 1:2 subharmonic
resonance (as in the previous LCO suppression mechanisms), the NES develops an
additional 1:1 resonance interaction with the heave mode. This 1:1 TRC is sufficient
to eliminate the aeroelastic instability in this case.

Finally, Figure 9.75 depicts another experimental example of complete LCO sup-
pression, i.e., the third LCO suppression mechanism. In this case the flow speed is
increased to U = 11 m/s, and the coupling stiffness between the wing and the NES
is reduced to its smaller value; as a result, complete LCO suppression is achieved,
but only after a modulated initial transient response, which superficially resembles
the characteristic LCO bursting and suppression of the first suppression mechanism.
However, when the frequency contents of the transient responses are examined, it
is found that the NES resonantly interacts with both aeroelastic modes, ultimately
overcoming the 1:1 TRC between the heave and pitch modes (i.e., eliminating the
LCO triggering mechanism) to stabilize the dynamics.

In conclusion, the experiments reported in this section successfully validate the
theoretical results of Section 9.3. The experimental results confirm that key to
achieving complete LCO suppression by means of passive TET, is the design of
the NES to resonantly interact with both aeroelastic modes through 1:1 resonance
captures. Moreover, increasing the mass of the NES and decreasing its damping and
essentially nonlinear stiffness tend, in general, to simplify the bifurcation structure
of the steady state dynamics, and thus, to enhance the robustness of LCO suppres-
sion. The presented results show that passive TET from the wing to the NES signif-
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Fig. 9.73 Experimentally realized second LCO suppression mechanism, for flow speed U =
13 m/s, NES with lighter mass, weaker nonlinear coupling, heavier damping, and h(0) = 1.27 ×
10−2 m: (a) transient responses and (b) wavelet transform spectra; these results correspond to data
points in Figure 9.68a.
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Fig. 9.74 Experimentally realized third LCO suppression mechanism, for flow speed U = 10 m/s,
NES with lighter mass, stronger nonlinear coupling, weaker damping, and h(0) = 1.27 × 10−2 m:
(a) transient responses and (b) wavelet transform spectra; these results correspond to data points in
Figure 9.69a.
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Fig. 9.75 Experimentally realized third LCO suppression mechanism, for flow speed U = 11 m/s,
NES with lighter mass, weaker nonlinear coupling, weaker damping, and h(0) = 1.27 × 10−2 m:
(a) transient responses and (b) wavelet transform spectra; these results correspond to data points in
Figure 9.68a.
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icantly improves the stability envelope of the NATA wing, preventing the formation
of LCOs for flow speeds up to U = 12 m/s, compared to the flutter speed of 9.5 m/s
of the NATA with no NES attached.

9.5 Suppressing Aeroelastic Instability of an In-Flow Wing Using
a MDOF NES

In this section we consider an alternative design for LCO suppression based on
the use of MDOF NESs. We show that simultaneous multi-modal broadband TET
from the in-flow wing to the nonlinear normal modes (NNMs) of the MDOF NES
improves significantly the robustness of passive aeroelastic instability suppression in
this case. In particular, numerical bifurcation analysis of the LCOs of the integrated
wing-MDOF NES configuration indicates that the action of the MDOF NES can
result in more robust LCO suppression, compared to a SDOF NES of equal total
mass. Moreover, compared to the SDOF case, LCO suppression is achieved for
lower total mass of the MDOF NES, which from a practical point of view represents
an added benefit of the proposed MDOF NES design. In this section we investigate
also the nonlinear modal interactions that occur between the aeroelastic modes and
the MDOF NES, in an effort to gain a physical understanding of the mechanisms
governing aeroelastic instability suppression in this complicated MDOF strongly
nonlinear system.

Since the issue of robustness of LCO suppression is the main focus of the discus-
sion of this section, we start by revisiting the SDOF NES design of Section 9.3 in
order to explore in greater detail its limitations regarding robustness of LCO elimi-
nation. This task will be performed by examining the dependence of the bifurcation
structure of steady state dynamics on variations of NES parameters, and by relating
certain topological features of LCO bifurcations to robustness of instability suppres-
sion. Following this preliminary discussion we will be in the position to better assess
the benefits in robustness gained by the proposed alternative MDOF NES design.

9.5.1 Revisiting the SDOF NES Design

We start by revisiting the SDOF NES aeroelastic suppression design discussed in
Section 9.3, and refer to the normalized governing equations of motion (9.74). We
recall that the computational study carried out in that section revealed the exis-
tence of (at least) three passive LCO suppression mechanisms, resulting in recurring
LCO bursting out followed by suppression (mechanism 1), partial LCO suppression
(mechanism 2), or complete LCO elimination (mechanism 3). Robustness of LCO
suppression can be studied according to whether the three aforementioned TET-
based suppression mechanisms can be sustained in the presence of disturbances in
parameters and/or initial conditions. In Figure 9.58 we provided a numerical robust-
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ness study by considering the effects on LCO suppression of variations in initial
conditions for a system with positive NES offset (δ = 0.9). In Figure 9.76 we depict
the results of a similar study for a SDOF NES with negative offset (δ = −0.9), from
which we deduce that for the same mass ratio ε, complete elimination of aeroelastic
instability can be achieved for a wider set of initial conditions compared to the case
of positive offset. Indeed, as Figure 9.76b indicates complete LCO elimination may
be possible over the entire domain of initial conditions considered in the present
study.

As discussed in Section 9.3.3, the problem of robustness of LCO suppression is
closely linked to the bifurcation structure of the steady state nonlinear dynamics of
the integrated wing-NES configuration. To remind ourselves of the results reported
in Section 9.3.3, in Figure 9.77 we provide an example demonstrating the link be-
tween robustness of LCO suppression and bifurcations of steady state dynamics. In
particular, in Figure 9.77a we depict the bifurcation diagrams of systems with posi-
tive and negative offsets, utilizing the reduced flow speed  as bifurcation parame-
ter. These diagrams illustrate clearly the NES configurations that lead to more robust
suppression of instability. For example, we note that an NES with either positive or
negative offset causes a delay of the occurrence of LCOs by shifting the Hopf bi-
furcation point H (indicated by squares in Figure 9.77a) to higher reduced speeds.
This, however, in itself does not necessarily imply enhancement of robustness of
LCO suppression for both NES configurations. Indeed, considering the system with
positive offset, the LPC bifurcation point close to pitch amplitude 0.1 (indicated by
a triangle in Figure 9.77a) occurs before the Hopf bifurcation,  LPC2 <  H . It
follows that for reduced speeds in the range  LPC2 <  <  BPC <  H the sta-
ble trivial equilibrium coexists with a stable large-amplitude LCO, thus preventing
robust LCO suppression; whereas, in the range  BPC <  <  H the LCO sup-
pression is robust since the trivial equilibrium is the only stable attractor of the dy-
namics. On the contrary, for the system with negative offset it is possible to achieve
robust and complete LCO suppression in the range  <  H , as the stable trivial
equilibrium is a global attractor of the dynamics in this range; in addition, in the
range H <  <  LPC2 partial LCO suppression is robust as well, as there exists
global attraction of the dynamics by a stable, low-amplitude LCO.

In Figure 9.77b we demonstrate non-robustness and destruction of the first LCO
suppression mechanism for the system with negative offset and reduced speed
 = 0.95, by applying an impulsive disturbance to the heave mode. This result
can be understood by considering the respective ‘slice’ of the bifurcation diagram
of Figure 9.77a corresponding to = 0.95. We deduce that the quasi-periodic LCO
(which is responsible for the repeated LCO burst-outs and suppressions before the
external disturbance is applied) coexists with an unstable low-amplitude LCO and a
stable large-amplitude LCO resulting from a branch point cycle bifurcation (i.e., for
 >  BPC). It follows that by applying disturbances to the initial conditions it is
possible to drive the dynamics out of the domain of attraction of the quasi-periodic
LCO (i.e., to eliminate the first suppression mechanism), and into the domain of
attraction of the stable large-amplitude LCO. This yields the reappearance of strong
aeroelastic instability in the system, inspite the action of the NES.
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Fig. 9.76 SDOF NES design, steady-state r.m.s. pitch amplitude ratio 
α , with respect to the set
of initial conditions {y(0) = 0, α(0) = 0, y′(0) ∈ [0, 0.1], α′ ∈ [0, 0.1]}, δ = −0.9 and  = 0.9:
(a) ε = 0.01, λ = 0.2, and C = 30; (b) ε = 0.02, λ = 0.4, and C = 1.
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Fig. 9.77 SDOF NES design, robustness study for ε = 0.02, λ = 0.4, C = 10.0: (a) (incomplete)
bifurcation diagrams for systems with offsets δ = ±0.75, solid (dashed, dash-dotted) lines indicate
stable (unstable, quasi-periodic) LCOs, and squares (circles, triangles, asterisks) indicate Hopf
(Neimark–Sacker, LPC, BPC) bifurcation points; (b) effect of an impulsive disturbance on the
heave mode applied at τ = 300 for the system with  = 0.95 and δ = −0.75.
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Fig. 9.77 SDOF NES design, robustness study for ε = 0.02, λ = 0.4, C = 10.0: (c) effect of an
impulsive disturbance on the heave mode applied at τ = 250 for the system with  = 0.915 and
δ = −0.75.

A different scenario is provided in Figure 9.77c, where robustness of the second
LCO suppression mechanism is demonstrated for the system with negative offset
and reduced speed  = 0.915. In this case we note that after the application of the
impulsive external disturbance to the heave mode the system returns to its prior state,
i.e., to a small-amplitude LCO. Again, this result may be interpreted by examining
the ‘slice’  = 0.915 of the corresponding bifurcation diagram of Figure 9.77a.
Indeed, we note that for that value of the reduced speed the stable LCO generated
after the Hopf bifurcation is the only attractor of the dynamics, as it only co-exists
with the unstable trivial equilibrium. It follows that the small-amplitude LCO is the
only possible stable steady state solution of the dynamics for that particular reduced
flow speed.

These results demonstrate that the bifurcation structure of LCOs (and the cor-
responding nonlinear resonant interactions between the aeroelastic modes and the
NES) affects the robustness of instability suppression in the system with the SDOF
NES. We recall from Section 9.3.3 that a Hopf bifurcation point signifies the gen-
eration of stable LCOs from the trivial equilibrium point. Since in the wing with
no NES attached a Hopf bifurcation signifies the generation of aeroelastic instabil-
ity, it follows that by comparing the relative placement of this point with respect
to the corresponding point of the system with NES attached we can obtain a first
quantitative measure of the stabilizing effect on the dynamics of the action of the
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NES. On the other hand the LPC bifurcation occurring at  =  LPC1 represents
the critical point above which no LCO suppression is possible by the action of the
SDOF NES. As mentioned in the previous example, the location of the other LPC
bifurcation point =  LPC2 relative to the Hopf bifurcation point =  H affects
the robustness of instability suppression in the system with SDOF NES attached.
Being interested in the location of this LPC bifurcation point relative to the Hopf
bifurcation point, in the following exposition we extend the bifurcation analysis of
Section 9.3.3 to three-dimensional parameter spaces.

On the other hand, a NS bifurcation point generates quasi-periodicity in the dy-
namics, and is responsible for the recurrent burst-outs and suppressions of aeroelas-
tic instability (i.e., for the first LCO mechanism). In general, a NS bifurcation occurs
between a Hopf bifurcation and the higher-speed LPC bifurcation at  =  LPC1.
Finally, the BPC bifurcation (which is a codimension-2 bifurcation of an LCO) gen-
erally occurs at higher fluid velocities that the first LPC bifurcation at  =  LPC2
and introduces a destabilizing effect in the dynamics, as it gives rise to stable, large-
amplitude LCOs. Again, in the following analysis we will be interested in the vari-
ations of all these bifurcation points as the parameters of the SDOF NES vary.

In Figures 9.78a–c we present bifurcation sets of steady state dynamics of the in-
flow wing with a SDOF NES attached in the three-dimensional parameter spaces
(ε, δ, ), (λ, δ, ) and (C, δ, ), respectively. These bifurcation diagrams can
be understood in the following way. We recall that in the bifurcation diagram of
Figure 9.77a, the NES parameters were fixed to the values ε = 0.02, λ = 0.4
and C = 10.0. Considering the two-dimensional ‘slice’ ε = 0.02 of the three-
dimensional bifurcation structure of Figure 9.78a, we obtain the bifurcation dia-
grams of Figure 9.79, where three curves can be identified resulting from the inter-
section of the plane of constant mass ratio ε with the three two-dimensional surfaces
corresponding to the Hopf and the two LPC bifurcations. If we are interested in
studying the bifurcation structure of the dynamics when the SDOF NES is attached
at offsets δ = ±0.75, additional two-dimensional ‘slices’ (planes) corresponding to
constant offsets should be imposed, as depicted in Figures 9.79a and 9.79b, respec-
tively.

Once these two planes (‘slices’) are constructed in the three-dimensional bifurca-
tion diagrams, we can add vertical axes (depicted with solid lines in Figures 9.79a,
b) starting at the Hopf bifurcation points =  H and being orthogonal to the plane
ε = 0.02; on these axes we may represent steady state LCO amplitudes, in which
case the bifurcation diagram of Figure 9.77a can be drawn for δ = ±0.75. Moreover,
the two dashed vertical lines passing through  =  LPC1 and  =  LPC2 in Fig-
ures 9.79a, b correspond to points A1,2 and B1,2, respectively. Points A1,2 (B1,2) are
obtained as intersections of the planes ε = 0.02, δ = ±0.75, and the LPC1 (LPC2)
two-dimensional bifurcation surface. With these constructions, compact informa-
tion regarding the bifurcation behavior of the dynamics on the three-dimensional
parameter spaces of Figures 9.78a–c can be displayed.

Note that, in order to clarify the robustness features of the SDOF NES design,
the NS and BPC bifurcation surfaces are not included in these diagrams, and neither
are additional bifurcations of co-dimension two or of higher co-dimension. Recall
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(a)

(b)

(c)

Fig. 9.78 Bifurcation diagrams of steady state dynamics of the in-flow wing with an attached
SDOF NES: (a) effect of varying the mass ratio ε for λ = 0.4 and C = 10.0 (diamonds on
the LPC2 bifurcation surface imply optimal offset locations for enhancing robustness of LCO
suppression); (b) effect of varying damping λ for ε = 0.02 and C = 10.0; (c) effect of varying the
coefficient of the essential nonlinearity C for ε = 0.02 and λ = 0.4.
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(a)

(b)

Fig. 9.79 In-flow wing with SDOF attached, understanding the three-dimensional bifurcation sets
for ε = 0.02 and (a) δ = −0.75, (b) δ = 0.75.

that, in the SDOF NES design, a zero offset (δ = 0) does not affect the aeroelastic
responses, since in that case the bifurcation structure coincides with that of the wing
with no NES attached. This can be inferred also from the bifurcation results of
Figures 9.78a–c, since as δ → 0 the two LPC bifurcation surfaces tend to coalesce
with the Hopf bifurcation surface.
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In the following, we provide some remarks regarding the effects of varying the
NES mass ratio (ε), damping (λ), and essential nonlinearity (C) on LCO suppres-
sion, for fixed offset δ and reduced fluid velocity  . Focusing first on the effect of
varying the NES mass ratio ε, and referring to Figure 9.78a, we note that this ratio
contributes significantly to the shift of the Hopf bifurcation point towards higher
reduced velocities (this is contrary to the common view that damping has a greater
influence towards that effect). In addition, as the NES mass ratio ε increases along
with the offset δ away from the elastic axis, the Hopf and LPC bifurcation points ex-
hibit a monotonic shift towards higher reduced velocities. In terms of robustness of
LCO suppression (which depends on the location of the bifurcation point LPC2 rel-
atively to the Hopf bifurcation point), an optimal interval of offset values exists for
each mass ratio. That is, if the SDOF NES is attached too far away from the elastic
axis, the bifurcation point LPC2 may be realized very close to the Hopf bifurca-
tion point for negative offsets. Even worse from the point of view of robustness, for
positive offsets the point LPC2 can be realized at smaller reduced velocities than
the Hopf bifurcation point. As was conjectured in Section 9.3 if the NES possesses
larger mass, the robustness of LCO suppression may improve within the optimal
offset interval. The points denoted by diamonds in Figure 9.78a indicate optimal
offsets from the point of view of optimally enhanced robustness of aeroelastic insta-
bility suppression.

The above-mentioned conclusions are confirmed by the series of bifurcation dia-
grams presented in Figure 9.80 which depict the steady state amplitude of the pitch
mode as function of NES parameters for six values of the mass ratio ε. We note that
as the mass ratio increases, the LPC bifurcation curves are realized at increasingly
higher pitch amplitudes. This observation indirectly explains why robust suppres-
sion of LCO instability is barely observed for very small values of NES mass. In-
deed, for small NES masses (see Figure 9.80a) the Hopf bifurcation curve appears
to be nearly flat and to lie parallel to the offset axis; this indicates that in this case
the offset of the SDOF NES does not significantly affect the critical reduced speed
of Hopf bifurcation. Moreover, for small NES masses partially-suppressed LCO
branches exist (corresponding to the second LCO suppression mechanism), but they
are realized over small intervals of reduced velocities; in addition, small-amplitude
LCOs on those branches are vulnerable to disturbances, after which the dynamics
may undergo transitions to large-amplitude LCOs, rendering the LCO suppression
non-robust. Finally, regarding the overall topology of the LCO branches of Fig-
ure 9.80a, we note that, apart for the LCO branches leading to partial instability
suppression (second LCO suppression mechanism) or recurring burst-outs and sup-
pressions of instability (first LCO suppression mechanism), it resembles the topol-
ogy of the bifurcation diagram of the system with no NES attached.

Although not as significant as the effect of the mass ratio, increasing the NES
damping coefficient λ improves the flutter speed (see Figure 9.78b). The overall ro-
bustness behavior of LCO suppression seems to be similar to that obtained when in-
creasing the mass ratio. That is, there exist optimal intervals of the offset for which
enhanced robustness of LCO suppression is realized, with negative offsets result-
ing in improved LCO suppression performance. As depicted in Figure 9.81, when
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Fig. 9.80 In-flow wing with SDOF NES attached, bifurcation plots of steady state dynamics for
varying mass ratio ε and λ = 0.4, C = 10.0: (a) ε = 0.005, (b) ε = 0.014, (c) ε = 0.023,
(d) ε = 0.032, (e) ε = 0.041, (f) ε = 0.05; bold solid (dashed, dash-dotted) line denotes a Hopf
(LPC1, LPC2) bifurcation curve.

damping is increased the LPC bifurcation curves shift towards higher LCO ampli-
tudes. Moreover, low NES damping (see Figure 9.81a) results in inefficient energy
dissipation of the energy transferred from the wing to the NES, which tends to yield
non-robust LCO suppression over the reduced fluid velocities of interest.
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Fig. 9.81 In-flow wing with SDOF NES attached, bifurcation plots of steady state dynamics for
varying damping λ and ε = 0.02, C = 10.0: (a) λ = 0.1, (b) λ = 0.238, (c) λ = 0.376,
(d) λ = 0.514; bold solid (dashed, dash-dotted) line denotes a Hopf (LPC1, LPC2) bifurcation
curve.

Considering the effect of varying the coefficient C of the essential stiffness non-
linearity (see Figure 9.78c), we note that the Hopf and LPC bifurcation manifolds
seem to be nearly insensitive to variations of this coefficient. It follows that the
robustness of LCO instability suppression is not significantly affected by the co-
efficient of the essential nonlinearity, provided that this coefficient is sufficiently
large. In fact, the main role of the essential nonlinearity is to induce broadband non-
linear resonance interaction between the wing and SDOF NES. This conclusion is
supported by the bifurcation diagrams of Figure 9.82, where the topologies of all bi-
furcation diagrams appear to be similar, with the possible exception of the diagram
corresponding to small C (C = 1 – see Figure 9.82a). A minor distinction between
the bifurcation diagrams is that the LPC bifurcation curves are suppressed to lower
pitch amplitudes as C increases.

The previous results identify clearly certain limitations of the SDOF NES design
from the point of view of robustness of LCO suppression. As a way to enhance ro-
bustness we will consider an alternative design based on the use of MDOF NESs,
which as shown in Chapters 4 and 5 have the potential to yield enhanced and broad-
band TET performance. In the next section we will perform a numerical study of the
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Fig. 9.82 In-flow wing with SDOF NES attached, bifurcation plots of steady state dynamics for
varying essential nonlinearity C and ε = 0.02, λ = 0.4: (a) C = 1.0, (b) C = 4.8, (c) C = 8.6,
(d) C = 12.4, (e) C = 16.2, (f) C = 20.0; bold solid (dashed, dash-dotted) line denotes a Hopf
(LPC1, LPC2) bifurcation curve.

bifurcation structures of the steady state dynamics of an integrated wing – MDOF
NES system, in an effort to demonstrate that the MDOF NES can yield considerable
improvement of LCO suppression robustness, as a direct result of enhanced passive
broadband TET.



538 9 Suppression of Aeroelastic Instabilities through Passive Targeted Energy Transfer

9.5.2 Configuration of a Wing with an Attached MDOF NES

The alternative MDOF NES configuration attached to the in-flow wing is depicted in
Figure 9.83 (Lee et al., 2008). The MDOF NES consists of three particles coupled
in series by essentially nonlinear stiffnesses lying in parallel to viscous dampers;
moreover, the NES is coupled to the wing through a linear coupling stiffness. This
configuration is identical to the MDOF NES design studied in detail in Chapter 4.
Recalling the results of that study we anticipate that the highly degenerate structure
of the MDOF NES dynamics will introduce additional features in the dynamics of
the integrated wing-NES system, some of which will end up being beneficial to the
task of robust passive LCO suppression.

Assuming small motions and quasi-steady fluid-structure interaction the equa-
tions of motion of this system are expressed in the following form:

mḧ+ Sαα̈ +Kh(h+ c1h
3)+ qSCL,α(α + ḣ/U)+ k(h− dα − z1) = 0

Iαα̈ + Sαḧ+Kα(α + c2α
3)− qeSCL,α(α + ḣ/U)+ dk(dα + z1 − h) = 0

(ms/3) z̈1 + cs(ż1 − ż2)+ k(z1 + dα − h)+ ks(z1 − z2)
3 = 0

(ms/3) z̈2 + cs(ż2 − ż1)+ cs(ż2 − ż3)+ (ks/50)(z2 − z3)
3 + ks(z2 − z1)

3 = 0

(ms/3) z̈3 + cs(ż3 − ż2)+ (ks/50)(z3 − z2)
3 = 0 (9.90)

or in non-dimensional form,

y ′′ + xαα′′ +�2y + ξyy3 + µCL,α (y ′ + α)+ C1(y − δα − v1) = 0

r2
αα

′′ + xαy ′′ + r2
αα + ξαα3 − γµCL,α (y ′ + α)+ δC1(δα + v1 − y) = 0

(ε/3) v′′
1 + ελ(v′

1 − v′
2)+ C1(v1 + δα − y)+ C(v1 − v2)

3 = 0

(ε/3) v′′
2 + ελ(v′

2 − v′
1)+ ελ(v′

2 − v′
3)+ C(v2 − v1)

3 + (C/50)(v2 − v3)
3 = 0

(ε/3) v′′
3 + ελ(v′

3 − v′
2)+ (C/50)(v3 − v2)

3 = 0 (9.91)

where the notation of Sections 9.2 and 9.3 applies for (9.90) and (9.91), and the
additional new normalized parameters are defined as follows:

C1 = k/mω2
a, v1 = z1/b, v2 = z2/b, v3 = z3/b

Some interesting features of the MDOF NES design are now discussed. First, we
note that the total mass of the MDOF NES is set to be identical to the SDOF NES
considered in previous section; that is, in the new design the single normalized mass
ε of the SDOF NES is divided into the three masses equal to ε/3 in the MDOF NES.
This allows us to make direct comparisons of the LCO suppression capacities of the
two designs without any mass-added effects. Second, there exists a linear coupling
stiffness between the wing structure and the first mass of the NES; as discussed
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Fig. 9.83 Two-DOF rigid wing model with an attached MDOF NES.

in Chapter 4 weaker linear coupling facilitates broadband TET from the primary
structure (in this case, the wing) to the MDOF NES, and it would be interesting to
examine if this enhanced TET yields enhanced and more robust LCO suppression
compared to the SDOF NES design. Finally, we make the remark that the upper
essentially-nonlinear stiffness (which couples the first and second masses) of the
NES is chosen to be much stiffer than the lower nonlinear stiffness (which connects
the second and third NES masses). This relative scaling is motivated by the results
presented in Chapter 4, where it was found that a stiffer upper nonlinear spring en-
ables enhanced nonlinear resonance (modal) interactions between the MDOF NES
and the modes of the primary structure, whereas a weaker lower nonlinear spring
yields large-amplitude relative motions between the second and the third masses of
the NES, and thus, facilitates strong dissipation of the energy transferred to the NES
from the primary structure through TET.

An indication of the improvement in robustness of LCO suppression achieved by
the action of the MDOF NES is obtained when considering the preliminary numeri-
cal results depicted in Figure 9.84 where the steady state r.m.s. pitch amplitude ratio

α is computed for various combinations of initial conditions and system parame-
ters. These results should be compared to similar results for the SDOF NES design
depicted in Figures 9.58 and 9.76. We note that when using the MDOF NES the
domain of initial conditions where complete LCO suppression is realized expands,
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Fig. 9.84 MDOF NES design, steady state r.m.s. pitch amplitude ratio 
α , with respect to the set
of initial conditions {y(0) = 0, α(0) = 0, y′(0) ∈ [0, 0.1], α′(0) ∈ [0, 0.1]}, δ = 0.9, C1 = 0.01:
(a)  = 0.9, ε = 0.01, λ = 0.02, C = 30.0; (b)  = 0.9, ε = 0.02, λ = 0.4, C = 10.0.
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Fig. 9.84 MDOF NES design, steady state r.m.s. pitch amplitude ratio 
α , with respect to the set
of initial conditions {y(0) = 0, α(0) = 0, y′(0) ∈ [0, 0.1], α′(0) ∈ [0, 0.1]}, δ = 0.9, C1 = 0.01:
(c)  = 0.95, ε = 0.01, λ = 0.2, C = 30.0; (d)  = 0.95, ε = 0.02, λ = 0.4, C = 10.0.
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even for small total NES mass. For example, the simulations of Figure 9.84a corre-
spond to ε = 0.01, i.e., for NES mass equaling 1% of the total wing mass. Moreover,
for a mass ratio ε = 0.02 (see Figure 9.84d) the action of the MDOF NES can com-
pletely eliminate aeroelastic instability over the entire domain of initial conditions
of interest, even for the reduced velocity  = 0.95 which is a relatively high flow
speed that produces large-amplitude LCOs (above 0.25 rad in the pitch mode) in the
wing without NES.

The three LCO suppression mechanisms identified in the SDOF NES design can
be detected in the MDOF NES design as well. However, as it will become appar-
ent from the following bifurcation analysis, the action of the MDOF NES tends to
suppress the occurrence of Neimark–Sacker (NS) bifurcations which lead to quasi-
periodic LCOs. As a result, the first LCO suppression mechanism (corresponding
to recurrent series of LCO burst-outs and suppressions) is rarely realized in this
case. In fact, we conjecture that the MDOF NES renders the NS bifurcation highly
degenerate; for example, neutral-saddle singularities (Kuznetsov, 1995) may occur
instead, for which the numerical continuation method may fail to accurately com-
pute the resulting bifurcating LCO branches. The rare occurrence of the first LCO
suppression mechanism implies that partial or complete suppression of aeroelastic
instabilities (i.e., the second and third suppression mechanisms, respectively) will
be the main LCO suppression mechanisms observed in the MDOF NES design.

9.5.3 Robustness of LCO Suppression – Bifurcation Analysis

The MATCONT numerical continuation technique (Dhooge et al., 2003) was uti-
lized to construct bifurcation diagrams of steady state dynamics (LCOs) of the sys-
tem (9.91). As discussed in previous sections these diagrams are important for as-
sessing the robustness of LCO suppression due to the action of the MDOF NES, and
for comparing the relative performances of the SDOF and MDOF NES designs. In
the following numerical bifurcation study we consider two cases of linear coupling
stiffness between the wing and the MDOF NES, namely, C1 = 0.1 (designated as
strong coupling) and C1 = 0.01 (designated as weak coupling). In addition, the
overall MDOF NES parameters are chosen to be identical to those of the SDOF
NES considered in Section 9.5.1, so that direct comparisons between the two NES
designs make sense and can be performed.

9.5.3.1 Case of Strong Coupling

In Figures 9.85a–c we depict the two-dimensional manifolds of Hopf and LPC bifur-
cations for the system with strong linear coupling between the wing and the MDOF
NES. These diagrams are constructed with respect to the total NES mass ratio ε, the
damping coefficient λ, and the coefficient C of the essential nonlinearity, respec-
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Fig. 9.85 MDOF NES design, sets of Hopf and LPC bifurcations for (a–c) strong linear coupling
(C1 = 0.1), and (d–f) weak linear coupling (C1 = 0.01): (a, d) effect of mass ratio ε for λ = 0.4,
C = 10.0; (b, e) effect of damping λ for ε = 0.02, C = 10.0; (c, f) effect of essential nonlinearity
C for ε = 0.02, λ = 0.4; bifurcation points LPC1 are denoted by triangles (connected by solid
line), and bifurcation points LPC2 by squares (connected by dashed line).

tively. The corresponding branches of steady state dynamics (LCOs) for selected
parameters are depicted in Figures 9.86–9.88.
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Fig. 9.86 MDOF NES design, branches of steady state dynamics (LCOs) with respect to the mass
ratio ε for strong linear coupling C1 = 0.1 and λ = 0.4, C = 10.0: (a) ε = 0.005; (b) ε = 0.014;
(c) ε = 0.023; (d) ε = 0.032; (e) ε = 0.041; (f) ε = 0.05; bold solid line denotes Hopf bifurcations
curve, triangles (squares) LPC1 (LPC2) bifurcations, and asterisks degenerate bifurcation points
such as ‘neutral-saddles’ or ‘generalized Hopf bifurcations’ (Kuznetsov, 1995).
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Fig. 9.87 MDOF NES design, branches of steady state dynamics (LCOs) with respect to the
viscous damping coefficient λ for strong linear coupling C1 = 0.1 and ε = 0.02, C = 10.0:
(a) λ = 0.1; (b) λ = 0.169; (c) λ = 0.238; (d) λ = 0.307; (e) λ = 0.376; (f) λ = 0.445; bold
solid line denotes Hopf bifurcations curve, triangles (squares) LPC1 (LPC2) bifurcations, and as-
terisks degenerate bifurcation points such as ‘neutral-saddles’ or ‘generalized Hopf bifurcations’
(Kuznetsov, 1995).
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Fig. 9.88 MDOF NES design, branches of steady state dynamics (LCOs) with respect to the coef-
ficient of the essential nonlinearity C for strong linear coupling C1 = 0.1 and ε = 0.02, λ = 0.4:
(a) C = 2.9; (b) C = 6.7; (c) C = 10.5; (d) C = 14.3; (e) C = 18.1; (f) C = 20.0; bold
solid line denotes Hopf bifurcations curve, triangles (squares) LPC1 (LPC2) bifurcations, and as-
terisks degenerate bifurcation points such as ‘neutral-saddles’ or ‘generalized Hopf bifurcations’
(Kuznetsov, 1995).



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 547

We note that the manifolds of Hopf bifurcations for the system with MDOF NES
with strong linear coupling stiffness, appear to have similar topological structures
for varying NES mass ratio, damping and essential nonlinearity to those of the case
of SDOF NES. That is, for fixed offset the critical reduced velocity for Hopf bi-
furcation (i.e., the flutter speed) increases monotonically with increasing NES mass
ratio ε, and seems to be nearly insensitive to variations of damping and essential
nonlinearity. This is due to the fact that for strong linear coupling stiffness the upper
mass of the MDOF NES is almost rigidly connected to the wing. We note that strong
linear coupling may facilitate strong linear resonant interactions between the wing
modes and the MDOF NES, and, it causes stronger shift of the point of Hopf bi-
furcation towards higher reduced speeds compared to the SDOF design, even when
zero offset is considered.

The fact that the Hopf bifurcation points increase monotonically with increasing
NES mass ratio ε simply means that a larger NES mass provides better suppression
of aeroelastic instability in the strongly coupled MDOF NES configuration (see Fig-
ure 9.85a). Moreover, for large offsets the curves of LPC1 and LPC2 bifurcations are
closely spaced and are realized at higher reduced velocities than the flutter speeds
(i.e., the Hopf bifurcation points). This implies that the unstable LCO branches be-
tween the two LPC points exist over short intervals of the reduced velocity, so that
the manifolds of LCOs in Figure 9.86 appear as surfaces with no turning points (see
Figure 9.86).

In addition, as the mass ratio increases the bifurcation point LPC2 is realized at
higher fluid speeds than the Hopf bifurcation point (the flutter speed). The interval
between these two bifurcation points corresponds to the range of reduced velocities
where robust suppression of aeroelastic instability occurs. We note, however, that
the nearly linear monotonic increase of the speed for Hopf bifurcation with respect
to the mass ratio may not be attractive for practical applications since we generally
require light weightiness for the NES.

Hopf bifurcations are mostly of the supercritical type (Guckenheimer and
Holmes, 1983), that is, stable LCOs are generated after the Hopf bifurcations, below
which there exist only stable trivial equilibrium points (see Figure 9.86). However,
Hopf bifurcations near the point of zero offset are of the subcritical type in short
intervals of reduced velocities (for example, at δ = −0.2 in Figures 9.85a–c). The
LPC1 bifurcation points are aligned almost vertically for all NES parameters near
that range of offset values, and they hardly affect the overall robustness of instabil-
ity suppression. The branches of LCOs depicted in Figure 9.86 support the above
arguments. For example, similarly to the SDOF NES, the LPC bifurcations occur
at higher amplitudes as the mass ratio increases. Furthermore, the LPC bifurcation
points tend to move away from the line of zero offset as the mass ratio increases.

Higher damping values shift the LPC bifurcation points to larger offsets (see Fig-
ure 9.87). High damping also suppresses the occurrence of bifurcations of LCOs and
makes the LCO branches smoother. That is, the two LPC bifurcation points merge
at larger offsets as damping increases. Thus, optimal offset intervals for robust insta-
bility suppression can be identified for smaller damping coefficients. Figure 9.85b
depicts the bifurcation sets in the ( , δ, λ) parameter space. As in the case of the
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SDOF NES, the manifold of points of Hopf bifurcation exhibits less dependence on
the damping value compared to its dependence on the total mass ratio ε.

Whereas the manifold of Hopf bifurcations still exhibits insensitivity to changes
in the coefficient of the essential nonlinearityC (see Figure 9.85c), the manifolds of
LPC bifurcations become separated from each other for large offsets as Cincreases.
In fact, larger values of C induce two LPC bifurcation points at lower LCO ampli-
tudes (see Figure 9.88). Similar to the SDOF NES design, negative offsets provide
better LCO suppression capacity for the MDOF NES design with strong coupling
stiffness; moreover, the LCO suppression is robust in that case.

9.5.3.2 Case of Weak Coupling

Weak coupling stiffness between the MDOF NES and the wing removes the
monotonic dependence of the position of the Hopf bifurcation point on the mass
ratio ε, and shifts the points of Hopf bifurcations (i.e., the points of generation of
LCOs) to higher reduced velocities (see Figure 9.85d). An optimal mass ratio can
be found near the value ε = 0.02, shifting the point of generation of LCOs to the
highest values of reduced speed. Then, the locations of the LPC bifurcation points
relative to the Hopf bifurcation points provide an indication of the robustness of
instability suppression. A single LPC bifurcation point at lower reduced flow veloc-
ity than the Hopf bifurcation point implies that that the Hopf bifurcation is of the
subcritical type.

It is interesting to note that for negative offsets and in the vicinity of the afore-
mentioned optimal mass ratio, most of LPC bifurcations occur at lower reduced
fluid velocities than the Hopf bifurcation points; and at higher reduced velocities,
for positive offsets. This behavior appears for varying values of damping and essen-
tial nonlinearity, and most LPC bifurcations occur at reduced speeds lower (higher)
than the Hopf bifurcation points for negative (positive) offsets. Moreover, the dis-
tance between the LPC1 and LPC2 bifurcation points is maximized near the mass
ratio where optimal shift to higher fluid velocity of the Hopf bifurcation point is
achieved. This means that the robustness of instability suppression may not be opti-
mally enhanced at the optimal mass ratio.

Figure 9.89 depicts the branches of steady state dynamics (LCO surfaces) for se-
lective values of the mass ratio of the MDOF NES with weak linear coupling stiff-
ness. Comparing the manifolds of Hopf bifurcations for ε = 0.014 and ε = 0.023
(Figures 9.89b and 9.89c, respectively), we conclude that the value of ε = 0.023
is optimal in terms of shifting the points of Hopf bifurcation at higher reduced ve-
locities. However, these Hopf bifurcations are of the subcritical type, as indicated
by the fact that the LPC bifurcation points are realized at lower reduced velocities.
On the other hand, the mass ratio ε = 0.014 shifts the Hopf bifurcation points by
lesser amounts, but these Hopf bifurcations are supercritical, with the LPC bifur-
cation points occurring at higher reduced velocities. This is more desirable from a
practical point of view, as less NES mass is seen to yield better performance in terms
of robustness of instability suppression.
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Fig. 9.89 MDOF NES design, branches of steady state dynamics (LCOs) with respect to the mass
ratio ε for weak linear coupling C1 = 0.01 and λ = 0.4, C = 10.0: (a) ε = 0.005; (b) ε = 0.014;
(c) ε = 0.023; (d) ε = 0.032; (e) ε = 0.041; (f) ε = 0.05; bold solid line denotes Hopf bifurcations
curve, triangles (squares) LPC1 (LPC2) bifurcations, and asterisks degenerate bifurcation points
such as ‘neutral-saddles’ or ‘generalized Hopf bifurcations’ (Kuznetsov, 1995).
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Fig. 9.90 MDOF NES design, branches of steady state dynamics (LCOs) with respect to the
viscous damping coefficient ë for weak linear coupling C1 = 0.01 and ε = 0.02, C = 10.0:
(a) λ = 0.1; (b) λ = 0.169; (c) λ = 0.238; (d) λ = 0.307; (e) λ = 0.376; (f) λ = 0.445; bold
solid line denotes Hopf bifurcations curve, triangles (squares) LPC1 (LPC2) bifurcations, and as-
terisks degenerate bifurcation points such as ‘neutral-saddles’ or ‘generalized Hopf bifurcations’
(Kuznetsov, 1995).
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Fig. 9.91 MDOF NES design, branches of steady state dynamics (LCOs) with respect to the coef-
ficient of the essential nonlinearity C for weak linear coupling C1 = 0.01 and ε = 0.02, λ = 0.4:
(a) C = 2.9; (b) C = 6.7; (c) C = 10.5; (d) C = 14.3; (e) C = 18.1; (f) C = 20.0; bold
solid line denotes Hopf bifurcations curve, triangles (squares) LPC1 (LPC2) bifurcations, and as-
terisks degenerate bifurcation points such as ‘neutral-saddles’ or ‘generalized Hopf bifurcations’
(Kuznetsov, 1995).
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Whereas the manifold of Hopf bifurcations still exhibits near independence with
respect to the coefficient of the essential nonlinearity (see Figure 9.85f), it becomes
more dependent on the damping coefficient as noted from the plot of Figure 9.85e.
Referring to the variation of the LCO branches with respect to damping and essential
nonlinearity (see Figures 9.90 and 9.91), we note that for positive offsets the LPC
bifurcations occur either at higher reduced velocities or close to the Hopf bifurcation
points; this indicates that the Hopf bifurcations are mainly of the supercritical type,
and if they are subcritical their effect on robustness is negligible. For negative off-
sets the LPC bifurcations occur at much lower reduced velocities. Subcritical LCOs
become more prevalent for higher values of damping and essential nonlinearity.

9.5.3.3 Robustness Enhancement

From the previous bifurcation analysis we conclude that the MDOF NES with strong
linear coupling (whose dynamics is discussed in Section 9.5.3.1) behaves similarly
to a SDOF NES, with the exception of improved performance in terms of aeroelastic
instability suppression. Regarding the MDOF NES with weak linear coupling, when
appropriately optimized (in terms of offset, stiffness and mass parameters), it may
yield efficient and robust passive LCO suppression even when it is lightweight.

In this section, we demonstrate the enhancement in robustness of instability sup-
pression achieved by the MDOF NES design with weak coupling, by comparing its
performance to the SDOF NES design with corresponding parameters. Furthermore,
we analyze the underlying dynamic mechanisms governing TET from wing modes
to the MDOF NES, as well as the resulting nonlinear modal energy exchanges be-
tween these subsystems.

In Figure 9.92 we provide a direct comparison of the bifurcation diagrams of
systems with MDOF and SDOF NESs for various parameter sets. These diagrams
examine the dependence of the steady state pitch amplitude of the wing on the re-
duced fluid velocity  , when (i) no NES is attached; (ii) a SDOF NES with mass
ratio ε = 0.02 and offset δ = −1 is attached; and (iii) a MDOF NESs with vary-
ing total mass ratio ε and offsets δ = ±1 is attached. In these bifurcation diagrams
all other NES parameters such as damping, essential nonlinearity, and weak linear
coupling stiffness are kept fixed to the values λ = 0.4, C = 10.0 and C1 = 0.01.

The SDOF NES with ε = 0.02 (i.e., 2% ratio of the NES mass with respect to
the wing mass) and δ = −1 exhibits good performance in suppressing the aeroelas-
tic instability. Moreover, it yields robust suppression up to the reduced velocity
 ≈ 0.91. However, the MDOF NES with even smaller total mass ratio ε = 0.005
(0.5% overall mass ratio – see Figure 9.92a) provides similar or slightly better sup-
pression results. If the total mass of the MDOF NES increases to ε = 0.095 (i.e.,
slightly below 1% of the wing mass), the robustness enhancement (as denoted by
the interval  RE in Figure 9.92b) becomes pronounced, extending the regime of
robust LCO suppression up to  ≈ 0.94 for δ = 1, and  ≈ 0.96 for δ = −1.
Finally, by increasing the total mass ratio of the MDOF NES to ε = 0.014 (see Fig-
ure 9.92c – still less than the SDOF NES mass ratio of 2%), robustness enhancement
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Fig. 9.92 Bifurcation diagrams of the wing with SDOF and MDOF NESs (with weak linear cou-
pling) for λ = 0.4, C = 10.0 C1 = 0.01, and varying offsets and mass ratios: the SDOF NES is
considered for mass ratio ε = 0.02 and offset δ = −1; the MDOF NES is considered for varying
total mass ratios and offsets, (a) ε = 0.005, δ = ±1, (b) ε = 0.0095, δ = ±1; dashed lines
indicate unstable LCO branches, and squares (circles, triangles, diamond, asterisks) indicate Hopf
(Neimark–Sacker, LPC, BPC, neutral-saddle) bifurcation points; the intervals indicated by  RE
provide measures of enhancement of robustness of LCO suppression.
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Fig. 9.92 Bifurcation diagrams of the wing with SDOF and MDOF NESs (with weak linear cou-
pling) for λ = 0.4, C = 10.0 C1 = 0.01, and varying offsets and mass ratios: the SDOF NES is
considered for mass ratio ε = 0.02 and offset δ = −1; the MDOF NES is considered for varying
total mass ratios and offsets, (c) ε = 0.014, δ = ±1, (d) ε = 0.0274, δ = ±1; dashed lines
indicate unstable LCO branches, and squares (circles, triangles, diamond, asterisks) indicate Hopf
(Neimark–Sacker, LPC, BPC, neutral-saddle) bifurcation points; the intervals indicated by  RE
provide measures of enhancement of robustness of LCO suppression.
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becomes optimal, with the region of robust suppression extending up to  ≈ 1.0
for δ = 1, and up to  ≈ 1.01 for δ = −1. We note that for these values of reduced
velocities the results are out of the realm of the current aeroelastic model (based on
quasi-steady approximation of fluid-structure interaction), since the amplitudes of
the uncontrolled aeroelastic responses are in violation of the initial assumption of
small motions. However, these results can be interpreted as being indicative (i.e.,
as providing trends) of improvement of LCO suppression achieved with the light-
weight MDOF NES design.

It is interesting to note that if the total mass ratio of the MDOF NES becomes
greater than that of the SDOF NES (see Figure 9.92d), robustness of LCO sup-
pression by the MDOF NES deteriorates compared to the SDOF NES case, even
though the generation of LCOs from the trivial equilibrium position is significantly
shifted to higher reduced fluid velocities. In conclusion, optimally designed light-
weight MDOF NESs can provide improved and more robust LCO suppression per-
formance, compared to optimally designed SDOF NESs.

Figure 9.93 demonstrates by means of numerical simulations of the enhancement
in robustness of LCO suppression achieved using the MDOF NES design, compared
to the SDOF one. Considering a SDOF NES with 2% mass ratio, we assess its LCO
suppression capacity at reduced velocity  = 0.98, and compare it to the case of a
MDOF NES with 1.4% total mass ratio. Considering the time series of Figure 9.93a,
for small initial conditions we note that the SDOF NES can suppress the aeroelastic
instability through recurrent burst outs and suppressions, i.e., the first suppression
mechanism is activated, corresponding to excitation of a quasi-periodic LCO on a
branch between two NS bifurcation points. However, an impulsive disturbance ap-
plied to the heave mode at τ = 200 destroys this LCO suppression, as it induces a
transition of the dynamics to a branch of stable large-amplitude LCOs, thus reviv-
ing the triggering mechanism of LCO formation (see Section 9.2). Hence, lack of
robustness of LCO suppression is established in the SDOF NES design.

On the contrary, as it can be deduced from the results of Figure 9.93b under the
same flow conditions an MDOF NES with even smaller mass ratio maintains ro-
bustness of LCO suppression even after an identical impulsive disturbance has been
applied to the heave mode of the wing. Moreover, the suppression of the develop-
ing instability caused by the impulsive disturbance is achieved due to the capacity
of the MDOF NES to efficiently and rapidly absorb the (broadband) energy of the
disturbance through TET.

Now, we briefly examine the underlying dynamics that make robustness enhance-
ment possible in the MDOF NES design. We will study the dynamics by analyzing
the computed times series of the wing and NES responses by means of wavelet
transforms (WTs), and by examining the dominant transient resonant interactions
(TRCs) between the aeroelastic modes and the masses of the MDOF NES. In addi-
tion, instantaneous modal energy exchanges and measures of energy dissipation by
the MDOF NES will be computed, in an effort to relate TET to the enhanced ca-
pacity of the MDOF NES to robustly suppress aeroelastic instabilities over certain
ranges of reduced fluid velocities.
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Fig. 9.93 Demonstration of robustness enhancement of LCO suppression, when an impulsive dis-
turbance is applied to the heave mode at τ = 200, for  = 0.98, δ = −1, λ = 0.4, C = 10.0 and
C1 = 0.01: (a) when a SDOF NES of mass ratio ε = 0.02 is attached, and (b) when a MDOF NES
of total mass ratio ε = 0.014 is attached; thicker (thinner) lines indicate controlled (uncontrolled)
responses.

To this end, the instantaneous kinetic energy T̄ (τ ), and potential energy V̄ (τ ), of
the integrated wing – MDOF NES system in normalized form (9.91), are computed
as follows:
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T̄ (τ ) = (1/2)y ′2(τ )+ xay ′(τ ) α′(τ )+ (1/2)α′2(τ )

+ (1/3)
[
v′2

1 (τ )+ v′2
2 (τ )+ v′2

3 (τ )
]

V̄ (τ ) = (�2/2)y2(τ )+ (r2
a/2)α

2(τ )+ (ξy/4)y4(τ )+ (ξa/4)α4(τ )

+ (C/4) [v1(τ )− v2(τ )]4 + (C/200) [v2(τ )− v3(τ )]4

+ (C1/2)
[
y(τ)− δα(τ)− v1(τ )

]2
(9.92)

Hence, the total instantaneous energy of the system is computed as

ETotal(τ ) = T̄ (τ )+ V̄ (τ ) (9.93)

The instantaneous energy input in the integrated wing-NES system is computed
as the summation of the energy provided by the initial conditions and the non-
conservative work performed by the flow. This is expressed as follows:

EInput(τ ) = ETotal(0)+Wy
nc(τ )+Wα

nc(τ ) (9.94)

where

W
y
nc(τ ) = µCL,α 

∫ τ

0

{
y ′(s)+ α(s)} y ′(s) ds

Wα
nc(τ ) = −γµCL,α 

∫ τ

0

{
y ′(s)+ α(s)} α′(s) ds

Each of the above expressions represents the instantaneous non-conservative work
performed by the heave or pitch mode of the in-flow wing.

To assess the efficiency of TET from the aeroelastic modes to the MDOF NES,
and relate it to the capacity of the NES for LCO suppression we also compute the
following energy dissipation measure (EDM), which represents the total energy dis-
sipated by the two damping elements of the NES (see Figure 9.83) up to time τ :

ENES
d (τ ) = ENES1

d (τ )+ ENES1
d (τ )

= ελ
∫ τ

0

[
v′

1(s)− v′
2(s)

]2
ds + ελ

∫ τ

0

[
v′

2(s)− v′
3(s)

]2
ds (9.95)

Combining the previous energy measures we may formulate the following in-
stantaneous total energy balance for the integrated wing-NES system:

ETotal(τ ) = EInput(τ )− ENES
d (τ ) (9.96)

We consider the dynamics of the integrated system for reduced fluid velocity  =
0.92, when complete and robust elimination of aeroelastic instability is realized by
the action of the MDOF NES with parameters ε = 0.014, λ = 0.4, C = 10.0,
C1 = 0.01 (i.e., weak coupling stiffness is considered) and δ = ±1; moreover,
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zero initial conditions are considered, except for the heave velocity. The bifurcation
diagrams for δ = ±1 are depicted in Figure 9.92c, together with the comparison to
the bifurcation diagram of the system with a heavier SDOF NES.

In Figures 9.94a and 9.94b we depict the transient responses of the integrated
wing-NES system for initial condition y ′(0) = 0.02 (i.e., for a relatively small
initial energy input to the heave mode) and δ = ±1, respectively; whereas in Fig-
ures 9.94c and 9.94d, we depict the corresponding responses for initial condition
y ′(0) = 0.1 (i.e., for a relatively large initial energy input to the heave mode) and
δ = ±1, respectively. We note that in both cases of relatively small or large initial
input energies the developing aeroelastic instabilities are completely eliminated by
the action of the MDOF NES (i.e., the third LCO suppression mechanism is acti-
vated), due to TET from the developing instabilities in the aeroelastic modes to the
MDOF NES, where the energy is locally dissipated without being ‘fed back’ to the
instability. Moreover, it is interesting to note, that the developing LCO instability
is eliminated on a faster time scale when stronger disturbances are applied to the
heave mode (see Figures 9.94c, d); it is also of interest to note that for the particular
case of negative offset δ = −1 (see Figure 9.94d) there occur initial nonlinear beat
phenomena between the pitch mode and the three masses of the NES, which facil-
itate energetically-rich modal energy exchanges and transfers from the pitch mode
to the NES.

We recall from the exposition in Chapter 3 that the excitation of nonlinear beats
through excitation of impulsive orbits (IOs) provides the most efficient mechanism
for TET; in that context, the specific excitation of the heave mode considered in
the simulations of Figure 9.94 amounts to excitation of IOs of the integrated wing-
NES system. In addition, we recall from the results of Chapter 3 that broadband
TET from primary systems to SDOF and MDOF NESs is enhanced when energy
exceeds certain energy thresholds. We conjecture that this dynamic phenomenon
is also observed in the numerical simulations of Figure 9.94, where the NES is
observed to perform better at an increased energy level (i.e., for the case of stronger
impulsive disturbance).

The WT spectra of the transient responses of Figure 9.94 are depicted in Fig-
ure 9.95. Similar to (but in a more efficient way than) the SDOF NES design, sub-
harmonic transient resonant captures (TRCs) between the heave and pitch modes
take place, thus replacing (and effectively prohibiting) 1:1 TRCs between the same
modes that trigger aeroelastic instabilities (LCOs) in the wing without NES. How-
ever, the nonlinear interactions between the pitch mode and the masses of the NES
occur through 1:1 TRCs; in addition, the nonlinear beat phenomena occurring be-
tween the pitch mode and the NES masses for the case of relatively strong distur-
bance and offset δ = −1 become apparent by the presence of the two closely spaced
harmonics close to the unit normalized frequency in the WT spectra of Figure 9.95d.

Finally, in Figure 9.96 we depict the nonlinear modal energy exchanges corre-
sponding to the time responses of Figure 9.94. Since the action of the MDOF NES
yields complete elimination of the aeroelastic instability, eventual zero energy bal-
ance between the input energy and the energy dissipated by the NES is achieved at
all cases considered. Moreover, the state of zero balance is achieved faster in cases
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Fig. 9.94 Transient responses of the integrated in-flow wing-MDOF NES system for initial im-
pulse applied to the heave mode, and system parameters  = 0.92, ε = 0.014, λ = 0.4, C = 10.0
and C1 = 0.01: (a) y′(0) = 0.02, δ = 1; (b) y′(0) = 0.02, δ = −1; by the notation NES1–3
we denote the three masses in the MDOF NES, respectively, and thicker (thinner) line indicates
controlled (uncontrolled) responses.
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Fig. 9.94 Transient responses of the integrated in-flow wing-MDOF NES system for initial im-
pulse applied to the heave mode, and system parameters  = 0.92, ε = 0.014, λ = 0.4, C = 10.0
and C1 = 0.01: (c) y′(0) = 0.1, δ = 1; (d) y′(0) = 0.1, δ = −1; by the notation NES1–3
we denote the three masses in the MDOF NES, respectively, and thicker (thinner) line indicates
controlled (uncontrolled) responses.
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Fig. 9.95 Wavelet transform spectra of the transient responses of Figure 9.94.

where stronger heave disturbances are applied, which confirms the more efficient
LCO suppression performance of the MDOF NES at the higher energy level.

All four simulations depicted in Figures 9.94–9.96 display strong initial nonlin-
ear interactions between the aeroelastic modes and the NES. That is, the energy
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Fig. 9.95 Continued.

applied to the heave mode by the impulsive disturbance is initially absorbed by the
MDOF NES, with its upper mass acting as the main absorber of energy as evidenced
by the instantaneous energy plots of Figure 9.96 (with the instantaneous energy lev-
els of the upper mass reaching levels of more than 50% of input energy for strong
applied impulses). Also, consistent with the previous bifurcation analysis, weaker
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Fig. 9.96 Nonlinear modal energy exchanges corresponding to the responses depicted in Fig-
ure 9.94; Ea and Ey denote the percentages of total instantaneous energy stored in the pitch and
heave modes, respectively; and Ev1, Ev2 and Ev3 denote the percentages of total instantaneous
energy stored in the first, second and third mass of the NES, respectively.

linear coupling stiffness provides less resistance to this energy transfer from the
wing modes to the upper mass of the NES. Considering the energy dissipation ca-
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Fig. 9.96 Continued.

pacity of the MDOF NES, it is noted that for strong applied impulses it holds that,
E

NES2
d > E

NES1
d , i.e., the weakly coupled pair of masses dissipates a bigger portion

of the transferred energy from the wing modes compared to the strongly coupled
pair; the opposite holds for the case of weak applied impulse. This implies that, for



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 565

efficient suppression of aeroelastic instabilities by means of the MDOF NES, the
strongly coupled pair of masses of the NES (the one closest to the point of attach-
ment to the wing) should act as effective nonlinear energy absorber, whereas, the
weakly coupled pair of masses of the NES (the one farthest from the wing) should
act as efficient energy dissipater of this transferred energy. This remark is consistent
with the results derived in Chapter 4.

In conclusion, the bifurcation analysis of the dynamics of the integrated wing
– MDOF NES system indicates that the placement of the lower LPC bifurcation
point at reduced fluid speeds above the Hopf bifurcation point is crucial to enhanc-
ing robustness of LCO suppression. Moreover, we demonstrated that the proposed
MDOF NES design not only enhances the robustness of LCO suppression against
strong impulsive disturbances, but also achieves better (or at least comparable) LCO
suppression performance than the SDOF NES design, with smaller total mass.

These results, when viewed in conjunction with previous theoretical and exper-
imental results concerning the SDOF NES design, indicate that appropriately de-
signed lightweight passive nonlinear absorbers with essential stiffness nonlineari-
ties can passively suppress, effectively and robustly, LCO instabilities by means of
broadband TET. The dynamical mechanisms governing passive LCO suppression
is a series of transient resonance captures occurring between the wing aeroelastic
modes and multiple nonlinear normal modes (NNMs) of the MDOF NES, resulting
in passive broadband TET of unwanted vibration energy from the wing to the NES,
where this energy is spatially confined and passively dissipated. However, open is-
sues that require further investigation include the study of the complex and highly
degenerate structure of the dynamics of the integrated wing – MDOF NES system,
as well as the study of the performance of the proposed NES designs under con-
ditions of unsteady fluid-structure interaction. We will provide some preliminary
results regarding the later topic in the following section.

9.6 Preliminary Results on LCO Suppression in a Wing in
Unsteady Flow

Having established effective and robust LCO suppression in a rigid wing by means
of passive TET and based on the assumption of quasi-steady aerodynamic theory,
one may ask whether a similar passive approach will still be effective when a differ-
ent aeroelastic model is adopted based on more realistic aerodynamic modeling and
yielding unsteady lift force and pitching moment. The purpose of this section is to
provide a preliminary answer to this question.

A two-DOF rigid wing with nonlinear structural support, coupled to a SDOF
NES with an offset from the elastic axis will be considered, and, contrary to our
previous studies, unsteady aerodynamic theory will be employed to model the fluid-
structure interaction. After summarizing the system configuration and certain of its
dynamical features a numerical continuation technique will be utilized to examine
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the dynamical mechanisms governing LCO suppression in this system, and to assess
their robustness.

Hence, we reconsider the two-DOF rigid wing coupled to a SDOF NES with
an offset from the aeroelastic axis (see Figure 9.43); in contrast, however, to the
analysis of Section 9.3 (which was based on quasi-steady flow), we now consider
unsteady flow-structure interaction. In this case, the non-dimensional equations of
motion for the integrated wing-NES system can be expressed as follows:

y ′′ + xαα′′ + (�/ )2(y + ξyy3)+ (ελ/ )(y ′ − δα′ cosα − v′)

+ (C/ )(y − δ sin α − v)3 = −(µ/π)CL(τ)
α′′ + (xα/r2

α)y
′′ + (1/ )2(α + ξaα3)+ (δελ/ r2

α)(δα
′ cosα + v′ − y ′)

+ (δC/ 2ra)(δ sin α + v − y)3 = (2µ/πr2
α) CM(τ)

εv′′ + (ελ/ )(v′ + δα′ cosα − y ′)+ (C/ 2)(v + δ sin α − y)3 = 0 (9.97)

where an identical notation to Section 9.3 is employed, with the exception of the
normalized time which in this case is defined as τ = Ut/b. The unsteady lift force
CL(τ) and pitching moment CM(τ) for incompressible flow are expressed as fol-
lows:

CL(τ) = π[y ′′(τ )− αhα′′(τ )+ α′(τ )]
+ 2π[α(0)+ y ′(0)+ (0.5 − αh)α′(0)]φ(τ)

+ 2π
∫ τ

0
φ(τ − s)[α′(s)+ y ′′(s)+ (0.5 − αh)α′′(s)] ds

CM(τ) = π(0.5 + αh)[α(0)+ y ′(0)+ (0.5 − αh)α′(0)]φ(τ)

+ π(0.5 + αh)
∫ τ

0
φ(τ − s)[α′(s)+ y ′′(s)+ (0.5 − αh)α′′(s)] ds

+(π/2)αh[y ′′(τ )− αhα′′(τ )] − (π/2)(0.5 − αh)α′(τ )− (π/16)α′′(τ )

(9.98)

The Wagner function φ(τ) in (9.98) can be expressed by Jones’ approximation
(Jones, 1940) as

φ(τ) = 1 − ψ1e
−ε1τ − ψ2e

−ε2τ (9.99)

where ψ1 = 0.165, ψ2 = 0.335, ε1 = 0.0455 and ε2 = 0.3, and αh denotes the
normalized distance over b of the elastic axis ea from the midpoint of the chord
length c = 2b (with positive values indicating that the midpoint is on the right of
the elastic axis – see Figure 9.43). We note that if we set ψ1 = ψ2 = 0 quasi-steady
aerodynamic theory is recovered, but the secondary bifurcation occurring after the
Hopf bifurcation is not observed (Liu and Dowell, 2004).
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In order to avoid dealing with a set of integro-differential equations resulting due
to the unsteady aerodynamic force and moment, the following new variables (Lee
et al., 1997) are introduced:

w1(τ ) =
∫ τ

0
e−ε1(τ−s)α(s) ds, w2(τ ) =

∫ τ

0
e−ε2(τ−s)α(s) ds

w3(τ ) =
∫ τ

0
e−ε1(τ−s)y(s) ds, w4(τ ) =

∫ τ

0
e−ε2(τ−s)y(s) ds (9.100)

Then, the equations of motion (9.97) can be expressed by adopting a state-vector
formulation as follows,

x′(τ ) = f (x, τ ) (9.101)

where the 10-dimensional state vector of dependent variables is defined as x =
t[α α′ y y ′ w1 w2 w3 w4 v v

′]T ∈ R10.
As in Section 9.3, in this model structural nonlinearity exists only in the pitch

mode (i.e., the plunge support is linear). Hence, we set ξa = 80 and ξy = 0, and
assume that there is no viscous damping in the wing structure. In addition, we con-
sider the following numerical values for the system parameters, µ = 100, ra = 0.5
and ah = −0.5. As for the static unbalance and frequency ratio, the following two
different parameter sets are considered: (i) xa = 0.25,� = 0.2, with the aeroelastic
instability occurring due to a supercritical Hopf bifurcation at  F = 6.2851 (Set
I); and (ii) xa = 0.10, � = 1.2 with the aeroelastic instability occurring due to a
subcritical Hopf bifurcation at  F = 2.951 (Set II). Finally, the following study
will be performed for the following parameters for the SDOF NES, ε = 0.02, 0.05,
λ = 0.05, C = 10.0, and δ ∈ [−1, 1]. That is, the NES mass will be assumed to be
at most 5% of the wing mass, and to possesses light damping; moreover, the offset
of the NES will be allowed to cover almost the entire wing span, that is, from the
leading to the trailing edge.

The numerical method MATCONT realized through a Matlab� package is uti-
lized to investigate the steady state bifurcation structure of LCOs in the unsteady
flow model (9.97), and to study the robustness of LCO suppression by means of
TET to the attached NES. Figure 9.97 depicts the bifurcation diagram for the wing
parameter Set I, and an NES with 5% mass ratio. Unlike the case with the quasi-
steady results reported in Section 9.3, it is interesting to note that the suppressed
LCOs exhibit subcritical behavior, whereas the original aeroelastic system under-
goes a supercritical Hopf bifurcation. In addition, the shift of the Hopf bifurcations
due to the action of the NES is quite insignificant, which is also not coincident with
our earlier observations in Section 9.3. However, we conjecture that better results
can be obtained once an optimization of NES parameters is performed following the
methodologies described previously. Apart from the subcritical LCO branches near
the Hopf bifurcation points, we note that the amplitudes of the suppressed LCOs
when the NES is attached at the leading edge of the wing (i.e., δ = 1.0) are smaller
than the original LCOs, although this reduction involves a series of very complicated
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(a)

(b)

Fig. 9.97 Bifurcation diagram of the pitch response for the wing parameter Set I with respect to
the reduced velocity for NES parameters ε = 0.05, λ = 0.05, C = 10.0: (a) δ = 1.0, (b) δ = 0.3;
solid (dashed) line indicates a stable (unstable) LCO branch, dash-dotted line a quasi-periodic
LCO, and squares (triangles, circles, asterisks, diamonds) Hopf (Saddle-node, Neimark–Sacker,
neutral saddle, branch point cycle) bifurcation points.

codimension-1 (Hopf, Saddle-node, Neimark–Sacker) and codimension-2 (Neutral
Saddle, Branch Point Cycle) bifurcations.

If, however, our aim is to suppress subcritical LCOs (as for the case of wing pa-
rameter Set II), this can be performed by suitably selecting the NES parameters so
that supercritical Hopf bifurcations are realized. In particular, focusing in the bifur-
cation diagrams depicted in Figure 9.98, robust LCO elimination can be achieved
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(c)

(d)

Fig. 9.97 Bifurcation diagram of the pitch response for the wing parameter Set I with respect to
the reduced velocity for NES parameters ε = 0.05, λ = 0.05, C = 10.0: (c) δ = 0.0, (d) δ = 0.6;
solid (dashed) line indicates a stable (unstable) LCO branch, dash-dotted line a quasi-periodic
LCO, and squares (triangles, circles, asterisks, diamonds) Hopf (Saddle-node, Neimark–Sacker,
neutral saddle, branch point cycle) bifurcation points.

up to about 5% higher reduced speeds than the linear flutter speed when a 2% NES
mass ratio is utilized. If a 5% NES mass ratio is used instead, this robust LCO elimi-
nation can be achieved even up to 112% of the linear flutter speed; moreover, robust
suppression of aeroelastic instability can be guaranteed up to 130% of the linear
flutter speed.
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(a)

(b)

Fig. 9.98 Bifurcation diagram of the pitch response for the wing parameter Set II with respect
to the reduced velocity for NES parameters ε = 0.02, λ = 0.05, C = 10.0: (a) δ = 1.0 (the
LCO branch for ε = 0.05 is superimposed for the purpose of comparison), (b) δ = 0.1; solid
(dashed) line indicates a stable (unstable) LCO branch, dash-dotted line a quasi-periodic LCO,
and squares (triangles, circles, asterisks, diamonds) Hopf (Saddle-node, Neimark–Sacker, neutral
saddle, branch point cycle) bifurcation points.

Figure 9.99 demonstrates the suppressed aeroelastic responses due to the action
of the SDOF NES for the following cases: (a) complete elimination at 112% of U∗

L,
and (b) recurring burst-out and suppression of aeroelastic instability at 130% of U∗

L.
The wavelet transforms of the aeroelastic responses depicted in Figure 9.100 clearly
demonstrate that the underlying dynamic mechanisms for passive LCO suppressions
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Fig. 9.99 Suppressed aeroelastic responses for parameter Set II and NES parameters ε = 0.05,
λ = 0.05, C = 10.0 and δ = 1.0: (a)  / F = 1.12 (third suppression mechanism – complete
elimination of aeroelastic instability); (b)  / F = 1.30 (first suppression mechanism – recurring
burst-out and suppression of aeroelastic instability).

is a series of 1:1 to subharmonic transient resonance captures (TRCs), which was
also the case in our previous results reported of this chapter.

The three LCO suppression mechanisms identified in our previous studies of the
quasi-steady aerodynamic model are also realized in the unsteady aeroelastic model
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Fig. 9.100 Wavelet transform spectra of the transient responses depicted in Figure 9.99.

(9.97). Although feasibility of TET-based LCO suppression can be demonstrated by
the preliminary results reported in this section, further (analytical and numerical)
investigation should be performed in order to gain better understanding of the non-
linear modal interactions that lead to LCO suppression in the unsteady model, and
to perform optimization of the considered NES design.
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Chapter 10
Seismic Mitigation by Targeted Energy Transfer

In this chapter we examine the application of NESs to the problem of seismic pro-
tection of frame structures, though other infrastructural systems such as towers,
bridges, and so forth will likely benefit from this technology. As has often been
noted, infrastructure in the United States alone constitutes a societal investment
counted in the trillions of dollars. While the fraction of infrastructure vulnerable
to large-scale earthquakes is relatively limited by geography (i.e., the west coast,
midwest and southeast, in addition to Alaska and Hawaii, are historically the most
vulnerable areas), seismic activity capable of causing property damage has been
recorded throughout the country and around the world. This provides the impetus
to develop effective strategies to protect not only new construction but also existing
structures likely to be subjected to seismic effects.

Various passive methods for mitigating the effects of earthquakes have been ap-
plied to large scale structures, including auxiliary dampers, base isolation systems,
tuned mass dampers, as well as active, semi-active and hybrid systems. Detailed de-
scriptions and a comparision of the performance and limitations of each of these are
beyond the scope of this chapter. Rather, the interested reader should refer to several
excellent monographs, including Soong and Constantinou (1994), Soong (1990),
Skinner et al. (1993), Chu et al. (2005), and recent review articles (Housner et al.,
1997; Spencer and Sain, 1997; Soong and Spencer, 2002; Spencer and Nagarajaiah,
2003), as well as references therein for details. It seems clear, given the recent exten-
sive body of literature and burgeoning number of isolated structures,1 that the need
exists for a fully passive isolation strategy, lightweight and inexpensive but capable
of high performance over an extensive range of earthquakes of different properties.

The aim of this chapter, then, is to demonstrate through several case studies that
it is possible to design and implement one or more NESs in a primary linear system
with multiple degrees of freedom (DOF) that will passively absorb and dissipate
seismic energy drawn from the primary system as well as advantageously redistrib-

1 According to Spencer and Nagarajaiah (2003), by 2003 more than 40 buildings and 10 bridges
were constructed with integral active or hybrid seismic isolation systems. This does not include
statistics for passive base isolation systems employing laminated rubber bearings, which for low-
rise buildings have become ubiquitous in seismically-active regions.

577
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ute seismic energy within the modes of the primary system, thus enhancing its reli-
ability and enabling performance under widely varying seismic conditions. For an
example of an earlier implementation of configurations of linear springs exhibiting
geometric nonlinearities for passive seismic attenuation we refer to DeSalvo (2007)
and references therein.

Building upon the theoretical underpinnings presented in earlier chapters, we
now demonstrate the application of TET to the seismic protection of flexible struc-
tures. In the first section, we continue the discussion of the two-DOF linear primary
system examined in Chapter 7, assessing through simulation and optimization the
capability of the nonlinear energy sink concept for seismic protection. Evaluation
procedures, including the choice of historic earthquakes and system performance
criteria to be employed throughout this chapter, are defined. Finally, the ability of a
single VI NES to mitigate seismic effects is assessed.

In the next section, we examine a more relevant problem: seismic protection of
a model three-story, single-bay, two-dimensional steel frame structure using, first,
a single VI NES at the top floor and, second, a VI NES at the first floor and a
smooth NES at the top floor. The design and optimization of each protective system
configuration are discussed, and its performance is assessed both computationally
and experimentally.

The final section provides a brief evaluation of protective system performance
and offers some insights concerning possible full-scale implementation of the NES
concept for seismic protection of civil infrastructural systems.

10.1 The Two-DOF Linear Primary System with VI NES

10.1.1 System Description

The efficacy of TET for reduction of the seismic response of a primary structure
depends on the ability of one or more attached NESs to passively absorb and dissi-
pate a significant portion of the seismic energy at a sufficiently fast time scale. This
ensures that the response of the primary structure is significantly reduced during the
crucial initial few cycles of the strong motion. Thus, we will first perform a study of
the proposed concept by considering a simple linear primary system and developing
an optimization procedure for choosing the parameters of the protective system so
that its action is compatible with our design objectives. For this, we employ a two
degree of freedom linear primary system attached to an ungrounded VI NES. This
type of NES, using clearances and impact to achieve the essential nonlinearity, pro-
motes strongly nonlinear behavior of the full system (Georgiades, 2006; Karayannis
et al., 2008; Lee et al., 2008).

Following Nucera (2005) and Nucera et al. (2007), the integrated system con-
sisting of the linear primary structure connected to the VI NES is shown in Fig-
ure 10.1. The NES mass m3 is connected to the primary structure through a weak
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Fig. 10.1 Two-DOF linear system with VI NES.

linear spring2 k3. Two rigid stops constrain the relative displacement between m2
and m3 to be less than or equal to the specified clearance e.

For simplicity, let the primary two degree of freedom linear system be propor-
tionally damped, and let ζ1 and ζ2 be the assumed (small) viscous damping ratios.
In modal coordinates, the diagonal damping matrix will have the form

Ĉ =
[

2ζ1ω1 0
0 2ζ2ω2

]
(10.1)

and, in physical coordinates,

C = M�Ĉ�−1 =M�Ĉ�TM (10.2)

whereM is the mass matrix and� is the normalized modal matrix.
Within the NES, the relation for the absolute velocities, with respect to a fixed

reference frame, of the colliding masses before and after each impact is given by the
expression

v′
2 − v′

3 = rc(v3 − v2) (10.3)

where v1 = u̇ai is the absolute velocity of mass mi (i = 2, 3) before impact, the
prime denotes ‘after impact’, and rc is the coefficient of restitution. While energy is
not conserved through each impact due to the required condition rc < 1, momentum
is conserved. Thus,

m2v2 +m3v3 = m2v
′
2 +m3v

′
3 (10.4)

The equations of motion of the system depicted in Figure 10.1 are given by

Mü+ Cu̇+Ku = −MI0üg (10.5)

whereM ,C, andK are, respectively, the mass, damping and stiffness matrices given
by

M =
⎡
⎣ m1 0 0

0 m2 0
0 0 m3

⎤
⎦ , C =

⎡
⎣ λ1 + λ2 −λ2 0

−λ2 λ2 0
0 0 0

⎤
⎦ ,

2 The weak linear spring functions strictly as a centering device for the VI NES. The interpretation
of essential nonlinearity in this case should be modified to include ‘nearly’ essential nonlinearity.
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K =
⎡
⎣ k1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3

⎤
⎦

The displacement vector, relative to ground, is u = [u1 u2 u3]T , üg is the specified
ground acceleration, and I0 = [1 1 1]T is a distribution vector.

In all of the simulations to follow in this section, we will assume thatm1 = m2 =
2.9 ×106 kg, k1 = k2 = 2.5 ×107 N/m, ζ1 = ζ2 = 0.01, λ1 = 7.62 ×104 N-sec/m,
and λ2 = 1.52 × 105 N-sec/m.

10.1.2 Simulation and Optimization

An extensive series of simulations employing Matlab� as the computational engine
was completed. The simulation code determined precisely when impacts occurred
in the VI NES and solved a series of linear problems between them, accounting for
dissipation due to inelastic impacts between massesm2 andm3. The response of the
full system, including the VI NES, was determined for four historic earthquakes as
the excitation source. These included:

• El Centro, N-S component – May 18, 1940;
• Hachinohe, N-S component – May 16, 1968;
• Kobe, N-S component – January 17, 1995; and
• Northridge, N-S component – January 16, 1994.

As discussed in significant detail in Nucera (2005) and Nucera et al. (2007), these
four were chosen as representative of two distinct classes of earthquakes. The first,
containing the El Centro and Hachinohe records, are characterized by longer ef-
fective ground motion duration and smaller peak ground acceleration and veloc-
ity, while the second, containing Kobe and Northridge, exhibit shorter duration but
larger peak ground acceleration and velocity. As noted in the references, Kobe has
the highest energy content and destructive capacity of the four records.

The design space for the system optimization encompassed three VI NES pa-
rameters: mass m3, weak linear stiffness coefficient k3, and clearance e. The eight
evaluation criteria, Ji , i = 1, . . . , 8, employed to assign quanitative measures of per-
formance to the computed seismic response of the system, were those introduced by
Spencer et al. (1998a, b) in the context of a moderated benchmark control problem
for a seismically excited structure.

J1 = max
earthquakes

⎧⎪⎪⎨
⎪⎪⎩

max
t
i∈η

|ui(t)|

umax

⎫⎪⎪⎬
⎪⎪⎭ (10.6)

The first criterion (10.6) is a non-dimensional measure of the displacement relative
to ground motion. Here, η represents the set of computed relative displacements,
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and umax is maximum relative displacement for the uncontrolled (no NES) linear
structure.

J2 = max
earthquakes

⎧⎪⎪⎨
⎪⎪⎩

max
t,i

|di(t)|
hi

dmax
n

⎫⎪⎪⎬
⎪⎪⎭ (10.7)

The second criterion (10.7) is a normalized interstory drift ratio, where di(t) =
ui(t)− ui−1(t) is the time history of the i-th interstory drift, hi is the i-th interstory
height, and dmax

n is the maximum interstory drift for the uncontrolled structure.

J3 = max
earthquakes

⎧⎪⎪⎨
⎪⎪⎩

max
t
i∈η

|üai(t)|

ümax
a

⎫⎪⎪⎬
⎪⎪⎭ (10.8)

The third criterion (10.8) is a normalized maximum absolute acceleration. Here,
üai(t) is the time history of absolute acceleration for the i-th degree of freedom, and
ümax
a is the maximum acceleration over all degrees of freedom for the uncontrolled

structure.

J4 = max
earthquakes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
t

∑
i∈η
miüai(t)

Fmax
b

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10.9)

The fourth criterion (10.9) is a normalized inertial force ratio, where Fmax
b is the

maximum base shear force for the uncontrolled structure.

J5 = max
earthquakes

⎧⎨
⎩

max
i∈η ‖ui(t)‖

‖umax‖

⎫⎬
⎭ (10.10)

The fifth criterion (10.10) is the L2-normed measure of structural response. Here,

‖ui(t)} =
{∫ tf

0
uti(t)dt

}1/2

tf is a sufficiently large time permitting the response of the structure to attenuate to
less than 0.1% of its maximum value, and ‖umax‖ = maxi∈η ‖ui(t)‖ is the maxi-
mum normed uncontrolled displacement.

J6 = max
earthquakes

⎧⎪⎪⎨
⎪⎪⎩

max
i,j

‖di(t)‖
hi

‖dmax
n ‖

⎫⎪⎪⎬
⎪⎪⎭ (10.11)
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The sixth criterion (10.11) is a normed interstory drift ratio, where ‖dmax
n ‖ is the

maximum normed interstory drift for the uncontrolled structure.

J7 = max
earthquakes

⎧⎨
⎩

max
i∈η ‖üai(t)‖

‖ümax
a ‖

⎫⎬
⎭ (10.12)

The seventh criterion (10.12) is the normed absolute acceleration ratio, where
‖ümax
a ‖ is the maximum normed absolute acceleration of the uncontrolled structure.

J8 = max
earthquakes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i∈η
mi üaηi(t)

‖Fmax
b ‖

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10.13)

The final criterion (10.13) is a normed inertial force ratio, where ‖Fmax
b ‖ is the

maximum normed base shear force for the uncontrolled structure. We note here that
all of the criteria are applied over the array of four historic earthquakes.

The method employed to optimize the parameters of the VI NES is Differen-
tial Evolution (Storn and Price, 1997), a global evolutionary procedure. In all of
the analyses performed, the weak linear spring associated with the VI NES was
fixed at k3 = 0.02k1. While each of the afore-mentioned criteria was evaluated over
the array of four historic earthquakes, sufficient additional computations were com-
pleted to facilitate the determination of an optimal solution corresponding to each
historic earthquake. Following Nucera (2005), a series of Pareto optimations were
performed utilizing the objective function

OF = J1 + J2 + J5 + J6 (10.14)

10.1.3 Computational Results

In results that follow, a subset of cases considered most significant are given. Ta-
ble 10.1 summarizes the optimal clearance values over the earthquake array, mass
ratio, and coefficient of restitution, and Tables 10.2 through 10.5 provide numerical
values of the evaluation criteria corresponding to the computed optimal clearances.

Evaluation of the ability of the system to effectively dissipate energy was accom-
plished through an energy balance. Components considered included the seismic
energy input to the system, the kinetic and strain energies, the energy dissipated in
the linear primary structure, and the energy dissipated by the NES through vibro-
impacts. The last of these is a consequence of two effects: (i) transient resonance
capture, during which significant dissipation occurs due to repeated strong inelastic
impacts (as discussed in Chapter 7); and (ii) energy spreading from high amplitude,
low frequency modes of the system to low amplitude, high frequency modes, where



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 583

Table 10.1 Optimal VI NES clearances (m), two-DOF system.

Table 10.2 El Centro earthquake evaluation criteria, two-DOF system.

it is more readily dissipated by viscous effects. Both of these are beneficial effects
in the seismic environment, particularly for strong motion earthquakes.

Of interest here is the energy ratio ESS/EI , where ESS is the energy dissipated
by the NES through both vibro-impacts and viscous dissipation and EI is the total
input seismic energy. This ratio must be computed at each vibro-impact. We first
compute the total input energy less the energy dissipated by the NES relative to the
fixed frame, given by

EI−S = EK + ED + EP (10.15)

Letting ua , u̇a , üa be the absolute displacement, velocity and acceleration vectors
and u, u̇, ü the displacement, velocity and acceleration vectors relative to ground,

EI−S =
∫ t

0
[(Müa)T + (Cu̇+Ku)T ]u̇adt (10.16)

The energy dissipated by the VI NES for each impact is given by
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Table 10.3 Hachinohe earthquake evaluation criteria, two-DOF system.

Table 10.4 Kobe earthquake evaluation criteria, two-DOF system.

ES = 1

2
(m2v

2
2 +m3v

2
3)−

1

2
(m2v

′2
2 +m3v

′2
3 ) (10.17)

Thus, ESS = ES + ED , with EI = EI−S + ES evaluated immediately after each
impact.

The responses of the system with the VI NES compared to those without the VI
NES, the relative motion between massm2 and the VI NESm3, and the energy ratio
ESS/EI are shown in Figures 10.2 through 10.4, for three specific cases sampled
from Table 10.1. In general, over the range of cases examined, we noted that the
optimal clearance decreases with increasing mass ratio. Furthermore, at each mass
ratio, the optimal clearance appeared to be not sensitive to the coefficient of restitu-
tion but, rather, to the inherent characteristics of the individual historic earthquakes.

As noted in Chapter 7, there are two fundamental dynamic mechanisms that gov-
ern the interaction between the seismically excited primary structure and VI NES.
The first of these is targeted energy transfer (TET), which leads to dissipation of a
significant portion of input energy early in the regime of strong motion. This is due
to a 1:1 transient resonance capture, and as shown earlier there is a time window dur-
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Table 10.5 Northridge earthquake evaluation criteria, two-DOF system.

Fig. 10.2 Responses of the two-DOF system with VI NES to the El Centro earthquake: controlled
and uncontrolled relative displacements (top); relative displacement of the NES and energy dissi-
pation due to vibro-impacts (bottom).

ing which the VI NES oscillates with frequency approximately equal to one of the
modes of the primary structure until a sufficient fraction of energy is dissipated, and
escape from capture occurs. In fact, the fast scale of the VI NES dynamics enables
the absorption and dissipation through inelastic impacts during the initial phase of
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Fig. 10.3 Responses of the two-DOF system with VI NES to the Northridge earthquake: con-
trolled and uncontrolled relative displacements (top); relative displacement of the NES and energy
dissipation due to vibro-impacts (bottom).

the high-energy strong ground motion, the critical first few cycles of seismic re-
sponse. This results in a significant reduction of the maximum levels of seismic
response of the primary structure, which is a necessary condition for prevention of
catastrophic failure in, for example, connections between floor beams and columns
of the structure. These fast scales cannot be realized with smooth (i.e., continuous)
nonlinearities; thus, the discontinuous nature of the VI NES is key to the successful
application of TET to seismic mitigation in large structures.

The second mechanism acting between the primary system and VI NES is energy
redistribution from the lower modes of the integrated system to the higher modes
due to vibro-impacts in the VI NES. The consequence of this energy transfer from
high-amplitude, low-frequency to low-amplitude, high-frequency modes is more ef-
fective dissipation due to viscous damping. While this effect is likely to be more
pronounced in large scale systems with many degrees of freedom, it is also visible
in the energy balance previously discussed.

An examination of the performance of the system, as shown in Figures 10.2
through 10.4, reveals that a significant amount of energy is dissipated within the
first five vibro-impacts. These vibro-impacts involve sudden changes in velocity
and, hence, often result in large accelerations. Thus, the passively controlled ac-
celerations, reflected in evaluation criteria J3, J4, J7 and J8, were not included in
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Fig. 10.4 Responses of the two-DOF system with VI NES to the Kobe earthquake: controlled and
uncontrolled relative displacements (top); relative displacement of the NES and energy dissipation
due to vibro-impacts (bottom).

the objective function. However, the remarkably short reaction time of the VI NES,
affecting the amplitude of even the first cycle of response of the primary system,
makes it a valuable protective component. As demonstrated in Tables 10.2 through
10.5, use of the VI NES provided reductions in maximum displacement (J1) and
maximum interstory drift (J2) of 40% and 50%, respectively, for both the El Cen-
tro and Hachinohe earthquakes. For the most severe historic earthquake studied, the
Kobe, the figures were 25% and 37%; and for the Northridge, 34% and 36%.

10.2 Scaled Three-Story Steel Frame Structure with NESs

In this section we examine the application of TET to a scaled three-story frame
structure, subjected to the same four historic earthquakes introduced in Section 10.1.
The structure was designed and built in the Linear and Nonlinear Dynamics and Vi-
brations Laboratory (LNDVL) at the University of Illinois at Urbana-Champaign.
The problem was motivated by a recent series of benchmarks designed to challenge
the structural control community (Spencer et al., 1998a, b, c; Ohtori et al., 2004),
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Fig. 10.5 Sketch of the three-story, one-bay steel and polypropylene frame structure shown
mounted to an electromechanical shake table.

though we were unable to duplicate and test any of those structures in our laboratory
due to physical limitations in our shake table capability. The design and character-
ization of the structure was accomplished through a combination of finite element
computations and experimental modal analysis. Once the model was complete, sev-
eral protective system configurations employing NESs were designed, optimized,
and verified experimentally. One configuration in particular was shown to provide a
significant level of protection for all four earthquakes examined, remarkable in view
of the fully passive design. The mechanics of the system will be discussed in what
follows.

10.2.1 Characterization of the Three-Story Linear Frame Structure

Following Nucera (2005) and Nucera et al. (2008a, b), the structure (i.e., the lin-
ear primary system), shown in Figure 10.5, is a three-story, one-bay structure with
spring steel columns and polypropylene floor slabs, approximately 60 cm tall, 20 cm
wide and 10 cm deep. The floors slabs are bolted directly to the columns, through
small aluminum plates to increase rigidity, using 4 cap screws per connection. The
foundation, also polypropylene, was bolted directly to a mechanical shake table
(Figure 10.6) through which the historic earthquake time histories were applied. The
floor slabs were sufficiently thick in dimension to ensure adequate rigidity against
bending; thus, the frame was designed to respond as a shear beam, with each col-
umn modeled as a clamped-clamped Euler–Bernoulli beam with lateral stiffness
k = 12EI/h3. Here, E is Young’s modulus for spring steel, I is the area moment
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Fig. 10.6 Detail showing mounting of the steel frame to the locked-down shake table.

of inertia of the column about its bending axis, and h is the effective column length
of a story. The resulting floor masses are assumed to be equal to 1.127 kg, and the
column stiffnesses, also assumed equal, are rounded off to 5000 N/m.

The frame is governed by the equation of motion

Mü+ Cu̇+Ku = −MI0üg (10.18)

where the mass and stiffness matrices, displacement vector relative to ground mo-
tion, and distribution vector are given, respectively, by

M =
⎡
⎣ m1 0 0

0 m2 0
0 0 m3

⎤
⎦ , K =

⎡
⎣ 2k −k 0

−k 2k −k
0 −k k

⎤
⎦ ,

I0 =
⎡
⎣ 1

1
2

⎤
⎦ , u(t) =

⎡
⎣ u1
u2
u3

⎤
⎦

and üg(t) is the ground acceleration. We considered the case where the system is
proportionally damped and determined the modal damping factors from an exper-
imental modal analysis of the structure. Here, the mechanical shaker was locked
down, and an impact hammer with an integral piezoelectric force transducer was
employed to provide the necessary impulsive excitation at each story; responses
were measured using a piezoelectric accelerometer at each story, as shown in Fig-
ure 10.7. All transducers used were manufactured by PCB Piezotronics, Inc. Data
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Fig. 10.7 The three-story uncontrolled frame undergoing modal testing using an impact hammer
to determine its eigenspectrum and modal damping factors: (a) excitation using a modal hammer;
(b) typical accelerometer installation.

was subsequently acquired through a SigLab system, and both impulsive responses
and complex frequency responses were saved for further analysis.

The experimental modal analysis was performed in the time domain using the
Ibrahim Time Domain (ITD) method (Ibrahim and Pappa, 1982; Kerschen, 2002)
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and frequency domain using the Rational Fraction Polynomial (RFP) method, the
latter implemented in the Diamond software package made available by the Los
Alamos National Laboratory (Doebling et al., 1997). The average of the two meth-
ods gave natural frequencies of 4.6, 12.8, and 18.3 Hz, compared with computa-
tional values of 4.7, 13.2, and 19.1 Hz, resulting in a consistently high error ranging
from 2 to 4% , which we attribute to arithmetic round-off and, perhaps, to compli-
ance in the ball-screw mechanism of the shaker. However, the close agreement in
natural frequency makes the damping estimates, again the average of ITD and RFP
results, credible; the modal damping factors were found to be 0.00275, 0.00313,
and 0.00236 for modes one through three, respectively. The modal damping ma-
trix Ĉ was then determined, from which the viscous damping matrix was computed
from (10.2). This completed the determination of the linear portion of the simulation
model.

10.2.2 Simulation and Optimization of the Frame-Single VI NES
System

A VI NES was attached to the top (third) floor of the primary system in order to
utilize the large building displacements at that height to maximize its authority, as
shown in the schematic of Figure 10.8. Development of the equations of motion
followed that of Section 10.1, where the NES degree of freedom was added to the
equations of the primary system. Thus, (10.18) applies with

M =

⎡
⎢⎢⎣
m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣
λ1 + λ2 −λ2 0 0

−λ2 λ2 + λ3 −λ3 0
0 −λ3 λ3 0
0 0 0 0

⎤
⎥⎥⎦

and

K =

⎡
⎢⎢⎣

2k −k 0 0
−k 2k −k 0
0 −k k + kNES −kNES
0 0 −kNES kNES

⎤
⎥⎥⎦ , I0 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , u(t) =

⎡
⎢⎢⎣

u1
u2
u3
uNES

⎤
⎥⎥⎦

As before, kNES is small compared with k.
As noted earlier, adding the VI NES makes the combined system piecewise lin-

ear; i.e., between any two consecutive impacts of mNES the system is linear. Hence,
the numerical integration of the equations of motion requires the solution of a se-
quence of linear initial value problems, each of which is bounded by successive
vibro-impacts of the NES. The precise computation of the times at which vibro-
impacts occur is necessary for accurate simulation of the transient dynamics of the
system, as they determine the temporal boundaries of the linear computations. When
a vibro-impact occurs, the computation is halted, the initial conditions are modified
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Fig. 10.8 Sketch (a) and schematic (b) of the three-story, one-bay steel and polypropylene frame
structure with a single VI NES attached to the third floor.

to account for the state of the system post-impact, and the computation then re-
sumes. The relation for the velocities of the affected masses before and after impact
is

v′
3 − v′

NES = rc(vNES − v3) (10.19)

and, as before, while energy is not conserved through the inelastic impact, momen-
tum is conserved leading to

m3v3 +mNESvNES = m3v
′
3 +mNESv

′
NES (10.20)
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Fig. 10.9 Comparison of uncontrolled and controlled floor displacements relative to the ground
and the VI NES displacement relative to the ground for the system optimized for and subjected to
the Northridge earthquake.

The system of equations was reduced to state-space form and integrated using func-
tion ODE45 in Matlab�, taking advantage of its adaptive time-stepping to achieve
the required accuracy in the vicinity of each impact.

The optimization parameters were those of the VI NES; i.e., mNES, kNES, e, and
rc, and the evaluation criteria, objective function, and procedure were identical to
those employed in Section 10.1. The optimization was again performed over the ar-
ray of four historic earthquakes named earlier, with an optimal solution determined
for each particular earthquake. Both the Northridge and Kobe results will be dis-
cussed further as they represent the more severe case within each class.

10.2.2.1 Optimization Design for the Northridge Earthquake

Prior to initiating the study, examination of the Fourier spectrum of the Northridge
acceleration record revealed that a mismatch existed between the frequency band-
width of maximum energy content and the eigenspectrum of the three story struc-
ture. In order to place the maximum energy of the earthquake in a frequency band
consistent with the eigenspectrum of the structure, the duration of the earthquake
was scaled by a factor of one half to 25 seconds from its original 50, thus doubling
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Fig. 10.10 Performance of the VI NES optimized for and subjected to the Northridge earthquake;
(a) comparison between absolute displaclements of the third flor and NES; (b) phase plot of relative
velocity versus relative displacement between the third floor and NES; and (c) energy dissipation
by the VI NES showing the portion of instantaneous seismic energy dissipated during each vibro-
impact.

its effective bandwidth and ensuring that the computed response represents the most
severe condition. The acceleration amplitude, however, was left unscaled.

It was observed throughout the ensuing simulations that during the strong mo-
tion portion of the earthquake, the VI NES was able to respond quickly resulting
in vibro-impacts that dissipate a significant portion of the input energy. This is a
signal advantage of the VI NES over the smooth NES, which acts more slowly and
is unable to affect structural response during the first few critical cycles of strong
motion. The optimal VI NES parameters for the Northridge record were determined
to be: mNES equal to 4% of the total mass of the primary system; kNES = 0.005k;
rc = 0.40; and e = 0.02 m. The natural frequencies of the system including the VI
NES were computed to be 2.2, 4.6, 12.8, and 18.3 Hz, reflecting the addition of the
new, low-frequency mode due to the weakly coupled NES mass at the top floor.

Figure 10.9 provides a comparison between the controlled and uncontrolled (no
NES) relative displacements with respect to ground of each floor of the frame, while
Figure 10.10 compares the absolute displacement of the third floor with that of the
NES and gives the phase plot of the response of the NES relative to the third floor
as well as the instantaneous total energy dissipated at each vibro-impact and the
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Fig. 10.11 Comparison between the wavelet spectra of controlled and uncontrolled relative dis-
placements for a primary system with Northridge-optimized VI NES attached to the third floor and
Northridge seismic excitation: (a) u1(t)− ug(t), (b) u2(t)− u1(t), (c) u3(t)− u2(t).

vibro-impact time history. The last of these provides a measure of the severity of
vibro-impacts, indicating whether there is sufficient interaction between the primary
system and NES.

Wavelet spectra of the relative displacements between the first floor and ground,
the second and first floors, and the third and second floors are shown in Figure 10.11,
clearly depicting the scattering of energy to all structural modes due to vibro-
impacts of the NES. We note that the uncontrolled structure responds primarily at
its first mode of 4.6 Hz, which leads to large relative displacements. In the presence
of the NES, however, seismic energy is spread to as many as four linear modes, with
the spreading becoming more pronounced at the higher floors. This is a two-fold ad-
vantage from the mitigation standpoint and explains the reduced levels of structural
response observed with the NES in place. First, due to the vibro-impacts, seismic
energy is transferred from the low frequency, high amplitude first structural mode
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Fig. 10.12 Comparison of uncontrolled and controlled floor displacements relative to the ground
and the VI NES displacement relative to the ground for the system optimized for and subjected to
the Kobe earthquake.

to the lower amplitude, higher frequency structural modes where it is more readily
dissipated by internal damping effects; second, energy ‘leaking’ to the lowest mode
at 2.2 Hz results in even greater mitigation as that mode is localized to the NES.

The performance of the optimized system can be visualized through the eval-
uation criteria (J1, J2, . . . , J8) = (0.61, 0.59, 0.80, 0.58, 0.37, 0.39, 0.57, 0.39).
Thus, a 39% reduction in maximum displacement and a 41% reduction in maxi-
mum interstory drift are realized compared with the uncontrolled system, with the
normed criteria reduced even more.

Examination of the controlled responses of Figures 10.9 and 10.10 reveals three
distinct phases. During the first three seconds, the relative motion between the NES
and third floor is less than the clearance so that no vibro-impacts occur and the sys-
tem is linear. In the second phase, from three to eight and a half seconds, strong
vibro-impacts occur due to a 1:1 transient resonance capture between the first struc-
tural mode and the VI NES, resulting in dissipation of approximately 87% of the
input seismic energy. The final phase occurs after escape from resonance capture;
however, a series of vibro-impacts occurs between 10 and 12 seconds, though effi-
cient energy dissipation is not achieved since the earthquake has released nearly all
of its energy by eight seconds. This confirms that the VI NES is effective from the
first cycle of response and is able to dissipate seismic energy at a sufficiently fast
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Fig. 10.13 Performance of the VI NES optimized for and subjected to the Kobe earthquake:
(a) comparison between absolute displacements of the third floor and the NES; (b) phase plot
of relative velocity versus relative displacement between the third floor and NES; and (c) energy
dissipation by the VI NES showing the portion of instantaneous seismic energy dissipated during
each vibro-impact.

time scale to mitigate large responses at early time typical of near-field events. This
fundamental mechanism, in conjunction with the spreading phenomenon already
discussed, provides an effective mitigation strategy for large scale structures.

10.2.2.2 Optimization Design for the Kobe Earthquake

Optimization of the VI NES system for the Kobe earthquake followed that of the
Northridge earthquake, just discussed. Again, in order to tune the earthquake record
to the eigenspectrum of the structure, the record was scaled to 25 seconds from
the original duration of 50 seconds, doubling its frequency bandwidth; acceleration
amplitude was not scaled. The optimal VI NES parameters for the Kobe record
were determined to be:mNES equal to 4.5% of the total mass of the primary system;
kNES = 0.004k; rc = 0.40; and e = 0.018 m. The natural frequencies of the system
including the VI NES were computed to be 1.7, 4.6, 12.8, and 18.3 Hz, reflecting
the addition of the new, low-frequency mode due to the weakly coupled NES mass
at the top floor.
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Fig. 10.14 Comparison between the wavelet spectra of controlled and uncontrolled relative dis-
placements for a primary system with Kobe-optimized VI NES attached to the third floor, and
Kobe seismic excitation: (a) u1(t)− ug(t), (b) u2(t)− u1(t), (c) u3(t)− u2(t).

Figure 10.12 provides a comparison between the controlled and uncontrolled
(no NES) relative displacements with respect to ground of each floor of the frame,
while Figure 10.13 compares the absolute displacement of the third floor with that
of the NES and gives the phase plot of the response of the NES relative to the third
floor as well as the instantaneous total energy dissipated at each vibro-impact and
the vibro-impact time history. The last of these provides a measure of the severity of
vibro-impacts, indicating whether there is sufficient interaction between the primary
system and NES.

Wavelet spectra of the relative displacements between the first floor and ground,
the second and first floors, and the third and second floors are shown in Figure 10.14,
again depicting the scattering of energy to all structural modes due to vibro-impacts
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Fig. 10.15 Uncontrolled and controlled displacements relative to the ground when a Kobe-
optimized VI NES is attached to the third floor of the frame, subjected to the Northridge excitation.

of the NES. In the presence of the VI NES, seismic energy is spread to the linear
modes as before, resulting in dissipation and reduction in response.

It would be desirable if a protective system designed and optimized specifically
for a particular, severe historic earthquake acting on a known structure functioned
in near-optimal fashion for a range of historic earthquakes. Thus, we examined the
system resulting from the Kobe analysis in terms of its performance under the El
Centro, Hachinohe and Northridge records. Both the El Centro and Hachinohe ac-
celeration records were scaled in time to 50% of their original length, with the am-
plitude left unscaled. Comparisons of controlled and uncontrolled displacements
relative to ground, and the NES displacement relative to ground, for the El Cen-
tro, Hachinohe and Northridge earthquake records are given in Figures 10.15, 10.16
and 10.17, respectively. That there is a dramatic reduction in response for all three
systems is clear from the plots.

The eight evaluation criteria for the Kobe-designed system subjected to all four
historic earthquake records are given in Table 10.6. Reductions in maximum dis-
placement and maximum interstory drift were 36% and 38%, respectively, for Kobe,
36% and 36% for Northridge, 50% and 51% for El Centro, and 39% and 42% for
Hachinohe. In all cases, reductions in the normed criteria were equally impressive.

This cursory study demonstrates that the VI NES can be an efficacious element
of a control strategy for seismic protection of shear beam structures. We noted in
the course of this study, however, that the VI NES functions most effectively during
the strong motion segment of the earthquake, losing its ability to undergo vibro-
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Fig. 10.16 Uncontrolled and controlled displacements relative to the ground when a Kobe-
optimized VI NES is attached to the third floor of the frame, subjected to the El Centro excitation.

Fig. 10.17 Uncontrolled and controlled displacements relative to the ground when a Kobe-
optimized VI NES is attached to the third floor of the frame, subjected to the Hachinohe excitation.
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Table 10.6 Evaluation criteria for four historic earthquakes; linear frame with Kobe-designed
single-VI NES at floor 3.

impacts as the input energy decreases and, in the limit, reaching a no-impact con-
dition where it becomes ineffective. This condition will be exacerbated for the case
of earthquakes of low-to-moderate intensity, with seismic energy well below that
of the design earthquake. Thus, we now consider a second, alternate design based
upon the combined utilization of a VI NES and a smooth NES, in order to extend
the useful range of the TET strategy for seismic protection of structures.

10.2.3 Simulation and Optimization of the Frame-VI NES-Smooth
NES System

We now attach a smooth NES incorporating an essentially nonlinear cubic spring
to the top (third) floor of the primary structure and a VI NES to the first floor, as
shown in Figure 10.18. The intent of this design is to combine a lightweight smooth
NES design which will perform adequately for moderate-to-severe earthquakes and
a relatively heavy VI NES for protection from severe, possibly near field, events.
As the more massive VI NES is positioned lower in the structure, its effect upon the
structural design will be minimized; the smooth NES at the top floor will continue
to function even as the available seismic energy input becomes relatively small.

The equations of motion are now given by

Mü+ Cu̇+Ku = −MI0üg + f (10.21)

where, following the previous section, the mass, damping and stiffness matrices and
displacement vector relative to ground are given by

M =

⎡
⎢⎢⎢⎢⎣
m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 mNES1 0
0 0 0 0 mNES2

⎤
⎥⎥⎥⎥⎦ ,
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Fig. 10.18 Sketch (a) and schematic (b) of the three-story, one-bay steel and polypropylene frame
structure with a single-VI NES attached to the first floor and a smooth NES attached to the third
floor.

C =

⎡
⎢⎢⎢⎢⎣
λ1 + λ2 −λ2 0 0 0

−λ2 λ2 + λ3 −λ3 0 0
0 −λ3 λ3 + λ4 0 −λ4
0 0 0 0 0
0 0 −λ4 0 λ4

⎤
⎥⎥⎥⎥⎦

and
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Fig. 10.19 Uncontrolled and controlled displacement relative to the ground when a Kobe-
optimized VI NES is attached to the first floor and a smooth NES is attached to the third floor
of the frame, for the Kobe excitation.

K =

⎡
⎢⎢⎢⎢⎣

2k + kNES1 −k 0 −kNES1 0
−k 2k −k 0 0
0 −k k 0 0

−kNES1 0 0 kNES1 0
0 0 0 0 7

⎤
⎥⎥⎥⎥⎦ , u =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1
u2
u3
uNES1

uNES2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and f represents the restoring force vector associated with the essentially nonlinear,
cubically-varying stiffness of the smooth NES,

f =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0

−kNES2(u3 − u5)
3

0
−kNES2(u5 − u3)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Clearly, NES1 and NES2 refer to the VI NES and smooth NES, respectively; as
before, üg is the ground acceleration and I0 is the distribution vector.

As in the previous section, simulation was performed within Matlab� where
now, however, the system is strongly nonlinear between impacts of NES1. Precise
calculation of the times at which vibro-impacts occur remains a critical part of the
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Fig. 10.20 Performance of the VI NES optimized for the Kobe earthquake: (a) comparison be-
tween absolute displacements of the first floor and the NES; (b) phase plot of relative velocity
versus relative displacement between the first floor and NES; and (c) energy dissipation by the VI
NES showing the portion of instantaneous seismic energy dissipated during each vibro-impact.

algorithm, though the problem is no longer piecewise linear. Optimization of this
system proceeded in precisely the same way as the previous one, although the num-
ber of optimization parameters expanded due to the addition of the smooth NES;
i.e., mNES, kNES, e, and rc for NES1 and mNES2 , kNES2, and λ4 for NES2.

For this system, the optimization study was completed for the Kobe record alone,
with the additional constraint that neither NES mass could exceed 2.5% of the total
mass of the linear primary structure. The optimal parameters were determined to be:
mNES1 equal to 2.4% of the total mass of the linear primary structure, e = 0.011 m,
rc = 0.426, kNES1 = 0.001k; mNES2 equal to 2% of the total mass of the linear
primary structure, kNES2/k = 19 m−2, and λ4 = 3.277λ3.

Figure 10.19 provides a comparison between the controlled and uncontrolled
relative displacements with respect to ground of each floor of the frame along with
the absolute displacements of the third floor and of NES2. Figure 10.20 depicts the
absolute displacement of the first floor and that of NES1 and gives the phase plot
of the response of NES1 relative to the first floor as well as the instantaneous total
energy dissipated at each vibro-impact and the vibro-impact time history.

The frame-dual NES system, optimized for the Kobe record, was also subjected
to the Northridge earthquake in order to examine the robustness of the protective
system, with the results shown in Figures 10.21 and 10.22. From these, we observe
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Fig. 10.21 Uncontrolled and controlled displacement relative to the ground when a Kobe-
optimized VI NES is atatched to the first floor and a smooth NES is attached to the third floor
of the frame, for the Northridge excitation.

that the portion of seismic energy dissipated by the VI NES (NES2) is on the order of
25–30%. While smaller than the dissipation realized in the single-VI NES design,
it should be noted that here the mass ratio is smaller, and the device is located at
the first floor where frame velocity, and consequently momentum exchange, is also
smaller.

The eight evaluation criteria for the Kobe-designed dual-NES system subjected
to all four historic earthquakes are given in Table 10.7. For the Kobe record, the
dual-NES system clearly outperforms the single-NES system in terms of all eight
criteria, while for the Northridge record there is improvement in the third and sev-
enth criteria but deterioration in the first, though still satisfactory. The situation for
the El Centro and Hachinohe records appears somewhat less impressive, with im-
provements noted only in the normed criteria. Note, however, that these earthquakes
are less energetic than the Kobe and Northridge and, consequently, the opportunity
for transient resonance capture, which requires exceedance of an energy threshold in
order to occur, is reduced with the VI NES located at the first floor and at a reduced
mass ratio.

These conjectures are confirmed by Figures 10.23 and 10.24, the wavelet spectra
of the floor displacements relative to ground, showing that scattering toward higher
modes of the system is less pronounced in the dual-NES design. However, reduc-
tions in the normed criteria demonstrate that the smooth NES continues to operate
in low energy regimes, long after the VI NES becomes ineffective. In Figures 10.25
and 10.26, the wavelet spectra of the relative displacements between NES1 and the
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Fig. 10.22 Performance of the VI NES optimized for the Kobe earthquake, subjected to the North-
ridge earthquake: (a) comparison between absolute displacements of the first floor and the NES;
(b) phase plot of relative velocity versus relative displacement between the first floor and NES;
and (c) energy dissipation by the VI NES showing the portion of instantaneous seismic energy
dissipated during each vibro-impact.

Table 10.7 Evaluation criteria for four historic earthquakes; linear frame with Kobe-designed
single-VI NES at floor 1 and smooth NES at floor 3.

first floor and between NES2 and the third floor, it is clear that seismic energy is
pumped more vigorously from the first mode, particularly for the Northridge record.
The high amplitude of the wavelet spectum in this case indicates the occurrence of
a transient resonance capture accompanied by TET at the first linearized natural fre-
quency of the system. The capture and resulting TET persists for several seconds,
after which escape occurs.

The result of this effort, then, is a functional, fully passive, lightweight and inex-
pensive protective system that can be designed for peak performance when exposed
to highly energetic earthquakes in the near field but that will also perform well for
less energetic earthquakes or those that occur at some distance from the structure.
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Fig. 10.23 Wavelet spectra of controlled relative displacements for the frame with Kobe-optimized
VI NES attached to the first floor, smooth NES at the top floor, and Kobe excitation: (a) u1(t) −
ug(t), (b) u2(t)− u1(t), (c) u3(t)− u2(t).
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Fig. 10.24 Wavelet spectra of controlled relative displacements for the frame with Kobe-optimized
VI NES attached to the first floor, smooth NES at the top floor, and Northridge excitation:
(a) u1(t)− ug(t), (b) u2(t)− u1(t), (c) u3(t)− u2(t).
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Fig. 10.25 Wavelet spectra of controlled relative displacements for the frame with optimized
VI NES attached to the first floor, smooth NES at the top floor, and Kobe seismic excitation:
(a) uNES1(t)− u1(t), (b) uNES2(t) − u3(t).

The results of several experiments, to follow, will confirm the capability of both
single-NES and dual-NES systems.

10.3 Experimental Verification

The single-VI NES and dual-NES systems were built and tested in the Linear and
Nonlinear Dynamics and Vibrations Laboratory (LNDVL) at the University of Illi-
nois at Urbana–Champaign. The laboratory is jointly managed by the departments
of aerospace engineering and mechanical science and engineering.
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Fig. 10.26 Wavelet spectra of controlled relative displacements for the frame with optimized VI
NES attached to the first floor, smooth NES at the top floor, and Northridge seismic excitation:
(a) uNES1(t)− u1(t), (b) uNES2(t) − u3(t).

The three-story frame was mounted to an electromechanical shake table, basi-
cally a servomotor-driven ball-screw device3 that provided sufficient authority for
open-loop application of the Kobe and Northridge earthquake records at full ampli-
tude (and scaled by 50% in time as discussed previously) to the frame and protective
system. Figures 10.27 and 10.28 illustrate the displacements with respect to ground,
at floors one, two and three, for the Kobe and Northridge earthquake records ob-
tained from double integrating the measured accelerations, from which the severity
of the response to the Kobe compared with the Northridge is apparent. Henceforth,
these will be denoted the uncontrolled responses.

3 The authors are indebted to Professor Bill Spencer of the civil and environmental engineering
department at UIUC for the long-term loan of his shake table and associated electronics.
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Fig. 10.27 Experimentally obtained uncontrolled response to the Kobe earthquake, displacements
with respect to the ground of the shear frame: (a) top floor 1, (b) middle floor 2, (c) bottom floor 3.

Fig. 10.28 Experimentally obtained uncontrolled response to the Northridge earthquake, displace-
ments with respect to ground of the shear frame: (a) top floor 1, (b) middle floor 2, (c) bottom floor
3.
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Fig. 10.29 Frame-single VI NES system: (a) the full system mounted on the shake table; and (b) a
detail of the VI NES.

10.3.1 System Incorporating the Single-VI NES

The single-VI NES was attached to the third story of the frame, as shown in Fig-
ure 10.29. As can be seen in the figure, the NES consists of a small mass clamped
to a shaft that is free to move horizontally in linear bearings until either of the two
restrictors inelastically impacts its respective bearing housing. Note that consists of
the washer, collars, shaft and restrictors, while the bearings and bearing housings
are included in m3. Two discrete values, 2.5% and 3.5%, were placed on the ratio
of NES mass to the total mass of the frame in an effort to make the design realistic,
and the design optimization was repeated for the Kobe earthquake employing the
identical evaluation criteria and algorithm used previously. The optimal solutions,
corresponding to the two mass ratios, are:

System 1: mNES/mTF = 0.025, kNES/k = 0.004, e = 0.024 m, rc = 0.43

System 2: mNES/mTF = 0.035, kNES/k = 0.005, e = 0.016 m, rc = 0.42

Figures 10.30 and 10.31 show the relative displacements obtained experimentally
for Systems 1 and 2, respectively, when subjected to the Kobe record. In System 1,
reductions of 31% in maximum displacement relative to ground and 30% in max-
imum interstory drift are realized, while in System 2, the reductions are 46% and
37%, respectively.
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Fig. 10.30 Experimentally obtained response of the Kobe-optimized, frame-single VI NES system
with mass ratio of 2.5% to the Kobe earthquake: displacements with respect to ground of the shear
frame, (a) top floor 1, (b) middle floor 2, (c) bottom floor 3.

Fig. 10.31 Experimentally obtained response of the Kobe-optimized, frame-single VI NES system
with mass ratio of 3.5% to the Kobe earthquake: displacements with respect to ground of the shear
frame, (a) top floor 1, (b) middle floor 2, (c) bottom floor 3.
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Fig. 10.32 Experimentally obtained response of the Kobe-optimized, frame-single VI NES system
with mass ratio of 2.5% to the Northridge earthquake: displacements with respect to ground of the
shear frame, (a) top floor 1, (b) middle floor 2, (c) bottom floor 3.

Fig. 10.33 Experimentally obtained response of the Kobe-optimized, frame-single VI NES system
with mass ratio of 3.5% to the Northridge earthquake: displacements with respect to ground of the
shear frame, (a) top floor 1, (b) middle floor 2, (c) bottom floor 3.

The Kobe-designed system was also subjected to the consistently scaled North-
ridge earthquake. Figures 10.32 and 10.33 show the relative displacements obtained
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Table 10.8 Experimental evaluation criteria; linear frame with Kobe-designed single-VI NES at
floor 3.

experimentally for Systems 1 and 2, respectively, for this input record. As expected,
the results were not as impressive as for the Kobe, for reasons explained earlier. The
computed evaluation criteria corresponding to the two systems for each of the two
earthquake records are summarized in Table 10.8.

The spreading of seismic energy due to vibro-impacts, predicted in our earlier
analyses, was verified in the experimental results. Figures 10.34 and 10.35 show the
wavelet spectra of the interstory displacementsRD1 = u1, RD2 = u2 −u1, RD3 =
u3 − u2 of the uncontrolled frame structure subjected to the Kobe and Northridge
records, respectively. Examination of these plots reveals that the response is limited
nearly completely to the first linear mode of the structure. Significantly different
results are obtained when the larger of the two VI NESs (System 2) is installed at
the third floor, as indicated in Figures 10.36 and 10.37. Here we see that, for the
Kobe earthquake, significant levels of seismic energy are spread from the first to the
second and third linearized modes of the system while, for the Northridge record,
spreading occurs mainly from the first to the second linearized mode. From these
plots we see clearly that the VI NES acts at a sufficiently fast time scale to affect
early time response, thus limiting peak values that are major sources of damage. We
also note that the effect of the NES is negligible once the seismic energy is reduced
to the point that vibro-impacts occur infrequently or not at all.

10.3.2 System Incorporating both VI and Smooth NESs

A VI NES (NES1) was attached to the first floor and a smooth NES (NES2) was
bolted to the third floor of the frame as shown in Figure 10.38. NES1 was described
previously; however, now the mass of the bearing housings is added to that of the
first floor, m1. From the figure, we see that NES2 consists of a mass fixed to a shaft
supported on bearings, connected to an extension of the third floor of the primary
structure through a pair of thin wires without pretension, providing a geometrically
nonlinear force-displacement characteristic. Further details of this construction may
be found in McFarland et al. (2005a, b) and Kerschen et al. (2007). The force exerted
by the mass-wire assembly on the frame is essentially nonlinear due to the absence
of pretension and has been shown to be approximately cubic.
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Fig. 10.34 Experimentally derived wavelet spectra of interstory displacements of the uncontrolled
shear frame subjected to the Kobe earthquake: (a) RD1, (b) RD2, (c) RD3.

Fig. 10.35 Experimentally derived wavelet spectra of interstory displacements of the uncontrolled
shear frame subjected to the Northridge earthquake: (a) RD1, (b) RD2, (c) RD3.
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Fig. 10.36 Experimentally derived wavelet spectra of interstory displacements of the Kobe-
optimized, frame-single VI NES system with 3.5% mass ratio subjected to the Kobe earthquake:
(a) RD1, (b) RD2, (c) RD3.

Fig. 10.37 Experimentally derived wavelet spectra of interstory displacements of the Kobe-
optimized, frame-single VI NES system with 3.5% mass ratio subjected to the Northridge earth-
quake: (a) RD1, (b) RD2, (c) RD3.
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Table 10.9 Experimental evaluation criteria; linear frame with Kobe-designed VI-NES at floor 1
and smooth NES at floor 3, both with 2.5% mass ratios.

Fig. 10.38 Frame-dual NES system with the VI NES attached to floor 1 and the smooth NES
attached to floor 3: (a) the full system mounted on the shake table; and (b) a detail of the smooth
NES.

Fixing each of the two NES mass ratios at 2.5% of the total mass of the frame,
the system optimization was repeated employing the Kobe earthquake as input.
The optimal parameters for NES1 and NES2 were found to be: mNES1/MTF =
mNES2/mTF = 0.025, kNES1/k = 0.003, e − 0.012 m, rc = 0.43, kNES2/k =
16 m−2, and λ4/λ3 = 2.8. Displacements with respect to ground of the frame are
given by Figures 10.39 and 10.40 for the Kobe and Northridge earthquakes, respec-
tively, and a summary of the eight mitigation criteria for both records is given in
Table 10.9.

Examination of the Kobe responses reveals dramatic reductions at early time dur-
ing the strong motion portion of the earthquake and later, around 15 seconds, after
which nearly all of the seismic energy has been released by the ground motion.
Reductions of 41% and 38% are realized for maximum displacement (J1) and max-
imum interstory drift (J2), repectively. Comparison of the dual-NES and single-VI
NES systems during the latter stage of response show that, while the maximum dis-
placement is slightly higher, the normed criteria are made uniformly and markedly
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Fig. 10.39 Experimentally obtained responses of the Kobe-optimized, frame-dual NES system
with a mass ratio of 2.5% subjected to the Kobe earthquake: displacements with respect to ground
of the shear frame, (a) top floor 1, (b) middle floor 2, (c) bottom floor 3.

Fig. 10.40 Experimentally obtained responses of the Kobe-optimized, frame-dual NES system
with a mass ratio of 2.5% subjected to the Northridge earthquake: displacements with respect to
ground of the shear frame, (a) top floor 1, (b) middle floor 2, (c) bottom floor 3.
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Fig. 10.41 Experimentally derived wavelet spectra of the interstory displacements of the Kobe-
optimized, frame-dual NES system with mass ratios of 2.5% subjected to the Kobe earthquake:
(a) RD1, (b) RD2, (c) RD3.

Fig. 10.42 Experimentally derived wavelet spectra of the interstory displacements of the Kobe-
optimized, frame-dual NES system with mass ratios of 2.5% subjected to the Northridge earth-
quake: (a) RD1, (b) RD2, (c) RD3.

lower by the presence of NES2. Furthermore, the wavelet spectra of Figures 10.41
and 10.42 clearly show that spreading of seismic energy to the higher linearized
modes of the system is significantly enhanced in the dual-NES design.
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10.4 Observations, Summary and Conclusions

That seismic protection of buildings and other civil infrastructure will become an
imperative in this century seems obvious. Construction costs associated with repair
and replacement, insurance premiums, and the potential for loss of life will jointly
drive the development of technologies needed to achieve cost- and performance-
effective mitigation. The necessary technologies are available; however, certain of
them, particularly those involving active and hybrid systems, are not viable for
reasons including reliability, maintainability, cost, and energy requirements, all of
which are well-documented in the literature. Passive systems, then, are most likely
to gain broad acceptance, especially if performance can made competitive with that
realized by the active and hybrid systems.

Structural designers have long been wary of nonlinearity because of its associa-
tion with damage. Currently, however, there is general understanding that damping
in structural systems, much of it derived from friction and hysteresis occurring at
many scales, is desirable, though difficult to model and accurately predict. Because
of this, the constructive use of stongly nonlinear passive systems to achieve neces-
sary levels of performance and reliability needed for effective mitigation is more
likely to be accepted by the community at this time.

The case studies presented in this chapter fully demonstrate the ability of tar-
geted energy transfer (TET), implemented through the use of nonlinear energy sinks
(NESs), to mitigate seismic effects in frame structures. Efficacious design ensures
that the mitigation system performs effectively over a wide range of earthquakes
and under conditions of peak input acceleration ranging from extreme to moderate.
The protective systems are relatively lightweight, inexpensive to fabricate and main-
tain, and fully passive; and unlike classical tuned mass dampers they are broadband
devices that do not require frequency tuning.

We have demonstrated, in the case of the three-story frame, that multiple NESs
can be deployed throughout the structure and that, with judicious design of the sys-
tem, mitigation levels consistent with those reported in the literature using active
and hybrid systems can be achieved passively. Furthermore, there are no scalability
issues associated with passive TET; thus, application to full-scale structures should
offer no significant challenges beyond those already addressed.
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Chapter 11
Suppression of Instabilities in Drilling
Operations through Targeted Energy Transfer

Our final demonstration of application of TET to engineering problems concerns
instability suppression in models of deep drilling of oil and gas wells. In particular,
in deep-drilling operations it can be difficult to maintain a smooth cutting process at
bit-rock interfaces. Among other disturbances and uncertainties in such operations,
we mention the non-homogeneity of rock, the unavoidable friction effects (which
are further complicated by fluid flow), and the spatially asymmetric, time-varying
character of forces introduced during ‘steering’ of the drill into the well bore. All
these effects interact with the drill string, which itself can be several thousand meters
long (and, hence, very flexible), to produce a dynamic environment which makes the
operation susceptible to instabilities.

In this chapter we address the problem of stabilizing the dynamics of a model
of the drill-string system by means of nonlinear passive targeted energy transfer
(TET), i.e., by adding a passive, local nonlinear energy sink (NES) to an existing
configuration. In the particular application considered herein the NES takes the form
of a discrete torsional oscillator consisting of a disk coupled to the drill string system
through an essentially nonlinear spring and a viscous damper.

Following a precise statement of the problem to be studied, we will review some
of the distinct numerical challenges associated with the study of the drill-string
model. Most of these arise from the need to efficiently compute the dynamics of
this model in the presence of friction and related non-smooth effects. A bifurcation
diagram depicting the different qualitative dynamics of the system over a realistic
range of inputs will be produced, and will be used to assess the influence of the
NES parameters on the dynamics of the integrated system. A numerical study and
the resulting NES design will be described next. Finally, a detailed analysis of the
integrated system composed of the drill string system and the attached NES will
be presented, including some remarks on the robustness of the passive control of
instabilities achieved with this device. The results presented in this chapter follow
closely the work by Viguié et al. (2008).

625
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Fig. 11.1 Schematic view of the drill-string structure (Mihajlovic, 2005).

11.1 Problem Description

Deep wells for the exploration and production of oil and gas are drilled with a rotary
drilling system (see Figure 11.1). A rotary drilling system creates a borehole by
means of a rock-cutting tool, called the bit. The torque driving the bit is generated at
the surface by a motor with a mechanical transmission box. Via the transmission, the
motor drives the rotary table that consists of a large disk acting as a kinetic energy
storage unit. The medium used to transport mechanical energy from the surface to
the bit is a drill-string, mainly consisting of drill pipes. The drill-string is a long
elastic medium, reaching in some cases up to 8 km long. The lowest part of the
drill-string is the bottom-hole-assembly (BHA) consisting of drill collars and the
bit.

This structure undergoes different types of vibrations during the drilling oper-
ation, including torsional (rotational) vibrations caused by the interaction between
the bit and the rock, or the drill-string and the borehole wall; bending (lateral) vi-
brations often caused by pipe eccentricity and yielding centripetal forces during
rotation; axial (longitudinal) vibrations during the rock cutting process (an extreme
form of such axial vibrations is called bit bouncing); and hydraulic vibrations tak-
ing place in the circulation system, coming from pump pulsations. In addition, there
exist coupling effects between torsional, lateral and longitudinal vibrations, as high-
lighted in Mihajlovic (2005). In this study, our efforts are only devoted towards
vibration mitigation of torsional vibrations.

Numerous studies were undertaken to gain knowledge of the origins of those vi-
brations (Brett, 1992; Cunningham, 1968; Jansen and van den Steen, 1995; Kreuzer
and Kust, 1996; Leine et al., 2002; van den Steen, 1997). It was established that a
possible mechanism for torsional vibration is the stick-slip phenomenon generated
by the friction force between the bit and the well (Jansen and van den Steen, 1995;



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 627

Fig. 11.2 Experimental fixture of a drill-string set-up (Mihajlovic, 2005).

Leine et al., 2002; van den Steen, 1997). Other studies showed that the cause of tor-
sional vibrations is velocity weakening in the friction force (i.e., the Stribeck effect)
due to the contact between the bit and the borehole (Brett, 1992; Kreuzer and Kust,
1996). In Richard et al. (2004) and Germay et al. (2007) it was shown that this ve-
locity weakening effect originates from the coupling between the torsional and axial
dynamics through the bit/rock interaction. Ultimately, the velocity weakening effect
plays a very important role in the occurrence of (unstable) limit cycle oscillations
(LCOs) in drill-string systems (Mihajlovic et al., 2006).

To examine this instability, a prototypical drill-string system was built at the
Technische Universiteit Eindhoven (Mihajlovic, 2005; Mihajlovic et al., 2006). Fig-
ure 11.2 depicts the experimental set-up, whereas Figure 11.3 presents its schematic
representation. The system consists of two discs that model the inertia effects cre-
ated by the rotating components in the upper (i.e., the rotary table) and lower (i.e.,
the BHA) parts of the system. For further details about the experimental fixture, the
interested reader may refer to Mihajlovic (2005) and Mihajlovic et al. (2006).

Because the focus of this study is in the steady state torsional vibration of the
drill-string system, it will be assumed that lateral movements of this system are
restrained so they can be neglected from further consideration. This results in a
reduced-order two-DOF analytical model, the equations of motion of which are
given by

Juω̇u − kθα + Tfu(ωu) = kmuc
Jl(α̈ + ω̇u)+ kθα + Tf l(ωu + α̇) = 0 (11.1)
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Fig. 11.3 Schematic view of the drill-string set-up (Mihajlovic, 2005).

Table 11.1 Definitions

ωu Velocity of the upper disk
ωl Velocity of the lower disk
Ju, Jl Moment of inertia of the disks
km Motor constant
Tfu, Tf l Friction torque at the upper and lower disks
kθ Torsional spring stiffness
θu, θl Angular displacements
α = θl − θu Relative angular displacement
uc Input voltage at the DC-motor

where the definition of the parameters in these equations is given in Table 11.1. The
model consists of two linearly coupled disks, with the upper disk driven by a DC-
motor, and both disks being affected by friction effects. Modeling of friction is an
important issue in this problem, so we will discuss it in detail.

In order to model friction in the set-up, either static or dynamic friction models
can be considered. Because the main objective of the present study is the analysis
of the steady state dynamical behavior, a detailed modeling of friction for small
(initial) angular velocities is not necessary. Therefore, a static friction model will be
adopted for our study.

Both disks of the system are subject to friction torques that originate from dif-
ferent sources. On the upper disc, the applied friction torque Tf u is due to friction
in the bearings, as well as, electro-magnetic effects in the driving DC-motor. At
the lower disk, the friction torque Tf l is due to friction in the bearings, as well
as, due to a brake mechanism that aims to reproduce the Stribeck effect. It follows
that both disks are subject to a torque which results from the combination of sta-
tic friction (denoted by Tsu for the upper disk and Tsl for the lower) and viscous
friction (applied through the viscous damping coefficients bu and bl for the up-
per and lower disks, respectively). Moreover, at the lower disk the presence of the
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Fig. 11.4 Different regimes in the plot of the friction force Ff as a function of the relative velocity
vr .

Stribeck effect imposes the combination of the previous contributions in a Stribeck
model. This model introduces new parameters, such as, the Stribeck velocity ωsl ,
the Stribeck shape parameter δsl , and the Coulomb friction coefficient Tc. The re-
sulting combined friction effect is depicted in Figure 11.4, which presents the plot
of the dependence of friction force on relative velocity. This plot can be divided into
four different regimes: sticking, boundary lubrication, partial fluid lubrication and
full fluid lubrication. All these regimes, as well as further details about this friction
model, are discussed in Armstrong-Helouvry (1991), Canudas de Wit et al. (1995),
Olsson (1996), Hensen (2002), Mihajlovic (2005) and Viguié (2006).

Summarizing, the friction torques acting on the upper and lower disks can be
expressed by the following set-valued force laws:

Tf u(ωu) =
{
Tcu(ωu) sgn(ωu), for ωu �= 0

[−Tsu, Tsu], for ωu = 0
(11.2)

Tf l(ωl) =
{
Tcl(ωl) sgn(ωl), for ωl �= 0

[−Tcl(0−), Tcl(0+)], for ωl = 0
(11.3)

where subscripts u and l refer to upper and lower parts of the set-up depicted in
Figure 11.3, respectively. In these relations the terms Tcu(ωu) and Tcl(ωl) express
the velocity dependencies of the friction torques acting on the upper and lower disks,
respectively, and are defined by the following expressions:

Tcu(ωu) = Tsu + bu|ωu| (11.4)

Tcl(ωl) = Tcbl + (Tsl − Tcbl) exp(−|ωl/ωsl |δsl )+ bl |ωl | (11.5)

where Tsl and Tcbl refer, respectively, to the static friction and Coulomb friction
torque acting on the lower disk, and similar notation is used for the upper disk.
Figures 11.5 and 11.6 depict the combined friction torques acting on the upper and
lower disks as functions of the corresponding angular velocities.



630 11 Suppression of Instabilities in Drilling Operations through TET

Fig. 11.5 Friction torque acting on the upper disk.

Fig. 11.6 Friction torque acting on the lower disk.

The present study focuses on numerical simulations of the two-DOF reduced-
order model (11.1). The numerical values of the parameters of this model, however,
are taken to be identical to the corresponding system parameters identified in the
experimental fixture developed by Mihajlovic (2005); the numerical values of the
parameters of the model are listed in Table 11.2. Hence, the computational results
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Table 11.2 Parameters of the two-DOF drill-string system for the bifurcation diagram presented
in Figure 11.7.

Ju 0.4765 kg·m2/rad
km 4.3228 N·m/V
Tsu 0.37975 N·m
bu 2.4245 N·m·s/rad
kθ 0.0775 N·m/rad
Jl 0.0414 kg·m2/rad
Tsl 0.2781 N·m
csl 0.0473 N·m
ωsl 1.4302 rad/s
δsl 2.0575
bl 0.0105 N·m·s/rad

presented in this chapter should be directly comparable to the experimental results
reported in the above-mentioned work by Mihajlovic.

11.2 Instability in the Drill-String Model

The objective of this section is to study the steady state behavior of the reduced two-
DOF drill-string model for constant input voltage uc. The steady state behavior is
of particular interest, since this system is typically driven by a constant torque while
aiming at a constant velocity at the lower part of the set-up. The presence of friction
and related discontinuities in the equations of motion dictate the use of appropriate
numerical algorithms to efficiently compute the dynamical responses.

In this study, the so-called switch model is used. It aims in approximating a differ-
ential inclusion by sets of ordinary differential equations. This concept is explained
in great detail in Leine and Nijmeijer (2004), and its application to the drill-string
system is described in Viguié et al. (2008). The numerical integration process pro-
vides the possible steady state solutions of the dynamics, such as equilibrium points,
and periodic or quasi-periodic orbits. Typically, these solutions are presented in bi-
furcation plots using selected system parameters as bifurcation parameters. We now
proceed to construct the bifurcation plot of steady state responses of the two-DOF
drill-string model considering the input voltage uc as bifurcation parameter; the
numerical values of the remaining parameters are listed in Table 11.2. In order to
obtain accurate approximations of these solutions and their related stability, specific
numerical methods and stability analysis techniques must be considered.

Stable equilibrium points can be easily computed using numerical simulations,
but a more general method consists of the resolution of the algebraic inclusion of the
discontinuous system. Moreover, the related stability (local and global) can be deter-
mined using Lyapunov’s indirect and direct methods. For the computation of stable
and unstable periodic solutions, a shooting method is used in this study (Keller,
1976). This method relies on an iterative process and requires an initial guess. The
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local stability of the periodic solutions is determined using Floquet theory. The asso-
ciation of the previous methods with the arc length continuation method enables us
to compute the bifurcation diagrams of the system for varying values of the constant
input voltage uc.

Throughout this study, we adopt the same terminology for the bifurcation dia-
grams. The periodic solutions leading to limit cycle oscillations (LCOs) are denoted
by ‘p’, whereas the branches of equilibrium positions by ‘e’. Solid and dotted lines
refer to stable and unstable branches, respectively. The bifurcation diagram of the
steady state dynamics of system (11.1–11.5) is depicted in Figure 11.7.

The following remarks concern the structure of the branches of equilibrium
points of the system. For input voltages below a critical value uc ≤ uA (bifurcation
point A in Figure 11.7b) there is a single branch of asymptotically stable (trivial)
equilibrium points e1, and therefore the operation of the drill-string is stable. For
input voltages in the range uA ≤ uc ≤ uh1 the trivial branch becomes unstable, and
gives rise to the branch of asymptotically stable (non-trivial) equilibrium points e2.
This branch looses stability in the interval uh1 ≤ uc ≤ uh2 and appears as a branch
of unstable equilibrium points denoted by e3 in the bifurcation diagram. Finally,
for relatively high voltages, uc > uh2 this branch of equilibrium points regains as-
ymptotic stability and appears as branch e4 in the bifurcation diagram. Hence, there
occur two main bifurcations corresponding to points B and C in the bifurcation plots
of Figure 11.7, associated with exchanges of stability of the branch of stable equilib-
rium positions e2 − e4. As shown below, these bifurcations give rise to stable LCOs
which inadversely affect the stability of the operation of the drill-string; however,
for sufficiently high voltages (uc > uE in Figure 11.7a) branch e4 is the only stable
steady state solution of the system.

In this system LCOs are generated due to a steady state balance between the ‘sta-
bilizing’ effect of viscous friction (at higher velocities) and the ‘destabilizing’ effect
of the Stribeck effect (at lower velocities). Considering the bifurcation plots of Fig-
ure 11.7 we note that for input voltages higher than uh1 (i.e., above point B in Fig-
ure 11.7b), in addition to the branch e3 of unstable equilibrium points, there exists
the branch p1 of periodic solutions consisting of unstable LCOs without stick-slip.
It follows that point B is a subcritical Hopf bifurcation point. The branch of unstable
LCOs p1 is connected to branch p2 of stable LCOs at point D (see Figure 11.7b).
The branch p2 consists of LCOs during which the drill-string undergoes torsional
vibration with stick-slip, so that D is a point of (discontinuous) saddle-node (SN)
bifurcation. Moreover, at point C a subcritical Hopf bifurcation takes place that gen-
erates the branch p3 of unstable LCOs. This unstable LCO branch merges with the
stable LCO branch p2 at point E, in a SN bifurcation of LCOs (see Figure 11.7a).
For voltages uc > uE no LCOs are possible in the drill-string model. To illustrate
some of the above-mentioned steady state solutions, in Figure 11.8 we present direct
numerical integrations of the system on a branch of stable LCOs, as well as, a case
of attraction of the dynamics by a stable equilibrium position.
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(a)

(b)

Fig. 11.7 Steady state dynamics of the two-DOF drill-string model for varying voltage uc : (a) bi-
furcation diagram, (b) zoom in the low voltage range; solid lines correspond to stable solutions and
dotted lines to unstable ones.

11.3 Suppression of Friction-Induced Limit Cycles by TET

We now study passive suppression of destabilizing LCOs in the drill-string model
through TET. To this end, we attach an essentially nonlinear, passive torsional non-
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Fig. 11.8 Direct numerical simulation of the drill-string model: (a) stable LCO with stick-slip on
branch p2 (uc = 2 V); (b) transition of the dynamics to a stable equilibrium pointon branch e2
(uc = 0.16 V).

linear energy sink (NES) to the lower disk and study its effect on the dynamics.
From previous applications it has been shown that appropriately designed NESs are
capable of absorbing and locally dissipating significant portions of vibration energy
from the systems to which they are attached; moreover, this type of passive devices
are capable of absorbing energy at extended frequency ranges through transient or
sustained resonance captures with multiple structural modes. Additional advantages
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of the proposed design is that it brings only relatively minor structural modification
to the drill-string system, and that it does not require any external energy supply for
its operation.

11.3.1 Addition of an NES to the Drill-String System

As discussed in previous chapters, the tuned mass damper (TMD) is a simple and
efficient device, but it is only effective when it is precisely tuned to the frequency
of a vibration mode of the structure to which it is attached. In the drill-string prob-
lem under consideration, the nonlinear primary system possesses a single vibration
mode, but the LCOs during operation have frequencies that vary with the input volt-
age uc. It follows, that in this case, the TMD would have to be tuned to a particular
frequency (i.e., on a specific LCO of the system), which would clearly limit its effi-
ciency and robustness.

To overcome the limitations of the TMD, an essentially nonlinear attachment
(characterized by the absence of a linear term in the force- displacement relation) is
added to the system, and designed to act as a nonlinear energy sink (NES) and local
dissipater of undesired vibrations. As shown in previous chapters an NES possesses
certain important properties. Indeed, since the NES does not possesses any prefer-
ential resonant frequency, it is capable of engaging in resonance capture with any
structural mode of the system to which it is attached, irrespective of the frequency
range where that mode lies (as long, of course, as the mode has no node close to
the point of attachment of the NES). For instance, an NES may resonate with, and
extract energy through TET from any mode of a primary structure through either
isolated transient resonance captures (TRCs) or resonance capture cascades (RCCs).
This versatility of the NES makes it particularly suitable for passive elimination of
the stick-slip LCOs described in the previous section, whose frequencies vary with
varying input voltage (the passive elimination of a different type of aeroelastic LCOs
through passive TET was already demonstrated in Chapter 9).

The use of an NES therefore seems promising for vibration mitigation of non-
linear primary systems such as a drill-string system, since passive TET from the
drill-string to the NES may reduce the amplitude of vibration, or even completely
eliminate the LCO instabilities. However, the increased complexity of the dynamical
behavior of the integrated system with the attached NES, dictates that the dynamics
be carefully studied, and the robustness of the proposed design to changes of initial
conditions be addressed.

The addition of the NES yields an additional degree-of-freedom in the system;
the NES consists of a disk with moment of inertia Jadd, coupled to the lower disc
of the drill-string by a cubic stiffness, kθnl , which lies in parallel to a dashpot with
damping coefficient ca (see Figure 11.9). The only degree-of-freedom of this disk is
its rotation θa about its geometric center, whereas any lateral motion is assumed to
be negligible. Hence, the equations of motions of the three-DOF integrated system
with NES attached are given by
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Fig. 11.9 Integrated drill-string system with torsional NES attached.

Ju(ω̇u − α̈)− kθα + Tfu(ωl + α̇) = kmu
Jl(ω̇l + kθα − kθnl(αa)3 − caα̇a + Tf l(ωl) = 0

Ju(ω̇l + α̈a)+ kθnl(αa)3 + caα̇a = 0 (11.6)

where αa = θa − θl .
A parametric study of the dynamics of the integrated system was performed to

study the effect of the NES on the steady state responses. In particular, of significant
practical interest is to investigate the efficacy of reducing or even completely elimi-
nating the domain of existence of unwanted stable LCOs through passive TET from
the drill-string to the NES, as this would stabilize the operation of the integrated
system and enhance its performance.

11.3.2 Parametric Study for Determining the NES Parameters

In the parametric design we performed a study on the effect of the NES parameters,
namely the nonlinear stiffness kθnl , the moment of inertia Jadd, and the damping co-
efficient ca , on TET and drill-string stabilization. This study provided a set of values
for these parameters; we mention at this point that the design objective was not to
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Table 11.3 Initial set of NES parameters.

Jadd 0.025895 kg·m2/rad
ca 0.0105 N·m·s/rad
kθnl 0.0025 N·m/rad3

determine the optimal set of values for the NES parameters, but rather to establish
the efficacy of using an NES in order to extend the range of working input voltages
for which stick-slip LCOs in the integrated system could be avoided. Therefore, an
initial set of parameter values was utilized, and then adapted to obtain the largest
range of input voltages leading to stable equilibrium solutions and avoidance of
stick-slip limit cycling (i.e., of periodic solutions).

For obvious practical reasons, we selected the mass ratio between the NES and
the drill-string system to be as small as possible, and followed the same design rules
as those considered in our previous applications. To this end, the NES inertia was
initially set equal to 5% of the total inertia of the system. In practice, this value may
seem to be large, but the focus of our study was on the new dynamics introduced by
the addition of the NES to the nonlinear (discontinuous) primary structure, instead
of providing an NES design that could be directly applied to practical applications.
As the inertia of the additional NES disk was close to that of the lower disk, the NES
dashpot was chosen so that its viscous damping coefficient be of value close to that
of the lower disk b1. Finally, the determination of the nonlinear (cubic) stiffness was
based on the linear stiffness of the string of the primary system. The aim was to find
a value of the nonlinear stiffness that creates an elastic torque of the same order of
magnitude to that in the primary system. Based on this rationale, the selected initial
set of NES parameters is listed in Table 11.3.

A series of numerical simulations was carried out by varying a single parameter
of the initial set in order to assess the impact of the nonlinear structural modifica-
tion on the dynamical behavior of the integrated system; this impact was studied
through bifurcation diagrams. The results related to these numerical experiments
are available in Viguié (2006), and are summarized in Tables 11.4–11.6 for modifi-
cations of nonlinear stiffness kθnl , moment of inertia Jadd and viscous coefficient ca ,
respectively. Depending on the selected parameter values, the existence of periodic
solutions is restricted to wider or narrower ranges of input voltage. For instance, the
selection of the nonlinear stiffness coefficient is crucial, as judged from the results
listed in Table 11.4; indeed, for some values of the nonlinear stiffness coefficient
time-periodic solutions (LCOs) are realized up to 3.5 V, whereas for others val-
ues of this parameter LCOs exist only up to 1.7 V. The parametric study in Viguié
(2006) showed that the sets of parameters in Table 11.7 provide interesting results
regarding LCO suppression in the drill-string system.

An illustrative example of the effect of the NES on the dynamics is presented
in Figure 11.10; the results clearly show that the effect of the NES is to stabilize
the operation of the drill-string system for an input voltage equal to 2 V. It is worth
mentioning that the equilibrium of the system without NES, ωl = ωu = ωeq and
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Table 11.4 Changes in the bifurcation diagram for variation of the nonlinear stiffness kθnl .

kθnl kθnl Stable equilibria Other solutions Other solutions
(Nm/rad3) (n× kθnl init) (range) (range) (type)

0.0025 1 [1.7 →] V [0.3 → 1.7] V Periodic solutions
1 4 × 102 [3.5 →] V [0.3 → 3.5] V Periodic solutions
1 × 10−2 4 [2.9 →] V [0.3 → 2.9] V Periodic solutions
1 × 10−3 4 × 10−1 [2.1 →] V [0.3 → 2.1] V Periodic solutions
1 × 10−7 4 × 10−5 [2.6 →] V [0.3 → 2.6] V Periodic solutions

Table 11.5 Changes in the bifurcation diagram for variation of the inertia Jadd.

Jadd Jadd Stable equilibria Other solutions Other solutions
(kg·m2) (% of Jtot) (range) (range) (type)

0.25895 50 [2.5 →] V [0.3 → 2.5] V Periodic solutions
0.05179 10 [2.1 →] V [0.3 → 2.1] V Periodic solutions
0.03107 6 [1.9 →] V [0.3 → 1.9] V Periodic solutions
0.02072 4 [1.6 →] V [0.3 → 1.6] V Periodic solutions
0.01294 2.5 [2.8 →] V [0.3 → 2.8] V Periodic solutions
0.00259 0.5 [3.6 →] V [0.3 → 3.6] V Periodic solutions

Table 11.6 Changes in the bifurcation diagram for variation of the damping coefficient ca .

ca ca Stable equilibria Other solutions Other solutions
(Nms/rad) (n× ca,init) (range) (range) (type)

0.1050 10 [2.8 →] V [0.3 → 2.8] V Periodic solutions
0.0210 2 [1.7 →] V [0.3 → 1.7] V Periodic solutions
0.00525 0.5 [2.1 →] V [0.3 → 2.1] V Periodic solutions
0.00105 0.1 [3.5 →] V [0.3 → 3.5] V Periodic solutions

Table 11.7 Selected NES parameters.

Set kθnl Jadd ca
(Nm/rad3) (kg·m2) (Nms/rad)

#1 0.002515 0.025895 0.0105
#2 0.002515 0.020716 0.0105
#3 0.002515 0.025895 0.0210

α = αeq, is preserved also in the system with NES attached as the new equilibrium
ωl = ωu = ωa = ωeq and α = αeq. We note that the new equilibrium solution
provided by the NES (and depicted in Figure 11.10b) might not be the only possible
steady state solution at this particular value of the voltage. This issue is addressed
by a detailed study of the topology of the steady state solutions of the integrated
system performed in the next section.
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(a)

(b)

Fig. 11.10 Direct numerical simulation of the drill-string system for input voltage uc = 2 V:
(a) without NES; (b) with NES (parameter set 1).

11.4 Detailed Analysis of the Drill-String with NES Attached

We now carry out a detailed analysis of the nonlinear dynamics of the drill-string
system coupled to the NES. The main result of this analysis consists of bifurcation
diagrams of the integrated system for the three sets of NES parameters listed in Ta-
ble 11.7. Moreover, the basins of attraction of the stable solutions (for given input
voltages) are presented. The purpose of the study is to investigate the NES efficacy
and robustness together with the complexity of the resulting dynamical behavior.
Finally, the wavelet transform is applied to the resulting time series in order to iden-
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tify TRCs between the drill-string system and the NES. As discussed in previous
chapters, this type of transient resonance interactions is responsible for passive TET
in the integrated system.

11.4.1 NES Efficacy

To examine the efficacy of using an NES to stabilize the drill-string system, in Fig-
ure 11.11 we depict the comparison of bifurcation diagrams of the steady state dy-
namics of the system with and without NES attached. In these diagrams we adopt the
notation of Figure 11.7 to denote the branches of equilibrium points and periodic or-
bits. These results clearly demonstrate the uniform improvement of the steady state
dynamical behavior brought by the addition of the NES, for all three parameter sets
considered (see Table 11.7).

In particular, we note the following: (i) the ranges of input voltages correspond-
ing to stable equilibrium points (i.e., the nominal behavior of the drill-string system)
increase; (ii) the LCOs of the drill-string system can be completely eliminated in
certain voltage ranges; and (iii) the addition of the NES can result in partial LCO
suppression, i.e., it can reduce the amplitude of the surviving LCOs in the regions
where complete elimination is not possible (mainly for voltages below 1.8 V). More-
over, a comparison of the bifurcation diagrams presented in Figure 11.11 reveals
that, depending on the NES parameters the dynamics of the system in regions of
partial LCO suppression can be either relatively simple (e.g., parameter set 3 – Fig-
ure 11.11d), or more complicated (e.g., parameter set 1 – Figure 11.11b).

For the quantitative assessment of NES efficacy, three different criteria are con-
sidered: (i) the percentile reduction of the range of voltages leading to unstable equi-
librium points and their stabilization to asymptotically stable equilibrium points;
(ii) the percentage of the voltage range leading to stable equilibrium points in the
range [0, 3.38 V]; and (iii) the percentage of the input voltage range [1.69 V, 3.83 V]
for which locally stable equilibrium solutions are transformed to globally stable
equilibrium solutions (or equivalently, complete LCO suppression by the NES).

The numerical values related to these criteria are listed in Table 11.8, and show
that the NES parameter set 3 (see Table 11.7) provides a wider range of voltages
leading to globally stable equilibrium solutions; hence, for this parameter set better
stabilization of the drill-string operation results. Only NES parameter sets 1 and 3
are considered in detail in this study, as their respective bifurcation diagrams present
clear differences due to the differences of the corresponding damping coefficients.
Another advantage of using the NES parameter set 3 is that it leads to a less complex
bifurcation diagram, as seen from the plots depicted in Figure 11.11.

A complete characterization of the different bifurcation diagrams is beyond the
scope of this work. However, we note that transitions between different branches
may be realized through discontinuous SN bifurcations and subcritical Hopf bifur-
cations.
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Fig. 11.11 Bifurcation diagrams of steady state solutions for the system with (a) no NES attached;
(b) NES with parameter set 1 (see Table 11.7); solid lines correspond to stable solutions and dotted
lines to unstable ones.

An additional aim of the passive vibration mitigation design is to structurally
perturb the primary (drill-string) system to the lowest possible extent. Accordingly,
the NES was kept as light as possible. The second parameter set in Table 11.7 cor-
responds to rotating inertia for the NES equal to 4% of the total rotating inertia,
instead of 5% used for parameter sets 1 and 3. Comparing the bifurcation diagrams
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Fig. 11.11 Bifurcation diagrams of steady state solutions for the system with (c) NES with para-
meter set 2; (d) NES with parameter set 3; solid lines correspond to stable solutions and dotted
lines to unstable ones.

corresponding to NES parameter sets 1 and 2 (which differ only slightly by the NES
mass moment of inertia – depicted in Figures 11.11b and 11.11c, respectively), we
note that, although the corresponding global topologies of the branches of steady
state solutions appear to be similar, the slightly larger rotating inertia introduces
added complexity to the steady state dynamics in the local range [0.7 V, 1.7 V].
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Table 11.8 Stabilization of the drill-string system (quantitative assessment).

Criterion Set 1 (%) Set 3 (%) Difference (%)

(i) 11.04 15.89 4.85
(ii) 65.04 66.95 1.91
(iii) 94.95 97.66 2.71

This confirms the added complexity of the dynamics of the integrated system, due
to the strongly nonlinear stiffness characteristic of the attached NES.

11.4.2 Robustness of LCO Suppression

The previous parametric study indicated that there are ranges of input voltages at
which multiple stable and unstable steady state solutions co-exist. Indeed, a key
feature of nonlinear dynamical responses is that multiple periodic, quasi-periodic,
equilibrium or even chaotic solutions may coexist in certain parameter ranges. For
instance, in the drill-string system a stable LCO may coexist with a stable equilib-
rium point in certain ranges of input voltage. What determines the attraction of the
dynamics to either one of these co-existing steady state solutions is the specific set
of initial conditions of the system, which places the dynamics in the domain of at-
traction of either one of the stable attractors. Therefore, to study the robustness of
the passive vibration control realized by the addition of the NES, it is meaningful
to study the basins of attraction of each of the computed co-existing steady state
solutions.

The integrated system (11.6) consisting of the drill-string and the attached NES
possesses a five-dimensional phase space, meaning that the corresponding basins of
attraction of its stable solutions are five-dimensional. It follows that for graphical
representation of the basins of attraction, only two phase variables will be varied,
namely the velocity of the lower disc ω1 and the deformation of the string of the
primary system α. All other phase variables will be assumed to possess zero initial
values.

The basins of attraction of the attractors of the integrated system for input volt-
ages uc = 2 V and uc = 1.65 V are depicted in Figures 11.12 and 11.13, re-
spectively; these plots enable us to get insight into the variations of the basins of
attraction when the NES is added to the drill-string system. Circles and stars refer to
initial conditions leading to stable LCOs and stable equilibrium points, respectively.
It is noted that for an input voltage uc = 2 V (see Figure 11.12), the transformation
of locally stable equilibrium points into globally stable equilibrium points due to the
action of the NES, is evident for the three parameter sets considered in this study.
For an input voltage of uc = 1.65 V (see Figure 11.13) we note the complicated
dynamics introduced by the NES for parameter set 1; this does not hold, however,
for parameter set 3. These diagrams confirm that the LCOs originally present in
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Fig. 11.12 Domains of attraction of the dynamics of the integrated system for input voltage uc =
2 V, system with (a) no NES attached; (b) NES parameter set 1; (c) NES parameter set 2; (d) NES
parameter set 3; circles denote attraction by stable periodic solutions and stars denote attraction by
stable equilibrium points.

the drill-string system without NES attached, have been transformed into locally
asymptotically stable equilibrium points in the integrated system.

A final remark is that these numerical results confirm that the branch e4 of stable
equilibrium points of the bifurcation diagrams in Figures 11.11b and 11.11d consists
indeed of locally (for uc = 1.65 V) or globally (for uc = 2 V) asymptotically stable
equilibrium points.
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Fig. 11.13 Domains of attraction of the dynamics of the integrated system for input voltage uc =
1.65 V, system with (a) no NES attached; (b) NES parameter set 1; (c) NES parameter set 2;
(d) NES parameter set 3; circles denote attraction by stable periodic solutions and stars denote
attraction by stable equilibrium points.

11.4.3 Transient Resonance Captures

The purpose of this section is to study the dynamical mechanisms that govern LCO
suppression in the integrated drill-string-NES system. In particular, motivated by
similar studies carried out in previous chapters we are interested to identify possible
TRCs in the dynamics leading to TET from the drill-string to the NES. To address
this issue we apply the wavelet transform (WT) to the time series of the responses of
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the integrated system, as this will help us reveal the possible TRCs that occur in the
transient dynamics. As shown in previous chapters, the WT is a suitable technique
for analyzing the temporal evolution of the dominant frequency components of non-
linear signals. The comparison of the instantaneous frequencies of the velocities of
the lower disk of the drill-string and the NES provides a robust means for verifying
the occurrence of TRCs (or frequency locking) in the transient dynamics.

Figures 11.14 and 11.15 depict the instantaneous frequencies of the velocities of
the lower disk (ω1) and the NES (ωa) for input voltages leading to attraction of the
dynamics to either a stable equilibrium point (for uc = 2 V – Figure 11.14), or a
stable periodic solution (uc = 1.5 V – Figure 11.15), respectively. These Figures
confirm that 1:1 transient or sustained resonance captures leading to fundamental
TET from the drill-string to the NES are responsible for the beneficial action of the
NES, leading to enhanced instability mitigation.

In the results depicted in Figure 11.14 there occurs a 1:1 TRC at frequency
≈ 0.13 Hz in the initial stage of the dynamics, after which the dynamics settles
to a stable equilibrium (complete LCO suppression); during the initial 1:1 TRC the
NES resonantly interacts with the developing LCO instability of the drill-string and
suppresses it by means of TET. In Figure 11.15 there occurs a 1:1 SRC at a fre-
quency f ≈ 0.175 Hz as the dynamics settles into a stable LCO, albeit of smaller
amplitude compared to the LCO of the drill-string with no NES attached; in this
case the NES is capable of only partially suppressing the developing LCO instabil-
ity. These numerical results confirm once more that, since the essentially nonlinear
NES possesses no preferential resonant frequency, it is capable of passively tuning
itself to (and transiently resonating at) the frequency of the developing drill-string
instability irrespective of the characteristic frequency of this instability; hence, the
NES passively ‘tracks’ the varying frequency of the developing instability. This is
demonstrated by the fact that the described 1:1 resonance captures occur at different
frequencies in the WT plots of Figures 11.14 and 11.15. In accordance to the ap-
plications discussed in previous chapters, these resonance interactions lead to TET
from the drill-string system to the NES, where the energy is confined and locally
dissipated.

11.5 Concluding Remarks

Self-sustained vibrations may appear in mechanical systems for various reasons and
often limit the performance of such systems or even cause damage and system fail-
ure. In this chapter, the focus was on friction-induced vibrations in drill-string sys-
tems. As a benchmark we considered a rotor-dynamic system with (set-valued) fric-
tion and flexibilities. We investigated the possibility of passively mitigating these
friction-induced vibrations using a nonlinear absorber or NES, characterized by es-
sential stiffness nonlinearity. The motivation for using an NES is its absence of pref-
erential resonance frequency, which enables it to resonate with and extract energy
from the drill-string system at arbitrary frequency ranges. Indeed it is this passive
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(a)

(b)

Fig. 11.14 Instantaneous frequencies of the responses of the integrated system via WT, for uc =
2 V and NES parameter set 1: (a) WT spectra; (b) plot of local frequency maxima.

adaptive (self-tuning) capacity of the NES that makes it suitable for suppressing
time-varying instabilities in a wide range of applications. This was demonstrated
not only in the application considered in this chapter, but also in the applications
involving vibration and shock isolation, aeroelastic LCO suppression and seismic
mitigation considered in previous chapters.

The parametric study demonstrated that the NES can completely eliminate LCO
instabilities over a relatively wide range of parameters. In other parameter ranges,
the action of the NES results in only partial LCO suppression; i.e., in a mere reduc-
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(a)

(b)

Fig. 11.15 Instantaneous frequencies of the responses of the integrated system via WT, for uc =
1.5 V and NES parameter set 2: (a) WT spectra; (b) plot of local frequency maxima.

tion of the amplitudes of the surviving LCOs in parameter ranges where complete
LCO elimination is not possible. As a general conclusion, however, the addition of
an NES to a drill-string system has the potential to improve the global dynamical
behavior of the system, and to substantially extend its domain of stable operation.
Further optimization studies have to be carried out in order to not only improve the
vibration mitigation action of the NES, but also to ensure the robustness and effec-
tiveness of the NES-based passive vibration mitigation design to changes in initial
conditions and system parameters.



Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems 649

References
*ReferencesReferencesReferences

Armstrong-Helouvry, B., Control of Machines with Friction, Kluwer Academic Publisher, Boston,
1991.

Brett, J.F., Genesis of torsional drill-string vibrations, SPE Drilling Eng. 7(3), 168–174, 1992.
Canudas de Wit, C., Olsson, H., Aström, K.J., Lischinsky, P., A new model for control of systems

with friction, IEEE Trans. Aut. Control 40(3), 419–425, 1995.
Cunningham, R.A., Analysis of downhole measurements of drill string forces and motions, J. Eng.

Ind. 90, 208–216, 1968.
Germay, C., van de Wouw, N., Nijmeijer, H., Sepulchre, R., Nonlinear drill string dynamics analy-

sis, SIAM J. Appl. Dyn. Syst., 2007 (in press).
Hensen, R.H.A., Controlled Mechanical Systems with Friction, PhD Thesis, Eindhoven University

of Technology, the Netherlands, 2002.
Jansen, J.D., van den Steen, L., Active damping of self-excited torsional vibrations in oil well

drill-string, J. Sound Vib. 179, 647–668, 1995.
Keller, H.B., Numerical Solution of Two-Point Boundary Value Problems, Society of Industrial and

Applied Mathematics, Philadelphia, 1976.
Kreuzer, E., Kust, O., Analyse selbsterregter Drehschwingugnen in Torsionsstäben, ZAMM – J.

Appl. Math. Mech. 76(10), 547–557, 1996.
Leine, R.I., Nijmeijer, H., Dynamics and Bifurcations of Non-Smooth Mechanical Systems,

Springer Verlag, Berlin/New York, 2004.
Leine, R.I., van Campen, D.H., Keultjes, W.J.G., Stick-slip whirl interaction in drill-string dynam-

ics, J. Vib. Acoust. 124, 209–220, 2002.
Mihajlovic, N., Torsional and Lateral Vibrations in Flexible Rotors Systems with Friction, PhD

Thesis, Technische Universiteit Eindhoven, the Netherlands, 2005.
Mihajlovic, N., van de Wouw, N., Hendriks, M.P.M., Nijmeijer, H., Friction-induced limit cycling

in flexible rotor systems and experimental drill-string set-up, Nonl. Dyn. 46, 273–291, 2006.
Olsson, H., Control Systems with Friction, PhD Thesis, Lund Institute of Technology, Sweden,

1996.
Richard, T., Germay, C., Detournay, E., Self-excited stick-slip oscillations of drill bits, Com. Ren-

dus Méc. 332, 619–626, 2004.
Van den Steen, L., Suppressing Stick-Slip-Induced Drill-String Oscillations: A Hyper Stability Ap-

proach, PhD Thesis, University of Twente, the Netherlands, 1997.
Viguié, R., Passive Vibration Mitigation in Rotor Systems Using Nonlinear Energy Sinks, M.Sc.

Thesis, University of Liège, Belgium, 2006.
Viguié, R., Kerschen, G., Golinval, J.C., McFarland, D.M., Bergman, L.A., Vakakis, A.F., van de

Wouw, N., Using passive nonlinear targeted energy transfer to stabilize drill-string systems,
Mech. Syst. Signal Proc., 2008 (in press).





Chapter 12
Postscript

For more than a century, beginning with the pioneering work of Lord Rayleigh,
a fundamental issue addressed in the field of vibration engineering has been the
protection of critical systems subjected to destructive input forces and/or motions.
Much of this effort has been directed toward narrow-band excitations, that is, har-
monic or at least periodic in nature, thus facilitating the development of classical
passive vibration isolation and vibration absorption strategies. In the former case, a
compliant suspension was integrated in the system to be protected thus reducing its
natural frequencies well below the lowest frequency component of the excitation.
The greater this difference, the greater the attenuation of the response of the system
achieved by the vibration isolation design. In the latter case, an additional degree of
freedom, a vibration absorber, was attached to the primary system and tuned to one
of its natural frequencies. Input forces and motions at or near that frequency were
attenuated to a degree defined by the inherent damping of the absorber, resulting in
localization of vibration to the absorber.

In general, neither of these approaches provides a solution for the case of broad-
band excitations. The difficulty arises when the bandwidth of the excitation encom-
passes one or more natural frequencies of the primary system, resulting in a resonant
condition. This is typical for, say, stationary white noise input, which renders both
vibration isolation and vibration absorption strategies ineffective; the former due to
magnification of the response of the integrated system over a frequency band defined
by the damping of the isolation system; and the latter due to magnification at side-
bands formed at the new added natural frequencies of the integrated system. The
situation is made even more challenging when the wide- band excitation is transient
in nature, such as the case of impulsive excitation, since initial conditions become
the predominant factor in determining the magnitude of the peak response which is
nearly insensitive to damping. While tremendous strides have been made in the field
of vibration engineering over the past one hundred years, the analyst and designer
of protective systems are still largely constrained to reducing steady-state responses
to narrow-band excitations.

Within the past 30 years, there has been a synthesis of control engineering, ma-
terials engineering, and vibration engineering, resulting in active vibration control
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systems often employing smart materials. These systems can provide significant
advantages in performance due to their ability to provide optimal and adaptive solu-
tions to a wide range of problems, including those involving wide-band and transient
excitations. However, the price paid for flexibility and performance is cost, weight,
maintenance and reliability. For these reasons, most vibration engineers prefer a
passive to an active solution, if necessary performance can be achieved.

In this monograph, the authors have attempted to document the genesis and sub-
sequent development of a different, yet still fully passive, paradigm for protecting
critical systems from destructive force and motion inputs: targeted energy transfer
(TET). The novelty of this approach, though, is its applicability to wide-band and
transient inputs, as well as the usual narrow-band and steady state excitations. The
method represents a new and unique application of strong nonlinearity, the nonlin-
ear energy sink (NES), a local, simple, lightweight subsystem capable of completely
altering the global behavior of the primary system to which it is attached. The un-
derlying mechanism, a series of transient resonance captures and escapes, combined
with nonlinear beating phenomena associated with excitation of special impulsive
orbits which comprise the bridges to TET, provides an entirely different approach
to quickly, efficiently, and nearly irreversibly moving vibrational energy through a
preferred, a priori selected direction from the primary system to an NES where it
can be harmlessly dissipated.

The application of TET through the use of both smooth and discontinuous NESs
has been demonstrated herein for shock and vibration isolation, passive aeroelastic
instability control, seismic hazard mitigation, and stabilization of long, slender drill
strings. Additional applications of the technology currently under investigation by
the authors, their colleagues, and others include vibration control of bluff bodies
in flow, protection of complex structures from large magnitude shocks, vibration
reduction in gear sets, broadband acoustic attenuation, and broadband vibration am-
plification for energy harvesting.

Moreover, we envision that the generality of the methods discussed herein may
also lead to fruitful applications of TET in diverse fields of science and engineering.
In the field of acoustics, TET can be employed in designing acoustic NESs for pas-
sively reducing engine noise or improving the acoustic performance of closed cham-
pers and halls. In biomedical applications, electromagnetic TET could be applied
to non-intrusive detection of abnormalities, such as cancers. In electronics, TET
could find application in wireless energy/power transfer in portable devices. More-
over, TET-based designs can find application in micro/nano devices for enhanced
passive vibration mitigation of sensitive components or for achieving directed en-
ergy transfers between components, favorable to the design objectives. Additional
potential applications of nonlinear TET could be in the fields of solid state physics
(e.g., studying the dynamics of lattices or superlattices with local nonlinear defects),
sensing technology (e.g., developing sensors with enhanced sensitivity towards am-
bient energy variations), turbulence modeling and chaotic dynamical systems (that
is, studying targeted energy transfers between temporal or spatial scales and relating
these to bifurcations and complexity), bioengineering (understanding, for example,
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the role of TET in stiff/soft dynamical interactions in cell dynamics leading to com-
plex dynamic phenomena such as relaxation oscillations) and in other areas.

It should also be stated that despite the amount of work already devoted to the
development of a theory for nonlinear TET, some of it reported in this monograph
and some included in references herein, certain challenging issues still remain unre-
solved or at least not completely resolved. Among important open issues one should
mention the need for designing practical, essentially nonlinear NESs suitable for en-
gineering applications; current designs, some of which are reported in this work, are
sufficient under laboratory conditions but are hardly applicable to engineering prac-
tice. Another challenge is the need to extend low-dimensional analytical models
of TET-related phenomena so that they are applicable to realistic high-dimensional
problems. The authors can only hope that this monograph will assist those interested
in applying TET in their own work and, in the mean time, hopefully raise awareness
of the potential benefits to be gained through intentional, constructive and careful
application of nonlinearity in applications in science and engineering.
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